23449
|
1 |
(* Title: HOL/MetisTest/Tarski.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
|
|
5 |
Testing the metis method
|
|
6 |
*)
|
|
7 |
|
|
8 |
header {* The Full Theorem of Tarski *}
|
|
9 |
|
|
10 |
theory Tarski imports FuncSet begin
|
|
11 |
|
|
12 |
(*Many of these higher-order problems appear to be impossible using the
|
|
13 |
current linkup. They often seem to need either higher-order unification
|
|
14 |
or explicit reasoning about connectives such as conjunction. The numerous
|
|
15 |
set comprehensions are to blame.*)
|
|
16 |
|
|
17 |
|
|
18 |
record 'a potype =
|
|
19 |
pset :: "'a set"
|
|
20 |
order :: "('a * 'a) set"
|
|
21 |
|
|
22 |
constdefs
|
|
23 |
monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
|
|
24 |
"monotone f A r == \<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r"
|
|
25 |
|
|
26 |
least :: "['a => bool, 'a potype] => 'a"
|
|
27 |
"least P po == @ x. x: pset po & P x &
|
|
28 |
(\<forall>y \<in> pset po. P y --> (x,y): order po)"
|
|
29 |
|
|
30 |
greatest :: "['a => bool, 'a potype] => 'a"
|
|
31 |
"greatest P po == @ x. x: pset po & P x &
|
|
32 |
(\<forall>y \<in> pset po. P y --> (y,x): order po)"
|
|
33 |
|
|
34 |
lub :: "['a set, 'a potype] => 'a"
|
|
35 |
"lub S po == least (%x. \<forall>y\<in>S. (y,x): order po) po"
|
|
36 |
|
|
37 |
glb :: "['a set, 'a potype] => 'a"
|
|
38 |
"glb S po == greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
|
|
39 |
|
|
40 |
isLub :: "['a set, 'a potype, 'a] => bool"
|
|
41 |
"isLub S po == %L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
|
|
42 |
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po))"
|
|
43 |
|
|
44 |
isGlb :: "['a set, 'a potype, 'a] => bool"
|
|
45 |
"isGlb S po == %G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
|
|
46 |
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po))"
|
|
47 |
|
|
48 |
"fix" :: "[('a => 'a), 'a set] => 'a set"
|
|
49 |
"fix f A == {x. x: A & f x = x}"
|
|
50 |
|
|
51 |
interval :: "[('a*'a) set,'a, 'a ] => 'a set"
|
|
52 |
"interval r a b == {x. (a,x): r & (x,b): r}"
|
|
53 |
|
|
54 |
declare monotone_def [skolem]
|
|
55 |
lub_def [skolem]
|
|
56 |
glb_def [skolem]
|
|
57 |
isLub_def [skolem]
|
|
58 |
isGlb_def [skolem]
|
|
59 |
fix_def [skolem]
|
|
60 |
interval_def [skolem]
|
|
61 |
|
|
62 |
constdefs
|
|
63 |
Bot :: "'a potype => 'a"
|
|
64 |
"Bot po == least (%x. True) po"
|
|
65 |
|
|
66 |
Top :: "'a potype => 'a"
|
|
67 |
"Top po == greatest (%x. True) po"
|
|
68 |
|
|
69 |
PartialOrder :: "('a potype) set"
|
|
70 |
"PartialOrder == {P. refl (pset P) (order P) & antisym (order P) &
|
|
71 |
trans (order P)}"
|
|
72 |
|
|
73 |
CompleteLattice :: "('a potype) set"
|
|
74 |
"CompleteLattice == {cl. cl: PartialOrder &
|
|
75 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &
|
|
76 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"
|
|
77 |
|
|
78 |
CLF :: "('a potype * ('a => 'a)) set"
|
|
79 |
"CLF == SIGMA cl: CompleteLattice.
|
|
80 |
{f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)}"
|
|
81 |
|
|
82 |
induced :: "['a set, ('a * 'a) set] => ('a *'a)set"
|
|
83 |
"induced A r == {(a,b). a : A & b: A & (a,b): r}"
|
|
84 |
|
|
85 |
declare Bot_def [skolem]
|
|
86 |
Top_def [skolem]
|
|
87 |
PartialOrder_def [skolem]
|
|
88 |
CompleteLattice_def [skolem]
|
|
89 |
CLF_def [skolem]
|
|
90 |
|
|
91 |
constdefs
|
|
92 |
sublattice :: "('a potype * 'a set)set"
|
|
93 |
"sublattice ==
|
|
94 |
SIGMA cl: CompleteLattice.
|
|
95 |
{S. S \<subseteq> pset cl &
|
|
96 |
(| pset = S, order = induced S (order cl) |): CompleteLattice }"
|
|
97 |
|
|
98 |
syntax
|
|
99 |
"@SL" :: "['a set, 'a potype] => bool" ("_ <<= _" [51,50]50)
|
|
100 |
|
|
101 |
translations
|
|
102 |
"S <<= cl" == "S : sublattice `` {cl}"
|
|
103 |
|
|
104 |
constdefs
|
|
105 |
dual :: "'a potype => 'a potype"
|
|
106 |
"dual po == (| pset = pset po, order = converse (order po) |)"
|
|
107 |
|
|
108 |
locale (open) PO =
|
|
109 |
fixes cl :: "'a potype"
|
|
110 |
and A :: "'a set"
|
|
111 |
and r :: "('a * 'a) set"
|
|
112 |
assumes cl_po: "cl : PartialOrder"
|
|
113 |
defines A_def: "A == pset cl"
|
|
114 |
and r_def: "r == order cl"
|
|
115 |
|
|
116 |
locale (open) CL = PO +
|
|
117 |
assumes cl_co: "cl : CompleteLattice"
|
|
118 |
|
|
119 |
locale (open) CLF = CL +
|
|
120 |
fixes f :: "'a => 'a"
|
|
121 |
and P :: "'a set"
|
|
122 |
assumes f_cl: "(cl,f) : CLF" (*was the equivalent "f : CLF``{cl}"*)
|
|
123 |
defines P_def: "P == fix f A"
|
|
124 |
|
|
125 |
|
|
126 |
locale (open) Tarski = CLF +
|
|
127 |
fixes Y :: "'a set"
|
|
128 |
and intY1 :: "'a set"
|
|
129 |
and v :: "'a"
|
|
130 |
assumes
|
|
131 |
Y_ss: "Y \<subseteq> P"
|
|
132 |
defines
|
|
133 |
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"
|
|
134 |
and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
|
|
135 |
x: intY1}
|
|
136 |
(| pset=intY1, order=induced intY1 r|)"
|
|
137 |
|
|
138 |
|
|
139 |
subsection {* Partial Order *}
|
|
140 |
|
|
141 |
lemma (in PO) PO_imp_refl: "refl A r"
|
|
142 |
apply (insert cl_po)
|
|
143 |
apply (simp add: PartialOrder_def A_def r_def)
|
|
144 |
done
|
|
145 |
|
|
146 |
lemma (in PO) PO_imp_sym: "antisym r"
|
|
147 |
apply (insert cl_po)
|
|
148 |
apply (simp add: PartialOrder_def r_def)
|
|
149 |
done
|
|
150 |
|
|
151 |
lemma (in PO) PO_imp_trans: "trans r"
|
|
152 |
apply (insert cl_po)
|
|
153 |
apply (simp add: PartialOrder_def r_def)
|
|
154 |
done
|
|
155 |
|
|
156 |
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"
|
|
157 |
apply (insert cl_po)
|
|
158 |
apply (simp add: PartialOrder_def refl_def A_def r_def)
|
|
159 |
done
|
|
160 |
|
|
161 |
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"
|
|
