| author | wenzelm | 
| Fri, 26 May 2017 11:09:16 +0200 | |
| changeset 65930 | 9a28fc03c3fe | 
| parent 64272 | f76b6dda2e56 | 
| child 66453 | cc19f7ca2ed6 | 
| permissions | -rw-r--r-- | 
| 42148 | 1 | (* Title: HOL/Probability/Probability_Measure.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Armin Heller, TU München | |
| 4 | *) | |
| 5 | ||
| 61808 | 6 | section \<open>Probability measure\<close> | 
| 42067 | 7 | |
| 42148 | 8 | theory Probability_Measure | 
| 63627 | 9 | imports "~~/src/HOL/Analysis/Analysis" | 
| 35582 | 10 | begin | 
| 11 | ||
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 12 | locale prob_space = finite_measure + | 
| 47694 | 13 | assumes emeasure_space_1: "emeasure M (space M) = 1" | 
| 38656 | 14 | |
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 15 | lemma prob_spaceI[Pure.intro!]: | 
| 47694 | 16 | assumes *: "emeasure M (space M) = 1" | 
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 17 | shows "prob_space M" | 
| 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 18 | proof - | 
| 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 19 | interpret finite_measure M | 
| 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 20 | proof | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 21 | show "emeasure M (space M) \<noteq> \<infinity>" using * by simp | 
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 22 | qed | 
| 61169 | 23 | show "prob_space M" by standard fact | 
| 38656 | 24 | qed | 
| 25 | ||
| 59425 | 26 | lemma prob_space_imp_sigma_finite: "prob_space M \<Longrightarrow> sigma_finite_measure M" | 
| 27 | unfolding prob_space_def finite_measure_def by simp | |
| 28 | ||
| 40859 | 29 | abbreviation (in prob_space) "events \<equiv> sets M" | 
| 47694 | 30 | abbreviation (in prob_space) "prob \<equiv> measure M" | 
| 31 | abbreviation (in prob_space) "random_variable M' X \<equiv> X \<in> measurable M M'" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 32 | abbreviation (in prob_space) "expectation \<equiv> integral\<^sup>L M" | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 33 | abbreviation (in prob_space) "variance X \<equiv> integral\<^sup>L M (\<lambda>x. (X x - expectation X)\<^sup>2)" | 
| 35582 | 34 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 35 | lemma (in prob_space) finite_measure [simp]: "finite_measure M" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 36 | by unfold_locales | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 37 | |
| 47694 | 38 | lemma (in prob_space) prob_space_distr: | 
| 39 | assumes f: "f \<in> measurable M M'" shows "prob_space (distr M M' f)" | |
| 40 | proof (rule prob_spaceI) | |
| 41 | have "f -` space M' \<inter> space M = space M" using f by (auto dest: measurable_space) | |
| 42 | with f show "emeasure (distr M M' f) (space (distr M M' f)) = 1" | |
| 43 | by (auto simp: emeasure_distr emeasure_space_1) | |
| 43339 | 44 | qed | 
| 45 | ||
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 46 | lemma prob_space_distrD: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 47 | assumes f: "f \<in> measurable M N" and M: "prob_space (distr M N f)" shows "prob_space M" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 48 | proof | 
| 61605 | 49 | interpret M: prob_space "distr M N f" by fact | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 50 | have "f -` space N \<inter> space M = space M" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 51 | using f[THEN measurable_space] by auto | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 52 | then show "emeasure M (space M) = 1" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 53 | using M.emeasure_space_1 by (simp add: emeasure_distr[OF f]) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 54 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 55 | |
| 40859 | 56 | lemma (in prob_space) prob_space: "prob (space M) = 1" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 57 | using emeasure_space_1 unfolding measure_def by (simp add: one_ennreal.rep_eq) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 58 | |
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 59 | lemma (in prob_space) prob_le_1[simp, intro]: "prob A \<le> 1" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 60 | using bounded_measure[of A] by (simp add: prob_space) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 61 | |
| 47694 | 62 | lemma (in prob_space) not_empty: "space M \<noteq> {}"
 | 
| 63 | using prob_space by auto | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 64 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 65 | lemma (in prob_space) emeasure_eq_1_AE: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 66 | "S \<in> sets M \<Longrightarrow> AE x in M. x \<in> S \<Longrightarrow> emeasure M S = 1" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 67 | by (subst emeasure_eq_AE[where B="space M"]) (auto simp: emeasure_space_1) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 68 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 69 | lemma (in prob_space) emeasure_le_1: "emeasure M S \<le> 1" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 70 | unfolding ennreal_1[symmetric] emeasure_eq_measure by (subst ennreal_le_iff) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 71 | |
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63040diff
changeset | 72 | lemma (in prob_space) emeasure_ge_1_iff: "emeasure M A \<ge> 1 \<longleftrightarrow> emeasure M A = 1" | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63040diff
changeset | 73 | by (rule iffI, intro antisym emeasure_le_1) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63040diff
changeset | 74 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 75 | lemma (in prob_space) AE_iff_emeasure_eq_1: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 76 | assumes [measurable]: "Measurable.pred M P" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 77 |   shows "(AE x in M. P x) \<longleftrightarrow> emeasure M {x\<in>space M. P x} = 1"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 78 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 79 |   have *: "{x \<in> space M. \<not> P x} = space M - {x\<in>space M. P x}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 80 | by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 81 | show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 82 | by (auto simp add: ennreal_minus_eq_0 * emeasure_compl emeasure_space_1 AE_iff_measurable[OF _ refl] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 83 | intro: antisym emeasure_le_1) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 84 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 85 | |
| 47694 | 86 | lemma (in prob_space) measure_le_1: "emeasure M X \<le> 1" | 
| 87 | using emeasure_space[of M X] by (simp add: emeasure_space_1) | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42902diff
changeset | 88 | |
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63040diff
changeset | 89 | lemma (in prob_space) measure_ge_1_iff: "measure M A \<ge> 1 \<longleftrightarrow> measure M A = 1" | 
| 63626 
44ce6b524ff3
move measure theory from HOL-Probability to HOL-Multivariate_Analysis
 hoelzl parents: 
63099diff
changeset | 90 | by (auto intro!: antisym) | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63040diff
changeset | 91 | |
| 43339 | 92 | lemma (in prob_space) AE_I_eq_1: | 
| 47694 | 93 |   assumes "emeasure M {x\<in>space M. P x} = 1" "{x\<in>space M. P x} \<in> sets M"
 | 
| 94 | shows "AE x in M. P x" | |
| 43339 | 95 | proof (rule AE_I) | 
| 47694 | 96 |   show "emeasure M (space M - {x \<in> space M. P x}) = 0"
 | 
| 97 | using assms emeasure_space_1 by (simp add: emeasure_compl) | |
| 43339 | 98 | qed (insert assms, auto) | 
| 99 | ||
| 59000 | 100 | lemma prob_space_restrict_space: | 
| 101 | "S \<in> sets M \<Longrightarrow> emeasure M S = 1 \<Longrightarrow> prob_space (restrict_space M S)" | |
| 102 | by (intro prob_spaceI) | |
| 103 | (simp add: emeasure_restrict_space space_restrict_space) | |
| 104 | ||
| 40859 | 105 | lemma (in prob_space) prob_compl: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 106 | assumes A: "A \<in> events" | 
| 38656 | 107 | shows "prob (space M - A) = 1 - prob A" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 108 | using finite_measure_compl[OF A] by (simp add: prob_space) | 
| 35582 | 109 | |
| 47694 | 110 | lemma (in prob_space) AE_in_set_eq_1: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 111 | assumes A[measurable]: "A \<in> events" shows "(AE x in M. x \<in> A) \<longleftrightarrow> prob A = 1" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 112 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 113 |   have *: "{x\<in>space M. x \<in> A} = A"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 114 | using A[THEN sets.sets_into_space] by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 115 | show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 116 | by (subst AE_iff_emeasure_eq_1) (auto simp: emeasure_eq_measure *) | 
| 47694 | 117 | qed | 
| 118 | ||
| 119 | lemma (in prob_space) AE_False: "(AE x in M. False) \<longleftrightarrow> False" | |
| 120 | proof | |
| 121 | assume "AE x in M. False" | |
| 122 |   then have "AE x in M. x \<in> {}" by simp
 | |
| 123 | then show False | |
| 124 | by (subst (asm) AE_in_set_eq_1) auto | |
| 125 | qed simp | |
| 126 | ||
| 127 | lemma (in prob_space) AE_prob_1: | |
| 128 | assumes "prob A = 1" shows "AE x in M. x \<in> A" | |
| 129 | proof - | |
| 61808 | 130 | from \<open>prob A = 1\<close> have "A \<in> events" | 
| 47694 | 131 | by (metis measure_notin_sets zero_neq_one) | 
| 132 | with AE_in_set_eq_1 assms show ?thesis by simp | |
| 133 | qed | |
| 134 | ||
| 50098 | 135 | lemma (in prob_space) AE_const[simp]: "(AE x in M. P) \<longleftrightarrow> P" | 
| 136 | by (cases P) (auto simp: AE_False) | |
| 137 | ||
| 59000 | 138 | lemma (in prob_space) ae_filter_bot: "ae_filter M \<noteq> bot" | 
| 139 | by (simp add: trivial_limit_def) | |
| 140 | ||
| 50098 | 141 | lemma (in prob_space) AE_contr: | 
| 142 | assumes ae: "AE \<omega> in M. P \<omega>" "AE \<omega> in M. \<not> P \<omega>" | |
| 143 | shows False | |
| 144 | proof - | |
| 145 | from ae have "AE \<omega> in M. False" by eventually_elim auto | |
| 146 | then show False by auto | |
| 147 | qed | |
| 148 | ||
| 57025 | 149 | lemma (in prob_space) integral_ge_const: | 
| 150 | fixes c :: real | |
| 151 | shows "integrable M f \<Longrightarrow> (AE x in M. c \<le> f x) \<Longrightarrow> c \<le> (\<integral>x. f x \<partial>M)" | |
| 152 | using integral_mono_AE[of M "\<lambda>x. c" f] prob_space by simp | |
| 153 | ||
| 154 | lemma (in prob_space) integral_le_const: | |
| 155 | fixes c :: real | |
| 156 | shows "integrable M f \<Longrightarrow> (AE x in M. f x \<le> c) \<Longrightarrow> (\<integral>x. f x \<partial>M) \<le> c" | |
| 157 | using integral_mono_AE[of M f "\<lambda>x. c"] prob_space by simp | |
| 158 | ||
| 159 | lemma (in prob_space) nn_integral_ge_const: | |
| 160 | "(AE x in M. c \<le> f x) \<Longrightarrow> c \<le> (\<integral>\<^sup>+x. f x \<partial>M)" | |
| 161 | using nn_integral_mono_AE[of "\<lambda>x. c" f M] emeasure_space_1 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 162 | by (simp split: if_split_asm) | 
| 57025 | 163 | |
| 43339 | 164 | lemma (in prob_space) expectation_less: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56166diff
changeset | 165 | fixes X :: "_ \<Rightarrow> real" | 
| 43339 | 166 | assumes [simp]: "integrable M X" | 
| 49786 | 167 | assumes gt: "AE x in M. X x < b" | 
| 43339 | 168 | shows "expectation X < b" | 
| 169 | proof - | |
| 170 | have "expectation X < expectation (\<lambda>x. b)" | |
| 47694 | 171 | using gt emeasure_space_1 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
43339diff
changeset | 172 | by (intro integral_less_AE_space) auto | 
| 43339 | 173 | then show ?thesis using prob_space by simp | 
| 174 | qed | |
| 175 | ||
| 176 | lemma (in prob_space) expectation_greater: | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56166diff
changeset | 177 | fixes X :: "_ \<Rightarrow> real" | 
| 43339 | 178 | assumes [simp]: "integrable M X" | 
| 49786 | 179 | assumes gt: "AE x in M. a < X x" | 
| 43339 | 180 | shows "a < expectation X" | 
| 181 | proof - | |
| 182 | have "expectation (\<lambda>x. a) < expectation X" | |
| 47694 | 183 | using gt emeasure_space_1 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
43339diff
changeset | 184 | by (intro integral_less_AE_space) auto | 
| 43339 | 185 | then show ?thesis using prob_space by simp | 
| 186 | qed | |
| 187 | ||
| 188 | lemma (in prob_space) jensens_inequality: | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56166diff
changeset | 189 | fixes q :: "real \<Rightarrow> real" | 
| 49786 | 190 | assumes X: "integrable M X" "AE x in M. X x \<in> I" | 
| 43339 | 191 |   assumes I: "I = {a <..< b} \<or> I = {a <..} \<or> I = {..< b} \<or> I = UNIV"
 | 
| 192 | assumes q: "integrable M (\<lambda>x. q (X x))" "convex_on I q" | |
