author | blanchet |
Wed, 17 Feb 2010 12:14:08 +0100 | |
changeset 35185 | 9b8f351cced6 |
parent 35183 | 8580ba651489 |
child 35189 | 250fe9541fb2 |
permissions | -rw-r--r-- |
33191 | 1 |
\documentclass[a4paper,12pt]{article} |
2 |
\usepackage[T1]{fontenc} |
|
3 |
\usepackage{amsmath} |
|
4 |
\usepackage{amssymb} |
|
33564
75ce0f60617a
fixed minor problems with Nitpick's documentation
blanchet
parents:
33561
diff
changeset
|
5 |
\usepackage[english,french]{babel} |
33191 | 6 |
\usepackage{color} |
7 |
\usepackage{graphicx} |
|
8 |
%\usepackage{mathpazo} |
|
9 |
\usepackage{multicol} |
|
10 |
\usepackage{stmaryrd} |
|
11 |
%\usepackage[scaled=.85]{beramono} |
|
12 |
\usepackage{../iman,../pdfsetup} |
|
13 |
||
14 |
%\oddsidemargin=4.6mm |
|
15 |
%\evensidemargin=4.6mm |
|
16 |
%\textwidth=150mm |
|
17 |
%\topmargin=4.6mm |
|
18 |
%\headheight=0mm |
|
19 |
%\headsep=0mm |
|
20 |
%\textheight=234mm |
|
21 |
||
22 |
\def\Colon{\mathord{:\mkern-1.5mu:}} |
|
23 |
%\def\lbrakk{\mathopen{\lbrack\mkern-3.25mu\lbrack}} |
|
24 |
%\def\rbrakk{\mathclose{\rbrack\mkern-3.255mu\rbrack}} |
|
25 |
\def\lparr{\mathopen{(\mkern-4mu\mid}} |
|
26 |
\def\rparr{\mathclose{\mid\mkern-4mu)}} |
|
27 |
||
28 |
\def\unk{{?}} |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
29 |
\def\undef{(\lambda x.\; \unk)} |
33191 | 30 |
%\def\unr{\textit{others}} |
31 |
\def\unr{\ldots} |
|
32 |
\def\Abs#1{\hbox{\rm{\flqq}}{\,#1\,}\hbox{\rm{\frqq}}} |
|
33 |
\def\Q{{\smash{\lower.2ex\hbox{$\scriptstyle?$}}}} |
|
34 |
||
35 |
\hyphenation{Mini-Sat size-change First-Steps grand-parent nit-pick |
|
36 |
counter-example counter-examples data-type data-types co-data-type |
|
37 |
co-data-types in-duc-tive co-in-duc-tive} |
|
38 |
||
39 |
\urlstyle{tt} |
|
40 |
||
41 |
\begin{document} |
|
42 |
||
33564
75ce0f60617a
fixed minor problems with Nitpick's documentation
blanchet
parents:
33561
diff
changeset
|
43 |
\selectlanguage{english} |
75ce0f60617a
fixed minor problems with Nitpick's documentation
blanchet
parents:
33561
diff
changeset
|
44 |
|
33191 | 45 |
\title{\includegraphics[scale=0.5]{isabelle_nitpick} \\[4ex] |
46 |
Picking Nits \\[\smallskipamount] |
|
33887 | 47 |
\Large A User's Guide to Nitpick for Isabelle/HOL} |
33191 | 48 |
\author{\hbox{} \\ |
49 |
Jasmin Christian Blanchette \\ |
|
33887 | 50 |
{\normalsize Institut f\"ur Informatik, Technische Universit\"at M\"unchen} \\ |
33191 | 51 |
\hbox{}} |
52 |
||
53 |
\maketitle |
|
54 |
||
55 |
\tableofcontents |
|
56 |
||
57 |
\setlength{\parskip}{.7em plus .2em minus .1em} |
|
58 |
\setlength{\parindent}{0pt} |
|
59 |
\setlength{\abovedisplayskip}{\parskip} |
|
60 |
\setlength{\abovedisplayshortskip}{.9\parskip} |
|
61 |
\setlength{\belowdisplayskip}{\parskip} |
|
62 |
\setlength{\belowdisplayshortskip}{.9\parskip} |
|
63 |
||
64 |
% General-purpose enum environment with correct spacing |
|
65 |
\newenvironment{enum}% |
|
66 |
{\begin{list}{}{% |
|
67 |
\setlength{\topsep}{.1\parskip}% |
|
68 |
\setlength{\partopsep}{.1\parskip}% |
|
69 |
\setlength{\itemsep}{\parskip}% |
|
70 |
\advance\itemsep by-\parsep}} |
|
71 |
{\end{list}} |
|
72 |
||
73 |
\def\pre{\begingroup\vskip0pt plus1ex\advance\leftskip by\leftmargin |
|
74 |
\advance\rightskip by\leftmargin} |
|
75 |
\def\post{\vskip0pt plus1ex\endgroup} |
|
76 |
||
77 |
\def\prew{\pre\advance\rightskip by-\leftmargin} |
|
78 |
\def\postw{\post} |
|
79 |
||
80 |
\section{Introduction} |
|
81 |
\label{introduction} |
|
82 |
||
83 |
Nitpick \cite{blanchette-nipkow-2009} is a counterexample generator for |
|
84 |
Isabelle/HOL \cite{isa-tutorial} that is designed to handle formulas |
|
85 |
combining (co)in\-duc\-tive datatypes, (co)in\-duc\-tively defined predicates, and |
|
86 |
quantifiers. It builds on Kodkod \cite{torlak-jackson-2007}, a highly optimized |
|
87 |
first-order relational model finder developed by the Software Design Group at |
|
88 |
MIT. It is conceptually similar to Refute \cite{weber-2008}, from which it |
|
89 |
borrows many ideas and code fragments, but it benefits from Kodkod's |
|
90 |
optimizations and a new encoding scheme. The name Nitpick is shamelessly |
|
91 |
appropriated from a now retired Alloy precursor. |
|
92 |
||
93 |
Nitpick is easy to use---you simply enter \textbf{nitpick} after a putative |
|
94 |
theorem and wait a few seconds. Nonetheless, there are situations where knowing |
|
95 |
how it works under the hood and how it reacts to various options helps |
|
96 |
increase the test coverage. This manual also explains how to install the tool on |
|
97 |
your workstation. Should the motivation fail you, think of the many hours of |
|
98 |
hard work Nitpick will save you. Proving non-theorems is \textsl{hard work}. |
|
99 |
||
100 |
Another common use of Nitpick is to find out whether the axioms of a locale are |
|
101 |
satisfiable, while the locale is being developed. To check this, it suffices to |
|
102 |
write |
|
103 |
||
104 |
\prew |
|
105 |
\textbf{lemma}~``$\textit{False}$'' \\ |
|
106 |
\textbf{nitpick}~[\textit{show\_all}] |
|
107 |
\postw |
|
108 |
||
109 |
after the locale's \textbf{begin} keyword. To falsify \textit{False}, Nitpick |
|
110 |
must find a model for the axioms. If it finds no model, we have an indication |
|
111 |
that the axioms might be unsatisfiable. |
|
112 |
||
33195
0efe26262e73
updated Nitpick manual to reflect the latest Stand der Dinge
blanchet
parents:
33193
diff
changeset
|
113 |
Nitpick requires the Kodkodi package for Isabelle as well as a Java 1.5 virtual |
0efe26262e73
updated Nitpick manual to reflect the latest Stand der Dinge
blanchet
parents:
33193
diff
changeset
|
114 |
machine called \texttt{java}. The examples presented in this manual can be found |
0efe26262e73
updated Nitpick manual to reflect the latest Stand der Dinge
blanchet
parents:
33193
diff
changeset
|
115 |
in Isabelle's \texttt{src/HOL/Nitpick\_Examples/Manual\_Nits.thy} theory. |
0efe26262e73
updated Nitpick manual to reflect the latest Stand der Dinge
blanchet
parents:
33193
diff
changeset
|
116 |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
117 |
Throughout this manual, we will explicitly invoke the \textbf{nitpick} command. |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
118 |
Nitpick also provides an automatic mode that can be enabled using the |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
119 |
``Auto Nitpick'' option from the ``Isabelle'' menu in Proof General. In this |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
120 |
mode, Nitpick is run on every newly entered theorem, much like Auto Quickcheck. |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
121 |
The collective time limit for Auto Nitpick and Auto Quickcheck can be set using |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
122 |
the ``Auto Counterexample Time Limit'' option. |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
123 |
|
33191 | 124 |
\newbox\boxA |
125 |
\setbox\boxA=\hbox{\texttt{nospam}} |
|
126 |
||
127 |
The known bugs and limitations at the time of writing are listed in |
|
128 |
\S\ref{known-bugs-and-limitations}. Comments and bug reports concerning Nitpick |
|
129 |
or this manual should be directed to |
|
130 |
\texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@\allowbreak |
|
131 |
in.\allowbreak tum.\allowbreak de}. |
|
132 |
||
133 |
\vskip2.5\smallskipamount |
|
134 |
||
135 |
\textbf{Acknowledgment.} The author would like to thank Mark Summerfield for |
|
136 |
suggesting several textual improvements. |
|
137 |
% and Perry James for reporting a typo. |
|
138 |
||
139 |
\section{First Steps} |
|
140 |
\label{first-steps} |
|
141 |
||
142 |
This section introduces Nitpick by presenting small examples. If possible, you |
|
143 |
should try out the examples on your workstation. Your theory file should start |
|
144 |
the standard way: |
|
145 |
||
146 |
\prew |
|
147 |
\textbf{theory}~\textit{Scratch} \\ |
|
148 |
\textbf{imports}~\textit{Main} \\ |
|
149 |
\textbf{begin} |
|
150 |
\postw |
|
151 |
||
152 |
