| author | wenzelm |
| Fri, 27 Aug 2010 17:02:19 +0200 | |
| changeset 38804 | 99cc7e748ab4 |
| parent 38773 | f9837065b5e8 |
| child 38968 | e55deaa22fff |
| permissions | -rw-r--r-- |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
1 |
(* Title: HOL/Imperative_HOL/Heap_Monad.thy |
| 26170 | 2 |
Author: John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen |
3 |
*) |
|
4 |
||
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
5 |
header {* A monad with a polymorphic heap and primitive reasoning infrastructure *}
|
| 26170 | 6 |
|
7 |
theory Heap_Monad |
|
| 37964 | 8 |
imports Heap Monad_Syntax Code_Natural |
| 26170 | 9 |
begin |
10 |
||
11 |
subsection {* The monad *}
|
|
12 |
||
| 37758 | 13 |
subsubsection {* Monad construction *}
|
| 26170 | 14 |
|
15 |
text {* Monadic heap actions either produce values
|
|
16 |
and transform the heap, or fail *} |
|
| 37709 | 17 |
datatype 'a Heap = Heap "heap \<Rightarrow> ('a \<times> heap) option"
|
| 26170 | 18 |
|
| 37709 | 19 |
primrec execute :: "'a Heap \<Rightarrow> heap \<Rightarrow> ('a \<times> heap) option" where
|
20 |
[code del]: "execute (Heap f) = f" |
|
| 26170 | 21 |
|
| 37758 | 22 |
lemma Heap_cases [case_names succeed fail]: |
23 |
fixes f and h |
|
24 |
assumes succeed: "\<And>x h'. execute f h = Some (x, h') \<Longrightarrow> P" |
|
25 |
assumes fail: "execute f h = None \<Longrightarrow> P" |
|
26 |
shows P |
|
27 |
using assms by (cases "execute f h") auto |
|
28 |
||
| 26170 | 29 |
lemma Heap_execute [simp]: |
30 |
"Heap (execute f) = f" by (cases f) simp_all |
|
31 |
||
32 |
lemma Heap_eqI: |
|
33 |
"(\<And>h. execute f h = execute g h) \<Longrightarrow> f = g" |
|
34 |
by (cases f, cases g) (auto simp: expand_fun_eq) |
|
35 |
||
| 37758 | 36 |
ML {* structure Execute_Simps = Named_Thms(
|
37 |
val name = "execute_simps" |
|
38 |
val description = "simplification rules for execute" |
|
39 |
) *} |
|
40 |
||
41 |
setup Execute_Simps.setup |
|
42 |
||
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
43 |
lemma execute_Let [execute_simps]: |
| 37758 | 44 |
"execute (let x = t in f x) = (let x = t in execute (f x))" |
45 |
by (simp add: Let_def) |
|
46 |
||
47 |
||
48 |
subsubsection {* Specialised lifters *}
|
|
49 |
||
50 |
definition tap :: "(heap \<Rightarrow> 'a) \<Rightarrow> 'a Heap" where |
|
51 |
[code del]: "tap f = Heap (\<lambda>h. Some (f h, h))" |
|
52 |
||
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
53 |
lemma execute_tap [execute_simps]: |
| 37758 | 54 |
"execute (tap f) h = Some (f h, h)" |
55 |
by (simp add: tap_def) |
|
| 26170 | 56 |
|
| 37709 | 57 |
definition heap :: "(heap \<Rightarrow> 'a \<times> heap) \<Rightarrow> 'a Heap" where |
58 |
[code del]: "heap f = Heap (Some \<circ> f)" |
|
| 26170 | 59 |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
60 |
lemma execute_heap [execute_simps]: |
| 37709 | 61 |
"execute (heap f) = Some \<circ> f" |
| 26170 | 62 |
by (simp add: heap_def) |
63 |
||
| 37754 | 64 |
definition guard :: "(heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> 'a \<times> heap) \<Rightarrow> 'a Heap" where |
65 |
[code del]: "guard P f = Heap (\<lambda>h. if P h then Some (f h) else None)" |
|
66 |
||
| 37758 | 67 |
lemma execute_guard [execute_simps]: |
| 37754 | 68 |
"\<not> P h \<Longrightarrow> execute (guard P f) h = None" |
69 |
"P h \<Longrightarrow> execute (guard P f) h = Some (f h)" |
|
70 |
by (simp_all add: guard_def) |
|
71 |
||
| 37758 | 72 |
|
73 |
subsubsection {* Predicate classifying successful computations *}
|
|
74 |
||
75 |
definition success :: "'a Heap \<Rightarrow> heap \<Rightarrow> bool" where |
|
76 |
"success f h \<longleftrightarrow> execute f h \<noteq> None" |
|
77 |
||
78 |
lemma successI: |
|
79 |
"execute f h \<noteq> None \<Longrightarrow> success f h" |
|
80 |
by (simp add: success_def) |
|
81 |
||
82 |
lemma successE: |
|
83 |
assumes "success f h" |
|
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
84 |
obtains r h' where "r = fst (the (execute c h))" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
85 |
and "h' = snd (the (execute c h))" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
86 |
and "execute f h \<noteq> None" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
87 |
using assms by (simp add: success_def) |
| 37758 | 88 |
|
89 |
ML {* structure Success_Intros = Named_Thms(
|
|
90 |
val name = "success_intros" |
|
91 |
val description = "introduction rules for success" |
|
92 |
) *} |
|
93 |
||
94 |