| 193 | shows "q (expectation X) \<le> expectation (\<lambda>x. q (X x))" | |
| 194 | proof - | |
| 46731 | 195 |   let ?F = "\<lambda>x. Inf ((\<lambda>t. (q x - q t) / (x - t)) ` ({x<..} \<inter> I))"
 | 
| 49786 | 196 |   from X(2) AE_False have "I \<noteq> {}" by auto
 | 
| 43339 | 197 | |
| 198 | from I have "open I" by auto | |
| 199 | ||
| 200 | note I | |
| 201 | moreover | |
| 202 |   { assume "I \<subseteq> {a <..}"
 | |
| 203 | with X have "a < expectation X" | |
| 204 | by (intro expectation_greater) auto } | |
| 205 | moreover | |
| 206 |   { assume "I \<subseteq> {..< b}"
 | |
| 207 | with X have "expectation X < b" | |
| 208 | by (intro expectation_less) auto } | |
| 209 | ultimately have "expectation X \<in> I" | |
| 210 | by (elim disjE) (auto simp: subset_eq) | |
| 211 | moreover | |
| 212 |   { fix y assume y: "y \<in> I"
 | |
| 61808 | 213 | with q(2) \<open>open I\<close> have "Sup ((\<lambda>x. q x + ?F x * (y - x)) ` I) = q y" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 214 | by (auto intro!: cSup_eq_maximum convex_le_Inf_differential image_eqI [OF _ y] simp: interior_open) } | 
| 43339 | 215 | ultimately have "q (expectation X) = Sup ((\<lambda>x. q x + ?F x * (expectation X - x)) ` I)" | 
| 216 | by simp | |
| 217 | also have "\<dots> \<le> expectation (\<lambda>w. q (X w))" | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50419diff
changeset | 218 | proof (rule cSup_least) | 
| 43339 | 219 |     show "(\<lambda>x. q x + ?F x * (expectation X - x)) ` I \<noteq> {}"
 | 
| 61808 | 220 |       using \<open>I \<noteq> {}\<close> by auto
 | 
| 43339 | 221 | next | 
| 222 | fix k assume "k \<in> (\<lambda>x. q x + ?F x * (expectation X - x)) ` I" | |
| 223 | then guess x .. note x = this | |
| 224 | have "q x + ?F x * (expectation X - x) = expectation (\<lambda>w. q x + ?F x * (X w - x))" | |
| 47694 | 225 | using prob_space by (simp add: X) | 
| 43339 | 226 | also have "\<dots> \<le> expectation (\<lambda>w. q (X w))" | 
| 61808 | 227 | using \<open>x \<in> I\<close> \<open>open I\<close> X(2) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 228 | apply (intro integral_mono_AE Bochner_Integration.integrable_add Bochner_Integration.integrable_mult_right Bochner_Integration.integrable_diff | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56166diff
changeset | 229 | integrable_const X q) | 
| 61810 | 230 | apply (elim eventually_mono) | 
| 49786 | 231 | apply (intro convex_le_Inf_differential) | 
| 232 | apply (auto simp: interior_open q) | |
| 233 | done | |
| 43339 | 234 | finally show "k \<le> expectation (\<lambda>w. q (X w))" using x by auto | 
| 235 | qed | |
| 236 | finally show "q (expectation X) \<le> expectation (\<lambda>x. q (X x))" . | |
| 237 | qed | |
| 238 | ||
| 61808 | 239 | subsection \<open>Introduce binder for probability\<close> | 
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 240 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 241 | syntax | 
| 59356 
e6f5b1bbcb01
allow line breaks in probability syntax
 Andreas Lochbihler parents: 
59353diff
changeset | 242 |   "_prob" :: "pttrn \<Rightarrow> logic \<Rightarrow> logic \<Rightarrow> logic" ("('\<P>'((/_ in _./ _)'))")
 | 
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 243 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 244 | translations | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 245 |   "\<P>(x in M. P)" => "CONST measure M {x \<in> CONST space M. P}"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 246 | |
| 61808 | 247 | print_translation \<open> | 
| 58764 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 248 | let | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 249 |     fun to_pattern (Const (@{const_syntax Pair}, _) $ l $ r) =
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 250 |       Syntax.const @{const_syntax Pair} :: to_pattern l @ to_pattern r
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 251 |     | to_pattern (t as (Const (@{syntax_const "_bound"}, _)) $ _) = [t]
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 252 | |
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 253 | fun mk_pattern ((t, n) :: xs) = mk_patterns n xs |>> curry list_comb t | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 254 | and mk_patterns 0 xs = ([], xs) | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 255 | | mk_patterns n xs = | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 256 | let | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 257 | val (t, xs') = mk_pattern xs | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 258 | val (ts, xs'') = mk_patterns (n - 1) xs' | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 259 | in | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 260 | (t :: ts, xs'') | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 261 | end | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 262 | |
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 263 | fun unnest_tuples | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 264 |       (Const (@{syntax_const "_pattern"}, _) $
 | 
| 58764 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 265 | t1 $ | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 266 |         (t as (Const (@{syntax_const "_pattern"}, _) $ _ $ _)))
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 267 | = let | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 268 | val (_ $ t2 $ t3) = unnest_tuples t | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 269 | in | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 270 |         Syntax.const @{syntax_const "_pattern"} $
 | 
| 58764 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 271 | unnest_tuples t1 $ | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 272 |           (Syntax.const @{syntax_const "_patterns"} $ t2 $ t3)
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 273 | end | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 274 | | unnest_tuples pat = pat | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 275 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 276 |     fun tr' [sig_alg, Const (@{const_syntax Collect}, _) $ t] =
 | 
| 58764 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 277 | let | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 278 |         val bound_dummyT = Const (@{syntax_const "_bound"}, dummyT)
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 279 | |
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 280 | fun go pattern elem | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 281 |           (Const (@{const_syntax "conj"}, _) $
 | 
| 58764 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 282 |             (Const (@{const_syntax Set.member}, _) $ elem' $ (Const (@{const_syntax space}, _) $ sig_alg')) $
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 283 | u) | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 284 | = let | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 285 | val _ = if sig_alg aconv sig_alg' andalso to_pattern elem' = rev elem then () else raise Match; | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 286 | val (pat, rest) = mk_pattern (rev pattern); | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 287 | val _ = case rest of [] => () | _ => raise Match | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 288 | in | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 289 |               Syntax.const @{syntax_const "_prob"} $ unnest_tuples pat $ sig_alg $ u
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 290 | end | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 291 | | go pattern elem (Abs abs) = | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 292 | let | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 293 | val (x as (_ $ tx), t) = Syntax_Trans.atomic_abs_tr' abs | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 294 | in | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 295 | go ((x, 0) :: pattern) (bound_dummyT $ tx :: elem) t | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 296 | end | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61359diff
changeset | 297 |         | go pattern elem (Const (@{const_syntax case_prod}, _) $ t) =
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 298 | go | 
| 58764 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 299 |               ((Syntax.const @{syntax_const "_pattern"}, 2) :: pattern)
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 300 |               (Syntax.const @{const_syntax Pair} :: elem)
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 301 | t | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 302 | in | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 303 | go [] [] t | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 304 | end | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 305 | in | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 306 |     [(@{const_syntax Sigma_Algebra.measure}, K tr')]
 | 
| 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 307 | end | 
| 61808 | 308 | \<close> | 
| 58764 
ca2f59aef665
add print translation for probability notation \<P>
 Andreas Lochbihler parents: 
57447diff
changeset | 309 | |
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 310 | definition | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 311 | "cond_prob M P Q = \<P>(\<omega> in M. P \<omega> \<and> Q \<omega>) / \<P>(\<omega> in M. Q \<omega>)" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 312 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 313 | syntax | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 314 |   "_conditional_prob" :: "pttrn \<Rightarrow> logic \<Rightarrow> logic \<Rightarrow> logic \<Rightarrow> logic" ("('\<P>'(_ in _. _ \<bar>/ _'))")
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 315 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 316 | translations | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 317 | "\<P>(x in M. P \<bar> Q)" => "CONST cond_prob M (\<lambda>x. P) (\<lambda>x. Q)" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 318 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 319 | lemma (in prob_space) AE_E_prob: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 320 | assumes ae: "AE x in M. P x" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 321 |   obtains S where "S \<subseteq> {x \<in> space M. P x}" "S \<in> events" "prob S = 1"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 322 | proof - | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 323 | from ae[THEN AE_E] guess N . | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 324 | then show thesis | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 325 | by (intro that[of "space M - N"]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 326 | (auto simp: prob_compl prob_space emeasure_eq_measure measure_nonneg) | 
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 327 | qed | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 328 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 329 | lemma (in prob_space) prob_neg: "{x\<in>space M. P x} \<in> events \<Longrightarrow> \<P>(x in M. \<not> P x) = 1 - \<P>(x in M. P x)"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 330 | by (auto intro!: arg_cong[where f=prob] simp add: prob_compl[symmetric]) | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 331 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 332 | lemma (in prob_space) prob_eq_AE: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 333 |   "(AE x in M. P x \<longleftrightarrow> Q x) \<Longrightarrow> {x\<in>space M. P x} \<in> events \<Longrightarrow> {x\<in>space M. Q x} \<in> events \<Longrightarrow> \<P>(x in M. P x) = \<P>(x in M. Q x)"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 334 | by (rule finite_measure_eq_AE) auto | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 335 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 336 | lemma (in prob_space) prob_eq_0_AE: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 337 | assumes not: "AE x in M. \<not> P x" shows "\<P>(x in M. P x) = 0" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 338 | proof cases | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 339 |   assume "{x\<in>space M. P x} \<in> events"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 340 | with not have "\<P>(x in M. P x) = \<P>(x in M. False)" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 341 | by (intro prob_eq_AE) auto | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 342 | then show ?thesis by simp | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 343 | qed (simp add: measure_notin_sets) | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 344 | |
| 50098 | 345 | lemma (in prob_space) prob_Collect_eq_0: | 
