| author | wenzelm | 
| Tue, 27 Oct 2009 17:19:31 +0100 | |
| changeset 33242 | 99577c7085c8 | 
| parent 31003 | ed7364584aa7 | 
| child 34948 | 2d5f2a9f7601 | 
| permissions | -rw-r--r-- | 
| 24333 | 1 | (* | 
| 2 | Author: Jeremy Dawson and Gerwin Klein, NICTA | |
| 3 | ||
| 4 | contains theorems to do with bit-wise (logical) operations on words | |
| 5 | *) | |
| 24350 | 6 | |
| 7 | header {* Bitwise Operations on Words *}
 | |
| 8 | ||
| 26558 | 9 | theory WordBitwise | 
| 10 | imports WordArith | |
| 11 | begin | |
| 24333 | 12 | |
| 13 | lemmas bin_log_bintrs = bin_trunc_not bin_trunc_xor bin_trunc_and bin_trunc_or | |
| 14 | ||
| 15 | (* following definitions require both arithmetic and bit-wise word operations *) | |
| 16 | ||
| 17 | (* to get word_no_log_defs from word_log_defs, using bin_log_bintrs *) | |
| 18 | lemmas wils1 = bin_log_bintrs [THEN word_ubin.norm_eq_iff [THEN iffD1], | |
| 19 | folded word_ubin.eq_norm, THEN eq_reflection, standard] | |
| 20 | ||
| 21 | (* the binary operations only *) | |
| 22 | lemmas word_log_binary_defs = | |
| 23 | word_and_def word_or_def word_xor_def | |
| 24 | ||
| 25 | lemmas word_no_log_defs [simp] = | |
| 25350 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
24465diff
changeset | 26 | word_not_def [where a="number_of a", | 
| 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
24465diff
changeset | 27 | unfolded word_no_wi wils1, folded word_no_wi, standard] | 
| 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
24465diff
changeset | 28 | word_log_binary_defs [where a="number_of a" and b="number_of b", | 
| 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
24465diff
changeset | 29 | unfolded word_no_wi wils1, folded word_no_wi, standard] | 
| 24333 | 30 | |
| 31 | lemmas word_wi_log_defs = word_no_log_defs [unfolded word_no_wi] | |
| 32 | ||
| 24353 | 33 | lemma uint_or: "uint (x OR y) = (uint x) OR (uint y)" | 
| 24368 | 34 | by (simp add: word_or_def word_no_wi [symmetric] number_of_is_id | 
| 24333 | 35 | bin_trunc_ao(2) [symmetric]) | 
| 36 | ||
| 24353 | 37 | lemma uint_and: "uint (x AND y) = (uint x) AND (uint y)" | 
| 24368 | 38 | by (simp add: word_and_def number_of_is_id word_no_wi [symmetric] | 
| 24333 | 39 | bin_trunc_ao(1) [symmetric]) | 
| 40 | ||
| 41 | lemma word_ops_nth_size: | |
| 24465 | 42 | "n < size (x::'a::len0 word) ==> | 
| 24333 | 43 | (x OR y) !! n = (x !! n | y !! n) & | 
| 44 | (x AND y) !! n = (x !! n & y !! n) & | |
| 45 | (x XOR y) !! n = (x !! n ~= y !! n) & | |
| 46 | (NOT x) !! n = (~ x !! n)" | |
| 47 | unfolding word_size word_no_wi word_test_bit_def word_log_defs | |
| 48 | by (clarsimp simp add : word_ubin.eq_norm nth_bintr bin_nth_ops) | |
| 49 | ||
| 50 | lemma word_ao_nth: | |
| 24465 | 51 | fixes x :: "'a::len0 word" | 
| 24333 | 52 | shows "(x OR y) !! n = (x !! n | y !! n) & | 