setup Success_Intros.setup |
|
95 |
||
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
96 |
lemma success_tapI [success_intros]: |
| 37758 | 97 |
"success (tap f) h" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
98 |
by (rule successI) (simp add: execute_simps) |
| 37758 | 99 |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
100 |
lemma success_heapI [success_intros]: |
| 37758 | 101 |
"success (heap f) h" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
102 |
by (rule successI) (simp add: execute_simps) |
| 37758 | 103 |
|
104 |
lemma success_guardI [success_intros]: |
|
105 |
"P h \<Longrightarrow> success (guard P f) h" |
|
106 |
by (rule successI) (simp add: execute_guard) |
|
107 |
||
108 |
lemma success_LetI [success_intros]: |
|
109 |
"x = t \<Longrightarrow> success (f x) h \<Longrightarrow> success (let x = t in f x) h" |
|
110 |
by (simp add: Let_def) |
|
111 |
||
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
112 |
lemma success_ifI: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
113 |
"(c \<Longrightarrow> success t h) \<Longrightarrow> (\<not> c \<Longrightarrow> success e h) \<Longrightarrow> |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
114 |
success (if c then t else e) h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
115 |
by (simp add: success_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
116 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
117 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
118 |
subsubsection {* Predicate for a simple relational calculus *}
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
119 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
120 |
text {*
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
121 |
The @{text crel} predicate states that when a computation @{text c}
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
122 |
runs with the heap @{text h} will result in return value @{text r}
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
123 |
and a heap @{text "h'"}, i.e.~no exception occurs.
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
124 |
*} |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
125 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
126 |
definition crel :: "'a Heap \<Rightarrow> heap \<Rightarrow> heap \<Rightarrow> 'a \<Rightarrow> bool" where |
| 37878 | 127 |
crel_def: "crel c h h' r \<longleftrightarrow> execute c h = Some (r, h')" |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
128 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
129 |
lemma crelI: |
| 37878 | 130 |
"execute c h = Some (r, h') \<Longrightarrow> crel c h h' r" |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
131 |
by (simp add: crel_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
132 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
133 |
lemma crelE: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
134 |
assumes "crel c h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
135 |
obtains "r = fst (the (execute c h))" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
136 |
and "h' = snd (the (execute c h))" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
137 |
and "success c h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
138 |
proof (rule that) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
139 |
from assms have *: "execute c h = Some (r, h')" by (simp add: crel_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
140 |
then show "success c h" by (simp add: success_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
141 |
from * have "fst (the (execute c h)) = r" and "snd (the (execute c h)) = h'" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
142 |
by simp_all |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
143 |
then show "r = fst (the (execute c h))" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
144 |
and "h' = snd (the (execute c h))" by simp_all |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
145 |
qed |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
146 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
147 |
lemma crel_success: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
148 |
"crel c h h' r \<Longrightarrow> success c h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
149 |
by (simp add: crel_def success_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
150 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
151 |
lemma success_crelE: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
