| author | noschinl | 
| Mon, 19 Dec 2011 14:41:08 +0100 | |
| changeset 45931 | 99cf6e470816 | 
| parent 37310 | 96e2b9a6f074 | 
| child 59058 | a78612c67ec0 | 
| permissions | -rw-r--r-- | 
| 13404 | 1  | 
(* Title: HOL/Tools/rewrite_hol_proof.ML  | 
2  | 
Author: Stefan Berghofer, TU Muenchen  | 
|
3  | 
||
4  | 
Rewrite rules for HOL proofs  | 
|
5  | 
*)  | 
|
6  | 
||
7  | 
signature REWRITE_HOL_PROOF =  | 
|
8  | 
sig  | 
|
9  | 
val rews: (Proofterm.proof * Proofterm.proof) list  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
10  | 
val elim_cong: typ list -> term option list -> Proofterm.proof -> (Proofterm.proof * Proofterm.proof) option  | 
| 13404 | 11  | 
end;  | 
12  | 
||
13  | 
structure RewriteHOLProof : REWRITE_HOL_PROOF =  | 
|
14  | 
struct  | 
|
15  | 
||
| 33388 | 16  | 
val rews = map (pairself (Proof_Syntax.proof_of_term @{theory} true) o
 | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
17  | 
    Logic.dest_equals o Logic.varify_global o Proof_Syntax.read_term @{theory} true propT)
 | 
| 13404 | 18  | 
|
19  | 
(** eliminate meta-equality rules **)  | 
|
20  | 
||
21  | 
["(equal_elim % x1 % x2 %% \  | 
|
22  | 
 \    (combination % TYPE('T1) % TYPE('T2) % Trueprop % x3 % A % B %%  \
 | 
|
| 
28712
 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 
berghofe 
parents: 
28262 
diff
changeset
 | 
23  | 
 \      (axm.reflexive % TYPE('T3) % x4) %% prf1)) ==  \
 | 
| 13404 | 24  | 
\ (iffD1 % A % B %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
25  | 
\ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% arity_type_bool %% prf1))",  | 
| 13404 | 26  | 
|
27  | 
   "(equal_elim % x1 % x2 %% (axm.symmetric % TYPE('T1) % x3 % x4 %%  \
 | 
|
28  | 
 \    (combination % TYPE('T2) % TYPE('T3) % Trueprop % x5 % A % B %%  \
 | 
|
| 
28712
 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 
berghofe 
parents: 
28262 
diff
changeset
 | 
29  | 
 \      (axm.reflexive % TYPE('T4) % x6) %% prf1))) ==  \
 | 
| 13404 | 30  | 
\ (iffD2 % A % B %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
31  | 
\ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% arity_type_bool %% prf1))",  | 
| 13404 | 32  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
33  | 
   "(meta_eq_to_obj_eq % TYPE('U) % x1 % x2 %% prfU %%  \
 | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
34  | 
 \    (combination % TYPE('T) % TYPE('U) % f % g % x % y %% prf1 %% prf2)) ==  \
 | 
| 
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
35  | 
 \  (cong % TYPE('T) % TYPE('U) % f % g % x % y %%  \
 | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
36  | 
 \    (OfClass type_class % TYPE('T)) %% prfU %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
37  | 
 \    (meta_eq_to_obj_eq % TYPE('T => 'U) % f % g %% (OfClass type_class % TYPE('T => 'U)) %% prf1) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
38  | 
 \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% (OfClass type_class % TYPE('T)) %% prf2))",
 | 
| 13404 | 39  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
40  | 
   "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
41  | 
 \    (axm.transitive % TYPE('T) % x % y % z %% prf1 %% prf2)) ==  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
42  | 
 \  (HOL.trans % TYPE('T) % x % y % z %% prfT %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
43  | 
 \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% prf1) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
44  | 
 \    (meta_eq_to_obj_eq % TYPE('T) % y % z %% prfT %% prf2))",
 | 
| 13404 | 45  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
46  | 
   "(meta_eq_to_obj_eq % TYPE('T) % x % x %% prfT %% (axm.reflexive % TYPE('T) % x)) ==  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
47  | 
 \  (HOL.refl % TYPE('T) % x %% prfT)",
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
48  | 
|
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
49  | 
   "(meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %%  \
 | 
| 13404 | 50  | 
 \    (axm.symmetric % TYPE('T) % x % y %% prf)) ==  \
 | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
51  | 
 \  (sym % TYPE('T) % x % y %% prfT %% (meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% prf))",
 | 
| 13404 | 52  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
53  | 
   "(meta_eq_to_obj_eq % TYPE('T => 'U) % x1 % x2 %% prfTU %%  \
 | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
54  | 
 \    (abstract_rule % TYPE('T) % TYPE('U) % f % g %% prf)) ==  \
 | 
| 