| 53 | (x AND y) !! n = (x !! n & y !! n)" | |
| 54 | apply (cases "n < size x") | |
| 55 | apply (drule_tac y = "y" in word_ops_nth_size) | |
| 56 | apply simp | |
| 57 | apply (simp add : test_bit_bin word_size) | |
| 58 | done | |
| 59 | ||
| 60 | (* get from commutativity, associativity etc of int_and etc | |
| 61 | to same for word_and etc *) | |
| 62 | ||
| 63 | lemmas bwsimps = | |
| 64 | word_of_int_homs(2) | |
| 65 | word_0_wi_Pls | |
| 66 | word_m1_wi_Min | |
| 67 | word_wi_log_defs | |
| 68 | ||
| 69 | lemma word_bw_assocs: | |
| 24465 | 70 | fixes x :: "'a::len0 word" | 
| 24333 | 71 | shows | 
| 72 | "(x AND y) AND z = x AND y AND z" | |
| 73 | "(x OR y) OR z = x OR y OR z" | |
| 74 | "(x XOR y) XOR z = x XOR y XOR z" | |
| 75 | using word_of_int_Ex [where x=x] | |
| 76 | word_of_int_Ex [where x=y] | |
| 77 | word_of_int_Ex [where x=z] | |
| 24367 
3e29eafabe16
AC rules for bitwise logical operators no longer declared simp
 huffman parents: 
24353diff
changeset | 78 | by (auto simp: bwsimps bbw_assocs) | 
| 24333 | 79 | |
| 80 | lemma word_bw_comms: | |
| 24465 | 81 | fixes x :: "'a::len0 word" | 
| 24333 | 82 | shows | 
| 83 | "x AND y = y AND x" | |
| 84 | "x OR y = y OR x" | |
| 85 | "x XOR y = y XOR x" | |
| 86 | using word_of_int_Ex [where x=x] | |
| 87 | word_of_int_Ex [where x=y] | |
| 24367 
3e29eafabe16
AC rules for bitwise logical operators no longer declared simp
 huffman parents: 
24353diff
changeset | 88 | by (auto simp: bwsimps bin_ops_comm) | 
| 24333 | 89 | |
| 90 | lemma word_bw_lcs: | |
| 24465 | 91 | fixes x :: "'a::len0 word" | 
| 24333 | 92 | shows | 
| 93 | "y AND x AND z = x AND y AND z" | |
| 94 | "y OR x OR z = x OR y OR z" | |
| 95 | "y XOR x XOR z = x XOR y XOR z" | |
| 96 | using word_of_int_Ex [where x=x] | |
| 97 | word_of_int_Ex [where x=y] | |
| 98 | word_of_int_Ex [where x=z] | |
| 99 | by (auto simp: bwsimps) | |
| 100 | ||
| 101 | lemma word_log_esimps [simp]: | |
| 24465 | 102 | fixes x :: "'a::len0 word" | 
| 24333 | 103 | shows | 
| 104 | "x AND 0 = 0" | |
| 105 | "x AND -1 = x" | |
| 106 | "x OR 0 = x" | |
| 107 | "x OR -1 = -1" | |
| 108 | "x XOR 0 = x" | |
| 109 | "x XOR -1 = NOT x" | |
| 110 | "0 AND x = 0" | |
| 111 | "-1 AND x = x" | |
| 112 | "0 OR x = x" | |
| 113 | "-1 OR x = -1" | |
| 114 | "0 XOR x = x" | |
| 115 | "-1 XOR x = NOT x" | |
| 116 | using word_of_int_Ex [where x=x] | |
| 117 | by (auto simp: bwsimps) | |
| 118 | ||
| 119 | lemma word_not_dist: | |
| 24465 | 120 | fixes x :: "'a::len0 word" | 
| 24333 | 121 | shows | 
| 122 | "NOT (x OR y) = NOT x AND NOT y" | |
| 123 | "NOT (x AND y) = NOT x OR NOT y" | |
| 124 | using word_of_int_Ex [where x=x] | |
| 125 | word_of_int_Ex [where x=y] | |
| 126 | by (auto simp: bwsimps bbw_not_dist) | |
| 127 | ||
| 128 | lemma word_bw_same: | |