The results presented here were obtained using the JNI version of MiniSat and |
|
153 |
with multithreading disabled to reduce nondeterminism. This was done by adding |
|
154 |
the line |
|
155 |
||
156 |
\prew |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
157 |
\textbf{nitpick\_params} [\textit{sat\_solver}~= \textit{MiniSat\_JNI}, \,\textit{max\_threads}~= 1] |
33191 | 158 |
\postw |
159 |
||
160 |
after the \textbf{begin} keyword. The JNI version of MiniSat is bundled with |
|
161 |
Kodkodi and is precompiled for the major platforms. Other SAT solvers can also |
|
162 |
be installed, as explained in \S\ref{optimizations}. If you have already |
|
163 |
configured SAT solvers in Isabelle (e.g., for Refute), these will also be |
|
164 |
available to Nitpick. |
|
165 |
||
166 |
\subsection{Propositional Logic} |
|
167 |
\label{propositional-logic} |
|
168 |
||
169 |
Let's start with a trivial example from propositional logic: |
|
170 |
||
171 |
\prew |
|
172 |
\textbf{lemma}~``$P \longleftrightarrow Q$'' \\ |
|
173 |
\textbf{nitpick} |
|
174 |
\postw |
|
175 |
||
176 |
You should get the following output: |
|
177 |
||
178 |
\prew |
|
179 |
\slshape |
|
180 |
Nitpick found a counterexample: \\[2\smallskipamount] |
|
181 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
182 |
\hbox{}\qquad\qquad $P = \textit{True}$ \\ |
|
183 |
\hbox{}\qquad\qquad $Q = \textit{False}$ |
|
184 |
\postw |
|
185 |
||
186 |
Nitpick can also be invoked on individual subgoals, as in the example below: |
|
187 |
||
188 |
\prew |
|
189 |
\textbf{apply}~\textit{auto} \\[2\smallskipamount] |
|
190 |
{\slshape goal (2 subgoals): \\ |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
191 |
\phantom{0}1. $P\,\Longrightarrow\, Q$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
192 |
\phantom{0}2. $Q\,\Longrightarrow\, P$} \\[2\smallskipamount] |
33191 | 193 |
\textbf{nitpick}~1 \\[2\smallskipamount] |
194 |
{\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
195 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
196 |
\hbox{}\qquad\qquad $P = \textit{True}$ \\ |
|
197 |
\hbox{}\qquad\qquad $Q = \textit{False}$} \\[2\smallskipamount] |
|
198 |
\textbf{nitpick}~2 \\[2\smallskipamount] |
|
199 |
{\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
200 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
201 |
\hbox{}\qquad\qquad $P = \textit{False}$ \\ |
|
202 |
\hbox{}\qquad\qquad $Q = \textit{True}$} \\[2\smallskipamount] |
|
203 |
\textbf{oops} |
|
204 |
\postw |
|
205 |
||
206 |
\subsection{Type Variables} |
|
207 |
\label{type-variables} |
|
208 |
||
209 |
If you are left unimpressed by the previous example, don't worry. The next |
|
210 |
one is more mind- and computer-boggling: |
|
211 |
||
212 |
\prew |
|
213 |
\textbf{lemma} ``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$'' |
|
214 |
\postw |
|
215 |
\pagebreak[2] %% TYPESETTING |
|
216 |
||
217 |
The putative lemma involves the definite description operator, {THE}, presented |
|
218 |
in section 5.10.1 of the Isabelle tutorial \cite{isa-tutorial}. The |
|
219 |
operator is defined by the axiom $(\textrm{THE}~x.\; x = a) = a$. The putative |
|
220 |
lemma is merely asserting the indefinite description operator axiom with {THE} |
|
221 |
substituted for {SOME}. |
|
222 |
||
223 |
The free variable $x$ and the bound variable $y$ have type $'a$. For formulas |
|
224 |
containing type variables, Nitpick enumerates the possible domains for each type |
|
225 |
variable, up to a given cardinality (8 by default), looking for a finite |
|
226 |
countermodel: |
|
227 |
||
228 |
\prew |
|
229 |
\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount] |
|
230 |
\slshape |
|
231 |
Trying 8 scopes: \nopagebreak \\ |
|
232 |
\hbox{}\qquad \textit{card}~$'a$~= 1; \\ |
|
233 |
\hbox{}\qquad \textit{card}~$'a$~= 2; \\ |
|
234 |
\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount] |
|
235 |
\hbox{}\qquad \textit{card}~$'a$~= 8. \\[2\smallskipamount] |
|
236 |
Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount] |
|
237 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
238 |
\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\ |
|
239 |
\hbox{}\qquad\qquad $x = a_3$ \\[2\smallskipamount] |
|
240 |
Total time: 580 ms. |
|
241 |
\postw |
|
242 |
||
243 |
Nitpick found a counterexample in which $'a$ has cardinality 3. (For |
|
244 |
cardinalities 1 and 2, the formula holds.) In the counterexample, the three |
|
245 |
values of type $'a$ are written $a_1$, $a_2$, and $a_3$. |
|
246 |
||
247 |
The message ``Trying $n$ scopes: {\ldots}''\ is shown only if the option |
|
248 |
\textit{verbose} is enabled. You can specify \textit{verbose} each time you |
|
249 |
invoke \textbf{nitpick}, or you can set it globally using the command |
|
250 |
||
251 |
\prew |
|
252 |
\textbf{nitpick\_params} [\textit{verbose}] |
|
253 |
\postw |
|
254 |
||
255 |
This command also displays the current default values for all of the options |
|
256 |
supported by Nitpick. The options are listed in \S\ref{option-reference}. |
|
257 |
||
258 |
\subsection{Constants} |
|
259 |
\label{constants} |
|
260 |
||
261 |
By just looking at Nitpick's output, it might not be clear why the |
|
262 |
counterexample in \S\ref{type-variables} is genuine. Let's invoke Nitpick again, |
|
263 |
this time telling it to show the values of the constants that occur in the |
|
264 |
formula: |
|
265 |
||
266 |
\prew |
|
267 |
\textbf{lemma}~``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$'' \\ |
|
268 |
\textbf{nitpick}~[\textit{show\_consts}] \\[2\smallskipamount] |
|
269 |
\slshape |
|
270 |
Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount] |
|
271 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
272 |
\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\ |
|
273 |
\hbox{}\qquad\qquad $x = a_3$ \\ |
|
274 |
\hbox{}\qquad Constant: \nopagebreak \\ |
|
275 |
\hbox{}\qquad\qquad $\textit{The}~\textsl{fallback} = a_1$ |
|
276 |
\postw |
|
277 |
||
278 |
We can see more clearly now. Since the predicate $P$ isn't true for a unique |
|
279 |
value, $\textrm{THE}~y.\;P~y$ can denote any value of type $'a$, even |
|
280 |
$a_1$. Since $P~a_1$ is false, the entire formula is falsified. |
|
281 |
||
282 |
As an optimization, Nitpick's preprocessor introduced the special constant |
|
283 |
``\textit{The} fallback'' corresponding to $\textrm{THE}~y.\;P~y$ (i.e., |
|
284 |
$\mathit{The}~(\lambda y.\;P~y)$) when there doesn't exist a unique $y$ |
|
285 |
satisfying $P~y$. We disable this optimization by passing the |
|
286 |
\textit{full\_descrs} option: |
|
287 |
||
288 |
\prew |
|
289 |
\textbf{nitpick}~[\textit{full\_descrs},\, \textit{show\_consts}] \\[2\smallskipamount] |
|
290 |
\slshape |
|
291 |
Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount] |
|
292 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
293 |
\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\ |
|
294 |
\hbox{}\qquad\qquad $x = a_3$ \\ |
|
295 |
\hbox{}\qquad Constant: \nopagebreak \\ |
|
296 |
\hbox{}\qquad\qquad $\hbox{\slshape THE}~y.\;P~y = a_1$ |
|
297 |
\postw |
|
298 |
||
299 |
As the result of another optimization, Nitpick directly assigned a value to the |
|
300 |
subterm $\textrm{THE}~y.\;P~y$, rather than to the \textit{The} constant. If we |
|
301 |
disable this second optimization by using the command |
|
302 |
||
303 |
\prew |
|
304 |
\textbf{nitpick}~[\textit{dont\_specialize},\, \textit{full\_descrs},\, |
|
305 |
\textit{show\_consts}] |
|
306 |
\postw |
|
307 |
||
308 |
we finally get \textit{The}: |
|
309 |
||
310 |
\prew |
|
311 |
\slshape Constant: \nopagebreak \\ |
|
312 |
\hbox{}\qquad $\mathit{The} = \undef{} |
|
313 |
(\!\begin{aligned}[t]% |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
314 |
& \{a_1, a_2, a_3\} := a_3,\> \{a_1, a_2\} := a_3,\> \{a_1, a_3\} := a_3, \\[-2pt] %% TYPESETTING |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
315 |
& \{a_1\} := a_1,\> \{a_2, a_3\} := a_1,\> \{a_2\} := a_2, \\[-2pt] |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
