author | wenzelm |
Thu, 28 Nov 2013 12:54:39 +0100 | |
changeset 54649 | 99b9249b3e05 |
parent 50788 | fec14e8fefb8 |
child 54427 | 783861a66a60 |
permissions | -rw-r--r-- |
41561 | 1 |
(* Title: HOL/SPARK/SPARK.thy |
2 |
Author: Stefan Berghofer |
|
3 |
Copyright: secunet Security Networks AG |
|
4 |
||
5 |
Declaration of proof functions for SPARK/Ada verification environment. |
|
6 |
*) |
|
7 |
||
8 |
theory SPARK |
|
9 |
imports SPARK_Setup |
|
10 |
begin |
|
11 |
||
12 |
text {* Bitwise logical operators *} |
|
13 |
||
14 |
spark_proof_functions |
|
15 |
bit__and (integer, integer) : integer = "op AND" |
|
16 |
bit__or (integer, integer) : integer = "op OR" |
|
17 |
bit__xor (integer, integer) : integer = "op XOR" |
|
18 |
||
19 |
lemma AND_lower [simp]: |
|
20 |
fixes x :: int and y :: int |
|
21 |
assumes "0 \<le> x" |
|
22 |
shows "0 \<le> x AND y" |
|
23 |
using assms |
|
24 |
proof (induct x arbitrary: y rule: bin_induct) |
|
25 |
case (3 bin bit) |
|
26 |
show ?case |
|
27 |
proof (cases y rule: bin_exhaust) |
|
28 |
case (1 bin' bit') |
|
29 |
from 3 have "0 \<le> bin" |
|
30 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
31 |
then have "0 \<le> bin AND bin'" by (rule 3) |
|
32 |
with 1 show ?thesis |
|
33 |
by simp (simp add: Bit_def bitval_def split add: bit.split) |
|
34 |
qed |
|
35 |
next |
|
36 |
case 2 |
|
37 |
then show ?case by (simp only: Min_def) |
|
38 |
qed simp |
|
39 |
||
40 |
lemma OR_lower [simp]: |
|
41 |
fixes x :: int and y :: int |
|
42 |
assumes "0 \<le> x" "0 \<le> y" |
|
43 |
shows "0 \<le> x OR y" |
|
44 |
using assms |
|
45 |
proof (induct x arbitrary: y rule: bin_induct) |
|
46 |
case (3 bin bit) |
|
47 |
show ?case |
|
48 |
proof (cases y rule: bin_exhaust) |
|
49 |
case (1 bin' bit') |
|
50 |
from 3 have "0 \<le> bin" |
|
51 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
52 |
moreover from 1 3 have "0 \<le> bin'" |
|
53 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
54 |
ultimately have "0 \<le> bin OR bin'" by (rule 3) |
|
55 |
with 1 show ?thesis |
|
56 |
by simp (simp add: Bit_def bitval_def split add: bit.split) |
|
57 |
qed |
|
58 |
qed simp_all |
|
59 |
||
60 |
lemma XOR_lower [simp]: |
|
61 |
fixes x :: int and y :: int |
|
62 |
assumes "0 \<le> x" "0 \<le> y" |
|
63 |
shows "0 \<le> x XOR y" |
|
64 |
using assms |
|
65 |
proof (induct x arbitrary: y rule: bin_induct) |
|
66 |
case (3 bin bit) |
|
67 |
show ?case |
|
68 |
proof (cases y rule: bin_exhaust) |
|
69 |
case (1 bin' bit') |
|
70 |
from 3 have "0 \<le> bin" |
|
71 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
72 |
moreover from 1 3 have "0 \<le> bin'" |
|
73 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
74 |
ultimately have "0 \<le> bin XOR bin'" by (rule 3) |
|
75 |
with 1 show ?thesis |
|
76 |
by simp (simp add: Bit_def bitval_def split add: bit.split) |
|
77 |
qed |
|
78 |
next |
|
79 |
case 2 |
|
80 |
then show ?case by (simp only: Min_def) |
|
81 |
qed simp |
|
82 |
||
83 |
lemma AND_upper1 [simp]: |
|
84 |
fixes x :: int and y :: int |
|
85 |
assumes "0 \<le> x" |
|
86 |
shows "x AND y \<le> x" |
|
87 |
using assms |
|
88 |
proof (induct x arbitrary: y rule: bin_induct) |
|
89 |
case (3 bin bit) |
|
90 |
show ?case |
|
91 |
proof (cases y rule: bin_exhaust) |
|
92 |
case (1 bin' bit') |
|
93 |
from 3 have "0 \<le> bin" |
|
94 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
95 |
then have "bin AND bin' \<le> bin" by (rule 3) |
|
96 |
with 1 show ?thesis |
|
97 |
by simp (simp add: Bit_def bitval_def split add: bit.split) |
|
98 |
qed |
|
99 |
next |
|
100 |
case 2 |
|
101 |
then show ?case by (simp only: Min_def) |
|
102 |
qed simp |
|
103 |
||
104 |
lemmas AND_upper1' [simp] = order_trans [OF AND_upper1] |
|
105 |
lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1] |
|
106 |
||
107 |
lemma AND_upper2 [simp]: |
|
108 |
fixes x :: int and y :: int |
|
109 |
assumes "0 \<le> y" |