| 24465 | 129 | fixes x :: "'a::len0 word" | 
| 24333 | 130 | shows | 
| 131 | "x AND x = x" | |
| 132 | "x OR x = x" | |
| 133 | "x XOR x = 0" | |
| 134 | using word_of_int_Ex [where x=x] | |
| 135 | by (auto simp: bwsimps) | |
| 136 | ||
| 137 | lemma word_ao_absorbs [simp]: | |
| 24465 | 138 | fixes x :: "'a::len0 word" | 
| 24333 | 139 | shows | 
| 140 | "x AND (y OR x) = x" | |
| 141 | "x OR y AND x = x" | |
| 142 | "x AND (x OR y) = x" | |
| 143 | "y AND x OR x = x" | |
| 144 | "(y OR x) AND x = x" | |
| 145 | "x OR x AND y = x" | |
| 146 | "(x OR y) AND x = x" | |
| 147 | "x AND y OR x = x" | |
| 148 | using word_of_int_Ex [where x=x] | |
| 149 | word_of_int_Ex [where x=y] | |
| 150 | by (auto simp: bwsimps) | |
| 151 | ||
| 152 | lemma word_not_not [simp]: | |
| 24465 | 153 | "NOT NOT (x::'a::len0 word) = x" | 
| 24333 | 154 | using word_of_int_Ex [where x=x] | 
| 155 | by (auto simp: bwsimps) | |
| 156 | ||
| 157 | lemma word_ao_dist: | |
| 24465 | 158 | fixes x :: "'a::len0 word" | 
| 24333 | 159 | shows "(x OR y) AND z = x AND z OR y AND z" | 
| 160 | using word_of_int_Ex [where x=x] | |
| 161 | word_of_int_Ex [where x=y] | |
| 162 | word_of_int_Ex [where x=z] | |
| 163 | by (auto simp: bwsimps bbw_ao_dist simp del: bin_ops_comm) | |
| 164 | ||
| 165 | lemma word_oa_dist: | |
| 24465 | 166 | fixes x :: "'a::len0 word" | 
| 24333 | 167 | shows "x AND y OR z = (x OR z) AND (y OR z)" | 
| 168 | using word_of_int_Ex [where x=x] | |
| 169 | word_of_int_Ex [where x=y] | |
| 170 | word_of_int_Ex [where x=z] | |
| 171 | by (auto simp: bwsimps bbw_oa_dist simp del: bin_ops_comm) | |
| 172 | ||
| 173 | lemma word_add_not [simp]: | |
| 24465 | 174 | fixes x :: "'a::len0 word" | 
| 24333 | 175 | shows "x + NOT x = -1" | 
| 176 | using word_of_int_Ex [where x=x] | |
| 177 | by (auto simp: bwsimps bin_add_not) | |
| 178 | ||
| 179 | lemma word_plus_and_or [simp]: | |
| 24465 | 180 | fixes x :: "'a::len0 word" | 
| 24333 | 181 | shows "(x AND y) + (x OR y) = x + y" | 
| 182 | using word_of_int_Ex [where x=x] | |
| 183 | word_of_int_Ex [where x=y] | |
| 184 | by (auto simp: bwsimps plus_and_or) | |
| 185 | ||
| 186 | lemma leoa: | |
| 24465 | 187 | fixes x :: "'a::len0 word" | 
| 24333 | 188 | shows "(w = (x OR y)) ==> (y = (w AND y))" by auto | 
| 189 | lemma leao: | |
| 24465 | 190 | fixes x' :: "'a::len0 word" | 
| 24333 | 191 | shows "(w' = (x' AND y')) ==> (x' = (x' OR w'))" by auto | 
| 192 | ||
| 193 | lemmas word_ao_equiv = leao [COMP leoa [COMP iffI]] | |
| 194 | ||
| 24465 | 195 | lemma le_word_or2: "x <= x OR (y::'a::len0 word)" | 
| 24333 | 196 | unfolding word_le_def uint_or | 
| 197 | by (auto intro: le_int_or) | |
| 198 | ||
| 199 | lemmas le_word_or1 = xtr3 [OF word_bw_comms (2) le_word_or2, standard] | |
| 200 | lemmas word_and_le1 = | |