162 |
apply (insert cl_po)
|
|
163 |
apply (simp add: PartialOrder_def antisym_def r_def)
|
|
164 |
done
|
|
165 |
|
|
166 |
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"
|
|
167 |
apply (insert cl_po)
|
|
168 |
apply (simp add: PartialOrder_def r_def)
|
|
169 |
apply (unfold trans_def, fast)
|
|
170 |
done
|
|
171 |
|
|
172 |
lemma (in PO) monotoneE:
|
|
173 |
"[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"
|
|
174 |
by (simp add: monotone_def)
|
|
175 |
|
|
176 |
lemma (in PO) po_subset_po:
|
|
177 |
"S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"
|
|
178 |
apply (simp (no_asm) add: PartialOrder_def)
|
|
179 |
apply auto
|
|
180 |
-- {* refl *}
|
|
181 |
apply (simp add: refl_def induced_def)
|
|
182 |
apply (blast intro: reflE)
|
|
183 |
-- {* antisym *}
|
|
184 |
apply (simp add: antisym_def induced_def)
|
|
185 |
apply (blast intro: antisymE)
|
|
186 |
-- {* trans *}
|
|
187 |
apply (simp add: trans_def induced_def)
|
|
188 |
apply (blast intro: transE)
|
|
189 |
done
|
|
190 |
|
|
191 |
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"
|
|
192 |
by (simp add: add: induced_def)
|
|
193 |
|
|
194 |
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"
|
|
195 |
by (simp add: add: induced_def)
|
|
196 |
|
|
197 |
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"
|
|
198 |
apply (insert cl_co)
|
|
199 |
apply (simp add: CompleteLattice_def A_def)
|
|
200 |
done
|
|
201 |
|
|
202 |
declare (in CL) cl_co [simp]
|
|
203 |
|
|
204 |
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"
|
|
205 |
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
|
|
206 |
|
|
207 |
declare isLub_lub [skolem]
|
|
208 |
|
|
209 |
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"
|
|
210 |
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
|
|
211 |
|
|
212 |
declare isGlb_glb [skolem]
|
|
213 |
|
|
214 |
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
|
|
215 |
by (simp add: isLub_def isGlb_def dual_def converse_def)
|
|
216 |
|
|
217 |
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
|
|
218 |
by (simp add: isLub_def isGlb_def dual_def converse_def)
|
|
219 |
|
|
220 |
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"
|
|
221 |
apply (insert cl_po)
|
|
222 |
apply (simp add: PartialOrder_def dual_def refl_converse
|
|
223 |
trans_converse antisym_converse)
|
|
224 |
done
|
|
225 |
|
|
226 |
lemma Rdual:
|
|
227 |
"\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))
|
|
228 |
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"
|
|
229 |
apply safe
|
|
230 |
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
|
|
231 |
(|pset = A, order = r|) " in exI)
|
|
232 |
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
|
|
233 |
apply (drule mp, fast)
|
|
234 |
apply (simp add: isLub_lub isGlb_def)
|
|
235 |
apply (simp add: isLub_def, blast)
|
|
236 |
done
|
|
237 |
|
|
238 |
declare Rdual [skolem]
|
|
239 |
|
|
240 |
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
|
|
241 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
|
|
242 |
|
|
243 |
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
|
|
244 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
|
|
245 |
|
|
246 |
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"
|
|
247 |
by (simp add: PartialOrder_def CompleteLattice_def, fast)
|
|
248 |
|
|
249 |
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
|
|
250 |
|
|
251 |
declare CL_imp_PO [THEN PO.PO_imp_refl, simp]
|
|
252 |
declare CL_imp_PO [THEN PO.PO_imp_sym, simp]
|
|
253 |
declare CL_imp_PO [THEN PO.PO_imp_trans, simp]
|
|
254 |
|
|
255 |
lemma (in CL) CO_refl: "refl A r"
|
|
256 |
by (rule PO_imp_refl)
|
|
257 |
|
|
258 |
lemma (in CL) CO_antisym: "antisym r"
|
|
259 |
by (rule PO_imp_sym)
|
|
260 |
|
|
261 |
lemma (in CL) CO_trans: "trans r"
|
|
262 |
by (rule PO_imp_trans)
|
|
263 |
|
|
264 |
lemma CompleteLatticeI:
|
|
265 |
"[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));
|
|
266 |
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]
|
|
267 |
==> po \<in> CompleteLattice"
|
|
268 |
apply (unfold CompleteLattice_def, blast)
|
|
269 |
done
|
|
270 |
|
|
271 |
declare CompleteLatticeI [skolem]
|
|
272 |
|
|
273 |
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"
|
|
274 |
apply (insert cl_co)
|
|
275 |
apply (simp add: CompleteLattice_def dual_def)
|
|
276 |
apply (fold dual_def)
|
|
277 |
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]
|
|
278 |
dualPO)
|
|
279 |
done
|
|
280 |
|
|
281 |
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"
|
|
282 |
by (simp add: dual_def)
|
|
283 |
|
|
284 |
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"
|
|
285 |
by (simp add: dual_def)
|
|
286 |
|
|
287 |
lemma (in PO) monotone_dual:
|
|
288 |
"monotone f (pset cl) (order cl)
|
|
289 |
==> monotone f (pset (dual cl)) (order(dual cl))"
|
|
290 |
by (simp add: monotone_def dualA_iff dualr_iff)
|
|
291 |
|
|
292 |
lemma (in PO) interval_dual:
|
|
293 |
"[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"
|
|
294 |
apply (simp add: interval_def dualr_iff)
|
|
295 |
apply (fold r_def, fast)
|
|
296 |
done
|
|
297 |
|
|
298 |
lemma (in PO) interval_not_empty:
|
|
299 |
"[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r"
|
|
300 |
apply (simp add: interval_def)
|
|
301 |
apply (unfold trans_def, blast)
|
|
302 |
done
|
|
303 |
|
|
304 |
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"
|
|
305 |
by (simp add: interval_def)
|
|
306 |
|
|
307 |
lemma (in PO) left_in_interval:
|
|
308 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
|
|
309 |
apply (simp (no_asm_simp) add: interval_def)
|
|
310 |
apply (simp add: PO_imp_trans interval_not_empty)
|
|
311 |
apply (simp add: reflE)