152 |
assumes "success c h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
153 |
obtains r h' where "crel c h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
154 |
using assms by (auto simp add: crel_def success_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
155 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
156 |
lemma crel_deterministic: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
157 |
assumes "crel f h h' a" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
158 |
and "crel f h h'' b" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
159 |
shows "a = b" and "h' = h''" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
160 |
using assms unfolding crel_def by auto |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
161 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
162 |
ML {* structure Crel_Intros = Named_Thms(
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
163 |
val name = "crel_intros" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
164 |
val description = "introduction rules for crel" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
165 |
) *} |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
166 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
167 |
ML {* structure Crel_Elims = Named_Thms(
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
168 |
val name = "crel_elims" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
169 |
val description = "elimination rules for crel" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
170 |
) *} |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
171 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
172 |
setup "Crel_Intros.setup #> Crel_Elims.setup" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
173 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
174 |
lemma crel_LetI [crel_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
175 |
assumes "x = t" "crel (f x) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
176 |
shows "crel (let x = t in f x) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
177 |
using assms by simp |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
178 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
179 |
lemma crel_LetE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
180 |
assumes "crel (let x = t in f x) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
181 |
obtains "crel (f t) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
182 |
using assms by simp |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
183 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
184 |
lemma crel_ifI: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
185 |
assumes "c \<Longrightarrow> crel t h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
186 |
and "\<not> c \<Longrightarrow> crel e h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
187 |
shows "crel (if c then t else e) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
188 |
by (cases c) (simp_all add: assms) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
189 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
190 |
lemma crel_ifE: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
191 |
assumes "crel (if c then t else e) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
192 |
obtains "c" "crel t h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
193 |
| "\<not> c" "crel e h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
194 |
using assms by (cases c) simp_all |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
195 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
196 |
lemma crel_tapI [crel_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
197 |
assumes "h' = h" "r = f h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
198 |
shows "crel (tap f) h h' r" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
199 |
by (rule crelI) (simp add: assms execute_simps) |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
200 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
201 |
lemma crel_tapE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
202 |
assumes "crel (tap f) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
203 |
obtains "h' = h" and "r = f h" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
204 |
using assms by (rule crelE) (auto simp add: execute_simps) |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
205 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
206 |