| 201 | xtr3 [OF word_ao_absorbs (4) [symmetric] le_word_or2, standard] | |
| 202 | lemmas word_and_le2 = | |
| 203 | xtr3 [OF word_ao_absorbs (8) [symmetric] le_word_or2, standard] | |
| 204 | ||
| 24465 | 205 | lemma bl_word_not: "to_bl (NOT w) = map Not (to_bl w)" | 
| 206 | unfolding to_bl_def word_log_defs | |
| 207 | by (simp add: bl_not_bin number_of_is_id word_no_wi [symmetric]) | |
| 208 | ||
| 26558 | 209 | lemma bl_word_xor: "to_bl (v XOR w) = map2 op ~= (to_bl v) (to_bl w)" | 
| 24465 | 210 | unfolding to_bl_def word_log_defs bl_xor_bin | 
| 211 | by (simp add: number_of_is_id word_no_wi [symmetric]) | |
| 212 | ||
| 26558 | 213 | lemma bl_word_or: "to_bl (v OR w) = map2 op | (to_bl v) (to_bl w)" | 
| 24465 | 214 | unfolding to_bl_def word_log_defs | 
| 215 | by (simp add: bl_or_bin number_of_is_id word_no_wi [symmetric]) | |
| 216 | ||
| 26558 | 217 | lemma bl_word_and: "to_bl (v AND w) = map2 op & (to_bl v) (to_bl w)" | 
| 24465 | 218 | unfolding to_bl_def word_log_defs | 
| 219 | by (simp add: bl_and_bin number_of_is_id word_no_wi [symmetric]) | |
| 220 | ||
| 221 | lemma word_lsb_alt: "lsb (w::'a::len0 word) = test_bit w 0" | |
| 24333 | 222 | by (auto simp: word_test_bit_def word_lsb_def) | 
| 223 | ||
| 24465 | 224 | lemma word_lsb_1_0: "lsb (1::'a::len word) & ~ lsb (0::'b::len0 word)" | 
| 24333 | 225 | unfolding word_lsb_def word_1_no word_0_no by auto | 
| 226 | ||
| 24465 | 227 | lemma word_lsb_last: "lsb (w::'a::len word) = last (to_bl w)" | 
| 228 | apply (unfold word_lsb_def uint_bl bin_to_bl_def) | |
| 229 | apply (rule_tac bin="uint w" in bin_exhaust) | |
| 230 | apply (cases "size w") | |
| 231 | apply auto | |
| 232 | apply (auto simp add: bin_to_bl_aux_alt) | |
| 233 | done | |
| 234 | ||
| 24333 | 235 | lemma word_lsb_int: "lsb w = (uint w mod 2 = 1)" | 
| 236 | unfolding word_lsb_def bin_last_mod by auto | |
| 237 | ||
| 238 | lemma word_msb_sint: "msb w = (sint w < 0)" | |
| 239 | unfolding word_msb_def | |
| 24368 | 240 | by (simp add : sign_Min_lt_0 number_of_is_id) | 
| 24333 | 241 | |
| 242 | lemma word_msb_no': | |
| 24465 | 243 | "w = number_of bin ==> msb (w::'a::len word) = bin_nth bin (size w - 1)" | 
| 24333 | 244 | unfolding word_msb_def word_number_of_def | 
| 245 | by (clarsimp simp add: word_sbin.eq_norm word_size bin_sign_lem) | |
| 246 | ||
| 247 | lemmas word_msb_no = refl [THEN word_msb_no', unfolded word_size] | |
| 248 | ||
| 24465 | 249 | lemma word_msb_nth': "msb (w::'a::len word) = bin_nth (uint w) (size w - 1)" | 
| 24333 | 250 | apply (unfold word_size) | 
| 251 | apply (rule trans [OF _ word_msb_no]) | |
| 252 | apply (simp add : word_number_of_def) | |
| 253 | done | |
| 254 | ||
| 255 | lemmas word_msb_nth = word_msb_nth' [unfolded word_size] | |
| 256 | ||
| 24465 | 257 | lemma word_msb_alt: "msb (w::'a::len word) = hd (to_bl w)" | 