| 346 |   "{x \<in> space M. P x} \<in> sets M \<Longrightarrow> \<P>(x in M. P x) = 0 \<longleftrightarrow> (AE x in M. \<not> P x)"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 347 | using AE_iff_measurable[OF _ refl, of M "\<lambda>x. \<not> P x"] by (simp add: emeasure_eq_measure measure_nonneg) | 
| 50098 | 348 | |
| 349 | lemma (in prob_space) prob_Collect_eq_1: | |
| 350 |   "{x \<in> space M. P x} \<in> sets M \<Longrightarrow> \<P>(x in M. P x) = 1 \<longleftrightarrow> (AE x in M. P x)"
 | |
| 351 |   using AE_in_set_eq_1[of "{x\<in>space M. P x}"] by simp
 | |
| 352 | ||
| 353 | lemma (in prob_space) prob_eq_0: | |
| 354 | "A \<in> sets M \<Longrightarrow> prob A = 0 \<longleftrightarrow> (AE x in M. x \<notin> A)" | |
| 355 | using AE_iff_measurable[OF _ refl, of M "\<lambda>x. x \<notin> A"] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 356 | by (auto simp add: emeasure_eq_measure Int_def[symmetric] measure_nonneg) | 
| 50098 | 357 | |
| 358 | lemma (in prob_space) prob_eq_1: | |
| 359 | "A \<in> sets M \<Longrightarrow> prob A = 1 \<longleftrightarrow> (AE x in M. x \<in> A)" | |
| 360 | using AE_in_set_eq_1[of A] by simp | |
| 361 | ||
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 362 | lemma (in prob_space) prob_sums: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 363 |   assumes P: "\<And>n. {x\<in>space M. P n x} \<in> events"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 364 |   assumes Q: "{x\<in>space M. Q x} \<in> events"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 365 | assumes ae: "AE x in M. (\<forall>n. P n x \<longrightarrow> Q x) \<and> (Q x \<longrightarrow> (\<exists>!n. P n x))" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 366 | shows "(\<lambda>n. \<P>(x in M. P n x)) sums \<P>(x in M. Q x)" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 367 | proof - | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 368 | from ae[THEN AE_E_prob] guess S . note S = this | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 369 |   then have disj: "disjoint_family (\<lambda>n. {x\<in>space M. P n x} \<inter> S)"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 370 | by (auto simp: disjoint_family_on_def) | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 371 | from S have ae_S: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 372 |     "AE x in M. x \<in> {x\<in>space M. Q x} \<longleftrightarrow> x \<in> (\<Union>n. {x\<in>space M. P n x} \<inter> S)"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 373 |     "\<And>n. AE x in M. x \<in> {x\<in>space M. P n x} \<longleftrightarrow> x \<in> {x\<in>space M. P n x} \<inter> S"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 374 | using ae by (auto dest!: AE_prob_1) | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 375 | from ae_S have *: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 376 |     "\<P>(x in M. Q x) = prob (\<Union>n. {x\<in>space M. P n x} \<inter> S)"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 377 | using P Q S by (intro finite_measure_eq_AE) auto | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 378 | from ae_S have **: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 379 |     "\<And>n. \<P>(x in M. P n x) = prob ({x\<in>space M. P n x} \<inter> S)"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 380 | using P Q S by (intro finite_measure_eq_AE) auto | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 381 | show ?thesis | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 382 | unfolding * ** using S P disj | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 383 | by (intro finite_measure_UNION) auto | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 384 | qed | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 385 | |
| 64267 | 386 | lemma (in prob_space) prob_sum: | 
| 59000 | 387 | assumes [simp, intro]: "finite I" | 
| 388 |   assumes P: "\<And>n. n \<in> I \<Longrightarrow> {x\<in>space M. P n x} \<in> events"
 | |
| 389 |   assumes Q: "{x\<in>space M. Q x} \<in> events"
 | |
| 390 | assumes ae: "AE x in M. (\<forall>n\<in>I. P n x \<longrightarrow> Q x) \<and> (Q x \<longrightarrow> (\<exists>!n\<in>I. P n x))" | |
| 391 | shows "\<P>(x in M. Q x) = (\<Sum>n\<in>I. \<P>(x in M. P n x))" | |
| 392 | proof - | |
| 393 | from ae[THEN AE_E_prob] guess S . note S = this | |
| 394 |   then have disj: "disjoint_family_on (\<lambda>n. {x\<in>space M. P n x} \<inter> S) I"
 | |
| 395 | by (auto simp: disjoint_family_on_def) | |
| 396 | from S have ae_S: | |
| 397 |     "AE x in M. x \<in> {x\<in>space M. Q x} \<longleftrightarrow> x \<in> (\<Union>n\<in>I. {x\<in>space M. P n x} \<inter> S)"
 | |
| 398 |     "\<And>n. n \<in> I \<Longrightarrow> AE x in M. x \<in> {x\<in>space M. P n x} \<longleftrightarrow> x \<in> {x\<in>space M. P n x} \<inter> S"
 | |
| 399 | using ae by (auto dest!: AE_prob_1) | |
| 400 | from ae_S have *: | |
| 401 |     "\<P>(x in M. Q x) = prob (\<Union>n\<in>I. {x\<in>space M. P n x} \<inter> S)"
 | |
| 402 | using P Q S by (intro finite_measure_eq_AE) (auto intro!: sets.Int) | |
| 403 | from ae_S have **: | |
| 404 |     "\<And>n. n \<in> I \<Longrightarrow> \<P>(x in M. P n x) = prob ({x\<in>space M. P n x} \<inter> S)"
 | |
| 405 | using P Q S by (intro finite_measure_eq_AE) auto | |
| 406 | show ?thesis | |
| 407 | using S P disj | |
| 408 | by (auto simp add: * ** simp del: UN_simps intro!: finite_measure_finite_Union) | |
| 409 | qed | |
| 410 | ||
| 54418 | 411 | lemma (in prob_space) prob_EX_countable: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 412 |   assumes sets: "\<And>i. i \<in> I \<Longrightarrow> {x\<in>space M. P i x} \<in> sets M" and I: "countable I"
 | 
| 54418 | 413 | assumes disj: "AE x in M. \<forall>i\<in>I. \<forall>j\<in>I. P i x \<longrightarrow> P j x \<longrightarrow> i = j" | 
| 414 | shows "\<P>(x in M. \<exists>i\<in>I. P i x) = (\<integral>\<^sup>+i. \<P>(x in M. P i x) \<partial>count_space I)" | |
| 415 | proof - | |
| 416 | let ?N= "\<lambda>x. \<exists>!i\<in>I. P i x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 417 | have "ennreal (\<P>(x in M. \<exists>i\<in>I. P i x)) = \<P>(x in M. (\<exists>i\<in>I. P i x \<and> ?N x))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 418 | unfolding ennreal_inj[OF measure_nonneg measure_nonneg] | 
| 54418 | 419 | proof (rule prob_eq_AE) | 
| 420 | show "AE x in M. (\<exists>i\<in>I. P i x) = (\<exists>i\<in>I. P i x \<and> ?N x)" | |
| 421 | using disj by eventually_elim blast | |
| 422 | qed (auto intro!: sets.sets_Collect_countable_Ex' sets.sets_Collect_conj sets.sets_Collect_countable_Ex1' I sets)+ | |
| 423 |   also have "\<P>(x in M. (\<exists>i\<in>I. P i x \<and> ?N x)) = emeasure M (\<Union>i\<in>I. {x\<in>space M. P i x \<and> ?N x})"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 424 | unfolding emeasure_eq_measure by (auto intro!: arg_cong[where f=prob] simp: measure_nonneg) | 
| 54418 | 425 |   also have "\<dots> = (\<integral>\<^sup>+i. emeasure M {x\<in>space M. P i x \<and> ?N x} \<partial>count_space I)"
 | 
| 426 | by (rule emeasure_UN_countable) | |
| 427 | (auto intro!: sets.sets_Collect_countable_Ex' sets.sets_Collect_conj sets.sets_Collect_countable_Ex1' I sets | |
| 428 | simp: disjoint_family_on_def) | |
| 429 | also have "\<dots> = (\<integral>\<^sup>+i. \<P>(x in M. P i x) \<partial>count_space I)" | |
| 430 | unfolding emeasure_eq_measure using disj | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 431 | by (intro nn_integral_cong ennreal_inj[THEN iffD2] prob_eq_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 432 | (auto intro!: sets.sets_Collect_countable_Ex' sets.sets_Collect_conj sets.sets_Collect_countable_Ex1' I sets measure_nonneg)+ | 
| 54418 | 433 | finally show ?thesis . | 
| 434 | qed | |
| 435 | ||
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 436 | lemma (in prob_space) cond_prob_eq_AE: | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 437 |   assumes P: "AE x in M. Q x \<longrightarrow> P x \<longleftrightarrow> P' x" "{x\<in>space M. P x} \<in> events" "{x\<in>space M. P' x} \<in> events"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 438 |   assumes Q: "AE x in M. Q x \<longleftrightarrow> Q' x" "{x\<in>space M. Q x} \<in> events" "{x\<in>space M. Q' x} \<in> events"
 | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 439 | shows "cond_prob M P Q = cond_prob M P' Q'" | 
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 440 | using P Q | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 441 | by (auto simp: cond_prob_def intro!: arg_cong2[where f="op /"] prob_eq_AE sets.sets_Collect_conj) | 
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 442 | |
| 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49795diff
changeset | 443 | |
| 40859 | 444 | lemma (in prob_space) joint_distribution_Times_le_fst: | 
| 47694 | 445 | "random_variable MX X \<Longrightarrow> random_variable MY Y \<Longrightarrow> A \<in> sets MX \<Longrightarrow> B \<in> sets MY | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 446 | \<Longrightarrow> emeasure (distr M (MX \<Otimes>\<^sub>M MY) (\<lambda>x. (X x, Y x))) (A \<times> B) \<le> emeasure (distr M MX X) A" | 
| 47694 | 447 | by (auto simp: emeasure_distr measurable_pair_iff comp_def intro!: emeasure_mono measurable_sets) | 
| 40859 | 448 | |
| 449 | lemma (in prob_space) joint_distribution_Times_le_snd: | |
| 47694 | 450 | "random_variable MX X \<Longrightarrow> random_variable MY Y \<Longrightarrow> A \<in> sets MX \<Longrightarrow> B \<in> sets MY | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 451 | \<Longrightarrow> emeasure (distr M (MX \<Otimes>\<^sub>M MY) (\<lambda>x. (X x, Y x))) (A \<times> B) \<le> emeasure (distr M MY Y) B" | 
| 47694 | 452 | by (auto simp: emeasure_distr measurable_pair_iff comp_def intro!: emeasure_mono measurable_sets) | 
| 40859 | 453 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 454 | lemma (in prob_space) variance_eq: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 455 | fixes X :: "'a \<Rightarrow> real" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 456 | assumes [simp]: "integrable M X" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 457 | assumes [simp]: "integrable M (\<lambda>x. (X x)\<^sup>2)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 458 | shows "variance X = expectation (\<lambda>x. (X x)\<^sup>2) - (expectation X)\<^sup>2" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 459 | by (simp add: field_simps prob_space power2_diff power2_eq_square[symmetric]) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 460 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 461 | lemma (in prob_space) variance_positive: "0 \<le> variance (X::'a \<Rightarrow> real)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 462 | by (intro integral_nonneg_AE) (auto intro!: integral_nonneg_AE) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 463 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 464 | lemma (in prob_space) variance_mean_zero: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 465 | "expectation X = 0 \<Longrightarrow> variance X = expectation (\<lambda>x. (X x)^2)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 466 | by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 467 | |
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 468 | locale pair_prob_space = pair_sigma_finite M1 M2 + M1: prob_space M1 + M2: prob_space M2 for M1 M2 | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 469 | |
| 61565 
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
 ballarin parents: 
61424diff
changeset | 470 | sublocale pair_prob_space \<subseteq> P?: prob_space "M1 \<Otimes>\<^sub>M M2" | 
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 471 | proof | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 472 | show "emeasure (M1 \<Otimes>\<^sub>M M2) (space (M1 \<Otimes>\<^sub>M M2)) = 1" | 
| 49776 | 473 | by (simp add: M2.emeasure_pair_measure_Times M1.emeasure_space_1 M2.emeasure_space_1 space_pair_measure) | 
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 474 | qed | 
| 40859 | 475 | |
| 47694 | 476 | locale product_prob_space = product_sigma_finite M for M :: "'i \<Rightarrow> 'a measure" + | 
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 477 | fixes I :: "'i set" | 
| 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 478 | assumes prob_space: "\<And>i. prob_space (M i)" | 
| 42988 | 479 | |
| 61565 
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
 ballarin parents: 
61424diff
changeset | 480 | sublocale product_prob_space \<subseteq> M?: prob_space "M i" for i | 
| 42988 | 481 | by (rule prob_space) | 
| 482 | ||
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 483 | locale finite_product_prob_space = finite_product_sigma_finite M I + product_prob_space M I for M I | 
| 42988 | 484 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 485 | sublocale finite_product_prob_space \<subseteq> prob_space "\<Pi>\<^sub>M i\<in>I. M i" | 
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 486 | proof | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 487 | show "emeasure (\<Pi>\<^sub>M i\<in>I. M i) (space (\<Pi>\<^sub>M i\<in>I. M i)) = 1" | 