lemma crel_heapI [crel_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
207 |
assumes "h' = snd (f h)" "r = fst (f h)" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
208 |
shows "crel (heap f) h h' r" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
209 |
by (rule crelI) (simp add: assms execute_simps) |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
210 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
211 |
lemma crel_heapE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
212 |
assumes "crel (heap f) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
213 |
obtains "h' = snd (f h)" and "r = fst (f h)" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
214 |
using assms by (rule crelE) (simp add: execute_simps) |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
215 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
216 |
lemma crel_guardI [crel_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
217 |
assumes "P h" "h' = snd (f h)" "r = fst (f h)" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
218 |
shows "crel (guard P f) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
219 |
by (rule crelI) (simp add: assms execute_simps) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
220 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
221 |
lemma crel_guardE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
222 |
assumes "crel (guard P f) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
223 |
obtains "h' = snd (f h)" "r = fst (f h)" "P h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
224 |
using assms by (rule crelE) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
225 |
(auto simp add: execute_simps elim!: successE, cases "P h", auto simp add: execute_simps) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
226 |
|
| 37758 | 227 |
|
228 |
subsubsection {* Monad combinators *}
|
|
| 26170 | 229 |
|
| 37709 | 230 |
definition return :: "'a \<Rightarrow> 'a Heap" where |
| 26170 | 231 |
[code del]: "return x = heap (Pair x)" |
232 |
||
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
233 |
lemma execute_return [execute_simps]: |
| 37709 | 234 |
"execute (return x) = Some \<circ> Pair x" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
235 |
by (simp add: return_def execute_simps) |
| 26170 | 236 |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
237 |
lemma success_returnI [success_intros]: |
| 37758 | 238 |
"success (return x) h" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
239 |
by (rule successI) (simp add: execute_simps) |
| 37758 | 240 |
|
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
241 |
lemma crel_returnI [crel_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
242 |
"h = h' \<Longrightarrow> crel (return x) h h' x" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
243 |
by (rule crelI) (simp add: execute_simps) |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
244 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
245 |
lemma crel_returnE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
246 |
assumes "crel (return x) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
247 |
obtains "r = x" "h' = h" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
248 |
using assms by (rule crelE) (simp add: execute_simps) |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
249 |
|
| 37709 | 250 |
definition raise :: "string \<Rightarrow> 'a Heap" where -- {* the string is just decoration *}
|
251 |
[code del]: "raise s = Heap (\<lambda>_. None)" |
|
| 26170 | 252 |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
253 |
lemma execute_raise [execute_simps]: |
| 37709 | 254 |
"execute (raise s) = (\<lambda>_. None)" |
| 26170 | 255 |
by (simp add: raise_def) |
256 |
||
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
257 |
lemma crel_raiseE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
258 |
assumes "crel (raise x) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
259 |
obtains "False" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
260 |
using assms by (rule crelE) (simp add: success_def execute_simps) |
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
261 |
|
| 37792 | 262 |
definition bind :: "'a Heap \<Rightarrow> ('a \<Rightarrow> 'b Heap) \<Rightarrow> 'b Heap" where
|
263 |
[code del]: "bind f g = Heap (\<lambda>h. case execute f h of |
|
| 37709 | 264 |
Some (x, h') \<Rightarrow> execute (g x) h' |
265 |
| None \<Rightarrow> None)" |
|
266 |
||
| 37792 | 267 |
setup {*
|
268 |
Adhoc_Overloading.add_variant |