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
55  | 
 \  (ext % TYPE('T) % TYPE('U) % f % g %%  \
 | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
56  | 
 \    (OfClass type_class % TYPE('T)) %% (OfClass type_class % TYPE('U)) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
57  | 
 \    (Lam (x::'T). meta_eq_to_obj_eq % TYPE('U) % f x % g x %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
58  | 
 \       (OfClass type_class % TYPE('U)) %% (prf % x)))",
 | 
| 13404 | 59  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
60  | 
   "(meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
61  | 
 \    (eq_reflection % TYPE('T) % x % y %% prfT %% prf)) == prf",
 | 
| 13404 | 62  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
63  | 
   "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %% (equal_elim % x3 % x4 %%  \
 | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
64  | 
 \    (combination % TYPE('T) % TYPE(prop) % x7 % x8 % C % D %%  \
 | 
| 
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
65  | 
 \      (combination % TYPE('T) % TYPE('T3) % op == % op == % A % B %%  \
 | 
| 13404 | 66  | 
 \        (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2) %% prf3)) ==  \
 | 
67  | 
\ (iffD1 % A = C % B = D %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
68  | 
 \    (cong % TYPE('T) % TYPE(bool) % op = A % op = B % C % D %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
69  | 
\ prfT %% arity_type_bool %% \  | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
70  | 
 \      (cong % TYPE('T) % TYPE('T=>bool) %  \
 | 
| 13404 | 71  | 
\ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
72  | 
 \        prfT %% (OfClass type_class % TYPE('T=>bool)) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
73  | 
 \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
74  | 
 \           (OfClass type_class % TYPE('T=>'T=>bool))) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
75  | 
 \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prfT %% prf1)) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
76  | 
 \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prfT %% prf2)) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
77  | 
 \    (meta_eq_to_obj_eq % TYPE('T) % A % C %% prfT %% prf3))",
 | 
| 13404 | 78  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
79  | 
   "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %% (equal_elim % x3 % x4 %%  \
 | 
| 13404 | 80  | 
 \    (axm.symmetric % TYPE('T2) % x5 % x6 %%  \
 | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
81  | 
 \      (combination % TYPE('T) % TYPE(prop) % x7 % x8 % C % D %%  \
 | 
| 
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
82  | 
 \        (combination % TYPE('T) % TYPE('T3) % op == % op == % A % B %%  \
 | 
| 13404 | 83  | 
 \          (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2)) %% prf3)) ==  \
 | 
84  | 
\ (iffD2 % A = C % B = D %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
85  | 
 \    (cong % TYPE('T) % TYPE(bool) % op = A % op = B % C % D %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
86  | 
\ prfT %% arity_type_bool %% \  | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
87  | 
 \      (cong % TYPE('T) % TYPE('T=>bool) %  \
 | 
| 13404 | 88  | 
\ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
89  | 
 \        prfT %% (OfClass type_class % TYPE('T=>bool)) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
90  | 
 \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
91  | 
 \           (OfClass type_class % TYPE('T=>'T=>bool))) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
92  | 
 \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prfT %% prf1)) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
93  | 
 \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prfT %% prf2)) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
94  | 
 \    (meta_eq_to_obj_eq % TYPE('T) % B % D %% prfT %% prf3))",
 | 
| 13404 | 95  | 
|
96  | 
(** rewriting on bool: insert proper congruence rules for logical connectives **)  | 
|
97  | 
||
98  | 
(* All *)  | 
|
99  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
100  | 
   "(iffD1 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
101  | 
 \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
102  | 
 \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
103  | 
 \  (allI % TYPE('a) % Q %% prfa %%  \
 | 
| 13404 | 104  | 
\ (Lam x. \  | 
105  | 
\ iffD1 % P x % Q x %% (prf % x) %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