| 258 | apply (unfold word_msb_nth uint_bl) | |
| 259 | apply (subst hd_conv_nth) | |
| 260 | apply (rule length_greater_0_conv [THEN iffD1]) | |
| 261 | apply simp | |
| 262 | apply (simp add : nth_bin_to_bl word_size) | |
| 263 | done | |
| 264 | ||
| 24333 | 265 | lemma word_set_nth: | 
| 24465 | 266 | "set_bit w n (test_bit w n) = (w::'a::len0 word)" | 
| 24333 | 267 | unfolding word_test_bit_def word_set_bit_def by auto | 
| 268 | ||
| 24465 | 269 | lemma bin_nth_uint': | 
| 270 | "bin_nth (uint w) n = (rev (bin_to_bl (size w) (uint w)) ! n & n < size w)" | |
| 271 | apply (unfold word_size) | |
| 272 | apply (safe elim!: bin_nth_uint_imp) | |
| 273 | apply (frule bin_nth_uint_imp) | |
| 274 | apply (fast dest!: bin_nth_bl)+ | |
| 275 | done | |
| 276 | ||
| 277 | lemmas bin_nth_uint = bin_nth_uint' [unfolded word_size] | |
| 278 | ||
| 279 | lemma test_bit_bl: "w !! n = (rev (to_bl w) ! n & n < size w)" | |
| 280 | unfolding to_bl_def word_test_bit_def word_size | |
| 281 | by (rule bin_nth_uint) | |
| 282 | ||
| 283 | lemma to_bl_nth: "n < size w ==> to_bl w ! n = w !! (size w - Suc n)" | |
| 284 | apply (unfold test_bit_bl) | |
| 285 | apply clarsimp | |
| 286 | apply (rule trans) | |
| 287 | apply (rule nth_rev_alt) | |
| 288 | apply (auto simp add: word_size) | |
| 289 | done | |
| 290 | ||
| 24333 | 291 | lemma test_bit_set: | 
| 24465 | 292 | fixes w :: "'a::len0 word" | 
| 24333 | 293 | shows "(set_bit w n x) !! n = (n < size w & x)" | 
| 294 | unfolding word_size word_test_bit_def word_set_bit_def | |
| 295 | by (clarsimp simp add : word_ubin.eq_norm nth_bintr) | |
| 296 | ||
| 297 | lemma test_bit_set_gen: | |
| 24465 | 298 | fixes w :: "'a::len0 word" | 
| 24333 | 299 | shows "test_bit (set_bit w n x) m = | 
| 300 | (if m = n then n < size w & x else test_bit w m)" | |
| 301 | apply (unfold word_size word_test_bit_def word_set_bit_def) | |
| 302 | apply (clarsimp simp add: word_ubin.eq_norm nth_bintr bin_nth_sc_gen) | |
| 303 | apply (auto elim!: test_bit_size [unfolded word_size] | |
| 304 | simp add: word_test_bit_def [symmetric]) | |
| 305 | done | |
| 306 | ||
| 24465 | 307 | lemma of_bl_rep_False: "of_bl (replicate n False @ bs) = of_bl bs" | 
| 308 | unfolding of_bl_def bl_to_bin_rep_F by auto | |
| 309 | ||
| 24333 | 310 | lemma msb_nth': | 
| 24465 | 311 | fixes w :: "'a::len word" | 
| 24333 | 312 | shows "msb w = w !! (size w - 1)" | 
| 313 | unfolding word_msb_nth' word_test_bit_def by simp | |
| 314 | ||
| 315 | lemmas msb_nth = msb_nth' [unfolded word_size] | |
| 316 | ||
| 24465 | 317 | lemmas msb0 = len_gt_0 [THEN diff_Suc_less, THEN | 
| 24333 | 318 | word_ops_nth_size [unfolded word_size], standard] | 
| 319 | lemmas msb1 = msb0 [where i = 0] | |
| 320 | lemmas word_ops_msb = msb1 [unfolded msb_nth [symmetric, unfolded One_nat_def]] | |