|
| 37816 | 269 |
@{const_name Monad_Syntax.bind} @{const_name Heap_Monad.bind}
|
| 37792 | 270 |
*} |
271 |
||
| 37758 | 272 |
lemma execute_bind [execute_simps]: |
| 37709 | 273 |
"execute f h = Some (x, h') \<Longrightarrow> execute (f \<guillemotright>= g) h = execute (g x) h'" |
274 |
"execute f h = None \<Longrightarrow> execute (f \<guillemotright>= g) h = None" |
|
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
275 |
by (simp_all add: bind_def) |
| 37709 | 276 |
|
| 38409 | 277 |
lemma execute_bind_case: |
278 |
"execute (f \<guillemotright>= g) h = (case (execute f h) of |
|
279 |
Some (x, h') \<Rightarrow> execute (g x) h' | None \<Rightarrow> None)" |
|
280 |
by (simp add: bind_def) |
|
281 |
||
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
282 |
lemma execute_bind_success: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
283 |
"success f h \<Longrightarrow> execute (f \<guillemotright>= g) h = execute (g (fst (the (execute f h)))) (snd (the (execute f h)))" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
284 |
by (cases f h rule: Heap_cases) (auto elim!: successE simp add: bind_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
285 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
286 |
lemma success_bind_executeI: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
287 |
"execute f h = Some (x, h') \<Longrightarrow> success (g x) h' \<Longrightarrow> success (f \<guillemotright>= g) h" |
| 37758 | 288 |
by (auto intro!: successI elim!: successE simp add: bind_def) |
289 |
||
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
290 |
lemma success_bind_crelI [success_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
291 |
"crel f h h' x \<Longrightarrow> success (g x) h' \<Longrightarrow> success (f \<guillemotright>= g) h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
292 |
by (auto simp add: crel_def success_def bind_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
293 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
294 |
lemma crel_bindI [crel_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
295 |
assumes "crel f h h' r" "crel (g r) h' h'' r'" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
296 |
shows "crel (f \<guillemotright>= g) h h'' r'" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
297 |
using assms |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
298 |
apply (auto intro!: crelI elim!: crelE successE) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
299 |
apply (subst execute_bind, simp_all) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
300 |
done |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
301 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
302 |
lemma crel_bindE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
303 |
assumes "crel (f \<guillemotright>= g) h h'' r'" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
304 |
obtains h' r where "crel f h h' r" "crel (g r) h' h'' r'" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
305 |
using assms by (auto simp add: crel_def bind_def split: option.split_asm) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
306 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
307 |
lemma execute_bind_eq_SomeI: |
| 37878 | 308 |
assumes "execute f h = Some (x, h')" |
309 |
and "execute (g x) h' = Some (y, h'')" |
|
310 |
shows "execute (f \<guillemotright>= g) h = Some (y, h'')" |
|
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
311 |
using assms by (simp add: bind_def) |
| 37754 | 312 |
|
| 37709 | 313 |
lemma return_bind [simp]: "return x \<guillemotright>= f = f x" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
314 |
by (rule Heap_eqI) (simp add: execute_bind execute_simps) |
| 37709 | 315 |
|
316 |
lemma bind_return [simp]: "f \<guillemotright>= return = f" |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
317 |
by (rule Heap_eqI) (simp add: bind_def execute_simps split: option.splits) |
| 37709 | 318 |
|
| 37828 | 319 |
lemma bind_bind [simp]: "(f \<guillemotright>= g) \<guillemotright>= k = (f :: 'a Heap) \<guillemotright>= (\<lambda>x. g x \<guillemotright>= k)" |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
320 |
by (rule Heap_eqI) (simp add: bind_def execute_simps split: option.splits) |
| 37709 | 321 |
|
322 |
lemma raise_bind [simp]: "raise e \<guillemotright>= f = raise e" |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
323 |
by (rule Heap_eqI) (simp add: execute_simps) |
| 37709 | 324 |
|
| 26170 | 325 |
