| 
38140
 | 
     1  | 
(*  Title:      HOL/Subst/Unifier.thy
  | 
| 
1476
 | 
     2  | 
    Author:     Martin Coen, Cambridge University Computer Laboratory
  | 
| 
968
 | 
     3  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
38140
 | 
     7  | 
header {* Definition of Most General Unifier *}
 | 
| 
15635
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory Unifier
  | 
| 
 | 
    10  | 
imports Subst
  | 
| 
 | 
    11  | 
begin
  | 
| 
968
 | 
    12  | 
  | 
| 
24823
 | 
    13  | 
definition
  | 
| 
38140
 | 
    14  | 
  Unifier :: "('a * 'a uterm) list \<Rightarrow> 'a uterm \<Rightarrow> 'a uterm \<Rightarrow> bool"
 | 
| 
 | 
    15  | 
  where "Unifier s t u \<longleftrightarrow> t <| s = u <| s"
  | 
| 
968
 | 
    16  | 
  | 
| 
24823
 | 
    17  | 
definition
  | 
| 
38140
 | 
    18  | 
  MoreGeneral :: "('a * 'a uterm) list \<Rightarrow> ('a * 'a uterm) list \<Rightarrow> bool"  (infixr ">>" 52)
 | 
| 
 | 
    19  | 
  where "r >> s \<longleftrightarrow> (\<exists>q. s =$= r <> q)"
  | 
| 
968
 | 
    20  | 
  | 
| 
24823
 | 
    21  | 
definition
  | 
| 
38140
 | 
    22  | 
  MGUnifier :: "('a * 'a uterm) list \<Rightarrow> 'a uterm \<Rightarrow> 'a uterm \<Rightarrow> bool"
 | 
| 
 | 
    23  | 
  where "MGUnifier s t u \<longleftrightarrow> Unifier s t u & (\<forall>r. Unifier r t u --> s >> r)"
  | 
| 
968
 | 
    24  | 
  | 
| 
24823
 | 
    25  | 
definition
  | 
| 
 | 
    26  | 
  Idem :: "('a * 'a uterm)list => bool" where
 | 
| 
 | 
    27  | 
  "Idem s \<longleftrightarrow> (s <> s) =$= s"
  | 
| 
15635
 | 
    28  | 
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemmas unify_defs = Unifier_def MoreGeneral_def MGUnifier_def
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
  | 
| 
38140
 | 
    33  | 
subsection {* Unifiers *}
 | 
| 
15635
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma Unifier_Comb [iff]: "Unifier s (Comb t u) (Comb v w) = (Unifier s t v & Unifier s u w)"
  | 
| 
24823
 | 
    36  | 
  by (simp add: Unifier_def)
  | 
| 
15635
 | 
    37  | 
  | 
| 
 | 
    38  | 
  | 
| 
38140
 | 
    39  | 
lemma Cons_Unifier: "v \<notin> vars_of t \<Longrightarrow> v \<notin> vars_of u \<Longrightarrow> Unifier s t u \<Longrightarrow> Unifier ((v, r) #s) t u"
  | 
| 
24823
 | 
    40  | 
  by (simp add: Unifier_def repl_invariance)
  | 
| 
15635
 | 
    41  | 
  | 
| 
 | 
    42  | 
  | 
| 
38140
 | 
    43  | 
subsection {* Most General Unifiers *}
 | 
| 
15635
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma mgu_sym: "MGUnifier s t u = MGUnifier s u t"
  | 
| 
24823
 | 
    46  | 
  by (simp add: unify_defs eq_commute)
  | 
| 
15635
 | 
    47  | 
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
lemma MoreGen_Nil [iff]: "[] >> s"
  | 
| 
24823
 | 
    50  | 
  by (auto simp add: MoreGeneral_def)
  | 
| 
15635
 | 
    51  | 
  | 
| 
 | 
    52  | 
lemma MGU_iff: "MGUnifier s t u = (ALL r. Unifier r t u = s >> r)"
  | 
| 
24823
 | 
    53  | 
  apply (unfold unify_defs)
  | 
| 
 | 
    54  | 
  apply (auto intro: ssubst_subst2 subst_comp_Nil)
  | 
| 
 | 
    55  | 
  done
  | 
| 
15635
 | 
    56  | 
  | 
| 
24823
 | 
    57  | 
lemma MGUnifier_Var [intro!]: "~ Var v <: t ==> MGUnifier [(v,t)] (Var v) t"
  | 
| 
 | 
    58  | 
  apply (simp (no_asm) add: MGU_iff Unifier_def MoreGeneral_def del: subst_Var)
  | 
| 
 | 
    59  | 
  apply safe
  | 
| 
 | 
    60  | 
   apply (rule exI)
  | 
| 
 | 
    61  | 
   apply (erule subst, rule Cons_trivial [THEN subst_sym])
  | 
| 
 | 
    62  | 
  apply (erule ssubst_subst2)
  | 
| 
 | 
    63  | 
  apply (simp (no_asm_simp) add: Var_not_occs)
  | 
| 
 | 
    64  | 
  done
  | 
| 
15635
 | 
    65  | 
  | 
| 
 | 
    66  | 
  | 
| 
38140
 | 
    67  | 
subsection {* Idempotence *}
 | 
| 
15635
 | 
    68  | 
  | 
| 
38140
 | 
    69  | 
lemma Idem_Nil [iff]: "Idem []"
  | 
| 
24823
 | 
    70  | 
  by (simp add: Idem_def)
  | 
| 
15635
 | 
    71  | 
  | 
| 
38140
 | 
    72  | 
lemma Idem_iff: "Idem s = (sdom s Int srange s = {})"
 | 
| 
24823
 | 
    73  | 
  by (simp add: Idem_def subst_eq_iff invariance dom_range_disjoint)
  | 
| 
15635
 | 
    74  | 
  | 
| 
38140
 | 
    75  | 
lemma Var_Idem [intro!]: "~ (Var v <: t) ==> Idem [(v,t)]"
  | 
| 
24823
 | 
    76  | 
  by (simp add: vars_iff_occseq Idem_iff srange_iff empty_iff_all_not)
  | 
| 
15635
 | 
    77  | 
  | 
| 
 | 
    78  | 
lemma Unifier_Idem_subst: 
  | 
| 
38140
 | 
    79  | 
  "Idem(r) \<Longrightarrow> Unifier s (t<|r) (u<|r) \<Longrightarrow>
  | 
| 
 | 
    80  | 
    Unifier (r <> s) (t <| r) (u <| r)"
  | 
| 
24823
 | 
    81  | 
  by (simp add: Idem_def Unifier_def comp_subst_subst)
  | 
| 
15635
 | 
    82  | 
  | 
| 
 | 
    83  | 
lemma Idem_comp:
  | 
| 
38140
 | 
    84  | 
  "Idem r \<Longrightarrow> Unifier s (t <| r) (u <| r) \<Longrightarrow>
  | 
| 
 | 
    85  | 
      (!!q. Unifier q (t <| r) (u <| r) \<Longrightarrow> s <> q =$= q) \<Longrightarrow>
  | 
| 
 | 
    86  | 
    Idem (r <> s)"
  | 
| 
24823
 | 
    87  | 
  apply (frule Unifier_Idem_subst, blast) 
  | 
| 
 | 
    88  | 
  apply (force simp add: Idem_def subst_eq_iff)
  | 
| 
 | 
    89  | 
  done
  | 
| 
15635
 | 
    90  | 
  | 
| 
968
 | 
    91  | 
end
  |