| 321 | ||
| 24465 | 322 | lemmas lsb0 = len_gt_0 [THEN word_ops_nth_size [unfolded word_size], standard] | 
| 24333 | 323 | lemmas word_ops_lsb = lsb0 [unfolded word_lsb_alt] | 
| 324 | ||
| 24465 | 325 | lemma td_ext_nth': | 
| 326 | "n = size (w::'a::len0 word) ==> ofn = set_bits ==> [w, ofn g] = l ==> | |
| 327 |     td_ext test_bit ofn {f. ALL i. f i --> i < n} (%h i. h i & i < n)"
 | |
| 328 | apply (unfold word_size td_ext_def') | |
| 26827 
a62f8db42f4a
Deleted subset_antisym in a few proofs, because it is
 berghofe parents: 
26558diff
changeset | 329 | apply (safe del: subset_antisym) | 
| 24465 | 330 | apply (rule_tac [3] ext) | 
| 331 | apply (rule_tac [4] ext) | |
| 332 | apply (unfold word_size of_nth_def test_bit_bl) | |
| 333 | apply safe | |
| 334 | defer | |
| 335 | apply (clarsimp simp: word_bl.Abs_inverse)+ | |
| 336 | apply (rule word_bl.Rep_inverse') | |
| 337 | apply (rule sym [THEN trans]) | |
| 338 | apply (rule bl_of_nth_nth) | |
| 339 | apply simp | |
| 340 | apply (rule bl_of_nth_inj) | |
| 341 | apply (clarsimp simp add : test_bit_bl word_size) | |
| 342 | done | |
| 343 | ||
| 344 | lemmas td_ext_nth = td_ext_nth' [OF refl refl refl, unfolded word_size] | |
| 345 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29631diff
changeset | 346 | interpretation test_bit: | 
| 29235 | 347 | td_ext "op !! :: 'a::len0 word => nat => bool" | 
| 348 | set_bits | |
| 349 |          "{f. \<forall>i. f i \<longrightarrow> i < len_of TYPE('a::len0)}"
 | |
| 350 |          "(\<lambda>h i. h i \<and> i < len_of TYPE('a::len0))"
 | |
| 24465 | 351 | by (rule td_ext_nth) | 
| 352 | ||
| 353 | declare test_bit.Rep' [simp del] | |
| 354 | declare test_bit.Rep' [rule del] | |
| 355 | ||
| 356 | lemmas td_nth = test_bit.td_thm | |
| 357 | ||
| 24333 | 358 | lemma word_set_set_same: | 
| 24465 | 359 | fixes w :: "'a::len0 word" | 
| 24333 | 360 | shows "set_bit (set_bit w n x) n y = set_bit w n y" | 
| 361 | by (rule word_eqI) (simp add : test_bit_set_gen word_size) | |
| 362 | ||
| 363 | lemma word_set_set_diff: | |
| 24465 | 364 | fixes w :: "'a::len0 word" | 
| 24333 | 365 | assumes "m ~= n" | 
| 366 | shows "set_bit (set_bit w m x) n y = set_bit (set_bit w n y) m x" | |
| 367 | by (rule word_eqI) (clarsimp simp add : test_bit_set_gen word_size prems) | |
| 368 | ||
| 369 | lemma test_bit_no': | |
| 24465 | 370 | fixes w :: "'a::len0 word" | 
| 24333 | 371 | shows "w = number_of bin ==> test_bit w n = (n < size w & bin_nth bin n)" | 
| 372 | unfolding word_test_bit_def word_number_of_def word_size | |
| 373 | by (simp add : nth_bintr [symmetric] word_ubin.eq_norm) | |
| 374 | ||
| 375 | lemmas test_bit_no = | |
| 376 | refl [THEN test_bit_no', unfolded word_size, THEN eq_reflection, standard] | |
| 377 | ||
| 24465 | 378 | lemma nth_0: "~ (0::'a::len0 word) !! n" | 