|
|
312 |
done
|
|
313 |
|
|
314 |
lemma (in PO) right_in_interval:
|
|
315 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
|
|
316 |
apply (simp (no_asm_simp) add: interval_def)
|
|
317 |
apply (simp add: PO_imp_trans interval_not_empty)
|
|
318 |
apply (simp add: reflE)
|
|
319 |
done
|
|
320 |
|
|
321 |
|
|
322 |
subsection {* sublattice *}
|
|
323 |
|
|
324 |
lemma (in PO) sublattice_imp_CL:
|
|
325 |
"S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"
|
|
326 |
by (simp add: sublattice_def CompleteLattice_def A_def r_def)
|
|
327 |
|
|
328 |
lemma (in CL) sublatticeI:
|
|
329 |
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]
|
|
330 |
==> S <<= cl"
|
|
331 |
by (simp add: sublattice_def A_def r_def)
|
|
332 |
|
|
333 |
|
|
334 |
subsection {* lub *}
|
|
335 |
|
|
336 |
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"
|
|
337 |
apply (rule antisymE)
|
|
338 |
apply (auto simp add: isLub_def r_def)
|
|
339 |
done
|
|
340 |
|
|
341 |
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"
|
|
342 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
|
|
343 |
apply (unfold lub_def least_def)
|
|
344 |
apply (rule some_equality [THEN ssubst])
|
|
345 |
apply (simp add: isLub_def)
|
|
346 |
apply (simp add: lub_unique A_def isLub_def)
|
|
347 |
apply (simp add: isLub_def r_def)
|
|
348 |
done
|
|
349 |
|
|
350 |
lemma (in CL) lub_least:
|
|
351 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"
|
|
352 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
|
|
353 |
apply (unfold lub_def least_def)
|
|
354 |
apply (rule_tac s=x in some_equality [THEN ssubst])
|
|
355 |
apply (simp add: isLub_def)
|
|
356 |
apply (simp add: lub_unique A_def isLub_def)
|
|
357 |
apply (simp add: isLub_def r_def A_def)
|
|
358 |
done
|
|
359 |
|
|
360 |
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"
|
|
361 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
|
|
362 |
apply (unfold lub_def least_def)
|
|
363 |
apply (subst some_equality)
|
|
364 |
apply (simp add: isLub_def)
|
|
365 |
prefer 2 apply (simp add: isLub_def A_def)
|
|
366 |
apply (simp add: lub_unique A_def isLub_def)
|
|
367 |
done
|
|
368 |
|
|
369 |
lemma (in CL) lubI:
|
|
370 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;
|
|
371 |
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"
|
|
372 |
apply (rule lub_unique, assumption)
|
|
373 |
apply (simp add: isLub_def A_def r_def)
|
|
374 |
apply (unfold isLub_def)
|
|
375 |
apply (rule conjI)
|
|
376 |
apply (fold A_def r_def)
|
|
377 |
apply (rule lub_in_lattice, assumption)
|
|
378 |
apply (simp add: lub_upper lub_least)
|
|
379 |
done
|
|
380 |
|
|
381 |
declare (in CL) lubI [skolem]
|
|
382 |
|
|
383 |
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"
|
|
384 |
by (simp add: lubI isLub_def A_def r_def)
|
|
385 |
|
|
386 |
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"
|
|
387 |
by (simp add: isLub_def A_def)
|
|
388 |
|
|
389 |
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"
|
|
390 |
by (simp add: isLub_def r_def)
|
|
391 |
|
|
392 |
lemma (in CL) isLub_least:
|
|
393 |
"[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"
|
|
394 |
by (simp add: isLub_def A_def r_def)
|
|
395 |
|
|
396 |
lemma (in CL) isLubI:
|
|
397 |
"[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;
|
|
398 |
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L"
|
|
399 |
by (simp add: isLub_def A_def r_def)
|
|
400 |
|
|
401 |
declare (in CL) isLub_least [skolem]
|
|
402 |
declare (in CL) isLubI [skolem]
|
|
403 |
|
|
404 |
|
|
405 |
subsection {* glb *}
|
|
406 |
|
|
407 |
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"
|
|
408 |
apply (subst glb_dual_lub)
|
|
409 |
apply (simp add: A_def)
|
|
410 |
apply (rule dualA_iff [THEN subst])
|
|
411 |
apply (rule CL.lub_in_lattice)
|
|
412 |
apply (rule dualPO)
|
|
413 |
apply (rule CL_dualCL)
|
|
414 |
apply (simp add: dualA_iff)
|
|
415 |
done
|
|
416 |
|
|
417 |
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"
|
|
418 |
apply (subst glb_dual_lub)
|
|
419 |
apply (simp add: r_def)
|
|
420 |
apply (rule dualr_iff [THEN subst])
|
|
421 |
apply (rule CL.lub_upper)
|
|
422 |
apply (rule dualPO)
|
|
423 |
apply (rule CL_dualCL)
|
|
424 |
apply (simp add: dualA_iff A_def, assumption)
|
|
425 |
done
|
|
426 |
|
|
427 |
text {*
|
|
428 |
Reduce the sublattice property by using substructural properties;
|
|
429 |
abandoned see @{text "Tarski_4.ML"}.
|
|
430 |
*}
|
|
431 |
|
|
432 |
declare (in CLF) f_cl [simp]
|
|
433 |
|
|
434 |
(*never proved, 2007-01-22: Tarski__CLF_unnamed_lemma
|
|
435 |
NOT PROVABLE because of the conjunction used in the definition: we don't
|
|
436 |
allow reasoning with rules like conjE, which is essential here.*)
|
|
437 |
ML{*ResAtp.problem_name:="Tarski__CLF_unnamed_lemma"*}
|
|
438 |
lemma (in CLF) [simp]:
|
|
439 |
"f: pset cl -> pset cl & monotone f (pset cl) (order cl)"
|
|
440 |
apply (insert f_cl)
|
|
441 |
apply (unfold CLF_def)
|
|
442 |
apply (erule SigmaE2)
|
|
443 |
apply (erule CollectE)
|
|
444 |
apply assumption;
|
|
445 |
done
|
|
446 |
|
|
447 |
lemma (in CLF) f_in_funcset: "f \<in> A -> A"
|
|
448 |
by (simp add: A_def)
|
|
449 |
|
|
450 |
lemma (in CLF) monotone_f: "monotone f A r"
|
|
451 |
by (simp add: A_def r_def)
|
|
452 |
|
|
453 |
(*never proved, 2007-01-22*)
|
|
454 |
ML{*ResAtp.problem_name:="Tarski__CLF_CLF_dual"*}
|
|
455 |
declare (in CLF) CLF_def[simp] CL_dualCL[simp] monotone_dual[simp] dualA_iff[simp]
|
|
456 |
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF"
|
|
457 |
apply (simp del: dualA_iff)
|
|
458 |
apply (simp)
|
|
459 |
done
|
|
460 |
declare (in CLF) CLF_def[simp del] CL_dualCL[simp del] monotone_dual[simp del]