316 |
& \{a_3\} := a_3,\> \{\} := a_3)\end{aligned}$ |
33191 | 317 |
\postw |
318 |
||
319 |
Notice that $\textit{The}~(\lambda y.\;P~y) = \textit{The}~\{a_2, a_3\} = a_1$, |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
320 |
just like before.\footnote{The Isabelle/HOL notation $f(x := |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
321 |
y)$ denotes the function that maps $x$ to $y$ and that otherwise behaves like |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
322 |
$f$.} |
33191 | 323 |
|
324 |
Our misadventures with THE suggest adding `$\exists!x{.}$' (``there exists a |
|
325 |
unique $x$ such that'') at the front of our putative lemma's assumption: |
|
326 |
||
327 |
\prew |
|
328 |
\textbf{lemma}~``$\exists {!}x.\; P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$'' |
|
329 |
\postw |
|
330 |
||
331 |
The fix appears to work: |
|
332 |
||
333 |
\prew |
|
334 |
\textbf{nitpick} \\[2\smallskipamount] |
|
335 |
\slshape Nitpick found no counterexample. |
|
336 |
\postw |
|
337 |
||
338 |
We can further increase our confidence in the formula by exhausting all |
|
339 |
cardinalities up to 50: |
|
340 |
||
341 |
\prew |
|
342 |
\textbf{nitpick} [\textit{card} $'a$~= 1--50]\footnote{The symbol `--' |
|
343 |
can be entered as \texttt{-} (hyphen) or |
|
344 |
\texttt{\char`\\\char`\<midarrow\char`\>}.} \\[2\smallskipamount] |
|
345 |
\slshape Nitpick found no counterexample. |
|
346 |
\postw |
|
347 |
||
348 |
Let's see if Sledgehammer \cite{sledgehammer-2009} can find a proof: |
|
349 |
||
350 |
\prew |
|
351 |
\textbf{sledgehammer} \\[2\smallskipamount] |
|
352 |
{\slshape Sledgehammer: external prover ``$e$'' for subgoal 1: \\ |
|
353 |
$\exists{!}x.\; P~x\,\Longrightarrow\, P~(\hbox{\slshape THE}~y.\; P~y)$ \\ |
|
354 |
Try this command: \textrm{apply}~(\textit{metis~the\_equality})} \\[2\smallskipamount] |
|
355 |
\textbf{apply}~(\textit{metis~the\_equality\/}) \nopagebreak \\[2\smallskipamount] |
|
356 |
{\slshape No subgoals!}% \\[2\smallskipamount] |
|
357 |
%\textbf{done} |
|
358 |
\postw |
|
359 |
||
360 |
This must be our lucky day. |
|
361 |
||
362 |
\subsection{Skolemization} |
|
363 |
\label{skolemization} |
|
364 |
||
365 |
Are all invertible functions onto? Let's find out: |
|
366 |
||
367 |
\prew |
|
368 |
\textbf{lemma} ``$\exists g.\; \forall x.~g~(f~x) = x |
|
369 |
\,\Longrightarrow\, \forall y.\; \exists x.~y = f~x$'' \\ |
|
370 |
\textbf{nitpick} \\[2\smallskipamount] |
|
371 |
\slshape |
|
372 |
Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\[2\smallskipamount] |
|
373 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
374 |
\hbox{}\qquad\qquad $f = \undef{}(b_1 := a_1)$ \\ |
|
375 |
\hbox{}\qquad Skolem constants: \nopagebreak \\ |
|
376 |
\hbox{}\qquad\qquad $g = \undef{}(a_1 := b_1,\> a_2 := b_1)$ \\ |
|
377 |
\hbox{}\qquad\qquad $y = a_2$ |
|
378 |
\postw |
|
379 |
||
380 |
Although $f$ is the only free variable occurring in the formula, Nitpick also |
|
381 |
displays values for the bound variables $g$ and $y$. These values are available |
|
382 |
to Nitpick because it performs skolemization as a preprocessing step. |
|
383 |
||
384 |
In the previous example, skolemization only affected the outermost quantifiers. |
|
385 |
This is not always the case, as illustrated below: |
|
386 |
||
387 |
\prew |
|
388 |
\textbf{lemma} ``$\exists x.\; \forall f.\; f~x = x$'' \\ |
|
389 |
\textbf{nitpick} \\[2\smallskipamount] |
|
390 |
\slshape |
|
391 |
Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount] |
|
392 |
\hbox{}\qquad Skolem constant: \nopagebreak \\ |
|
393 |
\hbox{}\qquad\qquad $\lambda x.\; f = |
|
394 |
\undef{}(\!\begin{aligned}[t] |
|
395 |
& a_1 := \undef{}(a_1 := a_2,\> a_2 := a_1), \\[-2pt] |
|
396 |
& a_2 := \undef{}(a_1 := a_1,\> a_2 := a_1))\end{aligned}$ |
|
397 |
\postw |
|
398 |
||
399 |
The variable $f$ is bound within the scope of $x$; therefore, $f$ depends on |
|
400 |
$x$, as suggested by the notation $\lambda x.\,f$. If $x = a_1$, then $f$ is the |
|
401 |
function that maps $a_1$ to $a_2$ and vice versa; otherwise, $x = a_2$ and $f$ |
|
402 |
maps both $a_1$ and $a_2$ to $a_1$. In both cases, $f~x \not= x$. |
|
403 |
||
404 |
The source of the Skolem constants is sometimes more obscure: |
|
405 |
||
406 |
\prew |
|
407 |
\textbf{lemma} ``$\mathit{refl}~r\,\Longrightarrow\, \mathit{sym}~r$'' \\ |
|
408 |
\textbf{nitpick} \\[2\smallskipamount] |
|
409 |
\slshape |
|
410 |
Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount] |
|
411 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
412 |
\hbox{}\qquad\qquad $r = \{(a_1, a_1),\, (a_2, a_1),\, (a_2, a_2)\}$ \\ |
|
413 |
\hbox{}\qquad Skolem constants: \nopagebreak \\ |
|
414 |
\hbox{}\qquad\qquad $\mathit{sym}.x = a_2$ \\ |
|
415 |
\hbox{}\qquad\qquad $\mathit{sym}.y = a_1$ |
|
416 |
\postw |
|
417 |
||
418 |
What happened here is that Nitpick expanded the \textit{sym} constant to its |
|
419 |
definition: |
|
420 |
||
421 |
\prew |
|
422 |
$\mathit{sym}~r \,\equiv\, |
|
423 |
\forall x\> y.\,\> (x, y) \in r \longrightarrow (y, x) \in r.$ |
|
424 |
\postw |
|
425 |
||
426 |
As their names suggest, the Skolem constants $\mathit{sym}.x$ and |
|
427 |
$\mathit{sym}.y$ are simply the bound variables $x$ and $y$ |
|
428 |
from \textit{sym}'s definition. |
|
429 |
||
430 |
Although skolemization is a useful optimization, you can disable it by invoking |
|
431 |
Nitpick with \textit{dont\_skolemize}. See \S\ref{optimizations} for details. |
|
432 |
||
433 |
\subsection{Natural Numbers and Integers} |
|
434 |
\label{natural-numbers-and-integers} |
|
435 |
||
436 |
Because of the axiom of infinity, the type \textit{nat} does not admit any |
|
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
437 |
finite models. To deal with this, Nitpick's approach is to consider finite |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
438 |
subsets $N$ of \textit{nat} and maps all numbers $\notin N$ to the undefined |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
439 |
value (displayed as `$\unk$'). The type \textit{int} is handled similarly. |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
440 |
Internally, undefined values lead to a three-valued logic. |
33191 | 441 |
|
442 |
Here is an example involving \textit{int}: |
|
443 |
||
444 |
\prew |
|
445 |
\textbf{lemma} ``$\lbrakk i \le j;\> n \le (m{\Colon}\mathit{int})\rbrakk \,\Longrightarrow\, i * n + j * m \le i * m + j * n$'' \\ |
|
446 |
\textbf{nitpick} \\[2\smallskipamount] |
|
447 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
448 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
449 |
\hbox{}\qquad\qquad $i = 0$ \\ |
|
450 |
\hbox{}\qquad\qquad $j = 1$ \\ |
|
451 |
\hbox{}\qquad\qquad $m = 1$ \\ |
|
452 |
\hbox{}\qquad\qquad $n = 0$ |
|
453 |
\postw |
|
454 |
||
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
455 |
Internally, Nitpick uses either a unary or a binary representation of numbers. |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
456 |
The unary representation is more efficient but only suitable for numbers very |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
457 |
close to zero. By default, Nitpick attempts to choose the more appropriate |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
458 |
encoding by inspecting the formula at hand. This behavior can be overridden by |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
459 |
passing either \textit{unary\_ints} or \textit{binary\_ints} as option. For |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
460 |
binary notation, the number of bits to use can be specified using |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
461 |
the \textit{bits} option. For example: |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
462 |
|
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
463 |
\prew |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
464 |
\textbf{nitpick} [\textit{binary\_ints}, \textit{bits}${} = 16$] |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