| 24333 | 379 | unfolding test_bit_no word_0_no by auto | 
| 380 | ||
| 381 | lemma nth_sint: | |
| 24465 | 382 | fixes w :: "'a::len word" | 
| 383 |   defines "l \<equiv> len_of TYPE ('a)"
 | |
| 24333 | 384 | shows "bin_nth (sint w) n = (if n < l - 1 then w !! n else w !! (l - 1))" | 
| 385 | unfolding sint_uint l_def | |
| 386 | by (clarsimp simp add: nth_sbintr word_test_bit_def [symmetric]) | |
| 387 | ||
| 388 | lemma word_lsb_no: | |
| 24465 | 389 | "lsb (number_of bin :: 'a :: len word) = (bin_last bin = bit.B1)" | 
| 24333 | 390 | unfolding word_lsb_alt test_bit_no by auto | 
| 391 | ||
| 392 | lemma word_set_no: | |
| 24465 | 393 | "set_bit (number_of bin::'a::len0 word) n b = | 
| 24333 | 394 | number_of (bin_sc n (if b then bit.B1 else bit.B0) bin)" | 
| 395 | apply (unfold word_set_bit_def word_number_of_def [symmetric]) | |
| 396 | apply (rule word_eqI) | |
| 24368 | 397 | apply (clarsimp simp: word_size bin_nth_sc_gen number_of_is_id | 
| 24333 | 398 | test_bit_no nth_bintr) | 
| 399 | done | |
| 400 | ||
| 401 | lemmas setBit_no = setBit_def [THEN trans [OF meta_eq_to_obj_eq word_set_no], | |
| 402 | simplified if_simps, THEN eq_reflection, standard] | |
| 403 | lemmas clearBit_no = clearBit_def [THEN trans [OF meta_eq_to_obj_eq word_set_no], | |
| 404 | simplified if_simps, THEN eq_reflection, standard] | |
| 405 | ||
| 24465 | 406 | lemma to_bl_n1: | 
| 407 |   "to_bl (-1::'a::len0 word) = replicate (len_of TYPE ('a)) True"
 | |
| 408 | apply (rule word_bl.Abs_inverse') | |
| 409 | apply simp | |
| 410 | apply (rule word_eqI) | |
| 411 | apply (clarsimp simp add: word_size test_bit_no) | |
| 412 | apply (auto simp add: word_bl.Abs_inverse test_bit_bl word_size) | |
| 413 | done | |
| 414 | ||
| 415 | lemma word_msb_n1: "msb (-1::'a::len word)" | |
| 416 | unfolding word_msb_alt word_msb_alt to_bl_n1 by simp | |
| 24333 | 417 | |
| 418 | declare word_set_set_same [simp] word_set_nth [simp] | |
| 419 | test_bit_no [simp] word_set_no [simp] nth_0 [simp] | |
| 420 | setBit_no [simp] clearBit_no [simp] | |
| 421 | word_lsb_no [simp] word_msb_no [simp] word_msb_n1 [simp] word_lsb_1_0 [simp] | |
| 422 | ||
| 423 | lemma word_set_nth_iff: | |
| 24465 | 424 | "(set_bit w n b = w) = (w !! n = b | n >= size (w::'a::len0 word))" | 
| 24333 | 425 | apply (rule iffI) | 
| 426 | apply (rule disjCI) | |
| 427 | apply (drule word_eqD) | |
| 428 | apply (erule sym [THEN trans]) | |
| 429 | apply (simp add: test_bit_set) | |
| 430 | apply (erule disjE) | |
| 431 | apply clarsimp | |
| 432 | apply (rule word_eqI) | |
| 433 | apply (clarsimp simp add : test_bit_set_gen) | |
| 434 | apply (drule test_bit_size) | |
| 435 | apply force | |
| 436 | done | |
| 437 | ||
| 438 | lemma test_bit_2p': | |
| 439 | "w = word_of_int (2 ^ n) ==> | |