|
|
461 |
dualA_iff[simp del]
|
|
462 |
|
|
463 |
|
|
464 |
subsection {* fixed points *}
|
|
465 |
|
|
466 |
lemma fix_subset: "fix f A \<subseteq> A"
|
|
467 |
by (simp add: fix_def, fast)
|
|
468 |
|
|
469 |
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"
|
|
470 |
by (simp add: fix_def)
|
|
471 |
|
|
472 |
lemma fixf_subset:
|
|
473 |
"[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B"
|
|
474 |
by (simp add: fix_def, auto)
|
|
475 |
|
|
476 |
|
|
477 |
subsection {* lemmas for Tarski, lub *}
|
|
478 |
|
|
479 |
(*never proved, 2007-01-22*)
|
|
480 |
ML{*ResAtp.problem_name:="Tarski__CLF_lubH_le_flubH"*}
|
|
481 |
declare CL.lub_least[intro] CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] PO.transE[intro] PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]
|
|
482 |
lemma (in CLF) lubH_le_flubH:
|
|
483 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
|
|
484 |
apply (rule lub_least, fast)
|
|
485 |
apply (rule f_in_funcset [THEN funcset_mem])
|
|
486 |
apply (rule lub_in_lattice, fast)
|
|
487 |
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
|
|
488 |
apply (rule ballI)
|
|
489 |
(*never proved, 2007-01-22*)
|
|
490 |
ML{*ResAtp.problem_name:="Tarski__CLF_lubH_le_flubH_simpler"*}
|
|
491 |
apply (rule transE)
|
|
492 |
-- {* instantiates @{text "(x, ?z) \<in> order cl to (x, f x)"}, *}
|
|
493 |
-- {* because of the def of @{text H} *}
|
|
494 |
apply fast
|
|
495 |
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
|
|
496 |
apply (rule_tac f = "f" in monotoneE)
|
|
497 |
apply (rule monotone_f, fast)
|
|
498 |
apply (rule lub_in_lattice, fast)
|
|
499 |
apply (rule lub_upper, fast)
|
|
500 |
apply assumption
|
|
501 |
done
|
|
502 |
declare CL.lub_least[rule del] CLF.f_in_funcset[rule del]
|
|
503 |
funcset_mem[rule del] CL.lub_in_lattice[rule del]
|
|
504 |
PO.transE[rule del] PO.monotoneE[rule del]
|
|
505 |
CLF.monotone_f[rule del] CL.lub_upper[rule del]
|
|
506 |
|
|
507 |
(*never proved, 2007-01-22*)
|
|
508 |
ML{*ResAtp.problem_name:="Tarski__CLF_flubH_le_lubH"*}
|
|
509 |
declare CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro]
|
|
510 |
PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]
|
|
511 |
CLF.lubH_le_flubH[simp]
|
|
512 |
lemma (in CLF) flubH_le_lubH:
|
|
513 |
"[| H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
|
|
514 |
apply (rule lub_upper, fast)
|
|
515 |
apply (rule_tac t = "H" in ssubst, assumption)
|
|
516 |
apply (rule CollectI)
|
|
517 |
apply (rule conjI)
|
|
518 |
ML{*ResAtp.problem_name:="Tarski__CLF_flubH_le_lubH_simpler"*}
|
|
519 |
apply (metis CO_refl lubH_le_flubH lub_dual_glb monotoneE monotone_f reflD1 reflD2)
|
|
520 |
apply (metis CO_refl lubH_le_flubH reflD2)
|
|
521 |
done
|
|
522 |
declare CLF.f_in_funcset[rule del] funcset_mem[rule del]
|
|
523 |
CL.lub_in_lattice[rule del] PO.monotoneE[rule del]
|
|
524 |
CLF.monotone_f[rule del] CL.lub_upper[rule del]
|
|
525 |
CLF.lubH_le_flubH[simp del]
|
|
526 |
|
|
527 |
|
|
528 |
(*never proved, 2007-01-22*)
|
|
529 |
ML{*ResAtp.problem_name:="Tarski__CLF_lubH_is_fixp"*}
|
|
530 |
(*Single-step version fails. The conjecture clauses refer to local abstraction
|
|
531 |
functions (Frees), which prevents expand_defs_tac from removing those
|
|
532 |
"definitions" at the end of the proof.
|
|
533 |
lemma (in CLF) lubH_is_fixp:
|
|
534 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
|
|
535 |
apply (simp add: fix_def)
|
|
536 |
apply (rule conjI)
|
|
537 |
proof (neg_clausify)
|
|
538 |
assume 0: "H = Collect (llabs_local_Xcl_A_r_f_P_XlubH_le_flubH_1 A f r)"
|
|
539 |
assume 1: "lub (Collect (llabs_local_Xcl_A_r_f_P_XlubH_le_flubH_1 A f r)) cl \<notin> A"
|
|
540 |
have 2: "glb H (dual cl) \<notin> A"
|
|
541 |
by (metis 0 1 lub_dual_glb)
|
|
542 |
have 3: "(glb H (dual cl), f (glb H (dual cl))) \<in> r"
|
|
543 |
by (metis 0 lubH_le_flubH lub_dual_glb)
|
|
544 |
have 4: "(f (glb H (dual cl)), glb H (dual cl)) \<in> r"
|
|
545 |
by (metis 0 flubH_le_lubH lub_dual_glb)
|
|
546 |
have 5: "glb H (dual cl) = f (glb H (dual cl)) \<or>
|
|
547 |
(glb H (dual cl), f (glb H (dual cl))) \<notin> r"
|
|
548 |
by (metis 4 antisymE)
|
|
549 |
have 6: "glb H (dual cl) = f (glb H (dual cl))"
|
|
550 |
by (metis 3 5)
|
|
551 |
have 7: "(glb H (dual cl), glb H (dual cl)) \<in> r"
|
|
552 |
by (metis 4 6)
|
|
553 |
have 8: "\<And>X1. glb H (dual cl) \<in> X1 \<or> \<not> refl X1 r"
|
|
554 |
by (metis reflD2 7)
|
|
555 |
have 9: "\<not> refl A r"
|
|
556 |
by (metis 2 8)
|
|
557 |
show "False"
|
|
558 |
by (metis 9 CO_refl)
|
|
559 |
proof (neg_clausify)
|
|
560 |
assume 0: "H = Collect (llabs_local_Xcl_A_r_f_P_XlubH_le_flubH_1 A f r)"
|
|
561 |
assume 1: "f (lub (Collect (llabs_local_Xcl_A_r_f_P_XlubH_le_flubH_1 A f r)) cl) \<noteq>
|
|
562 |
lub (Collect (llabs_local_Xcl_A_r_f_P_XlubH_le_flubH_1 A f r)) cl"
|
|
563 |
have 2: "(glb H (dual cl), f (glb H (dual cl))) \<in> r"
|
|
564 |
by (metis 0 lubH_le_flubH lub_dual_glb lub_dual_glb)
|
|
565 |
have 3: "f (glb H (dual cl)) \<noteq> glb H (dual cl)"
|
|
566 |
by (metis 0 1 lub_dual_glb)
|
|
567 |
have 4: "(f (glb H (dual cl)), glb H (dual cl)) \<in> r"
|
|
568 |
by (metis lub_dual_glb flubH_le_lubH 0)
|
|
569 |
have 5: "f (glb H (dual cl)) = glb H (dual cl) \<or>
|
|
570 |
(f (glb H (dual cl)), glb H (dual cl)) \<notin> r"
|
|
571 |
by (metis antisymE 2)
|
|
572 |
have 6: "f (glb H (dual cl)) = glb H (dual cl)"
|
|
573 |
by (metis 5 4)
|
|
574 |
show "False"
|
|
575 |
by (metis 3 6)
|
|
576 |
*)
|
|
577 |
|
|
578 |
lemma (in CLF) lubH_is_fixp:
|
|
579 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
|
|
580 |
apply (simp add: fix_def)
|
|
581 |
apply (rule conjI)
|
|
582 |