465 |
\postw |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
466 |
|
33191 | 467 |
With infinite types, we don't always have the luxury of a genuine counterexample |
468 |
and must often content ourselves with a potential one. The tedious task of |
|
469 |
finding out whether the potential counterexample is in fact genuine can be |
|
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
470 |
outsourced to \textit{auto} by passing \textit{check\_potential}. For example: |
33191 | 471 |
|
472 |
\prew |
|
473 |
\textbf{lemma} ``$\forall n.\; \textit{Suc}~n \mathbin{\not=} n \,\Longrightarrow\, P$'' \\ |
|
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
474 |
\textbf{nitpick} [\textit{card~nat}~= 100, \textit{check\_potential}] \\[2\smallskipamount] |
35185
9b8f351cced6
added yet another hint to Nitpick's output, this time warning about problems for which nothing was effectively tested
blanchet
parents:
35183
diff
changeset
|
475 |
\slshape Warning: The conjecture either trivially holds or (more likely) lies outside Nitpick's supported |
9b8f351cced6
added yet another hint to Nitpick's output, this time warning about problems for which nothing was effectively tested
blanchet
parents:
35183
diff
changeset
|
476 |
fragment. Only potential counterexamples may be found. \\[2\smallskipamount] |
9b8f351cced6
added yet another hint to Nitpick's output, this time warning about problems for which nothing was effectively tested
blanchet
parents:
35183
diff
changeset
|
477 |
Nitpick found a potential counterexample: \\[2\smallskipamount] |
33191 | 478 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
479 |
\hbox{}\qquad\qquad $P = \textit{False}$ \\[2\smallskipamount] |
|
480 |
Confirmation by ``\textit{auto}'': The above counterexample is genuine. |
|
481 |
\postw |
|
482 |
||
483 |
You might wonder why the counterexample is first reported as potential. The root |
|
484 |
of the problem is that the bound variable in $\forall n.\; \textit{Suc}~n |
|
485 |
\mathbin{\not=} n$ ranges over an infinite type. If Nitpick finds an $n$ such |
|
486 |
that $\textit{Suc}~n \mathbin{=} n$, it evaluates the assumption to |
|
487 |
\textit{False}; but otherwise, it does not know anything about values of $n \ge |
|
488 |
\textit{card~nat}$ and must therefore evaluate the assumption to $\unk$, not |
|
489 |
\textit{True}. Since the assumption can never be satisfied, the putative lemma |
|
490 |
can never be falsified. |
|
491 |
||
492 |
Incidentally, if you distrust the so-called genuine counterexamples, you can |
|
493 |
enable \textit{check\_\allowbreak genuine} to verify them as well. However, be |
|
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
494 |
aware that \textit{auto} will usually fail to prove that the counterexample is |
33191 | 495 |
genuine or spurious. |
496 |
||
497 |
Some conjectures involving elementary number theory make Nitpick look like a |
|
498 |
giant with feet of clay: |
|
499 |
||
500 |
\prew |
|
501 |
\textbf{lemma} ``$P~\textit{Suc}$'' \\ |
|
502 |
\textbf{nitpick} [\textit{card} = 1--6] \\[2\smallskipamount] |
|
503 |
\slshape |
|
504 |
Nitpick found no counterexample. |
|
505 |
\postw |
|
506 |
||
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
507 |
On any finite set $N$, \textit{Suc} is a partial function; for example, if $N = |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
508 |
\{0, 1, \ldots, k\}$, then \textit{Suc} is $\{0 \mapsto 1,\, 1 \mapsto 2,\, |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
509 |
\ldots,\, k \mapsto \unk\}$, which evaluates to $\unk$ when passed as |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
510 |
argument to $P$. As a result, $P~\textit{Suc}$ is always $\unk$. The next |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
511 |
example is similar: |
33191 | 512 |
|
513 |
\prew |
|
514 |
\textbf{lemma} ``$P~(\textit{op}~{+}\Colon |
|
515 |
\textit{nat}\mathbin{\Rightarrow}\textit{nat}\mathbin{\Rightarrow}\textit{nat})$'' \\ |
|
516 |
\textbf{nitpick} [\textit{card nat} = 1] \\[2\smallskipamount] |
|
517 |
{\slshape Nitpick found a counterexample:} \\[2\smallskipamount] |
|
518 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
519 |
\hbox{}\qquad\qquad $P = \{\}$ \\[2\smallskipamount] |
|
520 |
\textbf{nitpick} [\textit{card nat} = 2] \\[2\smallskipamount] |
|
521 |
{\slshape Nitpick found no counterexample.} |
|
522 |
\postw |
|
523 |
||
524 |
The problem here is that \textit{op}~+ is total when \textit{nat} is taken to be |
|
525 |
$\{0\}$ but becomes partial as soon as we add $1$, because $1 + 1 \notin \{0, |
|
526 |
1\}$. |
|
527 |
||
528 |
Because numbers are infinite and are approximated using a three-valued logic, |
|
529 |
there is usually no need to systematically enumerate domain sizes. If Nitpick |
|
530 |
cannot find a genuine counterexample for \textit{card~nat}~= $k$, it is very |
|
531 |
unlikely that one could be found for smaller domains. (The $P~(\textit{op}~{+})$ |
|
532 |
example above is an exception to this principle.) Nitpick nonetheless enumerates |
|
533 |
all cardinalities from 1 to 8 for \textit{nat}, mainly because smaller |
|
534 |
cardinalities are fast to handle and give rise to simpler counterexamples. This |
|
535 |
is explained in more detail in \S\ref{scope-monotonicity}. |
|
536 |
||
537 |
\subsection{Inductive Datatypes} |
|
538 |
\label{inductive-datatypes} |
|
539 |
||
540 |
Like natural numbers and integers, inductive datatypes with recursive |
|
541 |
constructors admit no finite models and must be approximated by a subterm-closed |
|
542 |
subset. For example, using a cardinality of 10 for ${'}a~\textit{list}$, |
|
543 |
Nitpick looks for all counterexamples that can be built using at most 10 |
|
544 |
different lists. |
|
545 |
||
546 |
Let's see with an example involving \textit{hd} (which returns the first element |
|
547 |
of a list) and $@$ (which concatenates two lists): |
|
548 |
||
549 |
\prew |
|
550 |
\textbf{lemma} ``$\textit{hd}~(\textit{xs} \mathbin{@} [y, y]) = \textit{hd}~\textit{xs}$'' \\ |
|
551 |
\textbf{nitpick} \\[2\smallskipamount] |
|
552 |
\slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount] |
|
553 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
554 |
\hbox{}\qquad\qquad $\textit{xs} = []$ \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
555 |
\hbox{}\qquad\qquad $\textit{y} = a_1$ |
33191 | 556 |
\postw |
557 |
||
558 |
To see why the counterexample is genuine, we enable \textit{show\_consts} |
|
559 |
and \textit{show\_\allowbreak datatypes}: |
|
560 |
||
561 |
\prew |
|
562 |
{\slshape Datatype:} \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
563 |
\hbox{}\qquad $'a$~\textit{list}~= $\{[],\, [a_1],\, [a_1, a_1],\, \unr\}$ \\ |
33191 | 564 |
{\slshape Constants:} \\ |
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
565 |
\hbox{}\qquad $\lambda x_1.\; x_1 \mathbin{@} [y, y] = \undef([] := [a_1, a_1])$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
566 |
\hbox{}\qquad $\textit{hd} = \undef([] := a_2,\> [a_1] := a_1,\> [a_1, a_1] := a_1)$ |
33191 | 567 |
\postw |
568 |
||
569 |
Since $\mathit{hd}~[]$ is undefined in the logic, it may be given any value, |
|
570 |
including $a_2$. |
|
571 |
||
572 |
The second constant, $\lambda x_1.\; x_1 \mathbin{@} [y, y]$, is simply the |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
573 |
append operator whose second argument is fixed to be $[y, y]$. Appending $[a_1, |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
574 |
a_1]$ to $[a_1]$ would normally give $[a_1, a_1, a_1]$, but this value is not |
33191 | 575 |
representable in the subset of $'a$~\textit{list} considered by Nitpick, which |
576 |
is shown under the ``Datatype'' heading; hence the result is $\unk$. Similarly, |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
577 |
appending $[a_1, a_1]$ to itself gives $\unk$. |
33191 | 578 |
|
579 |
Given \textit{card}~$'a = 3$ and \textit{card}~$'a~\textit{list} = 3$, Nitpick |
|
580 |
considers the following subsets: |
