author | wenzelm |
Thu, 21 Jun 2007 17:28:53 +0200 | |
changeset 23463 | 9953ff53cc64 |
parent 21710 | 4e4b7c801142 |
child 32689 | 860e1a2317bd |
permissions | -rw-r--r-- |
6706 | 1 |
(* Title: HOL/UNITY/Follows |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1998 University of Cambridge |
|
13798 | 5 |
*) |
6706 | 6 |
|
13798 | 7 |
header{*The Follows Relation of Charpentier and Sivilotte*} |
6706 | 8 |
|
16417 | 9 |
theory Follows imports SubstAx ListOrder Multiset begin |
6706 | 10 |
|
11 |
constdefs |
|
12 |
||
13 |
Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set" |
|
6809 | 14 |
(infixl "Fols" 65) |
13805 | 15 |
"f Fols g == Increasing g \<inter> Increasing f Int |
16 |
Always {s. f s \<le> g s} Int |
|
17 |
(\<Inter>k. {s. k \<le> g s} LeadsTo {s. k \<le> f s})" |
|
6706 | 18 |
|
19 |
||
13796 | 20 |
(*Does this hold for "invariant"?*) |
21 |
lemma mono_Always_o: |
|
13805 | 22 |
"mono h ==> Always {s. f s \<le> g s} \<subseteq> Always {s. h (f s) \<le> h (g s)}" |
13796 | 23 |
apply (simp add: Always_eq_includes_reachable) |
24 |
apply (blast intro: monoD) |
|
25 |
done |
|
26 |
||
27 |
lemma mono_LeadsTo_o: |
|
28 |
"mono (h::'a::order => 'b::order) |
|
13805 | 29 |
==> (\<Inter>j. {s. j \<le> g s} LeadsTo {s. j \<le> f s}) \<subseteq> |
30 |
(\<Inter>k. {s. k \<le> h (g s)} LeadsTo {s. k \<le> h (f s)})" |
|
13796 | 31 |
apply auto |
32 |
apply (rule single_LeadsTo_I) |
|
33 |
apply (drule_tac x = "g s" in spec) |
|
34 |
apply (erule LeadsTo_weaken) |
|
35 |
apply (blast intro: monoD order_trans)+ |
|
36 |
done |
|
37 |
||
13805 | 38 |
lemma Follows_constant [iff]: "F \<in> (%s. c) Fols (%s. c)" |
15102 | 39 |
by (simp add: Follows_def) |
13796 | 40 |
|
13805 | 41 |
lemma mono_Follows_o: "mono h ==> f Fols g \<subseteq> (h o f) Fols (h o g)" |
15102 | 42 |
by (auto simp add: Follows_def mono_Increasing_o [THEN [2] rev_subsetD] |
43 |
mono_Always_o [THEN [2] rev_subsetD] |
|
44 |
mono_LeadsTo_o [THEN [2] rev_subsetD, THEN INT_D]) |
|
13796 | 45 |
|
46 |
lemma mono_Follows_apply: |
|
13805 | 47 |
"mono h ==> f Fols g \<subseteq> (%x. h (f x)) Fols (%x. h (g x))" |
13796 | 48 |
apply (drule mono_Follows_o) |
49 |
apply (force simp add: o_def) |
|
50 |
done |
|
51 |
||
52 |
lemma Follows_trans: |
|
13805 | 53 |
"[| F \<in> f Fols g; F \<in> g Fols h |] ==> F \<in> f Fols h" |
15102 | 54 |
apply (simp add: Follows_def) |
13796 | 55 |
apply (simp add: Always_eq_includes_reachable) |
56 |
apply (blast intro: order_trans LeadsTo_Trans) |
|
57 |
done |
|
58 |
||
59 |
||
13798 | 60 |
subsection{*Destruction rules*} |
13796 | 61 |
|
13805 | 62 |
lemma Follows_Increasing1: "F \<in> f Fols g ==> F \<in> Increasing f" |
15102 | 63 |
by (simp add: Follows_def) |
13796 | 64 |
|
13805 | 65 |
lemma Follows_Increasing2: "F \<in> f Fols g ==> F \<in> Increasing g" |
15102 | 66 |
by (simp add: Follows_def) |
13796 | 67 |
|
21710 | 68 |
lemma Follows_Bounded: "F \<in> f Fols g ==> F \<in> Always {s. f s \<le> g s}" |
15102 | 69 |
by (simp add: Follows_def) |