ML{*ResAtp.problem_name:="Tarski__CLF_lubH_is_fixp_simpler"*}
|
|
583 |
apply (metis CO_refl Domain_iff lubH_le_flubH reflD1)
|
|
584 |
apply (metis antisymE flubH_le_lubH lubH_le_flubH)
|
|
585 |
done
|
|
586 |
|
|
587 |
lemma (in CLF) fix_in_H:
|
|
588 |
"[| H = {x. (x, f x) \<in> r & x \<in> A}; x \<in> P |] ==> x \<in> H"
|
|
589 |
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl
|
|
590 |
fix_subset [of f A, THEN subsetD])
|
|
591 |
|
|
592 |
|
|
593 |
lemma (in CLF) fixf_le_lubH:
|
|
594 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
|
|
595 |
apply (rule ballI)
|
|
596 |
apply (rule lub_upper, fast)
|
|
597 |
apply (rule fix_in_H)
|
|
598 |
apply (simp_all add: P_def)
|
|
599 |
done
|
|
600 |
|
|
601 |
ML{*ResAtp.problem_name:="Tarski__CLF_lubH_least_fixf"*}
|
|
602 |
lemma (in CLF) lubH_least_fixf:
|
|
603 |
"H = {x. (x, f x) \<in> r & x \<in> A}
|
|
604 |
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"
|
|
605 |
apply (metis P_def lubH_is_fixp)
|
|
606 |
done
|
|
607 |
|
|
608 |
subsection {* Tarski fixpoint theorem 1, first part *}
|
|
609 |
ML{*ResAtp.problem_name:="Tarski__CLF_T_thm_1_lub"*}
|
|
610 |
declare CL.lubI[intro] fix_subset[intro] CL.lub_in_lattice[intro]
|
|
611 |
CLF.fixf_le_lubH[simp] CLF.lubH_least_fixf[simp]
|
|
612 |
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
|
|
613 |
(*sledgehammer;*)
|
|
614 |
apply (rule sym)
|
|
615 |
apply (simp add: P_def)
|
|
616 |
apply (rule lubI)
|
|
617 |
ML{*ResAtp.problem_name:="Tarski__CLF_T_thm_1_lub_simpler"*}
|
|
618 |
apply (metis P_def equalityE fix_subset subset_trans)
|
|
619 |
apply (metis P_def fix_subset lubH_is_fixp set_mp subset_refl subset_trans)
|
|
620 |
apply (metis P_def fixf_le_lubH)
|
|
621 |
apply (metis P_def lubH_is_fixp)
|
|
622 |
done
|
|
623 |
declare CL.lubI[rule del] fix_subset[rule del] CL.lub_in_lattice[rule del]
|
|
624 |
CLF.fixf_le_lubH[simp del] CLF.lubH_least_fixf[simp del]
|
|
625 |
|
|
626 |
|
|
627 |
(*never proved, 2007-01-22*)
|
|
628 |
ML{*ResAtp.problem_name:="Tarski__CLF_glbH_is_fixp"*}
|
|
629 |
declare glb_dual_lub[simp] PO.dualA_iff[intro] CLF.lubH_is_fixp[intro]
|
|
630 |
PO.dualPO[intro] CL.CL_dualCL[intro] PO.dualr_iff[simp]
|
|
631 |
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
|
|
632 |
-- {* Tarski for glb *}
|
|
633 |
(*sledgehammer;*)
|
|
634 |
apply (simp add: glb_dual_lub P_def A_def r_def)
|
|
635 |
apply (rule dualA_iff [THEN subst])
|
|
636 |
apply (rule CLF.lubH_is_fixp)
|
|
637 |
apply (rule dualPO)
|
|
638 |
apply (rule CL_dualCL)
|
|
639 |
apply (rule CLF_dual)
|
|
640 |
apply (simp add: dualr_iff dualA_iff)
|
|
641 |
done
|
|
642 |
declare glb_dual_lub[simp del] PO.dualA_iff[rule del] CLF.lubH_is_fixp[rule del]
|
|
643 |
PO.dualPO[rule del] CL.CL_dualCL[rule del] PO.dualr_iff[simp del]
|
|
644 |
|
|
645 |
|
|
646 |
(*never proved, 2007-01-22*)
|
|
647 |
ML{*ResAtp.problem_name:="Tarski__T_thm_1_glb"*} (*ALL THEOREMS*)
|
|
648 |
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
|
|
649 |
(*sledgehammer;*)
|
|
650 |
apply (simp add: glb_dual_lub P_def A_def r_def)
|
|
651 |
apply (rule dualA_iff [THEN subst])
|
|
652 |
(*never proved, 2007-01-22*)
|
|
653 |
ML{*ResAtp.problem_name:="Tarski__T_thm_1_glb_simpler"*} (*ALL THEOREMS*)
|
|
654 |
(*sledgehammer;*)
|
|
655 |
apply (simp add: CLF.T_thm_1_lub [of _ f, OF dualPO CL_dualCL]
|
|
656 |
dualPO CL_dualCL CLF_dual dualr_iff)
|
|
657 |
done
|
|
658 |
|
|
659 |
subsection {* interval *}
|
|
660 |
|
|
661 |
|
|
662 |
ML{*ResAtp.problem_name:="Tarski__rel_imp_elem"*}
|
|
663 |
declare (in CLF) CO_refl[simp] refl_def [simp]
|
|
664 |
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"
|
|
665 |
apply (metis CO_refl reflD1)
|
|
666 |
done
|
|
667 |
declare (in CLF) CO_refl[simp del] refl_def [simp del]
|
|
668 |
|
|
669 |
ML{*ResAtp.problem_name:="Tarski__interval_subset"*}
|
|
670 |
declare (in CLF) rel_imp_elem[intro]
|
|
671 |
declare interval_def [simp]
|
|
672 |
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"
|
|
673 |
apply (metis CO_refl interval_imp_mem reflD reflD2 rel_imp_elem subset_def)
|
|
674 |
done
|
|
675 |
declare (in CLF) rel_imp_elem[rule del]
|
|
676 |
declare interval_def [simp del]
|
|
677 |
|
|
678 |
|
|
679 |
|
|
680 |
lemma (in CLF) intervalI:
|
|
681 |
"[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"
|
|
682 |
by (simp add: interval_def)
|
|
683 |
|
|
684 |
lemma (in CLF) interval_lemma1:
|
|
685 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"
|
|
686 |
by (unfold interval_def, fast)
|
|
687 |
|
|
688 |
lemma (in CLF) interval_lemma2:
|
|
689 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"
|
|
690 |
by (unfold interval_def, fast)
|
|
691 |
|
|
692 |
lemma (in CLF) a_less_lub:
|
|
693 |
"[| S \<subseteq> A; S \<noteq> {};
|
|
694 |
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"
|
|
695 |
by (blast intro: transE)
|
|
696 |
|
|
697 |
declare (in CLF) a_less_lub [skolem]
|
|
698 |
|
|
699 |
lemma (in CLF) glb_less_b:
|
|
700 |
"[| S \<subseteq> A; S \<noteq> {};
|
|
701 |
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"
|
|
702 |
by (blast intro: transE)
|
|
703 |
|
|
704 |
declare (in CLF) glb_less_b [skolem]
|
|
705 |
|
|
706 |
lemma (in CLF) S_intv_cl:
|
|
707 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"
|
|
708 |
by (simp add: subset_trans [OF _ interval_subset])
|
|
709 |
|
|
710 |
ML{*ResAtp.problem_name:="Tarski__L_in_interval"*} (*ALL THEOREMS*)
|
|
711 |
lemma (in CLF) L_in_interval:
|
|
712 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;
|
|
713 |
S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
|
|
714 |
(*WON'T TERMINATE
|
|
715 |