|
581 |
||
582 |
\kern-.5\smallskipamount %% TYPESETTING |
|
583 |
||
584 |
\prew |
|
585 |
\begin{multicols}{3} |
|
586 |
$\{[],\, [a_1],\, [a_2]\}$; \\ |
|
587 |
$\{[],\, [a_1],\, [a_3]\}$; \\ |
|
588 |
$\{[],\, [a_2],\, [a_3]\}$; \\ |
|
589 |
$\{[],\, [a_1],\, [a_1, a_1]\}$; \\ |
|
590 |
$\{[],\, [a_1],\, [a_2, a_1]\}$; \\ |
|
591 |
$\{[],\, [a_1],\, [a_3, a_1]\}$; \\ |
|
592 |
$\{[],\, [a_2],\, [a_1, a_2]\}$; \\ |
|
593 |
$\{[],\, [a_2],\, [a_2, a_2]\}$; \\ |
|
594 |
$\{[],\, [a_2],\, [a_3, a_2]\}$; \\ |
|
595 |
$\{[],\, [a_3],\, [a_1, a_3]\}$; \\ |
|
596 |
$\{[],\, [a_3],\, [a_2, a_3]\}$; \\ |
|
597 |
$\{[],\, [a_3],\, [a_3, a_3]\}$. |
|
598 |
\end{multicols} |
|
599 |
\postw |
|
600 |
||
601 |
\kern-2\smallskipamount %% TYPESETTING |
|
602 |
||
603 |
All subterm-closed subsets of $'a~\textit{list}$ consisting of three values |
|
604 |
are listed and only those. As an example of a non-subterm-closed subset, |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
605 |
consider $\mathcal{S} = \{[],\, [a_1],\,\allowbreak [a_1, a_2]\}$, and observe |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
606 |
that $[a_1, a_2]$ (i.e., $a_1 \mathbin{\#} [a_2]$) has $[a_2] \notin |
33191 | 607 |
\mathcal{S}$ as a subterm. |
608 |
||
609 |
Here's another m\"ochtegern-lemma that Nitpick can refute without a blink: |
|
610 |
||
611 |
\prew |
|
612 |
\textbf{lemma} ``$\lbrakk \textit{length}~\textit{xs} = 1;\> \textit{length}~\textit{ys} = 1 |
|
613 |
\rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$'' |
|
614 |
\\ |
|
615 |
\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount] |
|
616 |
\slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount] |
|
617 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
618 |
\hbox{}\qquad\qquad $\textit{xs} = [a_1]$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
619 |
\hbox{}\qquad\qquad $\textit{ys} = [a_2]$ \\ |
33191 | 620 |
\hbox{}\qquad Datatypes: \\ |
621 |
\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
622 |
\hbox{}\qquad\qquad $'a$~\textit{list} = $\{[],\, [a_1],\, [a_2],\, \unr\}$ |
33191 | 623 |
\postw |
624 |
||
625 |
Because datatypes are approximated using a three-valued logic, there is usually |
|
626 |
no need to systematically enumerate cardinalities: If Nitpick cannot find a |
|
627 |
genuine counterexample for \textit{card}~$'a~\textit{list}$~= 10, it is very |
|
628 |
unlikely that one could be found for smaller cardinalities. |
|
629 |
||
630 |
\subsection{Typedefs, Records, Rationals, and Reals} |
|
631 |
\label{typedefs-records-rationals-and-reals} |
|
632 |
||
633 |
Nitpick generally treats types declared using \textbf{typedef} as datatypes |
|
634 |
whose single constructor is the corresponding \textit{Abs\_\kern.1ex} function. |
|
635 |
For example: |
|
636 |
||
637 |
\prew |
|
638 |
\textbf{typedef}~\textit{three} = ``$\{0\Colon\textit{nat},\, 1,\, 2\}$'' \\ |
|
639 |
\textbf{by}~\textit{blast} \\[2\smallskipamount] |
|
640 |
\textbf{definition}~$A \mathbin{\Colon} \textit{three}$ \textbf{where} ``\kern-.1em$A \,\equiv\, \textit{Abs\_\allowbreak three}~0$'' \\ |
|
641 |
\textbf{definition}~$B \mathbin{\Colon} \textit{three}$ \textbf{where} ``$B \,\equiv\, \textit{Abs\_three}~1$'' \\ |
|
642 |
\textbf{definition}~$C \mathbin{\Colon} \textit{three}$ \textbf{where} ``$C \,\equiv\, \textit{Abs\_three}~2$'' \\[2\smallskipamount] |
|
643 |
\textbf{lemma} ``$\lbrakk P~A;\> P~B\rbrakk \,\Longrightarrow\, P~x$'' \\ |
|
644 |
\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount] |
|
645 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
646 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
647 |
\hbox{}\qquad\qquad $P = \{\Abs{0},\, \Abs{1}\}$ \\ |
33191 | 648 |
\hbox{}\qquad\qquad $x = \Abs{2}$ \\ |
649 |
\hbox{}\qquad Datatypes: \\ |
|
650 |
\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
651 |
\hbox{}\qquad\qquad $\textit{three} = \{\Abs{0},\, \Abs{1},\, \Abs{2},\, \unr\}$ |
33191 | 652 |
\postw |
653 |
||
654 |
%% MARK |
|
655 |
In the output above, $\Abs{n}$ abbreviates $\textit{Abs\_three}~n$. |
|
656 |
||
657 |
%% MARK |
|
658 |
Records, which are implemented as \textbf{typedef}s behind the scenes, are |
|
659 |
handled in much the same way: |
|
660 |
||
661 |
\prew |
|
662 |
\textbf{record} \textit{point} = \\ |
|
663 |
\hbox{}\quad $\textit{Xcoord} \mathbin{\Colon} \textit{int}$ \\ |
|
664 |
\hbox{}\quad $\textit{Ycoord} \mathbin{\Colon} \textit{int}$ \\[2\smallskipamount] |
|
665 |
\textbf{lemma} ``$\textit{Xcoord}~(p\Colon\textit{point}) = \textit{Xcoord}~(q\Colon\textit{point})$'' \\ |
|
666 |
\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount] |
|
667 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
668 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
669 |
\hbox{}\qquad\qquad $p = \lparr\textit{Xcoord} = 1,\> \textit{Ycoord} = 1\rparr$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
670 |
\hbox{}\qquad\qquad $q = \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr$ \\ |
33191 | 671 |
\hbox{}\qquad Datatypes: \\ |
672 |
\hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, \unr\}$ \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
673 |
\hbox{}\qquad\qquad $\textit{point} = \{\!\begin{aligned}[t] |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
674 |
& \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr, \\[-2pt] %% TYPESETTING |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
675 |
& \lparr\textit{Xcoord} = 1,\> \textit{Ycoord} = 1\rparr,\, \unr\}\end{aligned}$ |
33191 | 676 |
\postw |
677 |
||
678 |
Finally, Nitpick provides rudimentary support for rationals and reals using a |
|
679 |
similar approach: |
|
680 |
||
681 |
\prew |
|
682 |
\textbf{lemma} ``$4 * x + 3 * (y\Colon\textit{real}) \not= 1/2$'' \\ |
|
683 |
\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount] |
|
684 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
685 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
686 |
\hbox{}\qquad\qquad $x = 1/2$ \\ |
|
687 |
\hbox{}\qquad\qquad $y = -1/2$ \\ |
|
688 |
\hbox{}\qquad Datatypes: \\ |
|
689 |
\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, 3,\, 4,\, 5,\, 6,\, 7,\, \unr\}$ \\ |
|
690 |
\hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, 2,\, 3,\, 4,\, -3,\, -2,\, -1,\, \unr\}$ \\ |
|
691 |
\hbox{}\qquad\qquad $\textit{real} = \{1,\, 0,\, 4,\, -3/2,\, 3,\, 2,\, 1/2,\, -1/2,\, \unr\}$ |
|
692 |
\postw |
|
693 |
||
694 |
\subsection{Inductive and Coinductive Predicates} |
|
695 |
\label{inductive-and-coinductive-predicates} |
|
696 |
||
697 |
Inductively defined predicates (and sets) are particularly problematic for |
|
698 |
counterexample generators. They can make Quickcheck~\cite{berghofer-nipkow-2004} |
|
699 |
loop forever and Refute~\cite{weber-2008} run out of resources. The crux of |
|
700 |
the problem is that they are defined using a least fixed point construction. |
|
701 |
||
702 |
Nitpick's philosophy is that not all inductive predicates are equal. Consider |
|
703 |
the \textit{even} predicate below: |
|
704 |
||
705 |
\prew |
|
706 |
\textbf{inductive}~\textit{even}~\textbf{where} \\ |
|
707 |
``\textit{even}~0'' $\,\mid$ \\ |
|
708 |
``\textit{even}~$n\,\Longrightarrow\, \textit{even}~(\textit{Suc}~(\textit{Suc}~n))$'' |
|
709 |
\postw |
|
710 |
||
711 |
This predicate enjoys the desirable property of being well-founded, which means |
|
712 |
that the introduction rules don't give rise to infinite chains of the form |
|
713 |
||
714 |
\prew |
|
715 |
$\cdots\,\Longrightarrow\, \textit{even}~k'' |
|
716 |
\,\Longrightarrow\, \textit{even}~k' |
|
717 |
\,\Longrightarrow\, \textit{even}~k.$ |
|
718 |
\postw |
|
719 |
||
720 |
For \textit{even}, this is obvious: Any chain ending at $k$ will be of length |
|
721 |
$k/2 + 1$: |
|
722 |
||
723 |
\prew |
|
724 |
$\textit{even}~0\,\Longrightarrow\, \textit{even}~2\,\Longrightarrow\, \cdots |
|
725 |
\,\Longrightarrow\, \textit{even}~(k - 2) |
|
726 |
\,\Longrightarrow\, \textit{even}~k.$ |
|
727 |
\postw |
|
728 |
