doc-src/TutorialI/Types/types.tex
author paulson
Fri, 03 Nov 2000 10:24:33 +0100
changeset 10370 99bd3e902979
parent 10362 c6b197ccf1f1
child 10396 5ab08609e6c8
permissions -rw-r--r--
advanced induction examples
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10305
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     1
\chapter{More about Types}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     2
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     3
So far we have learned about a few basic types (for example \isa{bool} and
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     4
\isa{nat}), type abbreviations (\isacommand{types}) and recursive datatpes
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     5
(\isacommand{datatype}). This chapter will introduce the following more
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     6
advanced material:
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     7
\begin{itemize}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     8
\item More about basic types: numbers ({\S}\ref{sec:numbers}), pairs
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
     9
  ({\S}\ref{sec:products}) and records ({\S}\ref{sec:records}), and how to reason
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    10
  about them.
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    11
\item Introducing your own types: how to introduce your own new types that
10362
c6b197ccf1f1 *** empty log message ***
nipkow
parents: 10329
diff changeset
    12
  cannot be constructed with any of the basic methods ({\S}\ref{sec:adv-typedef}).
10305
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    13
\item Type classes: how to specify and reason about axiomatic collections of
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    14
  types ({\S}\ref{sec:axclass}).
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    15
\end{itemize}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    16
10362
c6b197ccf1f1 *** empty log message ***
nipkow
parents: 10329
diff changeset
    17
\input{Types/document/Typedef}
c6b197ccf1f1 *** empty log message ***
nipkow
parents: 10329
diff changeset
    18
10305
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    19
\section{Axiomatic type classes}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    20
\label{sec:axclass}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    21
\index{axiomatic type class|(}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    22
\index{*axclass|(}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    23
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    24
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    25
The programming language Haskell has popularized the notion of type classes.
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    26
Isabelle offers the related concept of an \textbf{axiomatic type class}.
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    27
Roughly speaking, an axiomatic type class is a type class with axioms, i.e.\ 
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    28
an axiomatic specification of a class of types. Thus we can talk about a type
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    29
$t$ being in a class $c$, which is written $\tau :: c$.  This is the case of
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    30
$\tau$ satisfies the axioms of $c$. Furthermore, type classes can be
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    31
organized in a hierarchy. Thus there is the notion of a class $d$ being a
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    32
\textbf{subclass} of a class $c$, written $d < c$. This is the case if all
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    33
axioms of $c$ are also provable in $d$. Let us now introduce these concepts
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    34
by means of a running example, ordering relations.
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    35
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    36
\subsection{Overloading}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    37
\label{sec:overloading}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    38
\index{overloading|(}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    39
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    40
\input{Types/document/Overloading0}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    41
\input{Types/document/Overloading1}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    42
\input{Types/document/Overloading}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    43
\input{Types/document/Overloading2}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    44
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    45
\index{overloading|)}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    46
10362
c6b197ccf1f1 *** empty log message ***
nipkow
parents: 10329
diff changeset
    47
\input{Types/document/Axioms}
10305
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    48
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    49
\index{axiomatic type class|)}
adff80268127 *** empty log message ***
nipkow
parents:
diff changeset
    50
\index{*axclass|)}