apply (metis CO_trans intervalI interval_lemma1 interval_lemma2 isLub_least isLub_upper subset_empty subset_iff trans_def)
|
|
716 |
*)
|
|
717 |
apply (rule intervalI)
|
|
718 |
apply (rule a_less_lub)
|
|
719 |
prefer 2 apply assumption
|
|
720 |
apply (simp add: S_intv_cl)
|
|
721 |
apply (rule ballI)
|
|
722 |
apply (simp add: interval_lemma1)
|
|
723 |
apply (simp add: isLub_upper)
|
|
724 |
-- {* @{text "(L, b) \<in> r"} *}
|
|
725 |
apply (simp add: isLub_least interval_lemma2)
|
|
726 |
done
|
|
727 |
|
|
728 |
(*never proved, 2007-01-22*)
|
|
729 |
ML{*ResAtp.problem_name:="Tarski__G_in_interval"*} (*ALL THEOREMS*)
|
|
730 |
lemma (in CLF) G_in_interval:
|
|
731 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
|
|
732 |
S \<noteq> {} |] ==> G \<in> interval r a b"
|
|
733 |
apply (simp add: interval_dual)
|
|
734 |
apply (simp add: CLF.L_in_interval [of _ f]
|
|
735 |
dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)
|
|
736 |
done
|
|
737 |
|
|
738 |
ML{*ResAtp.problem_name:="Tarski__intervalPO"*} (*ALL THEOREMS*)
|
|
739 |
lemma (in CLF) intervalPO:
|
|
740 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
|
|
741 |
==> (| pset = interval r a b, order = induced (interval r a b) r |)
|
|
742 |
\<in> PartialOrder"
|
|
743 |
proof (neg_clausify)
|
|
744 |
assume 0: "a \<in> A"
|
|
745 |
assume 1: "b \<in> A"
|
|
746 |
assume 2: "\<lparr>pset = interval r a b, order = induced (interval r a b) r\<rparr> \<notin> PartialOrder"
|
|
747 |
have 3: "\<not> interval r a b \<subseteq> A"
|
|
748 |
by (metis 2 po_subset_po)
|
|
749 |
have 4: "b \<notin> A \<or> a \<notin> A"
|
|
750 |
by (metis 3 interval_subset)
|
|
751 |
have 5: "a \<notin> A"
|
|
752 |
by (metis 4 1)
|
|
753 |
show "False"
|
|
754 |
by (metis 5 0)
|
|
755 |
qed
|
|
756 |
|
|
757 |
lemma (in CLF) intv_CL_lub:
|
|
758 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
|
|
759 |
==> \<forall>S. S \<subseteq> interval r a b -->
|
|
760 |
(\<exists>L. isLub S (| pset = interval r a b,
|
|
761 |
order = induced (interval r a b) r |) L)"
|
|
762 |
apply (intro strip)
|
|
763 |
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])
|
|
764 |
prefer 2 apply assumption
|
|
765 |
apply assumption
|
|
766 |
apply (erule exE)
|
|
767 |
-- {* define the lub for the interval as *}
|
|
768 |
apply (rule_tac x = "if S = {} then a else L" in exI)
|
|
769 |
apply (simp (no_asm_simp) add: isLub_def split del: split_if)
|
|
770 |
apply (intro impI conjI)
|
|
771 |
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
|
|
772 |
apply (simp add: CL_imp_PO L_in_interval)
|
|
773 |
apply (simp add: left_in_interval)
|
|
774 |
-- {* lub prop 1 *}
|
|
775 |
apply (case_tac "S = {}")
|
|
776 |
-- {* @{text "S = {}, y \<in> S = False => everything"} *}
|
|
777 |
apply fast
|
|
778 |
-- {* @{text "S \<noteq> {}"} *}
|
|
779 |
apply simp
|
|
780 |
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
|
|
781 |
apply (rule ballI)
|
|
782 |
apply (simp add: induced_def L_in_interval)
|
|
783 |
apply (rule conjI)
|
|
784 |
apply (rule subsetD)
|
|
785 |
apply (simp add: S_intv_cl, assumption)
|
|
786 |
apply (simp add: isLub_upper)
|
|
787 |
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
|
|
788 |
apply (rule ballI)
|
|
789 |
apply (rule impI)
|
|
790 |
apply (case_tac "S = {}")
|
|
791 |
-- {* @{text "S = {}"} *}
|
|
792 |
apply simp
|
|
793 |
apply (simp add: induced_def interval_def)
|
|
794 |
apply (rule conjI)
|
|
795 |
apply (rule reflE, assumption)
|
|
796 |
apply (rule interval_not_empty)
|
|
797 |
apply (rule CO_trans)
|
|
798 |
apply (simp add: interval_def)
|
|
799 |
-- {* @{text "S \<noteq> {}"} *}
|
|
800 |
apply simp
|
|
801 |
apply (simp add: induced_def L_in_interval)
|
|
802 |
apply (rule isLub_least, assumption)
|
|
803 |
apply (rule subsetD)
|
|
804 |
prefer 2 apply assumption
|
|
805 |
apply (simp add: S_intv_cl, fast)
|
|
806 |
done
|
|
807 |
|
|
808 |
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]
|
|
809 |
|
|
810 |
(*never proved, 2007-01-22*)
|
|
811 |
ML{*ResAtp.problem_name:="Tarski__interval_is_sublattice"*} (*ALL THEOREMS*)
|
|
812 |
lemma (in CLF) interval_is_sublattice:
|
|
813 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
|
|
814 |
==> interval r a b <<= cl"
|
|
815 |
(*sledgehammer *)
|
|
816 |
apply (rule sublatticeI)
|
|
817 |
apply (simp add: interval_subset)
|
|
818 |
(*never proved, 2007-01-22*)
|
|
819 |
ML{*ResAtp.problem_name:="Tarski__interval_is_sublattice_simpler"*}
|
|
820 |
(*sledgehammer *)
|
|
821 |
apply (rule CompleteLatticeI)
|
|
822 |
apply (simp add: intervalPO)
|
|
823 |
apply (simp add: intv_CL_lub)
|
|
824 |
apply (simp add: intv_CL_glb)
|
|
825 |
done
|
|
826 |
|
|
827 |
lemmas (in CLF) interv_is_compl_latt =
|
|
828 |
interval_is_sublattice [THEN sublattice_imp_CL]
|
|
829 |
|
|
830 |
|
|
831 |
subsection {* Top and Bottom *}
|
|
832 |
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"
|
|
833 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
|
|
834 |
|
|
835 |
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"
|
|
836 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
|
|
837 |
|
|
838 |
ML{*ResAtp.problem_name:="Tarski__Bot_in_lattice"*} (*ALL THEOREMS*)
|
|
839 |
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"
|
|
840 |
(*sledgehammer; *)
|
|
841 |
apply (simp add: Bot_def least_def)
|
|
842 |
apply (rule_tac a="glb A cl" in someI2)
|
|
843 |
apply (simp_all add: glb_in_lattice glb_lower
|
|
844 |
r_def [symmetric] A_def [symmetric])
|
|
845 |
done
|
|
846 |
|
|
847 |
(*first proved 2007-01-25 after relaxing relevance*)
|
|
848 |
ML{*ResAtp.problem_name:="Tarski__Top_in_lattice"*} (*ALL THEOREMS*)
|
|
849 |
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"
|
|
850 |