||
729 |
Wellfoundedness is desirable because it enables Nitpick to use a very efficient |
|
730 |
fixed point computation.% |
|
731 |
\footnote{If an inductive predicate is |
|
732 |
well-founded, then it has exactly one fixed point, which is simultaneously the |
|
733 |
least and the greatest fixed point. In these circumstances, the computation of |
|
734 |
the least fixed point amounts to the computation of an arbitrary fixed point, |
|
735 |
which can be performed using a straightforward recursive equation.} |
|
736 |
Moreover, Nitpick can prove wellfoundedness of most well-founded predicates, |
|
737 |
just as Isabelle's \textbf{function} package usually discharges termination |
|
738 |
proof obligations automatically. |
|
739 |
||
740 |
Let's try an example: |
|
741 |
||
742 |
\prew |
|
743 |
\textbf{lemma} ``$\exists n.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\ |
|
34126 | 744 |
\textbf{nitpick}~[\textit{card nat}~= 100, \textit{unary\_ints}, \textit{verbose}] \\[2\smallskipamount] |
33191 | 745 |
\slshape The inductive predicate ``\textit{even}'' was proved well-founded. |
746 |
Nitpick can compute it efficiently. \\[2\smallskipamount] |
|
747 |
Trying 1 scope: \\ |
|
748 |
\hbox{}\qquad \textit{card nat}~= 100. \\[2\smallskipamount] |
|
749 |
Nitpick found a potential counterexample for \textit{card nat}~= 100: \\[2\smallskipamount] |
|
750 |
\hbox{}\qquad Empty assignment \\[2\smallskipamount] |
|
751 |
Nitpick could not find a better counterexample. \\[2\smallskipamount] |
|
752 |
Total time: 2274 ms. |
|
753 |
\postw |
|
754 |
||
755 |
No genuine counterexample is possible because Nitpick cannot rule out the |
|
756 |
existence of a natural number $n \ge 100$ such that both $\textit{even}~n$ and |
|
757 |
$\textit{even}~(\textit{Suc}~n)$ are true. To help Nitpick, we can bound the |
|
758 |
existential quantifier: |
|
759 |
||
760 |
\prew |
|
761 |
\textbf{lemma} ``$\exists n \mathbin{\le} 99.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\ |
|
34126 | 762 |
\textbf{nitpick}~[\textit{card nat}~= 100, \textit{unary\_ints}] \\[2\smallskipamount] |
33191 | 763 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
764 |
\hbox{}\qquad Empty assignment |
|
765 |
\postw |
|
766 |
||
767 |
So far we were blessed by the wellfoundedness of \textit{even}. What happens if |
|
768 |
we use the following definition instead? |
|
769 |
||
770 |
\prew |
|
771 |
\textbf{inductive} $\textit{even}'$ \textbf{where} \\ |
|
772 |
``$\textit{even}'~(0{\Colon}\textit{nat})$'' $\,\mid$ \\ |
|
773 |
``$\textit{even}'~2$'' $\,\mid$ \\ |
|
774 |
``$\lbrakk\textit{even}'~m;\> \textit{even}'~n\rbrakk \,\Longrightarrow\, \textit{even}'~(m + n)$'' |
|
775 |
\postw |
|
776 |
||
777 |
This definition is not well-founded: From $\textit{even}'~0$ and |
|
778 |
$\textit{even}'~0$, we can derive that $\textit{even}'~0$. Nonetheless, the |
|
779 |
predicates $\textit{even}$ and $\textit{even}'$ are equivalent. |
|
780 |
||
781 |
Let's check a property involving $\textit{even}'$. To make up for the |
|
782 |
foreseeable computational hurdles entailed by non-wellfoundedness, we decrease |
|
783 |
\textit{nat}'s cardinality to a mere 10: |
|
784 |
||
785 |
\prew |
|
786 |
\textbf{lemma}~``$\exists n \in \{0, 2, 4, 6, 8\}.\; |
|
787 |
\lnot\;\textit{even}'~n$'' \\ |
|
788 |
\textbf{nitpick}~[\textit{card nat}~= 10,\, \textit{verbose},\, \textit{show\_consts}] \\[2\smallskipamount] |
|
789 |
\slshape |
|
790 |
The inductive predicate ``$\textit{even}'\!$'' could not be proved well-founded. |
|
791 |
Nitpick might need to unroll it. \\[2\smallskipamount] |
|
792 |
Trying 6 scopes: \\ |
|
793 |
\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 0; \\ |
|
794 |
\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 1; \\ |
|
795 |
\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2; \\ |
|
796 |
\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 4; \\ |
|
797 |
\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 8; \\ |
|
798 |
\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 9. \\[2\smallskipamount] |
|
799 |
Nitpick found a counterexample for \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2: \\[2\smallskipamount] |
|
800 |
\hbox{}\qquad Constant: \nopagebreak \\ |
|
801 |
\hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t] |
|
802 |
& 2 := \{0, 2, 4, 6, 8, 1^\Q, 3^\Q, 5^\Q, 7^\Q, 9^\Q\}, \\[-2pt] |
|
803 |
& 1 := \{0, 2, 4, 1^\Q, 3^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\}, \\[-2pt] |
|
804 |
& 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$ \\[2\smallskipamount] |
|
805 |
Total time: 1140 ms. |
|
806 |
\postw |
|
807 |
||
808 |
Nitpick's output is very instructive. First, it tells us that the predicate is |
|
809 |
unrolled, meaning that it is computed iteratively from the empty set. Then it |
|
810 |
lists six scopes specifying different bounds on the numbers of iterations:\ 0, |
|
811 |
1, 2, 4, 8, and~9. |
|
812 |
||
813 |
The output also shows how each iteration contributes to $\textit{even}'$. The |
|
814 |
notation $\lambda i.\; \textit{even}'$ indicates that the value of the |
|
815 |
predicate depends on an iteration counter. Iteration 0 provides the basis |
|
816 |
elements, $0$ and $2$. Iteration 1 contributes $4$ ($= 2 + 2$). Iteration 2 |
|
817 |
throws $6$ ($= 2 + 4 = 4 + 2$) and $8$ ($= 4 + 4$) into the mix. Further |
|
818 |
iterations would not contribute any new elements. |
|
819 |
||
820 |
Some values are marked with superscripted question |
|
821 |
marks~(`\lower.2ex\hbox{$^\Q$}'). These are the elements for which the |
|
822 |
predicate evaluates to $\unk$. Thus, $\textit{even}'$ evaluates to either |
|
823 |
\textit{True} or $\unk$, never \textit{False}. |
|
824 |
||
825 |
When unrolling a predicate, Nitpick tries 0, 1, 2, 4, 8, 12, 16, and 24 |
|
826 |
iterations. However, these numbers are bounded by the cardinality of the |
|
827 |
predicate's domain. With \textit{card~nat}~= 10, no more than 9 iterations are |
|
828 |
ever needed to compute the value of a \textit{nat} predicate. You can specify |
|
829 |
the number of iterations using the \textit{iter} option, as explained in |
|
830 |
\S\ref{scope-of-search}. |
|
831 |
||
832 |
In the next formula, $\textit{even}'$ occurs both positively and negatively: |
|
833 |
||
834 |
\prew |
|
835 |
\textbf{lemma} ``$\textit{even}'~(n - 2) \,\Longrightarrow\, \textit{even}'~n$'' \\ |
|
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
836 |
\textbf{nitpick} [\textit{card nat} = 10, \textit{show\_consts}] \\[2\smallskipamount] |
33191 | 837 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
838 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
839 |
\hbox{}\qquad\qquad $n = 1$ \\ |
|
840 |
\hbox{}\qquad Constants: \nopagebreak \\ |
|
841 |
\hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t] |
|
842 |
& 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$ \\ |
|
843 |
\hbox{}\qquad\qquad $\textit{even}' \subseteq \{0, 2, 4, 6, 8, \unr\}$ |
|
844 |
\postw |
|
845 |
||
846 |
Notice the special constraint $\textit{even}' \subseteq \{0,\, 2,\, 4,\, 6,\, |
|
847 |
8,\, \unr\}$ in the output, whose right-hand side represents an arbitrary |
|
848 |
fixed point (not necessarily the least one). It is used to falsify |
|
849 |
$\textit{even}'~n$. In contrast, the unrolled predicate is used to satisfy |
|
850 |
$\textit{even}'~(n - 2)$. |
|
851 |
||
852 |
Coinductive predicates are handled dually. For example: |
|
853 |
||
854 |
\prew |
|
855 |
\textbf{coinductive} \textit{nats} \textbf{where} \\ |
|
856 |
``$\textit{nats}~(x\Colon\textit{nat}) \,\Longrightarrow\, \textit{nats}~x$'' \\[2\smallskipamount] |
|
857 |
\textbf{lemma} ``$\textit{nats} = \{0, 1, 2, 3, 4\}$'' \\ |
|
858 |
\textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount] |
|
859 |
\slshape Nitpick found a counterexample: |
|
860 |
\\[2\smallskipamount] |
|
861 |
\hbox{}\qquad Constants: \nopagebreak \\ |
|
862 |
\hbox{}\qquad\qquad $\lambda i.\; \textit{nats} = \undef(0 := \{\!\begin{aligned}[t] |
