23449
|
1 |
(* Title: HOL/MetisTest/BT.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
|
|
5 |
Testing the metis method
|
|
6 |
*)
|
|
7 |
|
|
8 |
header {* Binary trees *}
|
|
9 |
|
|
10 |
theory BT imports Main begin
|
|
11 |
|
|
12 |
|
|
13 |
datatype 'a bt =
|
|
14 |
Lf
|
|
15 |
| Br 'a "'a bt" "'a bt"
|
|
16 |
|
|
17 |
consts
|
|
18 |
n_nodes :: "'a bt => nat"
|
|
19 |
n_leaves :: "'a bt => nat"
|
|
20 |
depth :: "'a bt => nat"
|
|
21 |
reflect :: "'a bt => 'a bt"
|
|
22 |
bt_map :: "('a => 'b) => ('a bt => 'b bt)"
|
|
23 |
preorder :: "'a bt => 'a list"
|
|
24 |
inorder :: "'a bt => 'a list"
|
|
25 |
postorder :: "'a bt => 'a list"
|
|
26 |
appnd :: "'a bt => 'a bt => 'a bt"
|
|
27 |
|
|
28 |
primrec
|
|
29 |
"n_nodes Lf = 0"
|
|
30 |
"n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)"
|
|
31 |
|
|
32 |
primrec
|
|
33 |
"n_leaves Lf = Suc 0"
|
|
34 |
"n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2"
|
|
35 |
|
|
36 |
primrec
|
|
37 |
"depth Lf = 0"
|
|
38 |
"depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))"
|
|
39 |
|
|
40 |
primrec
|
|
41 |
"reflect Lf = Lf"
|
|
42 |
"reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"
|
|
43 |
|
|
44 |
primrec
|
|
45 |
"bt_map f Lf = Lf"
|
|
46 |
"bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)"
|
|
47 |
|
|
48 |
primrec
|
|
49 |
"preorder Lf = []"
|
|
50 |
"preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)"
|
|
51 |
|
|
52 |
primrec
|
|
53 |
"inorder Lf = []"
|
|
54 |
"inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)"
|
|
55 |
|
|
56 |
primrec
|
|
57 |
"postorder Lf = []"
|
|
58 |
"postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]"
|
|
59 |
|
|
60 |
primrec
|
|
61 |
"appnd Lf t = t"
|
|
62 |
"appnd (Br a t1 t2) t = Br a (appnd t1 t) (appnd t2 t)"
|
|
63 |
|
|
64 |
|
|
65 |
text {* \medskip BT simplification *}
|
|
66 |
|
|
67 |
ML {*ResAtp.problem_name := "BT__n_leaves_reflect"*}
|
|
68 |
lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t"
|
|
69 |
apply (induct t)
|
|
70 |
apply (metis add_right_cancel n_leaves.simps(1) reflect.simps(1))
|
|
71 |
apply (metis add_commute n_leaves.simps(2) reflect.simps(2))
|
|
72 |
done
|
|
73 |
|
|
74 |
ML {*ResAtp.problem_name := "BT__n_nodes_reflect"*}
|
|
75 |
lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t"
|
|
76 |
apply (induct t)
|
|
77 |
apply (metis reflect.simps(1))
|
|
78 |
apply (metis n_nodes.simps(2) nat_add_commute reflect.simps(2))
|
|
79 |
done
|
|
80 |
|
|
81 |
ML {*ResAtp.problem_name := "BT__depth_reflect"*}
|
|
82 |
lemma depth_reflect: "depth (reflect t) = depth t"
|
|
83 |
apply (induct t)
|
|
84 |
apply (metis depth.simps(1) reflect.simps(1))
|
|
85 |
apply (metis depth.simps(2) min_max.less_eq_less_sup.sup_commute reflect.simps(2))
|
|
86 |
done
|
|
87 |
|
|
88 |
text {*
|
|
89 |
The famous relationship between the numbers of leaves and nodes.