(*sledgehammer;*)
|
|
851 |
apply (simp add: Top_dual_Bot A_def)
|
|
852 |
(*first proved 2007-01-25 after relaxing relevance*)
|
|
853 |
ML{*ResAtp.problem_name:="Tarski__Top_in_lattice_simpler"*} (*ALL THEOREMS*)
|
|
854 |
(*sledgehammer*)
|
|
855 |
apply (rule dualA_iff [THEN subst])
|
|
856 |
apply (blast intro!: CLF.Bot_in_lattice dualPO CL_dualCL CLF_dual)
|
|
857 |
done
|
|
858 |
|
|
859 |
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"
|
|
860 |
apply (simp add: Top_def greatest_def)
|
|
861 |
apply (rule_tac a="lub A cl" in someI2)
|
|
862 |
apply (rule someI2)
|
|
863 |
apply (simp_all add: lub_in_lattice lub_upper
|
|
864 |
r_def [symmetric] A_def [symmetric])
|
|
865 |
done
|
|
866 |
|
|
867 |
(*never proved, 2007-01-22*)
|
|
868 |
ML{*ResAtp.problem_name:="Tarski__Bot_prop"*} (*ALL THEOREMS*)
|
|
869 |
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"
|
|
870 |
(*sledgehammer*)
|
|
871 |
apply (simp add: Bot_dual_Top r_def)
|
|
872 |
apply (rule dualr_iff [THEN subst])
|
|
873 |
apply (simp add: CLF.Top_prop [of _ f]
|
|
874 |
dualA_iff A_def dualPO CL_dualCL CLF_dual)
|
|
875 |
done
|
|
876 |
|
|
877 |
ML{*ResAtp.problem_name:="Tarski__Bot_in_lattice"*} (*ALL THEOREMS*)
|
|
878 |
lemma (in CLF) Top_intv_not_empty: "x \<in> A ==> interval r x (Top cl) \<noteq> {}"
|
|
879 |
apply (metis Top_in_lattice Top_prop empty_iff intervalI reflE)
|
|
880 |
done
|
|
881 |
|
|
882 |
ML{*ResAtp.problem_name:="Tarski__Bot_intv_not_empty"*} (*ALL THEOREMS*)
|
|
883 |
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}"
|
|
884 |
apply (metis Bot_prop ex_in_conv intervalI reflE rel_imp_elem)
|
|
885 |
done
|
|
886 |
|
|
887 |
|
|
888 |
subsection {* fixed points form a partial order *}
|
|
889 |
|
|
890 |
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"
|
|
891 |
by (simp add: P_def fix_subset po_subset_po)
|
|
892 |
|
|
893 |
(*first proved 2007-01-25 after relaxing relevance*)
|
|
894 |
ML{*ResAtp.problem_name:="Tarski__Y_subset_A"*}
|
|
895 |
declare (in Tarski) P_def[simp] Y_ss [simp]
|
|
896 |
declare fix_subset [intro] subset_trans [intro]
|
|
897 |
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"
|
|
898 |
(*sledgehammer*)
|
|
899 |
apply (rule subset_trans [OF _ fix_subset])
|
|
900 |
apply (rule Y_ss [simplified P_def])
|
|
901 |
done
|
|
902 |
declare (in Tarski) P_def[simp del] Y_ss [simp del]
|
|
903 |
declare fix_subset [rule del] subset_trans [rule del]
|
|
904 |
|
|
905 |
|
|
906 |
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"
|
|
907 |
by (rule Y_subset_A [THEN lub_in_lattice])
|
|
908 |
|
|
909 |
(*never proved, 2007-01-22*)
|
|
910 |
ML{*ResAtp.problem_name:="Tarski__lubY_le_flubY"*} (*ALL THEOREMS*)
|
|
911 |
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"
|
|
912 |
(*sledgehammer*)
|
|
913 |
apply (rule lub_least)
|
|
914 |
apply (rule Y_subset_A)
|
|
915 |
apply (rule f_in_funcset [THEN funcset_mem])
|
|
916 |
apply (rule lubY_in_A)
|
|
917 |
-- {* @{text "Y \<subseteq> P ==> f x = x"} *}
|
|
918 |
apply (rule ballI)
|
|
919 |
ML{*ResAtp.problem_name:="Tarski__lubY_le_flubY_simpler"*} (*ALL THEOREMS*)
|
|
920 |
(*sledgehammer *)
|
|
921 |
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])
|
|
922 |
apply (erule Y_ss [simplified P_def, THEN subsetD])
|
|
923 |
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
|
|
924 |
ML{*ResAtp.problem_name:="Tarski__lubY_le_flubY_simplest"*} (*ALL THEOREMS*)
|
|
925 |
(*sledgehammer*)
|
|
926 |
apply (rule_tac f = "f" in monotoneE)
|
|
927 |
apply (rule monotone_f)
|
|
928 |
apply (simp add: Y_subset_A [THEN subsetD])
|
|
929 |
apply (rule lubY_in_A)
|
|
930 |
apply (simp add: lub_upper Y_subset_A)
|
|
931 |
done
|
|
932 |
|
|
933 |
(*first proved 2007-01-25 after relaxing relevance*)
|
|
934 |
ML{*ResAtp.problem_name:="Tarski__intY1_subset"*} (*ALL THEOREMS*)
|
|
935 |
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"
|
|
936 |
(*sledgehammer*)
|
|
937 |
apply (unfold intY1_def)
|
|
938 |
apply (rule interval_subset)
|
|
939 |
apply (rule lubY_in_A)
|
|
940 |
apply (rule Top_in_lattice)
|
|
941 |
done
|
|
942 |
|
|
943 |
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]
|
|
944 |
|
|
945 |
(*never proved, 2007-01-22*)
|
|
946 |
ML{*ResAtp.problem_name:="Tarski__intY1_f_closed"*} (*ALL THEOREMS*)
|
|
947 |
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"
|
|
948 |
(*sledgehammer*)
|
|
949 |
apply (simp add: intY1_def interval_def)
|
|
950 |
apply (rule conjI)
|
|
951 |
apply (rule transE)
|
|
952 |
apply (rule lubY_le_flubY)
|
|
953 |
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
|
|
954 |
ML{*ResAtp.problem_name:="Tarski__intY1_f_closed_simpler"*} (*ALL THEOREMS*)
|
|
955 |
(*sledgehammer [has been proved before now...]*)
|
|
956 |
apply (rule_tac f=f in monotoneE)
|
|
957 |
apply (rule monotone_f)
|
|
958 |
apply (rule lubY_in_A)
|
|
959 |
apply (simp add: intY1_def interval_def intY1_elem)
|
|
960 |
apply (simp add: intY1_def interval_def)
|
|
961 |
-- {* @{text "(f x, Top cl) \<in> r"} *}
|
|
962 |
apply (rule Top_prop)
|
|
963 |
apply (rule f_in_funcset [THEN funcset_mem])
|
|
964 |
apply (simp add: intY1_def interval_def intY1_elem)
|
|
965 |
done
|
|
966 |
|
|
967 |
ML{*ResAtp.problem_name:="Tarski__intY1_func"*} (*ALL THEOREMS*)
|
|
968 |
lemma (in Tarski) intY1_func: "(%x: intY1. f x) \<in> intY1 -> intY1"
|
|
969 |
apply (metis intY1_f_closed restrict_in_funcset)
|
|
970 |
done
|
|
971 |
|
|
972 |
ML{*ResAtp.problem_name:="Tarski__intY1_mono"*} (*ALL THEOREMS*)
|
|
973 |
lemma (in Tarski) intY1_mono [skolem]:
|
|
974 |
"monotone (%x: intY1. f x) intY1 (induced intY1 r)"
|
|
975 |
(*sledgehammer *)
|
|
976 |
apply (auto simp add: monotone_def induced_def intY1_f_closed)