|
863 |
& 0^\Q, 1^\Q, 2^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q, \\[-2pt] |
|
864 |
& \unr\})\end{aligned}$ \\ |
|
865 |
\hbox{}\qquad\qquad $nats \supseteq \{9, 5^\Q, 6^\Q, 7^\Q, 8^\Q, \unr\}$ |
|
866 |
\postw |
|
867 |
||
868 |
As a special case, Nitpick uses Kodkod's transitive closure operator to encode |
|
869 |
negative occurrences of non-well-founded ``linear inductive predicates,'' i.e., |
|
870 |
inductive predicates for which each the predicate occurs in at most one |
|
871 |
assumption of each introduction rule. For example: |
|
872 |
||
873 |
\prew |
|
874 |
\textbf{inductive} \textit{odd} \textbf{where} \\ |
|
875 |
``$\textit{odd}~1$'' $\,\mid$ \\ |
|
876 |
``$\lbrakk \textit{odd}~m;\>\, \textit{even}~n\rbrakk \,\Longrightarrow\, \textit{odd}~(m + n)$'' \\[2\smallskipamount] |
|
877 |
\textbf{lemma}~``$\textit{odd}~n \,\Longrightarrow\, \textit{odd}~(n - 2)$'' \\ |
|
878 |
\textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount] |
|
879 |
\slshape Nitpick found a counterexample: |
|
880 |
\\[2\smallskipamount] |
|
881 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
882 |
\hbox{}\qquad\qquad $n = 1$ \\ |
|
883 |
\hbox{}\qquad Constants: \nopagebreak \\ |
|
884 |
\hbox{}\qquad\qquad $\textit{even} = \{0, 2, 4, 6, 8, \unr\}$ \\ |
|
885 |
\hbox{}\qquad\qquad $\textit{odd}_{\textsl{base}} = \{1, \unr\}$ \\ |
|
886 |
\hbox{}\qquad\qquad $\textit{odd}_{\textsl{step}} = \! |
|
887 |
\!\begin{aligned}[t] |
|
888 |
& \{(0, 0), (0, 2), (0, 4), (0, 6), (0, 8), (1, 1), (1, 3), (1, 5), \\[-2pt] |
|
889 |
& \phantom{\{} (1, 7), (1, 9), (2, 2), (2, 4), (2, 6), (2, 8), (3, 3), |
|
890 |
(3, 5), \\[-2pt] |
|
891 |
& \phantom{\{} (3, 7), (3, 9), (4, 4), (4, 6), (4, 8), (5, 5), (5, 7), (5, 9), \\[-2pt] |
|
892 |
& \phantom{\{} (6, 6), (6, 8), (7, 7), (7, 9), (8, 8), (9, 9), \unr\}\end{aligned}$ \\ |
|
893 |
\hbox{}\qquad\qquad $\textit{odd} \subseteq \{1, 3, 5, 7, 9, 8^\Q, \unr\}$ |
|
894 |
\postw |
|
895 |
||
896 |
\noindent |
|
897 |
In the output, $\textit{odd}_{\textrm{base}}$ represents the base elements and |
|
898 |
$\textit{odd}_{\textrm{step}}$ is a transition relation that computes new |
|
899 |
elements from known ones. The set $\textit{odd}$ consists of all the values |
|
900 |
reachable through the reflexive transitive closure of |
|
901 |
$\textit{odd}_{\textrm{step}}$ starting with any element from |
|
902 |
$\textit{odd}_{\textrm{base}}$, namely 1, 3, 5, 7, and 9. Using Kodkod's |
|
903 |
transitive closure to encode linear predicates is normally either more thorough |
|
904 |
or more efficient than unrolling (depending on the value of \textit{iter}), but |
|
905 |
for those cases where it isn't you can disable it by passing the |
|
906 |
\textit{dont\_star\_linear\_preds} option. |
|
907 |
||
908 |
\subsection{Coinductive Datatypes} |
|
909 |
\label{coinductive-datatypes} |
|
910 |
||
911 |
While Isabelle regrettably lacks a high-level mechanism for defining coinductive |
|
912 |
datatypes, the \textit{Coinductive\_List} theory provides a coinductive ``lazy |
|
913 |
list'' datatype, $'a~\textit{llist}$, defined the hard way. Nitpick supports |
|
914 |
these lazy lists seamlessly and provides a hook, described in |
|
915 |
\S\ref{registration-of-coinductive-datatypes}, to register custom coinductive |
|
916 |
datatypes. |
|
917 |
||
918 |
(Co)intuitively, a coinductive datatype is similar to an inductive datatype but |
|
919 |
allows infinite objects. Thus, the infinite lists $\textit{ps}$ $=$ $[a, a, a, |
|
920 |
\ldots]$, $\textit{qs}$ $=$ $[a, b, a, b, \ldots]$, and $\textit{rs}$ $=$ $[0, |
|
921 |
1, 2, 3, \ldots]$ can be defined as lazy lists using the |
|
922 |
$\textit{LNil}\mathbin{\Colon}{'}a~\textit{llist}$ and |
|
923 |
$\textit{LCons}\mathbin{\Colon}{'}a \mathbin{\Rightarrow} {'}a~\textit{llist} |
|
924 |
\mathbin{\Rightarrow} {'}a~\textit{llist}$ constructors. |
|
925 |
||
926 |
Although it is otherwise no friend of infinity, Nitpick can find counterexamples |
|
927 |
involving cyclic lists such as \textit{ps} and \textit{qs} above as well as |
|
928 |
finite lists: |
|
929 |
||
930 |
\prew |
|
931 |
\textbf{lemma} ``$\textit{xs} \not= \textit{LCons}~a~\textit{xs}$'' \\ |
|
932 |
\textbf{nitpick} \\[2\smallskipamount] |
|
933 |
\slshape Nitpick found a counterexample for {\itshape card}~$'a$ = 1: \\[2\smallskipamount] |
|
934 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
935 |
\hbox{}\qquad\qquad $\textit{a} = a_1$ \\ |
|
936 |
\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$ |
|
937 |
\postw |
|
938 |
||
939 |
The notation $\textrm{THE}~\omega.\; \omega = t(\omega)$ stands |
|
940 |
for the infinite term $t(t(t(\ldots)))$. Hence, \textit{xs} is simply the |
|
941 |
infinite list $[a_1, a_1, a_1, \ldots]$. |
|
942 |
||
943 |
The next example is more interesting: |
|
944 |
||
945 |
\prew |
|
946 |
\textbf{lemma}~``$\lbrakk\textit{xs} = \textit{LCons}~a~\textit{xs};\>\, |
|
947 |
\textit{ys} = \textit{iterates}~(\lambda b.\> a)~b\rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\ |
|
948 |
\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount] |
|
949 |
\slshape The type ``\kern1pt$'a$'' passed the monotonicity test. Nitpick might be able to skip |
|
950 |
some scopes. \\[2\smallskipamount] |
|
951 |
Trying 8 scopes: \\ |
|
952 |
\hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 1, |
|
953 |
and \textit{bisim\_depth}~= 0. \\ |
|
954 |
\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount] |
|
955 |
\hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 8, |
|
956 |
and \textit{bisim\_depth}~= 7. \\[2\smallskipamount] |
|
957 |
Nitpick found a counterexample for {\itshape card}~$'a$ = 2, |
|
958 |
\textit{card}~``\kern1pt$'a~\textit{list}$''~= 2, and \textit{bisim\_\allowbreak |
|
959 |
depth}~= 1: |
|
960 |
\\[2\smallskipamount] |
|
961 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
962 |
\hbox{}\qquad\qquad $\textit{a} = a_1$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
963 |
\hbox{}\qquad\qquad $\textit{b} = a_2$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
964 |
\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
965 |
\hbox{}\qquad\qquad $\textit{ys} = \textit{LCons}~a_2~(\textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega)$ \\[2\smallskipamount] |
33191 | 966 |
Total time: 726 ms. |
967 |
\postw |
|
968 |
||
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
969 |
The lazy list $\textit{xs}$ is simply $[a_1, a_1, a_1, \ldots]$, whereas |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
970 |
$\textit{ys}$ is $[a_2, a_1, a_1, a_1, \ldots]$, i.e., a lasso-shaped list with |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
971 |
$[a_2]$ as its stem and $[a_1]$ as its cycle. In general, the list segment |
33191 | 972 |
within the scope of the {THE} binder corresponds to the lasso's cycle, whereas |
973 |
the segment leading to the binder is the stem. |
|
974 |
||
975 |
A salient property of coinductive datatypes is that two objects are considered |
|
976 |
equal if and only if they lead to the same observations. For example, the lazy |
|
977 |
lists $\textrm{THE}~\omega.\; \omega = |
|
978 |
\textit{LCons}~a~(\textit{LCons}~b~\omega)$ and |
|
979 |
$\textit{LCons}~a~(\textrm{THE}~\omega.\; \omega = |
|
980 |
\textit{LCons}~b~(\textit{LCons}~a~\omega))$ are identical, because both lead |
|
981 |
to the sequence of observations $a$, $b$, $a$, $b$, \hbox{\ldots} (or, |
|
982 |
equivalently, both encode the infinite list $[a, b, a, b, \ldots]$). This |
|
983 |
concept of equality for coinductive datatypes is called bisimulation and is |
|
984 |
defined coinductively. |
|
985 |
||
986 |
Internally, Nitpick encodes the coinductive bisimilarity predicate as part of |
|
987 |
the Kodkod problem to ensure that distinct objects lead to different |
|
988 |
observations. This precaution is somewhat expensive and often unnecessary, so it |
|
989 |
can be disabled by setting the \textit{bisim\_depth} option to $-1$. The |
|
990 |