106  | 
 \         (spec % TYPE('a) % P % x %% prfa %% prf')))",
 | 
| 13404 | 107  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
108  | 
   "(iffD2 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
109  | 
 \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
110  | 
 \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
111  | 
 \  (allI % TYPE('a) % P %% prfa %%  \
 | 
| 13404 | 112  | 
\ (Lam x. \  | 
113  | 
\ iffD2 % P x % Q x %% (prf % x) %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
114  | 
 \         (spec % TYPE('a) % Q % x %% prfa %% prf')))",
 | 
| 13404 | 115  | 
|
116  | 
(* Ex *)  | 
|
117  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
118  | 
   "(iffD1 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
119  | 
 \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
120  | 
 \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
121  | 
 \  (exE % TYPE('a) % P % EX x. Q x %% prfa %% prf' %%  \
 | 
| 13404 | 122  | 
\ (Lam x H : P x. \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
123  | 
 \        exI % TYPE('a) % Q % x %% prfa %%  \
 | 
| 13404 | 124  | 
\ (iffD1 % P x % Q x %% (prf % x) %% H)))",  | 
125  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
126  | 
   "(iffD2 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
127  | 
 \    (HOL.refl % TYPE('T3) % x1 %% prfT3) %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
128  | 
 \    (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') ==  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
129  | 
 \  (exE % TYPE('a) % Q % EX x. P x %% prfa %% prf' %%  \
 | 
| 13404 | 130  | 
\ (Lam x H : Q x. \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
131  | 
 \        exI % TYPE('a) % P % x %% prfa %%  \
 | 
| 13404 | 132  | 
\ (iffD2 % P x % Q x %% (prf % x) %% H)))",  | 
133  | 
||
134  | 
(* & *)  | 
|
135  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
136  | 
   "(iffD1 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
137  | 
 \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
138  | 
 \      (HOL.refl % TYPE('T5) % op & %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 139  | 
\ (conjI % B % D %% \  | 
140  | 
\ (iffD1 % A % B %% prf1 %% (conjunct1 % A % C %% prf3)) %% \  | 
|
141  | 
\ (iffD1 % C % D %% prf2 %% (conjunct2 % A % C %% prf3)))",  | 
|
142  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
143  | 
   "(iffD2 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
144  | 
 \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
145  | 
 \      (HOL.refl % TYPE('T5) % op & %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 146  | 
\ (conjI % A % C %% \  | 
147  | 
\ (iffD2 % A % B %% prf1 %% (conjunct1 % B % D %% prf3)) %% \  | 
|
148  | 
\ (iffD2 % C % D %% prf2 %% (conjunct2 % B % D %% prf3)))",  | 
|
149  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
150  | 
"(cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% prfb %% prfb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
151  | 
\ (HOL.refl % TYPE(bool=>bool) % op & A %% prfbb)) == \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
152  | 
\ (cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% prfb %% prfb %% \  | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
153  | 
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
154  | 
\ (op & :: bool=>bool=>bool) % (op & :: bool=>bool=>bool) % A % A %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
155  | 
\ prfb %% prfbb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
156  | 
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op & :: bool=>bool=>bool) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
157  | 
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
158  | 
\ (HOL.refl % TYPE(bool) % A %% prfb)))",  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
159  | 
|
| 13404 | 160  | 
(* | *)  | 
161  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
162  | 
   "(iffD1 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
163  | 
 \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
164  | 
 \      (HOL.refl % TYPE('T5) % op | %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 165  | 
\ (disjE % A % C % B | D %% prf3 %% \  | 
166  | 
\ (Lam H : A. disjI1 % B % D %% (iffD1 % A % B %% prf1 %% H)) %% \  | 
|
167  | 
\ (Lam H : C. disjI2 % D % B %% (iffD1 % C % D %% prf2 %% H)))",  | 
|
168  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
169  | 
   "(iffD2 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