| 24465 | 440 | w !! m = (m = n & m < size (w :: 'a :: len word))" | 
| 24333 | 441 | unfolding word_test_bit_def word_size | 
| 442 | by (auto simp add: word_ubin.eq_norm nth_bintr nth_2p_bin) | |
| 443 | ||
| 444 | lemmas test_bit_2p = refl [THEN test_bit_2p', unfolded word_size] | |
| 445 | ||
| 31003 | 446 | lemma nth_w2p: | 
| 447 |   "((2\<Colon>'a\<Colon>len word) ^ n) !! m \<longleftrightarrow> m = n \<and> m < len_of TYPE('a\<Colon>len)"
 | |
| 448 | unfolding test_bit_2p [symmetric] word_of_int [symmetric] | |
| 449 | by (simp add: of_int_power) | |
| 24333 | 450 | |
| 451 | lemma uint_2p: | |
| 24465 | 452 | "(0::'a::len word) < 2 ^ n ==> uint (2 ^ n::'a::len word) = 2 ^ n" | 
| 24333 | 453 | apply (unfold word_arith_power_alt) | 
| 24465 | 454 |   apply (case_tac "len_of TYPE ('a)")
 | 
| 24333 | 455 | apply clarsimp | 
| 456 | apply (case_tac "nat") | |
| 457 | apply clarsimp | |
| 458 | apply (case_tac "n") | |
| 459 | apply (clarsimp simp add : word_1_wi [symmetric]) | |
| 460 | apply (clarsimp simp add : word_0_wi [symmetric]) | |
| 461 | apply (drule word_gt_0 [THEN iffD1]) | |
| 462 | apply (safe intro!: word_eqI bin_nth_lem ext) | |
| 463 | apply (auto simp add: test_bit_2p nth_2p_bin word_test_bit_def [symmetric]) | |
| 464 | done | |
| 465 | ||
| 24465 | 466 | lemma word_of_int_2p: "(word_of_int (2 ^ n) :: 'a :: len word) = 2 ^ n" | 
| 24333 | 467 | apply (unfold word_arith_power_alt) | 
| 24465 | 468 |   apply (case_tac "len_of TYPE ('a)")
 | 
| 24333 | 469 | apply clarsimp | 
| 470 | apply (case_tac "nat") | |
| 471 | apply (rule word_ubin.norm_eq_iff [THEN iffD1]) | |
| 472 | apply (rule box_equals) | |
| 473 | apply (rule_tac [2] bintr_ariths (1))+ | |
| 24368 | 474 | apply (clarsimp simp add : number_of_is_id) | 
| 24333 | 475 | apply simp | 
| 476 | done | |
| 477 | ||
| 24465 | 478 | lemma bang_is_le: "x !! m ==> 2 ^ m <= (x :: 'a :: len word)" | 
| 24333 | 479 | apply (rule xtr3) | 
| 480 | apply (rule_tac [2] y = "x" in le_word_or2) | |
| 481 | apply (rule word_eqI) | |
| 482 | apply (auto simp add: word_ao_nth nth_w2p word_size) | |
| 483 | done | |
| 484 | ||
| 485 | lemma word_clr_le: | |
| 24465 | 486 | fixes w :: "'a::len0 word" | 
| 24333 | 487 | shows "w >= set_bit w n False" | 
| 488 | apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm) | |
| 489 | apply simp | |
| 490 | apply (rule order_trans) | |
| 491 | apply (rule bintr_bin_clr_le) | |
| 492 | apply simp | |
| 493 | done | |
| 494 | ||
| 495 | lemma word_set_ge: | |
| 24465 | 496 | fixes w :: "'a::len word" | 
| 24333 | 497 | shows "w <= set_bit w n True" | 
| 498 | apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm) | |
| 499 | apply simp | |
| 500 | apply (rule order_trans [OF _ bintr_bin_set_ge]) | |
| 501 | apply simp | |
| 502 | done | |
| 503 | ||
| 504 | end | |
| 505 |