| 64272 | 488 | by (simp add: measure_times M.emeasure_space_1 prod.neutral_const space_PiM) | 
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 489 | qed | 
| 42988 | 490 | |
| 491 | lemma (in finite_product_prob_space) prob_times: | |
| 492 | assumes X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets (M i)" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 493 | shows "prob (\<Pi>\<^sub>E i\<in>I. X i) = (\<Prod>i\<in>I. M.prob i (X i))" | 
| 42988 | 494 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 495 | have "ennreal (measure (\<Pi>\<^sub>M i\<in>I. M i) (\<Pi>\<^sub>E i\<in>I. X i)) = emeasure (\<Pi>\<^sub>M i\<in>I. M i) (\<Pi>\<^sub>E i\<in>I. X i)" | 
| 47694 | 496 | using X by (simp add: emeasure_eq_measure) | 
| 497 | also have "\<dots> = (\<Prod>i\<in>I. emeasure (M i) (X i))" | |
| 42988 | 498 | using measure_times X by simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 499 | also have "\<dots> = ennreal (\<Prod>i\<in>I. measure (M i) (X i))" | 
| 64272 | 500 | using X by (simp add: M.emeasure_eq_measure prod_ennreal measure_nonneg) | 
| 501 | finally show ?thesis by (simp add: measure_nonneg prod_nonneg) | |
| 42859 
d9dfc733f25c
add product of probability spaces with finite cardinality
 hoelzl parents: 
42858diff
changeset | 502 | qed | 
| 
d9dfc733f25c
add product of probability spaces with finite cardinality
 hoelzl parents: 
42858diff
changeset | 503 | |
| 61808 | 504 | subsection \<open>Distributions\<close> | 
| 42892 | 505 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 506 | definition distributed :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 507 | where | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 508 | "distributed M N X f \<longleftrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 509 | distr M N X = density N f \<and> f \<in> borel_measurable N \<and> X \<in> measurable M N" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 510 | |
| 47694 | 511 | lemma | 
| 50003 | 512 | assumes "distributed M N X f" | 
| 513 | shows distributed_distr_eq_density: "distr M N X = density N f" | |
| 514 | and distributed_measurable: "X \<in> measurable M N" | |
| 515 | and distributed_borel_measurable: "f \<in> borel_measurable N" | |
| 516 | using assms by (simp_all add: distributed_def) | |
| 517 | ||
| 518 | lemma | |
| 519 | assumes D: "distributed M N X f" | |
| 520 | shows distributed_measurable'[measurable_dest]: | |
| 521 | "g \<in> measurable L M \<Longrightarrow> (\<lambda>x. X (g x)) \<in> measurable L N" | |
| 522 | and distributed_borel_measurable'[measurable_dest]: | |
| 523 | "h \<in> measurable L N \<Longrightarrow> (\<lambda>x. f (h x)) \<in> borel_measurable L" | |
| 524 | using distributed_measurable[OF D] distributed_borel_measurable[OF D] | |
| 525 | by simp_all | |
| 39097 | 526 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 527 | lemma distributed_real_measurable: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 528 | "(\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow> distributed M N X (\<lambda>x. ennreal (f x)) \<Longrightarrow> f \<in> borel_measurable N" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 529 | by (simp_all add: distributed_def) | 
| 35977 | 530 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 531 | lemma distributed_real_measurable': | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 532 | "(\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow> distributed M N X (\<lambda>x. ennreal (f x)) \<Longrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 533 | h \<in> measurable L N \<Longrightarrow> (\<lambda>x. f (h x)) \<in> borel_measurable L" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 534 | using distributed_real_measurable[measurable] by simp | 
| 50003 | 535 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 536 | lemma joint_distributed_measurable1: | 
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 537 | "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) f \<Longrightarrow> h1 \<in> measurable N M \<Longrightarrow> (\<lambda>x. X (h1 x)) \<in> measurable N S" | 
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 538 | by simp | 
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 539 | |
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 540 | lemma joint_distributed_measurable2: | 
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 541 | "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) f \<Longrightarrow> h2 \<in> measurable N M \<Longrightarrow> (\<lambda>x. Y (h2 x)) \<in> measurable N T" | 
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59000diff
changeset | 542 | by simp | 
| 50003 | 543 | |
| 47694 | 544 | lemma distributed_count_space: | 
| 545 | assumes X: "distributed M (count_space A) X P" and a: "a \<in> A" and A: "finite A" | |
| 546 |   shows "P a = emeasure M (X -` {a} \<inter> space M)"
 | |
| 39097 | 547 | proof - | 
| 47694 | 548 |   have "emeasure M (X -` {a} \<inter> space M) = emeasure (distr M (count_space A) X) {a}"
 | 
| 50003 | 549 | using X a A by (simp add: emeasure_distr) | 
| 47694 | 550 |   also have "\<dots> = emeasure (density (count_space A) P) {a}"
 | 
| 551 | using X by (simp add: distributed_distr_eq_density) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 552 |   also have "\<dots> = (\<integral>\<^sup>+x. P a * indicator {a} x \<partial>count_space A)"
 | 
| 56996 | 553 | using X a by (auto simp add: emeasure_density distributed_def indicator_def intro!: nn_integral_cong) | 
| 47694 | 554 | also have "\<dots> = P a" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 555 | using X a by (subst nn_integral_cmult_indicator) (auto simp: distributed_def one_ennreal_def[symmetric] AE_count_space) | 
| 47694 | 556 | finally show ?thesis .. | 
| 39092 | 557 | qed | 
| 35977 | 558 | |
| 47694 | 559 | lemma distributed_cong_density: | 
| 560 | "(AE x in N. f x = g x) \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> f \<in> borel_measurable N \<Longrightarrow> | |
| 561 | distributed M N X f \<longleftrightarrow> distributed M N X g" | |
| 562 | by (auto simp: distributed_def intro!: density_cong) | |
| 563 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 564 | lemma (in prob_space) distributed_imp_emeasure_nonzero: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 565 | assumes X: "distributed M MX X Px" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 566 |   shows "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> 0"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 567 | proof | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 568 | note Px = distributed_borel_measurable[OF X] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 569 | interpret X: prob_space "distr M MX X" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 570 | using distributed_measurable[OF X] by (rule prob_space_distr) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 571 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 572 |   assume "emeasure MX {x \<in> space MX. Px x \<noteq> 0} = 0"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 573 | with Px have "AE x in MX. Px x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 574 | by (intro AE_I[OF subset_refl]) (auto simp: borel_measurable_ennreal_iff) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 575 | moreover | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 576 | from X.emeasure_space_1 have "(\<integral>\<^sup>+x. Px x \<partial>MX) = 1" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 577 | unfolding distributed_distr_eq_density[OF X] using Px | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 578 | by (subst (asm) emeasure_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 579 | (auto simp: borel_measurable_ennreal_iff intro!: integral_cong cong: nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 580 | ultimately show False | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 581 | by (simp add: nn_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 582 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 583 | |
| 47694 | 584 | lemma subdensity: | 
| 585 | assumes T: "T \<in> measurable P Q" | |
| 586 | assumes f: "distributed M P X f" | |
| 587 | assumes g: "distributed M Q Y g" | |
| 588 | assumes Y: "Y = T \<circ> X" | |
| 589 | shows "AE x in P. g (T x) = 0 \<longrightarrow> f x = 0" | |
| 590 | proof - | |
| 591 |   have "{x\<in>space Q. g x = 0} \<in> null_sets (distr M Q (T \<circ> X))"
 | |
| 592 | using g Y by (auto simp: null_sets_density_iff distributed_def) | |
| 593 | also have "distr M Q (T \<circ> X) = distr (distr M P X) Q T" | |
| 594 | using T f[THEN distributed_measurable] by (rule distr_distr[symmetric]) | |
| 595 |   finally have "T -` {x\<in>space Q. g x = 0} \<inter> space P \<in> null_sets (distr M P X)"
 | |
| 596 | using T by (subst (asm) null_sets_distr_iff) auto | |
| 597 |   also have "T -` {x\<in>space Q. g x = 0} \<inter> space P = {x\<in>space P. g (T x) = 0}"
 | |
| 598 | using T by (auto dest: measurable_space) | |
| 599 | finally show ?thesis | |
| 600 | using f g by (auto simp add: null_sets_density_iff distributed_def) | |
| 35977 | 601 | qed | 
| 602 | ||
| 47694 | 603 | lemma subdensity_real: | 
| 604 | fixes g :: "'a \<Rightarrow> real" and f :: "'b \<Rightarrow> real" | |
| 605 | assumes T: "T \<in> measurable P Q" | |
| 606 | assumes f: "distributed M P X f" | |
| 607 | assumes g: "distributed M Q Y g" | |
| 608 | assumes Y: "Y = T \<circ> X" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 609 | shows "(AE x in P. 0 \<le> g (T x)) \<Longrightarrow> (AE x in P. 0 \<le> f x) \<Longrightarrow> AE x in P. g (T x) = 0 \<longrightarrow> f x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 610 | using subdensity[OF T, of M X "\<lambda>x. ennreal (f x)" Y "\<lambda>x. ennreal (g x)"] assms | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 611 | by auto | 
| 47694 | 612 | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 613 | lemma distributed_emeasure: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 614 | "distributed M N X f \<Longrightarrow> A \<in> sets N \<Longrightarrow> emeasure M (X -` A \<inter> space M) = (\<integral>\<^sup>+x. f x * indicator A x \<partial>N)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 615 | by (auto simp: distributed_distr_eq_density[symmetric] emeasure_density[symmetric] emeasure_distr) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 616 | |
| 56996 | 617 | lemma distributed_nn_integral: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 618 | "distributed M N X f \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> (\<integral>\<^sup>+x. f x * g x \<partial>N) = (\<integral>\<^sup>+x. g (X x) \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 619 | by (auto simp: distributed_distr_eq_density[symmetric] nn_integral_density[symmetric] nn_integral_distr) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 620 | |
| 47694 | 621 | lemma distributed_integral: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 622 | "distributed M N X f \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> (\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 623 | (\<integral>x. f x * g x \<partial>N) = (\<integral>x. g (X x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 624 | supply distributed_real_measurable[measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 625 | by (auto simp: distributed_distr_eq_density[symmetric] integral_real_density[symmetric] integral_distr) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 626 | |
| 47694 | 627 | lemma distributed_transform_integral: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 628 | assumes Px: "distributed M N X Px" "\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 629 | assumes "distributed M P Y Py" "\<And>x. x \<in> space P \<Longrightarrow> 0 \<le> Py x" | 
| 47694 | 630 | assumes Y: "Y = T \<circ> X" and T: "T \<in> measurable N P" and f: "f \<in> borel_measurable P" | 
| 631 | shows "(\<integral>x. Py x * f x \<partial>P) = (\<integral>x. Px x * f (T x) \<partial>N)" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 632 | proof - | 
| 47694 | 633 | have "(\<integral>x. Py x * f x \<partial>P) = (\<integral>x. f (Y x) \<partial>M)" | 
| 634 | by (rule distributed_integral) fact+ | |
| 635 | also have "\<dots> = (\<integral>x. f (T (X x)) \<partial>M)" | |
| 636 | using Y by simp | |
| 637 | also have "\<dots> = (\<integral>x. Px x * f (T x) \<partial>N)" | |
| 638 | using measurable_comp[OF T f] Px by (intro distributed_integral[symmetric]) (auto simp: comp_def) | |
| 45777 
c36637603821
remove unnecessary sublocale instantiations in HOL-Probability (for clarity and speedup); remove Infinite_Product_Measure.product_prob_space which was a duplicate of Probability_Measure.product_prob_space
 hoelzl parents: 
45712diff
changeset | 639 | finally show ?thesis . | 
| 39092 | 640 | qed | 
| 36624 | 641 | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 642 | lemma (in prob_space) distributed_unique: | 