|
| 37758 | 326 |
subsection {* Generic combinators *}
|
| 26170 | 327 |
|
| 37758 | 328 |
subsubsection {* Assertions *}
|
| 26170 | 329 |
|
| 37709 | 330 |
definition assert :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a Heap" where
|
331 |
"assert P x = (if P x then return x else raise ''assert'')" |
|
| 28742 | 332 |
|
| 37758 | 333 |
lemma execute_assert [execute_simps]: |
| 37754 | 334 |
"P x \<Longrightarrow> execute (assert P x) h = Some (x, h)" |
335 |
"\<not> P x \<Longrightarrow> execute (assert P x) h = None" |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
336 |
by (simp_all add: assert_def execute_simps) |
| 37754 | 337 |
|
| 37758 | 338 |
lemma success_assertI [success_intros]: |
339 |
"P x \<Longrightarrow> success (assert P x) h" |
|
340 |
by (rule successI) (simp add: execute_assert) |
|
341 |
||
|
37771
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
342 |
lemma crel_assertI [crel_intros]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
343 |
"P x \<Longrightarrow> h' = h \<Longrightarrow> r = x \<Longrightarrow> crel (assert P x) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
344 |
by (rule crelI) (simp add: execute_assert) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
345 |
|
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
346 |
lemma crel_assertE [crel_elims]: |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
347 |
assumes "crel (assert P x) h h' r" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
348 |
obtains "P x" "r = x" "h' = h" |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
349 |
using assms by (rule crelE) (cases "P x", simp_all add: execute_assert success_def) |
|
1bec64044b5e
spelt out relational framework in a consistent way
haftmann
parents:
37758
diff
changeset
|
350 |
|
| 28742 | 351 |
lemma assert_cong [fundef_cong]: |
352 |
assumes "P = P'" |
|
353 |
assumes "\<And>x. P' x \<Longrightarrow> f x = f' x" |
|
354 |
shows "(assert P x >>= f) = (assert P' x >>= f')" |
|
| 37754 | 355 |
by (rule Heap_eqI) (insert assms, simp add: assert_def) |
| 28742 | 356 |
|
| 37758 | 357 |
|
358 |
subsubsection {* Plain lifting *}
|
|
359 |
||
| 37754 | 360 |
definition lift :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Heap" where
|
361 |
"lift f = return o f" |
|
| 37709 | 362 |
|
| 37754 | 363 |
lemma lift_collapse [simp]: |
364 |
"lift f x = return (f x)" |
|
365 |
by (simp add: lift_def) |
|
| 37709 | 366 |
|
| 37754 | 367 |
lemma bind_lift: |
368 |
"(f \<guillemotright>= lift g) = (f \<guillemotright>= (\<lambda>x. return (g x)))" |
|
369 |
by (simp add: lift_def comp_def) |
|
| 37709 | 370 |
|
| 37758 | 371 |
|
372 |
subsubsection {* Iteration -- warning: this is rarely useful! *}
|
|
373 |
||
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
374 |
primrec fold_map :: "('a \<Rightarrow> 'b Heap) \<Rightarrow> 'a list \<Rightarrow> 'b list Heap" where
|
|
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
375 |
"fold_map f [] = return []" |
| 37792 | 376 |
| "fold_map f (x # xs) = do {
|
| 37709 | 377 |
y \<leftarrow> f x; |
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
378 |
ys \<leftarrow> fold_map f xs; |
| 37709 | 379 |
return (y # ys) |
| 37792 | 380 |
}" |
| 37709 | 381 |
|
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
382 |
lemma fold_map_append: |
|
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
383 |
"fold_map f (xs @ ys) = fold_map f xs \<guillemotright>= (\<lambda>xs. fold_map f ys \<guillemotright>= (\<lambda>ys. return (xs @ ys)))" |
| 37754 | 384 |
by (induct xs) simp_all |
385 |
||
| 37758 | 386 |
lemma execute_fold_map_unchanged_heap [execute_simps]: |
| 37754 | 387 |
assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<exists>y. execute (f x) h = Some (y, h)" |
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
388 |
shows "execute (fold_map f xs) h = |
| 37754 | 389 |
Some (List.map (\<lambda>x. fst (the (execute (f x) h))) xs, h)" |
390 |
using assms proof (induct xs) |
|
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
391 |
case Nil show ?case by (simp add: execute_simps) |
| 37754 | 392 |
next |
393 |
case (Cons x xs) |
|
394 |
from Cons.prems obtain y |
|
395 |
where y: "execute (f x) h = Some (y, h)" by auto |
|
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
396 |
moreover from Cons.prems Cons.hyps have "execute (fold_map f xs) h = |
| 37754 | 397 |
Some (map (\<lambda>x. fst (the (execute (f x) h))) xs, h)" by auto |
|
37787
30dc3abf4a58