13796 | 70 |
|
71 |
lemma Follows_LeadsTo: |
|
13805 | 72 |
"F \<in> f Fols g ==> F \<in> {s. k \<le> g s} LeadsTo {s. k \<le> f s}" |
15102 | 73 |
by (simp add: Follows_def) |
13796 | 74 |
|
75 |
lemma Follows_LeadsTo_pfixLe: |
|
13805 | 76 |
"F \<in> f Fols g ==> F \<in> {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}" |
13796 | 77 |
apply (rule single_LeadsTo_I, clarify) |
78 |
apply (drule_tac k="g s" in Follows_LeadsTo) |
|
79 |
apply (erule LeadsTo_weaken) |
|
80 |
apply blast |
|
81 |
apply (blast intro: pfixLe_trans prefix_imp_pfixLe) |
|
82 |
done |
|
83 |
||
84 |
lemma Follows_LeadsTo_pfixGe: |
|
13805 | 85 |
"F \<in> f Fols g ==> F \<in> {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}" |
13796 | 86 |
apply (rule single_LeadsTo_I, clarify) |
87 |
apply (drule_tac k="g s" in Follows_LeadsTo) |
|
88 |
apply (erule LeadsTo_weaken) |
|
89 |
apply blast |
|
90 |
apply (blast intro: pfixGe_trans prefix_imp_pfixGe) |
|
91 |
done |
|
92 |
||
93 |
||
94 |
lemma Always_Follows1: |
|
13805 | 95 |
"[| F \<in> Always {s. f s = f' s}; F \<in> f Fols g |] ==> F \<in> f' Fols g" |
13796 | 96 |
|
15102 | 97 |
apply (simp add: Follows_def Increasing_def Stable_def, auto) |
13796 | 98 |
apply (erule_tac [3] Always_LeadsTo_weaken) |
13805 | 99 |
apply (erule_tac A = "{s. z \<le> f s}" and A' = "{s. z \<le> f s}" |
13798 | 100 |
in Always_Constrains_weaken, auto) |
13796 | 101 |
apply (drule Always_Int_I, assumption) |
102 |
apply (force intro: Always_weaken) |
|
103 |
done |
|
104 |
||
105 |
lemma Always_Follows2: |
|
13805 | 106 |
"[| F \<in> Always {s. g s = g' s}; F \<in> f Fols g |] ==> F \<in> f Fols g'" |
15102 | 107 |
apply (simp add: Follows_def Increasing_def Stable_def, auto) |
13796 | 108 |
apply (erule_tac [3] Always_LeadsTo_weaken) |
13805 | 109 |
apply (erule_tac A = "{s. z \<le> g s}" and A' = "{s. z \<le> g s}" |
13798 | 110 |
in Always_Constrains_weaken, auto) |
13796 | 111 |
apply (drule Always_Int_I, assumption) |
112 |
apply (force intro: Always_weaken) |
|
113 |
done |
|
114 |
||
115 |
||
13798 | 116 |
subsection{*Union properties (with the subset ordering)*} |
13796 | 117 |
|
118 |
(*Can replace "Un" by any sup. But existing max only works for linorders.*) |
|
119 |
lemma increasing_Un: |
|
13805 | 120 |
"[| F \<in> increasing f; F \<in> increasing g |] |
121 |
==> F \<in> increasing (%s. (f s) \<union> (g s))" |
|
15102 | 122 |
apply (simp add: increasing_def stable_def constrains_def, auto) |
13796 | 123 |
apply (drule_tac x = "f xa" in spec) |
124 |
apply (drule_tac x = "g xa" in spec) |
|
125 |
apply (blast dest!: bspec) |
|
126 |
done |
|
127 |
||
128 |
lemma Increasing_Un: |
|
13805 | 129 |
"[| F \<in> Increasing f; F \<in> Increasing g |] |
130 |
==> F \<in> Increasing (%s. (f s) \<union> (g s))" |
|
13798 | 131 |
apply (auto simp add: Increasing_def Stable_def Constrains_def |
132 |
stable_def constrains_def) |
|
13796 | 133 |
apply (drule_tac x = "f xa" in spec) |
134 |
apply (drule_tac x = "g xa" in spec) |
|
135 |