| 47694 | 643 | assumes Px: "distributed M S X Px" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 644 | assumes Py: "distributed M S X Py" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 645 | shows "AE x in S. Px x = Py x" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 646 | proof - | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 647 | interpret X: prob_space "distr M S X" | 
| 50003 | 648 | using Px by (intro prob_space_distr) simp | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 649 | have "sigma_finite_measure (distr M S X)" .. | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 650 | with sigma_finite_density_unique[of Px S Py ] Px Py | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 651 | show ?thesis | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 652 | by (auto simp: distributed_def) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 653 | qed | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 654 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 655 | lemma (in prob_space) distributed_jointI: | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 656 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | 
| 50003 | 657 | assumes X[measurable]: "X \<in> measurable M S" and Y[measurable]: "Y \<in> measurable M T" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 658 | assumes [measurable]: "f \<in> borel_measurable (S \<Otimes>\<^sub>M T)" and f: "AE x in S \<Otimes>\<^sub>M T. 0 \<le> f x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 659 | assumes eq: "\<And>A B. A \<in> sets S \<Longrightarrow> B \<in> sets T \<Longrightarrow> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 660 |     emeasure M {x \<in> space M. X x \<in> A \<and> Y x \<in> B} = (\<integral>\<^sup>+x. (\<integral>\<^sup>+y. f (x, y) * indicator B y \<partial>T) * indicator A x \<partial>S)"
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 661 | shows "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) f" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 662 | unfolding distributed_def | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 663 | proof safe | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 664 | interpret S: sigma_finite_measure S by fact | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 665 | interpret T: sigma_finite_measure T by fact | 
| 61169 | 666 | interpret ST: pair_sigma_finite S T .. | 
| 47694 | 667 | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 668 |   from ST.sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('b \<times> 'c) set" .. note F = this
 | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 669 |   let ?E = "{a \<times> b |a b. a \<in> sets S \<and> b \<in> sets T}"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 670 | let ?P = "S \<Otimes>\<^sub>M T" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 671 | show "distr M ?P (\<lambda>x. (X x, Y x)) = density ?P f" (is "?L = ?R") | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 672 | proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of S T]]) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 673 | show "?E \<subseteq> Pow (space ?P)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 674 | using sets.space_closed[of S] sets.space_closed[of T] by (auto simp: space_pair_measure) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 675 | show "sets ?L = sigma_sets (space ?P) ?E" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 676 | by (simp add: sets_pair_measure space_pair_measure) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 677 | then show "sets ?R = sigma_sets (space ?P) ?E" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 678 | by simp | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 679 | next | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 680 | interpret L: prob_space ?L | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 681 | by (rule prob_space_distr) (auto intro!: measurable_Pair) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 682 | show "range F \<subseteq> ?E" "(\<Union>i. F i) = space ?P" "\<And>i. emeasure ?L (F i) \<noteq> \<infinity>" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 683 | using F by (auto simp: space_pair_measure) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 684 | next | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 685 | fix E assume "E \<in> ?E" | 
| 50003 | 686 | then obtain A B where E[simp]: "E = A \<times> B" | 
| 687 | and A[measurable]: "A \<in> sets S" and B[measurable]: "B \<in> sets T" by auto | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 688 |     have "emeasure ?L E = emeasure M {x \<in> space M. X x \<in> A \<and> Y x \<in> B}"
 | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 689 | by (auto intro!: arg_cong[where f="emeasure M"] simp add: emeasure_distr measurable_Pair) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 690 | also have "\<dots> = (\<integral>\<^sup>+x. (\<integral>\<^sup>+y. (f (x, y) * indicator B y) * indicator A x \<partial>T) \<partial>S)" | 
| 56996 | 691 | using f by (auto simp add: eq nn_integral_multc intro!: nn_integral_cong) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 692 | also have "\<dots> = emeasure ?R E" | 
| 56996 | 693 | by (auto simp add: emeasure_density T.nn_integral_fst[symmetric] | 
| 694 | intro!: nn_integral_cong split: split_indicator) | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 695 | finally show "emeasure ?L E = emeasure ?R E" . | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 696 | qed | 
| 50003 | 697 | qed (auto simp: f) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 698 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 699 | lemma (in prob_space) distributed_swap: | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 700 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 701 | assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 702 | shows "distributed M (T \<Otimes>\<^sub>M S) (\<lambda>x. (Y x, X x)) (\<lambda>(x, y). Pxy (y, x))" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 703 | proof - | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 704 | interpret S: sigma_finite_measure S by fact | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 705 | interpret T: sigma_finite_measure T by fact | 
| 61169 | 706 | interpret ST: pair_sigma_finite S T .. | 
| 707 | interpret TS: pair_sigma_finite T S .. | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 708 | |
| 50003 | 709 | note Pxy[measurable] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 710 | show ?thesis | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 711 | apply (subst TS.distr_pair_swap) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 712 | unfolding distributed_def | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 713 | proof safe | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 714 | let ?D = "distr (S \<Otimes>\<^sub>M T) (T \<Otimes>\<^sub>M S) (\<lambda>(x, y). (y, x))" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 715 | show 1: "(\<lambda>(x, y). Pxy (y, x)) \<in> borel_measurable ?D" | 
| 50003 | 716 | by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 717 | show 2: "random_variable (distr (S \<Otimes>\<^sub>M T) (T \<Otimes>\<^sub>M S) (\<lambda>(x, y). (y, x))) (\<lambda>x. (Y x, X x))" | 
| 50003 | 718 | using Pxy by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 719 |     { fix A assume A: "A \<in> sets (T \<Otimes>\<^sub>M S)"
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 720 | let ?B = "(\<lambda>(x, y). (y, x)) -` A \<inter> space (S \<Otimes>\<^sub>M T)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 721 | from sets.sets_into_space[OF A] | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 722 | have "emeasure M ((\<lambda>x. (Y x, X x)) -` A \<inter> space M) = | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 723 | emeasure M ((\<lambda>x. (X x, Y x)) -` ?B \<inter> space M)" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 724 | by (auto intro!: arg_cong2[where f=emeasure] simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 725 | also have "\<dots> = (\<integral>\<^sup>+ x. Pxy x * indicator ?B x \<partial>(S \<Otimes>\<^sub>M T))" | 
| 50003 | 726 | using Pxy A by (intro distributed_emeasure) auto | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 727 | finally have "emeasure M ((\<lambda>x. (Y x, X x)) -` A \<inter> space M) = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 728 | (\<integral>\<^sup>+ x. Pxy x * indicator A (snd x, fst x) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 56996 | 729 | by (auto intro!: nn_integral_cong split: split_indicator) } | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 730 | note * = this | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 731 | show "distr M ?D (\<lambda>x. (Y x, X x)) = density ?D (\<lambda>(x, y). Pxy (y, x))" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 732 | apply (intro measure_eqI) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 733 | apply (simp_all add: emeasure_distr[OF 2] emeasure_density[OF 1]) | 
| 56996 | 734 | apply (subst nn_integral_distr) | 
| 50003 | 735 | apply (auto intro!: * simp: comp_def split_beta) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 736 | done | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 737 | qed | 
| 36624 | 738 | qed | 
| 739 | ||
| 47694 | 740 | lemma (in prob_space) distr_marginal1: | 
| 741 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 742 | assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 743 | defines "Px \<equiv> \<lambda>x. (\<integral>\<^sup>+z. Pxy (x, z) \<partial>T)" | 
| 47694 | 744 | shows "distributed M S X Px" | 
| 745 | unfolding distributed_def | |
| 746 | proof safe | |
| 747 | interpret S: sigma_finite_measure S by fact | |
| 748 | interpret T: sigma_finite_measure T by fact | |
| 61169 | 749 | interpret ST: pair_sigma_finite S T .. | 
| 47694 | 750 | |
| 50003 | 751 | note Pxy[measurable] | 
| 752 | show X: "X \<in> measurable M S" by simp | |
| 47694 | 753 | |
| 50003 | 754 | show borel: "Px \<in> borel_measurable S" | 
| 56996 | 755 | by (auto intro!: T.nn_integral_fst simp: Px_def) | 
| 39097 | 756 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 757 | interpret Pxy: prob_space "distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 50003 | 758 | by (intro prob_space_distr) simp | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 759 | |
| 47694 | 760 | show "distr M S X = density S Px" | 
| 761 | proof (rule measure_eqI) | |
| 762 | fix A assume A: "A \<in> sets (distr M S X)" | |
| 50003 | 763 | with X measurable_space[of Y M T] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 764 | have "emeasure (distr M S X) A = emeasure (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) (A \<times> space T)" | 
| 50003 | 765 | by (auto simp add: emeasure_distr intro!: arg_cong[where f="emeasure M"]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 766 | also have "\<dots> = emeasure (density (S \<Otimes>\<^sub>M T) Pxy) (A \<times> space T)" | 
| 47694 | 767 | using Pxy by (simp add: distributed_def) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 768 | also have "\<dots> = \<integral>\<^sup>+ x. \<integral>\<^sup>+ y. Pxy (x, y) * indicator (A \<times> space T) (x, y) \<partial>T \<partial>S" | 
| 47694 | 769 | using A borel Pxy | 
| 56996 | 770 | by (simp add: emeasure_density T.nn_integral_fst[symmetric]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 771 | also have "\<dots> = \<integral>\<^sup>+ x. Px x * indicator A x \<partial>S" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 772 | proof (rule nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 773 | fix x assume "x \<in> space S" | 
| 47694 | 774 | moreover have eq: "\<And>y. y \<in> space T \<Longrightarrow> indicator (A \<times> space T) (x, y) = indicator A x" | 
| 775 | by (auto simp: indicator_def) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 776 | ultimately have "(\<integral>\<^sup>+ y. Pxy (x, y) * indicator (A \<times> space T) (x, y) \<partial>T) = (\<integral>\<^sup>+ y. Pxy (x, y) \<partial>T) * indicator A x" | 
| 56996 | 777 | by (simp add: eq nn_integral_multc cong: nn_integral_cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 778 | also have "(\<integral>\<^sup>+ y. Pxy (x, y) \<partial>T) = Px x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 779 | by (simp add: Px_def) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 780 | finally show "(\<integral>\<^sup>+ y. Pxy (x, y) * indicator (A \<times> space T) (x, y) \<partial>T) = Px x * indicator A x" . | 
| 47694 | 781 | qed | 
| 782 | finally show "emeasure (distr M S X) A = emeasure (density S Px) A" | |
| 783 | using A borel Pxy by (simp add: emeasure_density) | |
| 784 | qed simp | |
| 40859 | 785 | qed | 
| 786 | ||