|
110 |
shows "x AND y \<le> y" |
|
111 |
using assms |
|
112 |
proof (induct y arbitrary: x rule: bin_induct) |
|
113 |
case (3 bin bit) |
|
114 |
show ?case |
|
115 |
proof (cases x rule: bin_exhaust) |
|
116 |
case (1 bin' bit') |
|
117 |
from 3 have "0 \<le> bin" |
|
118 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
119 |
then have "bin' AND bin \<le> bin" by (rule 3) |
|
120 |
with 1 show ?thesis |
|
121 |
by simp (simp add: Bit_def bitval_def split add: bit.split) |
|
122 |
qed |
|
123 |
next |
|
124 |
case 2 |
|
125 |
then show ?case by (simp only: Min_def) |
|
126 |
qed simp |
|
127 |
||
128 |
lemmas AND_upper2' [simp] = order_trans [OF AND_upper2] |
|
129 |
lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2] |
|
130 |
||
131 |
lemma OR_upper: |
|
132 |
fixes x :: int and y :: int |
|
133 |
assumes "0 \<le> x" "x < 2 ^ n" "y < 2 ^ n" |
|
134 |
shows "x OR y < 2 ^ n" |
|
135 |
using assms |
|
136 |
proof (induct x arbitrary: y n rule: bin_induct) |
|
137 |
case (3 bin bit) |
|
138 |
show ?case |
|
139 |
proof (cases y rule: bin_exhaust) |
|
140 |
case (1 bin' bit') |
|
141 |
show ?thesis |
|
142 |
proof (cases n) |
|
143 |
case 0 |
|
144 |
with 3 have "bin BIT bit = 0" by simp |
|
145 |
then have "bin = 0" "bit = 0" |
|
146 |
by (auto simp add: Bit_def bitval_def split add: bit.split_asm) arith |
|
147 |
then show ?thesis using 0 1 `y < 2 ^ n` |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
41561
diff
changeset
|
148 |
by simp |
41561 | 149 |
next |
150 |
case (Suc m) |
|
151 |
from 3 have "0 \<le> bin" |
|
152 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
153 |
moreover from 3 Suc have "bin < 2 ^ m" |
|
154 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
155 |
moreover from 1 3 Suc have "bin' < 2 ^ m" |
|
156 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
157 |
ultimately have "bin OR bin' < 2 ^ m" by (rule 3) |
|
158 |
with 1 Suc show ?thesis |
|
159 |
by simp (simp add: Bit_def bitval_def split add: bit.split) |
|
160 |
qed |
|
161 |
qed |
|
162 |
qed simp_all |
|
163 |
||
164 |
lemmas [simp] = |
|
165 |
OR_upper [of _ 8, simplified zle_diff1_eq [symmetric], simplified] |
|
166 |
OR_upper [of _ 8, simplified] |
|
167 |
OR_upper [of _ 16, simplified zle_diff1_eq [symmetric], simplified] |
|
168 |
OR_upper [of _ 16, simplified] |
|
169 |
OR_upper [of _ 32, simplified zle_diff1_eq [symmetric], simplified] |
|
170 |
OR_upper [of _ 32, simplified] |
|
171 |
OR_upper [of _ 64, simplified zle_diff1_eq [symmetric], simplified] |
|
172 |
OR_upper [of _ 64, simplified] |
|
173 |
||
174 |
lemma XOR_upper: |
|
175 |
fixes x :: int and y :: int |
|
176 |
assumes "0 \<le> x" "x < 2 ^ n" "y < 2 ^ n" |
|
177 |
shows "x XOR y < 2 ^ n" |
|
178 |
using assms |
|
179 |
proof (induct x arbitrary: y n rule: bin_induct) |
|
180 |
case (3 bin bit) |
|
181 |
show ?case |
|
182 |
proof (cases y rule: bin_exhaust) |
|
183 |
case (1 bin' bit') |
|
184 |
show ?thesis |
|
185 |
proof (cases n) |
|
186 |
case 0 |
|
187 |
with 3 have "bin BIT bit = 0" by simp |
|
188 |
then have "bin = 0" "bit = 0" |
|
189 |
by (auto simp add: Bit_def bitval_def split add: bit.split_asm) arith |
|
190 |
then show ?thesis using 0 1 `y < 2 ^ n` |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
41561
diff
changeset
|
191 |
by simp |
41561 | 192 |
next |
193 |
case (Suc m) |
|
194 |
from 3 have "0 \<le> bin" |
|
195 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
196 |
moreover from 3 Suc have "bin < 2 ^ m" |
|
197 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
198 |
moreover from 1 3 Suc have "bin' < 2 ^ m" |
|
199 |
by (simp add: Bit_def bitval_def split add: bit.split_asm) |
|
200 |
ultimately have "bin XOR bin' < 2 ^ m" by (rule 3) |
|
201 |
with 1 Suc show ?thesis |
|
202 |
by simp (simp add: Bit_def bitval_def split add: bit.split) |
|
203 |
qed |
|
204 |
qed |
|
205 |
next |
|
206 |
case 2 |
|
207 |