170  | 
 \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
171  | 
 \      (HOL.refl % TYPE('T5) % op | %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 172  | 
\ (disjE % B % D % A | C %% prf3 %% \  | 
173  | 
\ (Lam H : B. disjI1 % A % C %% (iffD2 % A % B %% prf1 %% H)) %% \  | 
|
174  | 
\ (Lam H : D. disjI2 % C % A %% (iffD2 % C % D %% prf2 %% H)))",  | 
|
175  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
176  | 
"(cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% prfb %% prfb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
177  | 
\ (HOL.refl % TYPE(bool=>bool) % op | A %% prfbb)) == \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
178  | 
\ (cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% prfb %% prfb %% \  | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
179  | 
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
180  | 
\ (op | :: bool=>bool=>bool) % (op | :: bool=>bool=>bool) % A % A %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
181  | 
\ prfb %% prfbb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
182  | 
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op | :: bool=>bool=>bool) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
183  | 
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
184  | 
\ (HOL.refl % TYPE(bool) % A %% prfb)))",  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
185  | 
|
| 13404 | 186  | 
(* --> *)  | 
187  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
188  | 
   "(iffD1 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
189  | 
 \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
190  | 
 \      (HOL.refl % TYPE('T5) % op --> %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 191  | 
\ (impI % B % D %% (Lam H: B. iffD1 % C % D %% prf2 %% \  | 
192  | 
\ (mp % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% H))))",  | 
|
193  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
194  | 
   "(iffD2 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
195  | 
 \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %% prfT3 %% prfT4 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
196  | 
 \      (HOL.refl % TYPE('T5) % op --> %% prfT5) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 197  | 
\ (impI % A % C %% (Lam H: A. iffD2 % C % D %% prf2 %% \  | 
198  | 
\ (mp % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% H))))",  | 
|
199  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
200  | 
"(cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% prfb %% prfb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
201  | 
\ (HOL.refl % TYPE(bool=>bool) % op --> A %% prfbb)) == \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
202  | 
\ (cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% prfb %% prfb %% \  | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
203  | 
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
204  | 
\ (op --> :: bool=>bool=>bool) % (op --> :: bool=>bool=>bool) % A % A %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
205  | 
\ prfb %% prfbb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
206  | 
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op --> :: bool=>bool=>bool) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
207  | 
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
208  | 
\ (HOL.refl % TYPE(bool) % A %% prfb)))",  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
209  | 
|
| 13404 | 210  | 
(* ~ *)  | 
211  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
212  | 
   "(iffD1 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
213  | 
 \    (HOL.refl % TYPE('T3) % Not %% prfT3) %% prf1) %% prf2) ==  \
 | 
| 13404 | 214  | 
\ (notI % Q %% (Lam H: Q. \  | 
215  | 
\ notE % P % False %% prf2 %% (iffD2 % P % Q %% prf1 %% H)))",  | 
|
216  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
217  | 
   "(iffD2 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %% prfT1 %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
218  | 
 \    (HOL.refl % TYPE('T3) % Not %% prfT3) %% prf1) %% prf2) ==  \
 | 
| 13404 | 219  | 
\ (notI % P %% (Lam H: P. \  | 
220  | 
\ notE % Q % False %% prf2 %% (iffD1 % P % Q %% prf1 %% H)))",  | 
|
221  | 
||
222  | 
(* = *)  | 
|
223  | 
||
224  | 
"(iffD1 % B % D %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
225  | 
 \    (iffD1 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
226  | 
 \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
227  | 
 \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 228  | 