theorem collections do not contain default rules any longer
haftmann
parents:
37772
diff
changeset
|
398 |
ultimately show ?case by (simp, simp only: execute_bind(1), simp add: execute_simps) |
| 37754 | 399 |
qed |
400 |
||
| 26182 | 401 |
subsection {* Code generator setup *}
|
402 |
||
403 |
subsubsection {* Logical intermediate layer *}
|
|
404 |
||
| 37709 | 405 |
primrec raise' :: "String.literal \<Rightarrow> 'a Heap" where |
406 |
[code del, code_post]: "raise' (STR s) = raise s" |
|
| 26182 | 407 |
|
| 37709 | 408 |
lemma raise_raise' [code_inline]: |
409 |
"raise s = raise' (STR s)" |
|
410 |
by simp |
|
| 26182 | 411 |
|
| 37709 | 412 |
code_datatype raise' -- {* avoid @{const "Heap"} formally *}
|
| 26182 | 413 |
|
414 |
||
| 27707 | 415 |
subsubsection {* SML and OCaml *}
|
| 26182 | 416 |
|
| 26752 | 417 |
code_type Heap (SML "unit/ ->/ _") |
| 37828 | 418 |
code_const bind (SML "!(fn/ f'_/ =>/ fn/ ()/ =>/ f'_/ (_/ ())/ ())") |
| 27707 | 419 |
code_const return (SML "!(fn/ ()/ =>/ _)") |
| 37709 | 420 |
code_const Heap_Monad.raise' (SML "!(raise/ Fail/ _)") |
| 26182 | 421 |
|
| 37754 | 422 |
code_type Heap (OCaml "unit/ ->/ _") |
| 37828 | 423 |
code_const bind (OCaml "!(fun/ f'_/ ()/ ->/ f'_/ (_/ ())/ ())") |
| 27707 | 424 |
code_const return (OCaml "!(fun/ ()/ ->/ _)") |
| 37828 | 425 |
code_const Heap_Monad.raise' (OCaml "failwith") |
| 27707 | 426 |
|
| 37838 | 427 |
|
428 |
subsubsection {* Haskell *}
|
|
429 |
||
430 |
text {* Adaption layer *}
|
|
431 |
||
432 |
code_include Haskell "Heap" |
|
433 |
{*import qualified Control.Monad;
|
|
434 |
import qualified Control.Monad.ST; |
|
435 |
import qualified Data.STRef; |
|
436 |
import qualified Data.Array.ST; |
|
437 |
||
| 37964 | 438 |
import Natural; |
439 |
||
| 37838 | 440 |
type RealWorld = Control.Monad.ST.RealWorld; |
441 |
type ST s a = Control.Monad.ST.ST s a; |
|
442 |
type STRef s a = Data.STRef.STRef s a; |
|
| 37964 | 443 |
type STArray s a = Data.Array.ST.STArray s Natural a; |
| 37838 | 444 |
|
445 |
newSTRef = Data.STRef.newSTRef; |
|
446 |
readSTRef = Data.STRef.readSTRef; |
|
447 |
writeSTRef = Data.STRef.writeSTRef; |
|
448 |
||
| 37964 | 449 |
newArray :: Natural -> a -> ST s (STArray s a); |
| 37838 | 450 |
newArray k = Data.Array.ST.newArray (0, k); |
451 |
||
452 |
newListArray :: [a] -> ST s (STArray s a); |
|
| 37964 | 453 |
newListArray xs = Data.Array.ST.newListArray (0, (fromInteger . toInteger . length) xs) xs; |
| 37838 | 454 |
|
| 37964 | 455 |
newFunArray :: Natural -> (Natural -> a) -> ST s (STArray s a); |
| 37838 | 456 |
newFunArray k f = Data.Array.ST.newListArray (0, k) (map f [0..k-1]); |
457 |
||
| 37964 | 458 |
lengthArray :: STArray s a -> ST s Natural; |
| 37838 | 459 |
lengthArray a = Control.Monad.liftM snd (Data.Array.ST.getBounds a); |
460 |
||
| 37964 | 461 |
readArray :: STArray s a -> Natural -> ST s a; |
| 37838 | 462 |
readArray = Data.Array.ST.readArray; |
463 |
||
| 37964 | 464 |
writeArray :: STArray s a -> Natural -> a -> ST s (); |
| 37838 | 465 |
writeArray = Data.Array.ST.writeArray;*} |
466 |
||
467 |
code_reserved Haskell Heap |
|
468 |
||
469 |
text {* Monad *}
|
|
470 |
||
471 |
code_type Heap (Haskell "Heap.ST/ Heap.RealWorld/ _") |
|
472 |
code_monad bind Haskell |
|
473 |
code_const return (Haskell "return") |
|
474 |
code_const Heap_Monad.raise' (Haskell "error") |
|
475 |
||
476 |
||
477 |
subsubsection {* Scala *}
|
|
478 |
||
| 37842 | 479 |
code_include Scala "Heap" |
| 37964 | 480 |
{*import collection.mutable.ArraySeq
|
|
38773
f9837065b5e8
prevent line breaks after Scala symbolic operators
haftmann
parents:
38771
diff
changeset
|
481 |
|
| 37964 | 482 |
def bind[A, B](f: Unit => A, g: A => Unit => B): Unit => B = (_: Unit) => g (f ()) () |
| 37842 | 483 |
|
484 |
class Ref[A](x: A) {
|
|
485 |
var value = x |
|
486 |
} |
|
487 |
||
488 |
object Ref {
|
|
| 38771 | 489 |
def apply[A](x: A): Ref[A] = |
490 |
new Ref[A](x) |
|
491 |
def lookup[A](r: Ref[A]): A = |
|
492 |
r.value |
|
493 |
def update[A](r: Ref[A], x: A): Unit = |
|
494 |
{ r.value = x }
|
|
| 37842 | 495 |
} |
496 |
||
| 37964 | 497 |
object Array {
|
| 38771 | 498 |
def alloc[A](n: Natural.Nat)(x: A): ArraySeq[A] = |
499 |
ArraySeq.fill(n.as_Int)(x) |
|
500 |
def make[A](n: Natural.Nat)(f: Natural.Nat => A): ArraySeq[A] = |
|
501 |
ArraySeq.tabulate(n.as_Int)((k: Int) => f(Natural.Nat(k))) |
|
502 |
def len[A](a: ArraySeq[A]): Natural.Nat = |
|
503 |
Natural.Nat(a.length) |
|
504 |
def nth[A](a: ArraySeq[A], n: Natural.Nat): A = |