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 787 | lemma (in prob_space) distr_marginal2: | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 788 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 789 | assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 790 | shows "distributed M T Y (\<lambda>y. (\<integral>\<^sup>+x. Pxy (x, y) \<partial>S))" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 791 | using distr_marginal1[OF T S distributed_swap[OF S T]] Pxy by simp | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 792 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 793 | lemma (in prob_space) distributed_marginal_eq_joint1: | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 794 | assumes T: "sigma_finite_measure T" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 795 | assumes S: "sigma_finite_measure S" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 796 | assumes Px: "distributed M S X Px" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 797 | assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 798 | shows "AE x in S. Px x = (\<integral>\<^sup>+y. Pxy (x, y) \<partial>T)" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 799 | using Px distr_marginal1[OF S T Pxy] by (rule distributed_unique) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 800 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 801 | lemma (in prob_space) distributed_marginal_eq_joint2: | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 802 | assumes T: "sigma_finite_measure T" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 803 | assumes S: "sigma_finite_measure S" | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 804 | assumes Py: "distributed M T Y Py" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 805 | assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 806 | shows "AE y in T. Py y = (\<integral>\<^sup>+x. Pxy (x, y) \<partial>S)" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 807 | using Py distr_marginal2[OF S T Pxy] by (rule distributed_unique) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49786diff
changeset | 808 | |
| 49795 | 809 | lemma (in prob_space) distributed_joint_indep': | 
| 810 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 50003 | 811 | assumes X[measurable]: "distributed M S X Px" and Y[measurable]: "distributed M T Y Py" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 812 | assumes indep: "distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 813 | shows "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) (\<lambda>(x, y). Px x * Py y)" | 
| 49795 | 814 | unfolding distributed_def | 
| 815 | proof safe | |
| 816 | interpret S: sigma_finite_measure S by fact | |
| 817 | interpret T: sigma_finite_measure T by fact | |
| 61169 | 818 | interpret ST: pair_sigma_finite S T .. | 
| 49795 | 819 | |
| 820 | interpret X: prob_space "density S Px" | |
| 821 | unfolding distributed_distr_eq_density[OF X, symmetric] | |
| 50003 | 822 | by (rule prob_space_distr) simp | 
| 49795 | 823 | have sf_X: "sigma_finite_measure (density S Px)" .. | 
| 824 | ||
| 825 | interpret Y: prob_space "density T Py" | |
| 826 | unfolding distributed_distr_eq_density[OF Y, symmetric] | |
| 50003 | 827 | by (rule prob_space_distr) simp | 
| 49795 | 828 | have sf_Y: "sigma_finite_measure (density T Py)" .. | 
| 829 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 830 | show "distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) = density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). Px x * Py y)" | 
| 49795 | 831 | unfolding indep[symmetric] distributed_distr_eq_density[OF X] distributed_distr_eq_density[OF Y] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 832 | using distributed_borel_measurable[OF X] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 833 | using distributed_borel_measurable[OF Y] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 834 | by (rule pair_measure_density[OF _ _ T sf_Y]) | 
| 49795 | 835 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 836 | show "random_variable (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" by auto | 
| 49795 | 837 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 838 | show Pxy: "(\<lambda>(x, y). Px x * Py y) \<in> borel_measurable (S \<Otimes>\<^sub>M T)" by auto | 
| 49795 | 839 | qed | 
| 840 | ||
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 841 | lemma distributed_integrable: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 842 | "distributed M N X f \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> (\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> f x) \<Longrightarrow> | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 843 | integrable N (\<lambda>x. f x * g x) \<longleftrightarrow> integrable M (\<lambda>x. g (X x))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 844 | supply distributed_real_measurable[measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 845 | by (auto simp: distributed_distr_eq_density[symmetric] integrable_real_density[symmetric] integrable_distr_eq) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 846 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 847 | lemma distributed_transform_integrable: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 848 | assumes Px: "distributed M N X Px" "\<And>x. x \<in> space N \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 849 | assumes "distributed M P Y Py" "\<And>x. x \<in> space P \<Longrightarrow> 0 \<le> Py x" | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 850 | assumes Y: "Y = (\<lambda>x. T (X x))" and T: "T \<in> measurable N P" and f: "f \<in> borel_measurable P" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 851 | shows "integrable P (\<lambda>x. Py x * f x) \<longleftrightarrow> integrable N (\<lambda>x. Px x * f (T x))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 852 | proof - | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 853 | have "integrable P (\<lambda>x. Py x * f x) \<longleftrightarrow> integrable M (\<lambda>x. f (Y x))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 854 | by (rule distributed_integrable) fact+ | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 855 | also have "\<dots> \<longleftrightarrow> integrable M (\<lambda>x. f (T (X x)))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 856 | using Y by simp | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 857 | also have "\<dots> \<longleftrightarrow> integrable N (\<lambda>x. Px x * f (T x))" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 858 | using measurable_comp[OF T f] Px by (intro distributed_integrable[symmetric]) (auto simp: comp_def) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 859 | finally show ?thesis . | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 860 | qed | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 861 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57235diff
changeset | 862 | lemma distributed_integrable_var: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57235diff
changeset | 863 | fixes X :: "'a \<Rightarrow> real" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 864 | shows "distributed M lborel X (\<lambda>x. ennreal (f x)) \<Longrightarrow> (\<And>x. 0 \<le> f x) \<Longrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 865 | integrable lborel (\<lambda>x. f x * x) \<Longrightarrow> integrable M X" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57235diff
changeset | 866 | using distributed_integrable[of M lborel X f "\<lambda>x. x"] by simp | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57235diff
changeset | 867 | |
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 868 | lemma (in prob_space) distributed_variance: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 869 | fixes f::"real \<Rightarrow> real" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 870 | assumes D: "distributed M lborel X f" and [simp]: "\<And>x. 0 \<le> f x" | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 871 | shows "variance X = (\<integral>x. x\<^sup>2 * f (x + expectation X) \<partial>lborel)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 872 | proof (subst distributed_integral[OF D, symmetric]) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 873 | show "(\<integral> x. f x * (x - expectation X)\<^sup>2 \<partial>lborel) = (\<integral> x. x\<^sup>2 * f (x + expectation X) \<partial>lborel)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 874 | by (subst lborel_integral_real_affine[where c=1 and t="expectation X"]) (auto simp: ac_simps) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 875 | qed simp_all | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 876 | |
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 877 | lemma (in prob_space) variance_affine: | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 878 | fixes f::"real \<Rightarrow> real" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 879 | assumes [arith]: "b \<noteq> 0" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 880 | assumes D[intro]: "distributed M lborel X f" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 881 | assumes [simp]: "prob_space (density lborel f)" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 882 | assumes I[simp]: "integrable M X" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 883 | assumes I2[simp]: "integrable M (\<lambda>x. (X x)\<^sup>2)" | 
| 57235 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 884 | shows "variance (\<lambda>x. a + b * X x) = b\<^sup>2 * variance X" | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 885 | by (subst variance_eq) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 886 | (auto simp: power2_sum power_mult_distrib prob_space variance_eq right_diff_distrib) | 
| 
b0b9a10e4bf4
properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
 hoelzl parents: 
57025diff
changeset | 887 | |
| 47694 | 888 | definition | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 889 | "simple_distributed M X f \<longleftrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 890 | (\<forall>x. 0 \<le> f x) \<and> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 891 | distributed M (count_space (X`space M)) X (\<lambda>x. ennreal (f x)) \<and> | 
| 47694 | 892 | finite (X`space M)" | 
| 42902 | 893 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 894 | lemma simple_distributed_nonneg[dest]: "simple_distributed M X f \<Longrightarrow> 0 \<le> f x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 895 | by (auto simp: simple_distributed_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 896 | |
| 47694 | 897 | lemma simple_distributed: | 
| 898 | "simple_distributed M X Px \<Longrightarrow> distributed M (count_space (X`space M)) X Px" | |
| 899 | unfolding simple_distributed_def by auto | |
| 42902 | 900 | |
| 47694 | 901 | lemma simple_distributed_finite[dest]: "simple_distributed M X P \<Longrightarrow> finite (X`space M)" | 
| 902 | by (simp add: simple_distributed_def) | |
| 42902 | 903 | |
| 47694 | 904 | lemma (in prob_space) distributed_simple_function_superset: | 
| 905 |   assumes X: "simple_function M X" "\<And>x. x \<in> X ` space M \<Longrightarrow> P x = measure M (X -` {x} \<inter> space M)"
 | |
| 906 | assumes A: "X`space M \<subseteq> A" "finite A" | |
| 907 | defines "S \<equiv> count_space A" and "P' \<equiv> (\<lambda>x. if x \<in> X`space M then P x else 0)" | |
| 908 | shows "distributed M S X P'" | |
| 909 | unfolding distributed_def | |
| 910 | proof safe | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 911 | show "(\<lambda>x. ennreal (P' x)) \<in> borel_measurable S" unfolding S_def by simp | 
| 47694 | 912 | show "distr M S X = density S P'" | 
| 913 | proof (rule measure_eqI_finite) | |
| 914 | show "sets (distr M S X) = Pow A" "sets (density S P') = Pow A" | |
| 915 | using A unfolding S_def by auto | |
| 916 | show "finite A" by fact | |
| 917 | fix a assume a: "a \<in> A" | |
| 918 |     then have "a \<notin> X`space M \<Longrightarrow> X -` {a} \<inter> space M = {}" by auto
 | |
| 919 |     with A a X have "emeasure (distr M S X) {a} = P' a"
 | |
| 920 | by (subst emeasure_distr) | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 921 | (auto simp add: S_def P'_def simple_functionD emeasure_eq_measure measurable_count_space_eq2 | 
| 47694 | 922 | intro!: arg_cong[where f=prob]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 923 |     also have "\<dots> = (\<integral>\<^sup>+x. ennreal (P' a) * indicator {a} x \<partial>S)"
 | 
| 47694 | 924 | using A X a | 
| 56996 | 925 | by (subst nn_integral_cmult_indicator) | 
| 47694 | 926 | (auto simp: S_def P'_def simple_distributed_def simple_functionD measure_nonneg) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 927 |     also have "\<dots> = (\<integral>\<^sup>+x. ennreal (P' x) * indicator {a} x \<partial>S)"
 | 
| 56996 | 928 | by (auto simp: indicator_def intro!: nn_integral_cong) | 
| 47694 | 929 |     also have "\<dots> = emeasure (density S P') {a}"
 | 
| 930 | using a A by (intro emeasure_density[symmetric]) (auto simp: S_def) | |
| 931 |     finally show "emeasure (distr M S X) {a} = emeasure (density S P') {a}" .