apply (blast dest!: bspec) |
|
136 |
done |
|
137 |
||
138 |
||
139 |
lemma Always_Un: |
|
13805 | 140 |
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |] |
141 |
==> F \<in> Always {s. f' s \<union> g' s \<le> f s \<union> g s}" |
|
13798 | 142 |
by (simp add: Always_eq_includes_reachable, blast) |
13796 | 143 |
|
144 |
(*Lemma to re-use the argument that one variable increases (progress) |
|
145 |
while the other variable doesn't decrease (safety)*) |
|
146 |
lemma Follows_Un_lemma: |
|
13805 | 147 |
"[| F \<in> Increasing f; F \<in> Increasing g; |
148 |
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; |
|
149 |
\<forall>k. F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] |
|
150 |
==> F \<in> {s. k \<le> f s \<union> g s} LeadsTo {s. k \<le> f' s \<union> g s}" |
|
13796 | 151 |
apply (rule single_LeadsTo_I) |
152 |
apply (drule_tac x = "f s" in IncreasingD) |
|
153 |
apply (drule_tac x = "g s" in IncreasingD) |
|
154 |
apply (rule LeadsTo_weaken) |
|
155 |
apply (rule PSP_Stable) |
|
156 |
apply (erule_tac x = "f s" in spec) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
157 |
apply (erule Stable_Int, assumption, blast+) |
13796 | 158 |
done |
159 |
||
160 |
lemma Follows_Un: |
|
13805 | 161 |
"[| F \<in> f' Fols f; F \<in> g' Fols g |] |
162 |
==> F \<in> (%s. (f' s) \<union> (g' s)) Fols (%s. (f s) \<union> (g s))" |
|
15102 | 163 |
apply (simp add: Follows_def Increasing_Un Always_Un del: Un_subset_iff, auto) |
13796 | 164 |
apply (rule LeadsTo_Trans) |
165 |
apply (blast intro: Follows_Un_lemma) |
|
166 |
(*Weakening is used to exchange Un's arguments*) |
|
167 |
apply (blast intro: Follows_Un_lemma [THEN LeadsTo_weaken]) |
|
168 |
done |
|
169 |
||
170 |
||
13798 | 171 |
subsection{*Multiset union properties (with the multiset ordering)*} |
13796 | 172 |
|
173 |
lemma increasing_union: |
|
13805 | 174 |
"[| F \<in> increasing f; F \<in> increasing g |] |
175 |
==> F \<in> increasing (%s. (f s) + (g s :: ('a::order) multiset))" |
|
15102 | 176 |
apply (simp add: increasing_def stable_def constrains_def, auto) |
13796 | 177 |
apply (drule_tac x = "f xa" in spec) |
178 |
apply (drule_tac x = "g xa" in spec) |
|
179 |
apply (drule bspec, assumption) |
|
180 |
apply (blast intro: union_le_mono order_trans) |
|
181 |
done |
|
182 |
||
183 |
lemma Increasing_union: |
|
13805 | 184 |
"[| F \<in> Increasing f; F \<in> Increasing g |] |
185 |
==> F \<in> Increasing (%s. (f s) + (g s :: ('a::order) multiset))" |
|
13798 | 186 |
apply (auto simp add: Increasing_def Stable_def Constrains_def |
187 |
stable_def constrains_def) |
|
13796 | 188 |
apply (drule_tac x = "f xa" in spec) |
189 |
apply (drule_tac x = "g xa" in spec) |
|
190 |
apply (drule bspec, assumption) |
|
191 |
apply (blast intro: union_le_mono order_trans) |
|
192 |
done |
|
193 |
||
194 |
lemma Always_union: |
|
13805 | 195 |
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |] |
196 |
==> F \<in> Always {s. f' s + g' s \<le> f s + (g s :: ('a::order) multiset)}" |
|
13796 | 197 |