|
505 |
a(n.as_Int) |
|
506 |
def upd[A](a: ArraySeq[A], n: Natural.Nat, x: A): Unit = |
|
507 |
a.update(n.as_Int, x) |
|
508 |
def freeze[A](a: ArraySeq[A]): List[A] = |
|
509 |
a.toList |
|
| 37964 | 510 |
}*} |
| 37842 | 511 |
|
| 37964 | 512 |
code_reserved Scala bind Ref Array |
| 37838 | 513 |
|
514 |
code_type Heap (Scala "Unit/ =>/ _") |
|
| 38771 | 515 |
code_const bind (Scala "Heap.bind") |
| 37842 | 516 |
code_const return (Scala "('_: Unit)/ =>/ _")
|
|
37845
b70d7a347964
first roughly working version of Imperative HOL for Scala
haftmann
parents:
37842
diff
changeset
|
517 |
code_const Heap_Monad.raise' (Scala "!error((_))") |
| 37838 | 518 |
|
519 |
||
520 |
subsubsection {* Target variants with less units *}
|
|
521 |
||
| 31871 | 522 |
setup {*
|
523 |
||
524 |
let |
|
| 27707 | 525 |
|
| 31871 | 526 |
open Code_Thingol; |
527 |
||
528 |
fun imp_program naming = |
|
| 27707 | 529 |
|
| 31871 | 530 |
let |
531 |
fun is_const c = case lookup_const naming c |
|
532 |
of SOME c' => (fn c'' => c' = c'') |
|
533 |
| NONE => K false; |
|
|
37756
59caa6180fff
avoid slightly odd "M" suffix; rename mapM to fold_map (fold_map_abort would be more correct, though)
haftmann
parents:
37754
diff
changeset
|
534 |
val is_bind = is_const @{const_name bind};
|
| 31871 | 535 |
val is_return = is_const @{const_name return};
|
| 31893 | 536 |
val dummy_name = ""; |
537 |
val dummy_case_term = IVar NONE; |
|
| 31871 | 538 |
(*assumption: dummy values are not relevant for serialization*) |
| 38057 | 539 |
val (unitt, unitT) = case lookup_const naming @{const_name Unity}
|
540 |
of SOME unit' => (IConst (unit', (([], []), [])), the (lookup_tyco naming @{type_name unit}) `%% [])
|
|
| 31871 | 541 |
| NONE => error ("Must include " ^ @{const_name Unity} ^ " in generated constants.");
|
542 |
fun dest_abs ((v, ty) `|=> t, _) = ((v, ty), t) |
|
543 |
| dest_abs (t, ty) = |
|
544 |
let |
|
545 |
val vs = fold_varnames cons t []; |
|
546 |
val v = Name.variant vs "x"; |
|
547 |
val ty' = (hd o fst o unfold_fun) ty; |
|
| 31893 | 548 |
in ((SOME v, ty'), t `$ IVar (SOME v)) end; |
| 31871 | 549 |
fun force (t as IConst (c, _) `$ t') = if is_return c |
550 |
then t' else t `$ unitt |
|
551 |
| force t = t `$ unitt; |
|
| 38385 | 552 |
fun tr_bind'' [(t1, _), (t2, ty2)] = |
| 31871 | 553 |
let |
554 |
val ((v, ty), t) = dest_abs (t2, ty2); |
|
| 38385 | 555 |
in ICase (((force t1, ty), [(IVar v, tr_bind' t)]), dummy_case_term) end |
556 |
and tr_bind' t = case unfold_app t |
|
| 38386 | 557 |
of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if is_bind c |
558 |
then tr_bind'' [(x1, ty1), (x2, ty2)] |
|
559 |
else force t |
|
560 |
| _ => force t; |
|
| 38057 | 561 |
fun imp_monad_bind'' ts = (SOME dummy_name, unitT) `|=> ICase (((IVar (SOME dummy_name), unitT), |
| 38385 | 562 |
[(unitt, tr_bind'' ts)]), dummy_case_term) |
563 |
fun imp_monad_bind' (const as (c, (_, tys))) ts = if is_bind c then case (ts, tys) |
|
| 31871 | 564 |
of ([t1, t2], ty1 :: ty2 :: _) => imp_monad_bind'' [(t1, ty1), (t2, ty2)] |
565 |
| ([t1, t2, t3], ty1 :: ty2 :: _) => imp_monad_bind'' [(t1, ty1), (t2, ty2)] `$ t3 |
|
566 |
| (ts, _) => imp_monad_bind (eta_expand 2 (const, ts)) |
|
567 |
else IConst const `$$ map imp_monad_bind ts |
|
568 |
and imp_monad_bind (IConst const) = imp_monad_bind' const [] |
|
569 |
| imp_monad_bind (t as IVar _) = t |
|
570 |
| imp_monad_bind (t as _ `$ _) = (case unfold_app t |
|
571 |
of (IConst const, ts) => imp_monad_bind' const ts |
|
572 |
| (t, ts) => imp_monad_bind t `$$ map imp_monad_bind ts) |
|
573 |
| imp_monad_bind (v_ty `|=> t) = v_ty `|=> imp_monad_bind t |
|
574 |
| imp_monad_bind (ICase (((t, ty), pats), t0)) = ICase |
|
575 |
(((imp_monad_bind t, ty), |
|
576 |
(map o pairself) imp_monad_bind pats), |
|
577 |
imp_monad_bind t0); |
|
|
28663
bd8438543bf2
code identifier namings are no longer imperative
haftmann
parents:
28562
diff
changeset
|
578 |
|
| 31871 | 579 |
in (Graph.map_nodes o map_terms_stmt) imp_monad_bind end; |
| 27707 | 580 |
|
581 |
in |
|
582 |
||
| 31871 | 583 |
Code_Target.extend_target ("SML_imp", ("SML", imp_program))
|
584 |
#> Code_Target.extend_target ("OCaml_imp", ("OCaml", imp_program))
|
|
| 37838 | 585 |
#> Code_Target.extend_target ("Scala_imp", ("Scala", imp_program))
|
| 27707 | 586 |
|
587 |
end |
|
| 31871 | 588 |
|
| 27707 | 589 |
*} |
590 |
||
| 26182 | 591 |
|
| 37758 | 592 |
hide_const (open) Heap heap guard raise' fold_map |
| 37724 | 593 |
|
| 26170 | 594 |
end |