 | |
| 932 | qed | |
| 933 | show "random_variable S X" | |
| 934 | using X(1) A by (auto simp: measurable_def simple_functionD S_def) | |
| 935 | qed | |
| 42902 | 936 | |
| 47694 | 937 | lemma (in prob_space) simple_distributedI: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 938 | assumes X: "simple_function M X" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 939 | "\<And>x. 0 \<le> P x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 940 |     "\<And>x. x \<in> X ` space M \<Longrightarrow> P x = measure M (X -` {x} \<inter> space M)"
 | 
| 47694 | 941 | shows "simple_distributed M X P" | 
| 942 | unfolding simple_distributed_def | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 943 | proof (safe intro!: X) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 944 | have "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (if x \<in> X`space M then P x else 0))" | 
| 47694 | 945 | (is "?A") | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 946 | using simple_functionD[OF X(1)] by (intro distributed_simple_function_superset[OF X(1,3)]) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 947 | also have "?A \<longleftrightarrow> distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (P x))" | 
| 47694 | 948 | by (rule distributed_cong_density) auto | 
| 949 | finally show "\<dots>" . | |
| 950 | qed (rule simple_functionD[OF X(1)]) | |
| 951 | ||
| 952 | lemma simple_distributed_joint_finite: | |
| 953 | assumes X: "simple_distributed M (\<lambda>x. (X x, Y x)) Px" | |
| 954 | shows "finite (X ` space M)" "finite (Y ` space M)" | |
| 42902 | 955 | proof - | 
| 47694 | 956 | have "finite ((\<lambda>x. (X x, Y x)) ` space M)" | 
| 957 | using X by (auto simp: simple_distributed_def simple_functionD) | |
| 958 | then have "finite (fst ` (\<lambda>x. (X x, Y x)) ` space M)" "finite (snd ` (\<lambda>x. (X x, Y x)) ` space M)" | |
| 959 | by auto | |
| 960 | then show fin: "finite (X ` space M)" "finite (Y ` space M)" | |
| 961 | by (auto simp: image_image) | |
| 962 | qed | |
| 963 | ||
| 964 | lemma simple_distributed_joint2_finite: | |
| 965 | assumes X: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Px" | |
| 966 | shows "finite (X ` space M)" "finite (Y ` space M)" "finite (Z ` space M)" | |
| 967 | proof - | |
| 968 | have "finite ((\<lambda>x. (X x, Y x, Z x)) ` space M)" | |
| 969 | using X by (auto simp: simple_distributed_def simple_functionD) | |
| 970 | then have "finite (fst ` (\<lambda>x. (X x, Y x, Z x)) ` space M)" | |
| 971 | "finite ((fst \<circ> snd) ` (\<lambda>x. (X x, Y x, Z x)) ` space M)" | |
| 972 | "finite ((snd \<circ> snd) ` (\<lambda>x. (X x, Y x, Z x)) ` space M)" | |
| 973 | by auto | |
| 974 | then show fin: "finite (X ` space M)" "finite (Y ` space M)" "finite (Z ` space M)" | |
| 975 | by (auto simp: image_image) | |
| 42902 | 976 | qed | 
| 977 | ||
| 47694 | 978 | lemma simple_distributed_simple_function: | 
| 979 | "simple_distributed M X Px \<Longrightarrow> simple_function M X" | |
| 980 | unfolding simple_distributed_def distributed_def | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 981 | by (auto simp: simple_function_def measurable_count_space_eq2) | 
| 47694 | 982 | |
| 983 | lemma simple_distributed_measure: | |
| 984 |   "simple_distributed M X P \<Longrightarrow> a \<in> X`space M \<Longrightarrow> P a = measure M (X -` {a} \<inter> space M)"
 | |
| 985 | using distributed_count_space[of M "X`space M" X P a, symmetric] | |
| 986 | by (auto simp: simple_distributed_def measure_def) | |
| 987 | ||
| 988 | lemma (in prob_space) simple_distributed_joint: | |
| 989 | assumes X: "simple_distributed M (\<lambda>x. (X x, Y x)) Px" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 990 | defines "S \<equiv> count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M)" | 
| 47694 | 991 | defines "P \<equiv> (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x))`space M then Px x else 0)" | 
| 992 | shows "distributed M S (\<lambda>x. (X x, Y x)) P" | |
| 993 | proof - | |
| 994 | from simple_distributed_joint_finite[OF X, simp] | |
| 995 | have S_eq: "S = count_space (X`space M \<times> Y`space M)" | |
| 996 | by (simp add: S_def pair_measure_count_space) | |
| 997 | show ?thesis | |
| 998 | unfolding S_eq P_def | |
| 999 | proof (rule distributed_simple_function_superset) | |
| 1000 | show "simple_function M (\<lambda>x. (X x, Y x))" | |
| 1001 | using X by (rule simple_distributed_simple_function) | |
| 1002 | fix x assume "x \<in> (\<lambda>x. (X x, Y x)) ` space M" | |
| 1003 | from simple_distributed_measure[OF X this] | |
| 1004 |     show "Px x = prob ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M)" .
 | |
| 1005 | qed auto | |
| 1006 | qed | |
| 42860 | 1007 | |
| 47694 | 1008 | lemma (in prob_space) simple_distributed_joint2: | 
| 1009 | assumes X: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Px" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 1010 | defines "S \<equiv> count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M) \<Otimes>\<^sub>M count_space (Z`space M)" | 
| 47694 | 1011 | defines "P \<equiv> (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x))`space M then Px x else 0)" | 
| 1012 | shows "distributed M S (\<lambda>x. (X x, Y x, Z x)) P" | |
| 1013 | proof - | |
| 1014 | from simple_distributed_joint2_finite[OF X, simp] | |
| 1015 | have S_eq: "S = count_space (X`space M \<times> Y`space M \<times> Z`space M)" | |
| 1016 | by (simp add: S_def pair_measure_count_space) | |
| 1017 | show ?thesis | |
| 1018 | unfolding S_eq P_def | |
| 1019 | proof (rule distributed_simple_function_superset) | |
| 1020 | show "simple_function M (\<lambda>x. (X x, Y x, Z x))" | |
| 1021 | using X by (rule simple_distributed_simple_function) | |
| 1022 | fix x assume "x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M" | |
| 1023 | from simple_distributed_measure[OF X this] | |
| 1024 |     show "Px x = prob ((\<lambda>x. (X x, Y x, Z x)) -` {x} \<inter> space M)" .
 | |
| 1025 | qed auto | |
| 1026 | qed | |
| 1027 | ||
| 64267 | 1028 | lemma (in prob_space) simple_distributed_sum_space: | 
| 47694 | 1029 | assumes X: "simple_distributed M X f" | 
| 64267 | 1030 | shows "sum f (X`space M) = 1" | 
| 47694 | 1031 | proof - | 
| 64267 | 1032 |   from X have "sum f (X`space M) = prob (\<Union>i\<in>X`space M. X -` {i} \<inter> space M)"
 | 
| 47694 | 1033 | by (subst finite_measure_finite_Union) | 
| 1034 | (auto simp add: disjoint_family_on_def simple_distributed_measure simple_distributed_simple_function simple_functionD | |
| 64267 | 1035 | intro!: sum.cong arg_cong[where f="prob"]) | 
| 47694 | 1036 | also have "\<dots> = prob (space M)" | 
| 1037 | by (auto intro!: arg_cong[where f=prob]) | |
| 1038 | finally show ?thesis | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1039 | using emeasure_space_1 by (simp add: emeasure_eq_measure) | 
| 47694 | 1040 | qed | 
| 42860 | 1041 | |
| 47694 | 1042 | lemma (in prob_space) distributed_marginal_eq_joint_simple: | 
| 1043 | assumes Px: "simple_function M X" | |
| 1044 | assumes Py: "simple_distributed M Y Py" | |
| 1045 | assumes Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 1046 | assumes y: "y \<in> Y`space M" | |
| 1047 | shows "Py y = (\<Sum>x\<in>X`space M. if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0)" | |
| 1048 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1049 | note Px = simple_distributedI[OF Px measure_nonneg refl] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1050 | have "AE y in count_space (Y ` space M). ennreal (Py y) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1051 | \<integral>\<^sup>+ x. ennreal (if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0) \<partial>count_space (X ` space M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1052 | using sigma_finite_measure_count_space_finite sigma_finite_measure_count_space_finite | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1053 | simple_distributed[OF Py] simple_distributed_joint[OF Pxy] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1054 | by (rule distributed_marginal_eq_joint2) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1055 | (auto intro: Py Px simple_distributed_finite) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1056 | then have "ennreal (Py y) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1057 | (\<Sum>x\<in>X`space M. ennreal (if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1058 | using y Px[THEN simple_distributed_finite] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1059 | by (auto simp: AE_count_space nn_integral_count_space_finite) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1060 | also have "\<dots> = (\<Sum>x\<in>X`space M. if (x, y) \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy (x, y) else 0)" | 
| 64267 | 1061 | using Pxy by (intro sum_ennreal) auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1062 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1063 | using simple_distributed_nonneg[OF Py] simple_distributed_nonneg[OF Pxy] | 
| 64267 | 1064 | by (subst (asm) ennreal_inj) (auto intro!: sum_nonneg) | 
| 47694 | 1065 | qed | 
| 42860 | 1066 | |
| 50419 | 1067 | lemma distributedI_real: | 
| 1068 | fixes f :: "'a \<Rightarrow> real" | |
| 1069 | assumes gen: "sets M1 = sigma_sets (space M1) E" and "Int_stable E" | |
| 1070 | and A: "range A \<subseteq> E" "(\<Union>i::nat. A i) = space M1" "\<And>i. emeasure (distr M M1 X) (A i) \<noteq> \<infinity>" | |
| 1071 | and X: "X \<in> measurable M M1" | |
| 1072 | and f: "f \<in> borel_measurable M1" "AE x in M1. 0 \<le> f x" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 1073 | and eq: "\<And>A. A \<in> E \<Longrightarrow> emeasure M (X -` A \<inter> space M) = (\<integral>\<^sup>+ x. f x * indicator A x \<partial>M1)" | 
| 50419 | 1074 | shows "distributed M M1 X f" | 
| 1075 | unfolding distributed_def | |
| 1076 | proof (intro conjI) | |
| 1077 | show "distr M M1 X = density M1 f" | |
| 1078 | proof (rule measure_eqI_generator_eq[where A=A]) | |
| 1079 |     { fix A assume A: "A \<in> E"
 | |
| 1080 | then have "A \<in> sigma_sets (space M1) E" by auto | |
| 1081 | then have "A \<in> sets M1" | |
| 1082 | using gen by simp | |
| 1083 | with f A eq[of A] X show "emeasure (distr M M1 X) A = emeasure (density M1 f) A" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1084 | by (auto simp add: emeasure_distr emeasure_density ennreal_indicator | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1085 | intro!: nn_integral_cong split: split_indicator) } | 
| 50419 | 1086 | note eq_E = this | 
| 1087 | show "Int_stable E" by fact | |
| 1088 |     { fix e assume "e \<in> E"
 | |
| 1089 | then have "e \<in> sigma_sets (space M1) E" by auto | |
| 1090 | then have "e \<in> sets M1" unfolding gen . | |
| 1091 | then have "e \<subseteq> space M1" by (rule sets.sets_into_space) } | |
| 1092 | then show "E \<subseteq> Pow (space M1)" by auto | |
| 1093 | show "sets (distr M M1 X) = sigma_sets (space M1) E" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1094 | "sets (density M1 (\<lambda>x. ennreal (f x))) = sigma_sets (space M1) E" | 
| 50419 | 1095 | unfolding gen[symmetric] by auto | 
| 1096 | qed fact+ | |
| 1097 | qed (insert X f, auto) | |
| 1098 | ||
| 1099 | lemma distributedI_borel_atMost: | |
| 1100 | fixes f :: "real \<Rightarrow> real" | |
| 1101 | assumes [measurable]: "X \<in> borel_measurable M" | |
| 1102 | and [measurable]: "f \<in> borel_measurable borel" and f[simp]: "AE x in lborel. 0 \<le> f x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1103 |     and g_eq: "\<And>a. (\<integral>\<^sup>+x. f x * indicator {..a} x \<partial>lborel)  = ennreal (g a)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1104 |     and M_eq: "\<And>a. emeasure M {x\<in>space M. X x \<le> a} = ennreal (g a)"