apply (simp add: Always_eq_includes_reachable) |
198 |
apply (blast intro: union_le_mono) |
|
199 |
done |
|
200 |
||
201 |
(*Except the last line, IDENTICAL to the proof script for Follows_Un_lemma*) |
|
202 |
lemma Follows_union_lemma: |
|
13805 | 203 |
"[| F \<in> Increasing f; F \<in> Increasing g; |
204 |
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; |
|
205 |
\<forall>k::('a::order) multiset. |
|
206 |
F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] |
|
207 |
==> F \<in> {s. k \<le> f s + g s} LeadsTo {s. k \<le> f' s + g s}" |
|
13796 | 208 |
apply (rule single_LeadsTo_I) |
209 |
apply (drule_tac x = "f s" in IncreasingD) |
|
210 |
apply (drule_tac x = "g s" in IncreasingD) |
|
211 |
apply (rule LeadsTo_weaken) |
|
212 |
apply (rule PSP_Stable) |
|
213 |
apply (erule_tac x = "f s" in spec) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
214 |
apply (erule Stable_Int, assumption, blast) |
13796 | 215 |
apply (blast intro: union_le_mono order_trans) |
216 |
done |
|
217 |
||
218 |
(*The !! is there to influence to effect of permutative rewriting at the end*) |
|
219 |
lemma Follows_union: |
|
220 |
"!!g g' ::'b => ('a::order) multiset. |
|
13805 | 221 |
[| F \<in> f' Fols f; F \<in> g' Fols g |] |
222 |
==> F \<in> (%s. (f' s) + (g' s)) Fols (%s. (f s) + (g s))" |
|
15102 | 223 |
apply (simp add: Follows_def) |
13796 | 224 |
apply (simp add: Increasing_union Always_union, auto) |
225 |
apply (rule LeadsTo_Trans) |
|
226 |
apply (blast intro: Follows_union_lemma) |
|
227 |
(*now exchange union's arguments*) |
|
228 |
apply (simp add: union_commute) |
|
229 |
apply (blast intro: Follows_union_lemma) |
|
230 |
done |
|
231 |
||
232 |
lemma Follows_setsum: |
|
233 |
"!!f ::['c,'b] => ('a::order) multiset. |
|
13805 | 234 |
[| \<forall>i \<in> I. F \<in> f' i Fols f i; finite I |] |
235 |
==> F \<in> (%s. \<Sum>i \<in> I. f' i s) Fols (%s. \<Sum>i \<in> I. f i s)" |
|
13796 | 236 |
apply (erule rev_mp) |
237 |
apply (erule finite_induct, simp) |
|
238 |
apply (simp add: Follows_union) |
|
239 |
done |
|
240 |
||
241 |
||
242 |
(*Currently UNUSED, but possibly of interest*) |
|
243 |
lemma Increasing_imp_Stable_pfixGe: |
|
13805 | 244 |
"F \<in> Increasing func ==> F \<in> Stable {s. h pfixGe (func s)}" |
13796 | 245 |
apply (simp add: Increasing_def Stable_def Constrains_def constrains_def) |
246 |
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] |
|
247 |
prefix_imp_pfixGe) |
|
248 |
done |
|
249 |
||
250 |
(*Currently UNUSED, but possibly of interest*) |
|
251 |
lemma LeadsTo_le_imp_pfixGe: |
|
13805 | 252 |
"\<forall>z. F \<in> {s. z \<le> f s} LeadsTo {s. z \<le> g s} |
253 |
==> F \<in> {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}" |
|
13796 | 254 |
apply (rule single_LeadsTo_I) |
255 |
apply (drule_tac x = "f s" in spec) |
|
256 |
apply (erule LeadsTo_weaken) |
|
257 |
prefer 2 |
|
258 |
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] |
|
259 |
prefix_imp_pfixGe, blast) |
|
260 |
done |
|
261 |
||
6706 | 262 |
end |