\ (iffD1 % C % D %% prf2 %% \  | 
229  | 
\ (iffD1 % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% prf4)))",  | 
|
230  | 
||
231  | 
"(iffD2 % B % D %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
232  | 
 \    (iffD1 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
233  | 
 \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
234  | 
 \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 235  | 
\ (iffD1 % A % B %% prf1 %% \  | 
236  | 
\ (iffD2 % A % C %% prf3 %% (iffD2 % C % D %% prf2 %% prf4)))",  | 
|
237  | 
||
238  | 
"(iffD1 % A % C %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
239  | 
 \    (iffD2 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
240  | 
 \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
241  | 
 \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4)==  \
 | 
| 13404 | 242  | 
\ (iffD2 % C % D %% prf2 %% \  | 
243  | 
\ (iffD1 % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% prf4)))",  | 
|
244  | 
||
245  | 
"(iffD2 % A % C %% \  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
246  | 
 \    (iffD2 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
247  | 
 \      (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %%  \
 | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
248  | 
 \        (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 249  | 
\ (iffD2 % A % B %% prf1 %% \  | 
250  | 
\ (iffD2 % B % D %% prf3 %% (iffD1 % C % D %% prf2 %% prf4)))",  | 
|
251  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
252  | 
"(cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% prfb %% prfb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
253  | 
\ (HOL.refl % TYPE(bool=>bool) % op = A %% prfbb)) == \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
254  | 
\ (cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% prfb %% prfb %% \  | 
| 
36042
 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 
krauss 
parents: 
35845 
diff
changeset
 | 
255  | 
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \  | 
| 13404 | 256  | 
\ (op = :: bool=>bool=>bool) % (op = :: bool=>bool=>bool) % A % A %% \  | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
257  | 
\ prfb %% prfbb %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
258  | 
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op = :: bool=>bool=>bool) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
259  | 
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
260  | 
\ (HOL.refl % TYPE(bool) % A %% prfb)))",  | 
| 13404 | 261  | 
|
| 
13916
 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 
berghofe 
parents: 
13602 
diff
changeset
 | 
262  | 
(** transitivity, reflexivity, and symmetry **)  | 
| 
 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 
berghofe 
parents: 
13602 
diff
changeset
 | 
263  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
264  | 
"(iffD1 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prfb %% prf1 %% prf2) %% prf3) == \  | 
| 13404 | 265  | 
\ (iffD1 % B % C %% prf2 %% (iffD1 % A % B %% prf1 %% prf3))",  | 
266  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
267  | 
"(iffD2 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prfb %% prf1 %% prf2) %% prf3) == \  | 
| 13404 | 268  | 
\ (iffD2 % A % B %% prf1 %% (iffD2 % B % C %% prf2 %% prf3))",  | 
269  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
270  | 
"(iffD1 % A % A %% (HOL.refl % TYPE(bool) % A %% prfb) %% prf) == prf",  | 
| 13404 | 271  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
272  | 
"(iffD2 % A % A %% (HOL.refl % TYPE(bool) % A %% prfb) %% prf) == prf",  | 
| 13404 | 273  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
274  | 
"(iffD1 % A % B %% (sym % TYPE(bool) % B % A %% prfb %% prf)) == (iffD2 % B % A %% prf)",  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
275  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
276  | 
"(iffD2 % A % B %% (sym % TYPE(bool) % B % A %% prfb %% prf)) == (iffD1 % B % A %% prf)",  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
277  | 
|
| 13404 | 278  | 
(** normalization of HOL proofs **)  | 
279  | 
||
280  | 
"(mp % A % B %% (impI % A % B %% prf)) == prf",  | 
|
281  | 
||
282  | 
"(impI % A % B %% (mp % A % B %% prf)) == prf",  | 
|
283  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
284  | 
   "(spec % TYPE('a) % P % x %% prfa %% (allI % TYPE('a) % P %% prfa %% prf)) == prf % x",
 | 
| 13404 | 285  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
286  | 