|
|
977 |
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
|
|
978 |
done
|
|
979 |
|
|
980 |
(*proof requires relaxing relevance: 2007-01-25*)
|
|
981 |
ML{*ResAtp.problem_name:="Tarski__intY1_is_cl"*} (*ALL THEOREMS*)
|
|
982 |
lemma (in Tarski) intY1_is_cl:
|
|
983 |
"(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"
|
|
984 |
(*sledgehammer*)
|
|
985 |
apply (unfold intY1_def)
|
|
986 |
apply (rule interv_is_compl_latt)
|
|
987 |
apply (rule lubY_in_A)
|
|
988 |
apply (rule Top_in_lattice)
|
|
989 |
apply (rule Top_intv_not_empty)
|
|
990 |
apply (rule lubY_in_A)
|
|
991 |
done
|
|
992 |
|
|
993 |
(*never proved, 2007-01-22*)
|
|
994 |
ML{*ResAtp.problem_name:="Tarski__v_in_P"*} (*ALL THEOREMS*)
|
|
995 |
lemma (in Tarski) v_in_P: "v \<in> P"
|
|
996 |
(*sledgehammer*)
|
|
997 |
apply (unfold P_def)
|
|
998 |
apply (rule_tac A = "intY1" in fixf_subset)
|
|
999 |
apply (rule intY1_subset)
|
|
1000 |
apply (simp add: CLF.glbH_is_fixp [OF _ intY1_is_cl, simplified]
|
|
1001 |
v_def CL_imp_PO intY1_is_cl CLF_def intY1_func intY1_mono)
|
|
1002 |
done
|
|
1003 |
|
|
1004 |
ML{*ResAtp.problem_name:="Tarski__z_in_interval"*} (*ALL THEOREMS*)
|
|
1005 |
lemma (in Tarski) z_in_interval:
|
|
1006 |
"[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"
|
|
1007 |
(*sledgehammer *)
|
|
1008 |
apply (unfold intY1_def P_def)
|
|
1009 |
apply (rule intervalI)
|
|
1010 |
prefer 2
|
|
1011 |
apply (erule fix_subset [THEN subsetD, THEN Top_prop])
|
|
1012 |
apply (rule lub_least)
|
|
1013 |
apply (rule Y_subset_A)
|
|
1014 |
apply (fast elim!: fix_subset [THEN subsetD])
|
|
1015 |
apply (simp add: induced_def)
|
|
1016 |
done
|
|
1017 |
|
|
1018 |
ML{*ResAtp.problem_name:="Tarski__fz_in_int_rel"*} (*ALL THEOREMS*)
|
|
1019 |
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]
|
|
1020 |
==> ((%x: intY1. f x) z, z) \<in> induced intY1 r"
|
|
1021 |
(*
|
|
1022 |
apply (metis P_def UnE Un_absorb contra_subsetD equalityE fix_imp_eq indI intY1_elem intY1_f_closed monotoneE monotone_f reflE rel_imp_elem restrict_apply z_in_interval)
|
|
1023 |
??unsound??*)
|
|
1024 |
apply (simp add: induced_def intY1_f_closed z_in_interval P_def)
|
|
1025 |
apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD]
|
|
1026 |
reflE)
|
|
1027 |
done
|
|
1028 |
|
|
1029 |
(*never proved, 2007-01-22*)
|
|
1030 |
ML{*ResAtp.problem_name:="Tarski__tarski_full_lemma"*} (*ALL THEOREMS*)
|
|
1031 |
lemma (in Tarski) tarski_full_lemma:
|
|
1032 |
"\<exists>L. isLub Y (| pset = P, order = induced P r |) L"
|
|
1033 |
apply (rule_tac x = "v" in exI)
|
|
1034 |
apply (simp add: isLub_def)
|
|
1035 |
-- {* @{text "v \<in> P"} *}
|
|
1036 |
apply (simp add: v_in_P)
|
|
1037 |
apply (rule conjI)
|
|
1038 |
(*sledgehammer*)
|
|
1039 |
-- {* @{text v} is lub *}
|
|
1040 |
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
|
|
1041 |
apply (rule ballI)
|
|
1042 |
apply (simp add: induced_def subsetD v_in_P)
|
|
1043 |
apply (rule conjI)
|
|
1044 |
apply (erule Y_ss [THEN subsetD])
|
|
1045 |
apply (rule_tac b = "lub Y cl" in transE)
|
|
1046 |
apply (rule lub_upper)
|
|
1047 |
apply (rule Y_subset_A, assumption)
|
|
1048 |
apply (rule_tac b = "Top cl" in interval_imp_mem)
|
|
1049 |
apply (simp add: v_def)
|
|
1050 |
apply (fold intY1_def)
|
|
1051 |
apply (rule CL.glb_in_lattice [OF _ intY1_is_cl, simplified])
|
|
1052 |
apply (simp add: CL_imp_PO intY1_is_cl, force)
|
|
1053 |
-- {* @{text v} is LEAST ub *}
|
|
1054 |
apply clarify
|
|
1055 |
apply (rule indI)
|
|
1056 |
prefer 3 apply assumption
|
|
1057 |
prefer 2 apply (simp add: v_in_P)
|
|
1058 |
apply (unfold v_def)
|
|
1059 |
(*never proved, 2007-01-22*)
|
|
1060 |
ML{*ResAtp.problem_name:="Tarski__tarski_full_lemma_simpler"*}
|
|
1061 |
(*sledgehammer*)
|
|
1062 |
apply (rule indE)
|
|
1063 |
apply (rule_tac [2] intY1_subset)
|
|
1064 |
(*never proved, 2007-01-22*)
|
|
1065 |
ML{*ResAtp.problem_name:="Tarski__tarski_full_lemma_simplest"*}
|
|
1066 |
(*sledgehammer*)
|
|
1067 |
apply (rule CL.glb_lower [OF _ intY1_is_cl, simplified])
|
|
1068 |
apply (simp add: CL_imp_PO intY1_is_cl)
|
|
1069 |
apply force
|
|
1070 |
apply (simp add: induced_def intY1_f_closed z_in_interval)
|
|
1071 |
apply (simp add: P_def fix_imp_eq [of _ f A] reflE
|
|
1072 |
fix_subset [of f A, THEN subsetD])
|
|
1073 |
done
|
|
1074 |
|
|
1075 |
lemma CompleteLatticeI_simp:
|
|
1076 |
"[| (| pset = A, order = r |) \<in> PartialOrder;
|
|
1077 |
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |]
|
|
1078 |
==> (| pset = A, order = r |) \<in> CompleteLattice"
|
|
1079 |
by (simp add: CompleteLatticeI Rdual)
|
|
1080 |
|
|
1081 |
|
|
1082 |
(*never proved, 2007-01-22*)
|
|
1083 |
ML{*ResAtp.problem_name:="Tarski__Tarski_full"*}
|
|
1084 |
declare (in CLF) fixf_po[intro] P_def [simp] A_def [simp] r_def [simp]
|
|
1085 |
Tarski.tarski_full_lemma [intro] cl_po [intro] cl_co [intro]
|
|
1086 |
CompleteLatticeI_simp [intro]
|
|
1087 |
theorem (in CLF) Tarski_full:
|
|
1088 |
"(| pset = P, order = induced P r|) \<in> CompleteLattice"
|
|
1089 |
(*sledgehammer*)
|
|
1090 |
apply (rule CompleteLatticeI_simp)
|
|
1091 |
apply (rule fixf_po, clarify)
|
|
1092 |
(*never proved, 2007-01-22*)
|
|
1093 |
ML{*ResAtp.problem_name:="Tarski__Tarski_full_simpler"*}
|
|
1094 |
(*sledgehammer*)
|
|
1095 |
apply (simp add: P_def A_def r_def)
|
|
1096 |
apply (blast intro!: Tarski.tarski_full_lemma cl_po cl_co f_cl)
|
|
1097 |
done
|
|
1098 |
declare (in CLF) fixf_po[rule del] P_def [simp del] A_def [simp del] r_def [simp del]
|
|
1099 |
Tarski.tarski_full_lemma [rule del] cl_po [rule del] cl_co [rule del]
|
|
1100 |
CompleteLatticeI_simp [rule del]
|
|
1101 |
|
|
1102 |
|
|
1103 |
end
|