then show ?case by (simp only: Min_def) |
|
208 |
qed simp |
|
209 |
||
210 |
lemmas [simp] = |
|
211 |
XOR_upper [of _ 8, simplified zle_diff1_eq [symmetric], simplified] |
|
212 |
XOR_upper [of _ 8, simplified] |
|
213 |
XOR_upper [of _ 16, simplified zle_diff1_eq [symmetric], simplified] |
|
214 |
XOR_upper [of _ 16, simplified] |
|
215 |
XOR_upper [of _ 32, simplified zle_diff1_eq [symmetric], simplified] |
|
216 |
XOR_upper [of _ 32, simplified] |
|
217 |
XOR_upper [of _ 64, simplified zle_diff1_eq [symmetric], simplified] |
|
218 |
XOR_upper [of _ 64, simplified] |
|
219 |
||
220 |
lemma bit_not_spark_eq: |
|
221 |
"NOT (word_of_int x :: ('a::len0) word) = |
|
222 |
word_of_int (2 ^ len_of TYPE('a) - 1 - x)" |
|
223 |
proof - |
|
224 |
have "word_of_int x + NOT (word_of_int x) = |
|
225 |
word_of_int x + (word_of_int (2 ^ len_of TYPE('a) - 1 - x)::'a word)" |
|
226 |
by (simp only: bwsimps bin_add_not Min_def) |
|
227 |
(simp add: word_of_int_hom_syms word_of_int_2p_len) |
|
228 |
then show ?thesis by (rule add_left_imp_eq) |
|
229 |
qed |
|
230 |
||
231 |
lemmas [simp] = |
|
232 |
bit_not_spark_eq [where 'a=8, simplified] |
|
233 |
bit_not_spark_eq [where 'a=16, simplified] |
|
234 |
bit_not_spark_eq [where 'a=32, simplified] |
|
235 |
bit_not_spark_eq [where 'a=64, simplified] |
|
236 |
||
237 |
lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT 1" |
|
238 |
unfolding Bit_B1 |
|
239 |
by (induct n) simp_all |
|
240 |
||
241 |
lemma mod_BIT: |
|
242 |
"bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit" |
|
243 |
proof - |
|
244 |
have "bin mod 2 ^ n < 2 ^ n" by simp |
|
245 |
then have "bin mod 2 ^ n \<le> 2 ^ n - 1" by simp |
|
246 |
then have "2 * (bin mod 2 ^ n) \<le> 2 * (2 ^ n - 1)" |
|
247 |
by (rule mult_left_mono) simp |
|
248 |
then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp |
|
249 |
then show ?thesis |
|
250 |
by (auto simp add: Bit_def bitval_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"] |
|
251 |
mod_pos_pos_trivial split add: bit.split) |
|
252 |
qed |
|
253 |
||
254 |
lemma AND_mod: |
|
255 |
fixes x :: int |
|
256 |
shows "x AND 2 ^ n - 1 = x mod 2 ^ n" |
|
257 |
proof (induct x arbitrary: n rule: bin_induct) |
|
258 |
case 1 |
|
259 |
then show ?case |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
41561
diff
changeset
|
260 |
by simp |
41561 | 261 |
next |
262 |
case 2 |
|
263 |
then show ?case |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
41561
diff
changeset
|
264 |
by (simp, simp add: m1mod2k) |
41561 | 265 |
next |
266 |
case (3 bin bit) |
|
267 |
show ?case |
|
268 |
proof (cases n) |
|
269 |
case 0 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
41561
diff
changeset
|
270 |
then show ?thesis by (simp add: int_and_extra_simps) |
41561 | 271 |
next |
272 |
case (Suc m) |
|
273 |
with 3 show ?thesis |
|
274 |
by (simp only: power_BIT mod_BIT int_and_Bits) simp |
|
275 |
qed |
|
276 |
qed |
|
277 |
||
50788
fec14e8fefb8
Added proof function declarations for min and max
berghofe
parents:
47108
diff
changeset
|
278 |
|
fec14e8fefb8
Added proof function declarations for min and max
berghofe
parents:
47108
diff
changeset
|
279 |
text {* Minimum and maximum *} |
fec14e8fefb8
Added proof function declarations for min and max
berghofe
parents:
47108
diff
changeset
|
280 |
|
fec14e8fefb8
Added proof function declarations for min and max
berghofe
parents:
47108
diff
changeset
|
281 |
spark_proof_functions |
fec14e8fefb8
Added proof function declarations for min and max
berghofe
parents:
47108
diff
changeset
|
282 |
integer__min = "min :: int \<Rightarrow> int \<Rightarrow> int" |
fec14e8fefb8
Added proof function declarations for min and max
berghofe
parents:
47108
diff
changeset
|
283 |
integer__max = "max :: int \<Rightarrow> int \<Rightarrow> int" |
fec14e8fefb8
Added proof function declarations for min and max
berghofe
parents:
47108
diff
changeset
|
284 |
|
41561 | 285 |
end |