   "(allI % TYPE('a) % P %% prfa %% (Lam x::'a. spec % TYPE('a) % P % x %% prfa %% prf)) == prf",
 | 
| 13404 | 287  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
288  | 
   "(exE % TYPE('a) % P % Q %% prfa %% (exI % TYPE('a) % P % x %% prfa %% prf1) %% prf2) == (prf2 % x %% prf1)",
 | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
289  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
290  | 
   "(exE % TYPE('a) % P % Q %% prfa %% prf %% (exI % TYPE('a) % P %% prfa)) == prf",
 | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
291  | 
|
| 13404 | 292  | 
"(disjE % P % Q % R %% (disjI1 % P % Q %% prf1) %% prf2 %% prf3) == (prf2 %% prf1)",  | 
293  | 
||
294  | 
"(disjE % P % Q % R %% (disjI2 % Q % P %% prf1) %% prf2 %% prf3) == (prf3 %% prf1)",  | 
|
295  | 
||
296  | 
"(conjunct1 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf1",  | 
|
297  | 
||
298  | 
"(conjunct2 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf2",  | 
|
299  | 
||
300  | 
"(iffD1 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf1",  | 
|
301  | 
||
302  | 
"(iffD2 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf2"];  | 
|
303  | 
||
304  | 
||
305  | 
(** Replace congruence rules by substitution rules **)  | 
|
306  | 
||
| 
28801
 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 
wenzelm 
parents: 
28712 
diff
changeset
 | 
307  | 
fun strip_cong ps (PThm (_, (("HOL.cong", _, _), _)) % _ % _ % SOME x % SOME y %%
 | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
308  | 
prfa %% prfT %% prf1 %% prf2) = strip_cong (((x, y), (prf2, prfa)) :: ps) prf1  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
309  | 
  | strip_cong ps (PThm (_, (("HOL.refl", _, _), _)) % SOME f %% _) = SOME (f, ps)
 | 
| 15531 | 310  | 
| strip_cong _ _ = NONE;  | 
| 13404 | 311  | 
|
| 37310 | 312  | 
val subst_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of subst))));  | 
313  | 
val sym_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of sym))));  | 
|
| 13404 | 314  | 
|
315  | 
fun make_subst Ts prf xs (_, []) = prf  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
316  | 
| make_subst Ts prf xs (f, ((x, y), (prf', clprf)) :: ps) =  | 
| 13404 | 317  | 
let val T = fastype_of1 (Ts, x)  | 
318  | 
in if x aconv y then make_subst Ts prf (xs @ [x]) (f, ps)  | 
|
| 37310 | 319  | 
else Proofterm.change_type (SOME [T]) subst_prf %> x %> y %>  | 
| 13404 | 320  | 
          Abs ("z", T, list_comb (incr_boundvars 1 f,
 | 
321  | 
map (incr_boundvars 1) xs @ Bound 0 ::  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
322  | 
map (incr_boundvars 1 o snd o fst) ps)) %% clprf %% prf' %%  | 
| 13404 | 323  | 
make_subst Ts prf (xs @ [x]) (f, ps)  | 
324  | 
end;  | 
|
325  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
326  | 
fun make_sym Ts ((x, y), (prf, clprf)) =  | 
| 37310 | 327  | 
((y, x),  | 
328  | 
(Proofterm.change_type (SOME [fastype_of1 (Ts, x)]) sym_prf %> x %> y %% clprf %% prf, clprf));  | 
|
| 13404 | 329  | 
|
| 22277 | 330  | 
fun mk_AbsP P t = AbsP ("H", Option.map HOLogic.mk_Trueprop P, t);
 | 
| 
13916
 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 
berghofe 
parents: 
13602 
diff
changeset
 | 
331  | 
|
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
332  | 
fun elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 333  | 
Option.map (make_subst Ts prf2 []) (strip_cong [] prf1)  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
334  | 
  | elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % P % _ %% prf) =
 | 
| 15570 | 335  | 
Option.map (mk_AbsP P o make_subst Ts (PBound 0) [])  | 
| 37310 | 336  | 
(strip_cong [] (Proofterm.incr_pboundvars 1 0 prf))  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
337  | 
  | elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 338  | 
Option.map (make_subst Ts prf2 [] o  | 
| 13404 | 339  | 
apsnd (map (make_sym Ts))) (strip_cong [] prf1)  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
340  | 
  | elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % P %% prf) =
 | 
| 15570 | 341  | 
Option.map (mk_AbsP P o make_subst Ts (PBound 0) [] o  | 
| 37310 | 342  | 
apsnd (map (make_sym Ts))) (strip_cong [] (Proofterm.incr_pboundvars 1 0 prf))  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
343  | 
| elim_cong_aux _ _ = NONE;  | 
| 
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
344  | 
|
| 37310 | 345  | 
fun elim_cong Ts hs prf = Option.map (rpair Proofterm.no_skel) (elim_cong_aux Ts prf);  | 
| 13404 | 346  | 
|
347  | 
end;  |