|
|
90 |
*}
|
|
91 |
|
|
92 |
ML {*ResAtp.problem_name := "BT__n_leaves_nodes"*}
|
|
93 |
lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)"
|
|
94 |
apply (induct t)
|
|
95 |
apply (metis n_leaves.simps(1) n_nodes.simps(1))
|
|
96 |
apply auto
|
|
97 |
done
|
|
98 |
|
|
99 |
ML {*ResAtp.problem_name := "BT__reflect_reflect_ident"*}
|
|
100 |
lemma reflect_reflect_ident: "reflect (reflect t) = t"
|
|
101 |
apply (induct t)
|
|
102 |
apply (metis add_right_cancel reflect.simps(1));
|
|
103 |
apply (metis Suc_Suc_eq reflect.simps(2))
|
|
104 |
done
|
|
105 |
|
|
106 |
ML {*ResAtp.problem_name := "BT__bt_map_ident"*}
|
|
107 |
lemma bt_map_ident: "bt_map (%x. x) = (%y. y)"
|
|
108 |
apply (rule ext)
|
|
109 |
apply (induct_tac y)
|
|
110 |
apply (metis bt_map.simps(1))
|
|
111 |
txt{*BUG involving flex-flex pairs*}
|
|
112 |
(* apply (metis bt_map.simps(2)) *)
|
|
113 |
apply auto
|
|
114 |
done
|
|
115 |
|
|
116 |
|
|
117 |
ML {*ResAtp.problem_name := "BT__bt_map_appnd"*}
|
|
118 |
lemma bt_map_appnd: "bt_map f (appnd t u) = appnd (bt_map f t) (bt_map f u)"
|
|
119 |
apply (induct t)
|
|
120 |
apply (metis appnd.simps(1) bt_map.simps(1))
|
|
121 |
apply (metis appnd.simps(2) bt_map.simps(2)) (*slow!!*)
|
|
122 |
done
|
|
123 |
|
|
124 |
|
|
125 |
ML {*ResAtp.problem_name := "BT__bt_map_compose"*}
|
|
126 |
lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)"
|
|
127 |
apply (induct t)
|
|
128 |
apply (metis bt_map.simps(1))
|
|
129 |
txt{*Metis runs forever*}
|
|
130 |
(* apply (metis bt_map.simps(2) o_apply)*)
|
|
131 |
apply auto
|
|
132 |
done
|
|
133 |
|
|
134 |
|
|
135 |
ML {*ResAtp.problem_name := "BT__bt_map_reflect"*}
|
|
136 |
lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)"
|
|
137 |
apply (induct t)
|
|
138 |
apply (metis add_right_cancel bt_map.simps(1) reflect.simps(1))
|
|
139 |
apply (metis add_right_cancel bt_map.simps(2) reflect.simps(2))
|
|
140 |
done
|
|
141 |
|
|
142 |
ML {*ResAtp.problem_name := "BT__preorder_bt_map"*}
|
|
143 |
lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)"
|
|
144 |
apply (induct t)
|
|
145 |
apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1))
|
|
146 |
apply simp
|
|
147 |
done
|
|
148 |
|
|
149 |
ML {*ResAtp.problem_name := "BT__inorder_bt_map"*}
|
|
150 |
lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)"
|
|
151 |
apply (induct t)
|
|
152 |
apply (metis bt_map.simps(1) inorder.simps(1) map.simps(1))
|
|
153 |
apply simp
|
|
154 |
done
|
|
155 |
|
|
156 |
ML {*ResAtp.problem_name := "BT__postorder_bt_map"*}
|
|
157 |
lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)"
|
|
158 |
apply (induct t)
|
|
159 |
apply (metis bt_map.simps(1) map.simps(1) postorder.simps(1))
|
|
160 |
apply simp
|
|
161 |
done
|
|
162 |
|
|
163 |
ML {*ResAtp.problem_name := "BT__depth_bt_map"*}
|
|
164 |
lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t"
|
|
165 |
apply (induct t)
|
|
166 |
apply (metis bt_map.simps(1) depth.simps(1))
|
|
167 |
apply simp
|
|
168 |
done
|
|
169 |
|
|
170 |
ML {*ResAtp.problem_name := "BT__n_leaves_bt_map"*}
|
|
171 |
lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t"
|
|
172 |
apply (induct t)
|
|
173 |
apply (metis One_nat_def Suc_eq_add_numeral_1 bt_map.simps(1) less_add_one less_antisym linorder_neq_iff n_leaves.simps(1))
|
|
174 |
apply (metis add_commute bt_map.simps(2) n_leaves.simps(2))
|
|
175 |
done
|
|
176 |
|
|
177 |
|
|
178 |
ML {*ResAtp.problem_name := "BT__preorder_reflect"*}
|
|
179 |
lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)"
|
|
180 |
apply (induct t)
|
|
181 |
apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev_is_Nil_conv)
|
|
182 |
apply (metis append_eq_append_conv2 inorder.simps(1) postorder.simps(2) preorder.simps(2) reflect.simps(2) rev_append rev_is_rev_conv rev_singleton_conv rev_swap rotate_simps)
|
|
183 |
done
|
|
184 |
|
|
185 |
ML {*ResAtp.problem_name := "BT__inorder_reflect"*}
|
|
186 |
lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)"
|
|
187 |
apply (induct t)
|
|
188 |
apply (metis inorder.simps(1) reflect.simps(1) rev.simps(1))
|
|
189 |
apply simp
|
|
190 |
done
|
|
191 |
|
|
192 |
ML {*ResAtp.problem_name := "BT__postorder_reflect"*}
|
|
193 |
lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)"
|
|
194 |
apply (induct t)
|
|
195 |
apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev.simps(1))
|
|
196 |
apply (metis Cons_eq_appendI postorder.simps(2) preorder.simps(2) reflect.simps(2) rev.simps(2) rev_append rotate1_def self_append_conv2)
|
|
197 |
done
|
|
198 |
|
|
199 |
text {*
|
|
200 |
Analogues of the standard properties of the append function for lists.
|
|
201 |
*}
|
|
202 |
|
|
203 |
ML {*ResAtp.problem_name := "BT__appnd_assoc"*}
|
|
204 |
lemma appnd_assoc [simp]:
|
|
205 |
"appnd (appnd t1 t2) t3 = appnd t1 (appnd t2 t3)"
|
|
206 |
apply (induct t1)
|
|
207 |
apply (metis appnd.simps(1))
|
|
208 |
apply (metis appnd.simps(2))
|
|
209 |
done
|
|
210 |
|
|
211 |
ML {*ResAtp.problem_name := "BT__appnd_Lf2"*}
|
|
212 |
lemma appnd_Lf2 [simp]: "appnd t Lf = t"
|
|
213 |
apply (induct t)
|
|
214 |
apply (metis appnd.simps(1))
|
|
215 |
apply (metis appnd.simps(2))
|
|
216 |
done
|
|
217 |
|
|
218 |
ML {*ResAtp.problem_name := "BT__depth_appnd"*}
|
|
219 |
declare max_add_distrib_left [simp]
|
|
220 |
lemma depth_appnd [simp]: "depth (appnd t1 t2) = depth t1 + depth t2"
|
|
221 |
apply (induct t1)
|
|
222 |
apply (metis add_0 appnd.simps(1) depth.simps(1))
|
|
223 |
apply (simp add: );
|
|
224 |
done
|
|
225 |
|
|
226 |
ML {*ResAtp.problem_name := "BT__n_leaves_appnd"*}
|
|
227 |
lemma n_leaves_appnd [simp]:
|
|
228 |
"n_leaves (appnd t1 t2) = n_leaves t1 * n_leaves t2"
|
|
229 |
apply (induct t1)
|
|
230 |
apply (metis One_nat_def appnd.simps(1) less_irrefl less_linear n_leaves.simps(1) nat_mult_1)
|
|
231 |
apply (simp add: left_distrib)
|
|
232 |
done
|
|
233 |
|
|
234 |
ML {*ResAtp.problem_name := "BT__bt_map_appnd"*}
|
|
235 |
lemma bt_map_appnd:
|
|
236 |
"bt_map f (appnd t1 t2) = appnd (bt_map f t1) (bt_map f t2)"
|
|
237 |
apply (induct t1)
|
|
238 |
apply (metis appnd.simps(1) bt_map_appnd)
|
|
239 |
apply (metis bt_map_appnd)
|
|
240 |
done
|
|
241 |
|
|
242 |
end
|