 | 
| 50419 | 1105 | shows "distributed M lborel X f" | 
| 1106 | proof (rule distributedI_real) | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1107 | show "sets (lborel::real measure) = sigma_sets (space lborel) (range atMost)" | 
| 50419 | 1108 | by (simp add: borel_eq_atMost) | 
| 1109 | show "Int_stable (range atMost :: real set set)" | |
| 1110 | by (auto simp: Int_stable_def) | |
| 1111 |   have vimage_eq: "\<And>a. (X -` {..a} \<inter> space M) = {x\<in>space M. X x \<le> a}" by auto
 | |
| 63040 | 1112 |   define A where "A i = {.. real i}" for i :: nat
 | 
| 50419 | 1113 | then show "range A \<subseteq> range atMost" "(\<Union>i. A i) = space lborel" | 
| 1114 | "\<And>i. emeasure (distr M lborel X) (A i) \<noteq> \<infinity>" | |
| 1115 | by (auto simp: real_arch_simple emeasure_distr vimage_eq M_eq) | |
| 1116 | ||
| 1117 | fix A :: "real set" assume "A \<in> range atMost" | |
| 1118 |   then obtain a where A: "A = {..a}" by auto
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51683diff
changeset | 1119 | show "emeasure M (X -` A \<inter> space M) = (\<integral>\<^sup>+x. f x * indicator A x \<partial>lborel)" | 
| 50419 | 1120 | unfolding vimage_eq A M_eq g_eq .. | 
| 1121 | qed auto | |
| 1122 | ||
| 1123 | lemma (in prob_space) uniform_distributed_params: | |
| 1124 | assumes X: "distributed M MX X (\<lambda>x. indicator A x / measure MX A)" | |
| 1125 | shows "A \<in> sets MX" "measure MX A \<noteq> 0" | |
| 1126 | proof - | |
| 1127 | interpret X: prob_space "distr M MX X" | |
| 1128 | using distributed_measurable[OF X] by (rule prob_space_distr) | |
| 1129 | ||
| 1130 | show "measure MX A \<noteq> 0" | |
| 1131 | proof | |
| 1132 | assume "measure MX A = 0" | |
| 1133 | with X.emeasure_space_1 X.prob_space distributed_distr_eq_density[OF X] | |
| 1134 | show False | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1135 | by (simp add: emeasure_density zero_ennreal_def[symmetric]) | 
| 50419 | 1136 | qed | 
| 1137 | with measure_notin_sets[of A MX] show "A \<in> sets MX" | |
| 1138 | by blast | |
| 1139 | qed | |
| 1140 | ||
| 47694 | 1141 | lemma prob_space_uniform_measure: | 
| 1142 | assumes A: "emeasure M A \<noteq> 0" "emeasure M A \<noteq> \<infinity>" | |
| 1143 | shows "prob_space (uniform_measure M A)" | |
| 1144 | proof | |
| 1145 | show "emeasure (uniform_measure M A) (space (uniform_measure M A)) = 1" | |
| 1146 | using emeasure_uniform_measure[OF emeasure_neq_0_sets[OF A(1)], of "space M"] | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 1147 | using sets.sets_into_space[OF emeasure_neq_0_sets[OF A(1)]] A | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1148 | by (simp add: Int_absorb2 less_top) | 
| 47694 | 1149 | qed | 
| 1150 | ||
| 1151 | lemma prob_space_uniform_count_measure: "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> prob_space (uniform_count_measure A)"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1152 | by standard (auto simp: emeasure_uniform_count_measure space_uniform_count_measure one_ennreal_def) | 
| 42860 | 1153 | |
| 59000 | 1154 | lemma (in prob_space) measure_uniform_measure_eq_cond_prob: | 
| 1155 | assumes [measurable]: "Measurable.pred M P" "Measurable.pred M Q" | |
| 1156 |   shows "\<P>(x in uniform_measure M {x\<in>space M. Q x}. P x) = \<P>(x in M. P x \<bar> Q x)"
 | |
| 1157 | proof cases | |
| 1158 |   assume Q: "measure M {x\<in>space M. Q x} = 0"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1159 | then have *: "AE x in M. \<not> Q x" | 
| 59000 | 1160 | by (simp add: prob_eq_0) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1161 |   then have "density M (\<lambda>x. indicator {x \<in> space M. Q x} x / emeasure M {x \<in> space M. Q x}) = density M (\<lambda>x. 0)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1162 | by (intro density_cong) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1163 | with * show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1164 | unfolding uniform_measure_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1165 | by (simp add: emeasure_density measure_def cond_prob_def emeasure_eq_0_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1166 | next | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1167 |   assume Q: "measure M {x\<in>space M. Q x} \<noteq> 0"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1168 |   then show "\<P>(x in uniform_measure M {x \<in> space M. Q x}. P x) = cond_prob M P Q"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1169 | by (subst measure_uniform_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1170 | (auto simp: emeasure_eq_measure cond_prob_def measure_nonneg intro!: arg_cong[where f=prob]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1171 | qed | 
| 59000 | 1172 | |
| 1173 | lemma prob_space_point_measure: | |
| 1174 | "finite S \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> 0 \<le> p s) \<Longrightarrow> (\<Sum>s\<in>S. p s) = 1 \<Longrightarrow> prob_space (point_measure S p)" | |
| 1175 | by (rule prob_spaceI) (simp add: space_point_measure emeasure_point_measure_finite) | |
| 1176 | ||
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1177 | lemma (in prob_space) distr_pair_fst: "distr (N \<Otimes>\<^sub>M M) N fst = N" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1178 | proof (intro measure_eqI) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1179 | fix A assume A: "A \<in> sets (distr (N \<Otimes>\<^sub>M M) N fst)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1180 | from A have "emeasure (distr (N \<Otimes>\<^sub>M M) N fst) A = emeasure (N \<Otimes>\<^sub>M M) (A \<times> space M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1181 | by (auto simp add: emeasure_distr space_pair_measure dest: sets.sets_into_space intro!: arg_cong2[where f=emeasure]) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1182 | with A show "emeasure (distr (N \<Otimes>\<^sub>M M) N fst) A = emeasure N A" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1183 | by (simp add: emeasure_pair_measure_Times emeasure_space_1) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1184 | qed simp | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1185 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1186 | lemma (in product_prob_space) distr_reorder: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1187 | assumes "inj_on t J" "t \<in> J \<rightarrow> K" "finite K" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1188 | shows "distr (PiM K M) (Pi\<^sub>M J (\<lambda>x. M (t x))) (\<lambda>\<omega>. \<lambda>n\<in>J. \<omega> (t n)) = PiM J (\<lambda>x. M (t x))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1189 | proof (rule product_sigma_finite.PiM_eqI) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1190 | show "product_sigma_finite (\<lambda>x. M (t x))" .. | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1191 | have "t`J \<subseteq> K" using assms by auto | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1192 | then show [simp]: "finite J" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1193 | by (rule finite_imageD[OF finite_subset]) fact+ | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1194 | fix A assume A: "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M (t i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1195 | moreover have "((\<lambda>\<omega>. \<lambda>n\<in>J. \<omega> (t n)) -` Pi\<^sub>E J A \<inter> space (Pi\<^sub>M K M)) = | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1196 | (\<Pi>\<^sub>E i\<in>K. if i \<in> t`J then A (the_inv_into J t i) else space (M i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1197 | using A A[THEN sets.sets_into_space] \<open>t \<in> J \<rightarrow> K\<close> \<open>inj_on t J\<close> | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1198 | by (subst prod_emb_Pi[symmetric]) (auto simp: space_PiM PiE_iff the_inv_into_f_f prod_emb_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1199 | ultimately show "distr (Pi\<^sub>M K M) (Pi\<^sub>M J (\<lambda>x. M (t x))) (\<lambda>\<omega>. \<lambda>n\<in>J. \<omega> (t n)) (Pi\<^sub>E J A) = (\<Prod>i\<in>J. M (t i) (A i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1200 | using assms | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1201 | apply (subst emeasure_distr) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1202 | apply (auto intro!: sets_PiM_I_finite simp: Pi_iff) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1203 | apply (subst emeasure_PiM) | 
| 64272 | 1204 | apply (auto simp: the_inv_into_f_f \<open>inj_on t J\<close> prod.reindex[OF \<open>inj_on t J\<close>] | 
| 1205 | if_distrib[where f="emeasure (M _)"] prod.If_cases emeasure_space_1 Int_absorb1 \<open>t`J \<subseteq> K\<close>) | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1206 | done | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1207 | qed simp | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1208 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1209 | lemma (in product_prob_space) distr_restrict: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1210 | "J \<subseteq> K \<Longrightarrow> finite K \<Longrightarrow> (\<Pi>\<^sub>M i\<in>J. M i) = distr (\<Pi>\<^sub>M i\<in>K. M i) (\<Pi>\<^sub>M i\<in>J. M i) (\<lambda>f. restrict f J)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1211 | using distr_reorder[of "\<lambda>x. x" J K] by (simp add: Pi_iff subset_eq) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1212 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1213 | lemma (in product_prob_space) emeasure_prod_emb[simp]: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1214 | assumes L: "J \<subseteq> L" "finite L" and X: "X \<in> sets (Pi\<^sub>M J M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1215 | shows "emeasure (Pi\<^sub>M L M) (prod_emb L M J X) = emeasure (Pi\<^sub>M J M) X" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1216 | by (subst distr_restrict[OF L]) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1217 | (simp add: prod_emb_def space_PiM emeasure_distr measurable_restrict_subset L X) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1218 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1219 | lemma emeasure_distr_restrict: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1220 | assumes "I \<subseteq> K" and Q[measurable_cong]: "sets Q = sets (PiM K M)" and A[measurable]: "A \<in> sets (PiM I M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1221 | shows "emeasure (distr Q (PiM I M) (\<lambda>\<omega>. restrict \<omega> I)) A = emeasure Q (prod_emb K M I A)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1222 | using \<open>I\<subseteq>K\<close> sets_eq_imp_space_eq[OF Q] | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1223 | by (subst emeasure_distr) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1224 | (auto simp: measurable_cong_sets[OF Q] prod_emb_def space_PiM[symmetric] intro!: measurable_restrict) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1225 | |
| 63626 
44ce6b524ff3
move measure theory from HOL-Probability to HOL-Multivariate_Analysis
 hoelzl parents: 
63099diff
changeset | 1226 | lemma (in prob_space) prob_space_completion: "prob_space (completion M)" | 
| 
44ce6b524ff3
move measure theory from HOL-Probability to HOL-Multivariate_Analysis
 hoelzl parents: 
63099diff
changeset | 1227 | by (rule prob_spaceI) (simp add: emeasure_space_1) | 
| 
44ce6b524ff3
move measure theory from HOL-Probability to HOL-Multivariate_Analysis
 hoelzl parents: 
63099diff
changeset | 1228 | |
| 35582 | 1229 | end |