bisimilarity check is then performed \textsl{after} the counterexample has been |
|
991 |
found to ensure correctness. If this after-the-fact check fails, the |
|
992 |
counterexample is tagged as ``likely genuine'' and Nitpick recommends to try |
|
993 |
again with \textit{bisim\_depth} set to a nonnegative integer. Disabling the |
|
994 |
check for the previous example saves approximately 150~milli\-seconds; the speed |
|
995 |
gains can be more significant for larger scopes. |
|
996 |
||
997 |
The next formula illustrates the need for bisimilarity (either as a Kodkod |
|
998 |
predicate or as an after-the-fact check) to prevent spurious counterexamples: |
|
999 |
||
1000 |
\prew |
|
1001 |
\textbf{lemma} ``$\lbrakk xs = \textit{LCons}~a~\textit{xs};\>\, \textit{ys} = \textit{LCons}~a~\textit{ys}\rbrakk |
|
1002 |
\,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\ |
|
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1003 |
\textbf{nitpick} [\textit{bisim\_depth} = $-1$, \textit{show\_datatypes}] \\[2\smallskipamount] |
33191 | 1004 |
\slshape Nitpick found a likely genuine counterexample for $\textit{card}~'a$ = 2: \\[2\smallskipamount] |
1005 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1006 |
\hbox{}\qquad\qquad $a = a_1$ \\ |
33191 | 1007 |
\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = |
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1008 |
\textit{LCons}~a_1~\omega$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1009 |
\hbox{}\qquad\qquad $\textit{ys} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$ \\ |
33191 | 1010 |
\hbox{}\qquad Codatatype:\strut \nopagebreak \\ |
1011 |
\hbox{}\qquad\qquad $'a~\textit{llist} = |
|
1012 |
\{\!\begin{aligned}[t] |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1013 |
& \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega, \\[-2pt] |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1014 |
& \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega,\> \unr\}\end{aligned}$ |
33191 | 1015 |
\\[2\smallskipamount] |
1016 |
Try again with ``\textit{bisim\_depth}'' set to a nonnegative value to confirm |
|
1017 |
that the counterexample is genuine. \\[2\smallskipamount] |
|
1018 |
{\upshape\textbf{nitpick}} \\[2\smallskipamount] |
|
1019 |
\slshape Nitpick found no counterexample. |
|
1020 |
\postw |
|
1021 |
||
1022 |
In the first \textbf{nitpick} invocation, the after-the-fact check discovered |
|
1023 |
that the two known elements of type $'a~\textit{llist}$ are bisimilar. |
|
1024 |
||
1025 |
A compromise between leaving out the bisimilarity predicate from the Kodkod |
|
1026 |
problem and performing the after-the-fact check is to specify a lower |
|
1027 |
nonnegative \textit{bisim\_depth} value than the default one provided by |
|
1028 |
Nitpick. In general, a value of $K$ means that Nitpick will require all lists to |
|
1029 |
be distinguished from each other by their prefixes of length $K$. Be aware that |
|
1030 |
setting $K$ to a too low value can overconstrain Nitpick, preventing it from |
|
1031 |
finding any counterexamples. |
|
1032 |
||
1033 |
\subsection{Boxing} |
|
1034 |
\label{boxing} |
|
1035 |
||
1036 |
Nitpick normally maps function and product types directly to the corresponding |
|
1037 |
Kodkod concepts. As a consequence, if $'a$ has cardinality 3 and $'b$ has |
|
1038 |
cardinality 4, then $'a \times {'}b$ has cardinality 12 ($= 4 \times 3$) and $'a |
|
1039 |
\Rightarrow {'}b$ has cardinality 64 ($= 4^3$). In some circumstances, it pays |
|
1040 |
off to treat these types in the same way as plain datatypes, by approximating |
|
1041 |
them by a subset of a given cardinality. This technique is called ``boxing'' and |
|
1042 |
is particularly useful for functions passed as arguments to other functions, for |
|
1043 |
high-arity functions, and for large tuples. Under the hood, boxing involves |
|
1044 |
wrapping occurrences of the types $'a \times {'}b$ and $'a \Rightarrow {'}b$ in |
|
1045 |
isomorphic datatypes, as can be seen by enabling the \textit{debug} option. |
|
1046 |
||
1047 |
To illustrate boxing, we consider a formalization of $\lambda$-terms represented |
|
1048 |
using de Bruijn's notation: |
|
1049 |
||
1050 |
\prew |
|
1051 |
\textbf{datatype} \textit{tm} = \textit{Var}~\textit{nat}~$\mid$~\textit{Lam}~\textit{tm} $\mid$ \textit{App~tm~tm} |
|
1052 |
\postw |
|
1053 |
||
1054 |
The $\textit{lift}~t~k$ function increments all variables with indices greater |
|
1055 |
than or equal to $k$ by one: |
|
1056 |
||
1057 |
\prew |
|
1058 |
\textbf{primrec} \textit{lift} \textbf{where} \\ |
|
1059 |
``$\textit{lift}~(\textit{Var}~j)~k = \textit{Var}~(\textrm{if}~j < k~\textrm{then}~j~\textrm{else}~j + 1)$'' $\mid$ \\ |
|
1060 |
``$\textit{lift}~(\textit{Lam}~t)~k = \textit{Lam}~(\textit{lift}~t~(k + 1))$'' $\mid$ \\ |
|
1061 |
``$\textit{lift}~(\textit{App}~t~u)~k = \textit{App}~(\textit{lift}~t~k)~(\textit{lift}~u~k)$'' |
|
1062 |
\postw |
|
1063 |
||
1064 |
The $\textit{loose}~t~k$ predicate returns \textit{True} if and only if |
|
1065 |
term $t$ has a loose variable with index $k$ or more: |
|
1066 |
||
1067 |
\prew |
|
1068 |
\textbf{primrec}~\textit{loose} \textbf{where} \\ |
|
1069 |
``$\textit{loose}~(\textit{Var}~j)~k = (j \ge k)$'' $\mid$ \\ |
|
1070 |
``$\textit{loose}~(\textit{Lam}~t)~k = \textit{loose}~t~(\textit{Suc}~k)$'' $\mid$ \\ |
|
1071 |
``$\textit{loose}~(\textit{App}~t~u)~k = (\textit{loose}~t~k \mathrel{\lor} \textit{loose}~u~k)$'' |
|
1072 |
\postw |
|
1073 |
||
1074 |
Next, the $\textit{subst}~\sigma~t$ function applies the substitution $\sigma$ |
|
1075 |
on $t$: |
|
1076 |
||
1077 |
\prew |
|
1078 |
\textbf{primrec}~\textit{subst} \textbf{where} \\ |
|
1079 |
``$\textit{subst}~\sigma~(\textit{Var}~j) = \sigma~j$'' $\mid$ \\ |
|
1080 |
``$\textit{subst}~\sigma~(\textit{Lam}~t) = {}$\phantom{''} \\ |
|
1081 |
\phantom{``}$\textit{Lam}~(\textit{subst}~(\lambda n.\> \textrm{case}~n~\textrm{of}~0 \Rightarrow \textit{Var}~0 \mid \textit{Suc}~m \Rightarrow \textit{lift}~(\sigma~m)~1)~t)$'' $\mid$ \\ |
|
1082 |
``$\textit{subst}~\sigma~(\textit{App}~t~u) = \textit{App}~(\textit{subst}~\sigma~t)~(\textit{subst}~\sigma~u)$'' |
|
1083 |
\postw |
|
1084 |
||
1085 |
A substitution is a function that maps variable indices to terms. Observe that |
|
1086 |
$\sigma$ is a function passed as argument and that Nitpick can't optimize it |
|
1087 |
away, because the recursive call for the \textit{Lam} case involves an altered |
|
1088 |
version. Also notice the \textit{lift} call, which increments the variable |
|
1089 |
indices when moving under a \textit{Lam}. |
|
1090 |
||
1091 |
A reasonable property to expect of substitution is that it should leave closed |
|
1092 |
terms unchanged. Alas, even this simple property does not hold: |
|
1093 |
||
1094 |
\pre |
|
1095 |
\textbf{lemma}~``$\lnot\,\textit{loose}~t~0 \,\Longrightarrow\, \textit{subst}~\sigma~t = t$'' \\ |
|
1096 |
\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount] |
|
1097 |
\slshape |
|
1098 |
Trying 8 scopes: \nopagebreak \\ |
|
1099 |
\hbox{}\qquad \textit{card~nat}~= 1, \textit{card tm}~= 1, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 1; \\ |
|
1100 |
\hbox{}\qquad \textit{card~nat}~= 2, \textit{card tm}~= 2, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 2; \\ |
|
1101 |
\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount] |
|
1102 |
\hbox{}\qquad \textit{card~nat}~= 8, \textit{card tm}~= 8, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 8. \\[2\smallskipamount] |
|
1103 |
Nitpick found a counterexample for \textit{card~nat}~= 6, \textit{card~tm}~= 6, |
|
1104 |
and \textit{card}~``$\textit{nat} \Rightarrow \textit{tm}$''~= 6: \\[2\smallskipamount] |
|
1105 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
1106 |
\hbox{}\qquad\qquad $\sigma = \undef(\!\begin{aligned}[t] |
|
1107 |
& 0 := \textit{Var}~0,\> |
|
1108 |
1 := \textit{Var}~0,\> |
|
1109 |
2 := \textit{Var}~0, \\[-2pt] |
|
1110 |
& 3 := \textit{Var}~0,\> |
|
1111 |
4 := \textit{Var}~0,\> |
|
1112 |
5 := \textit{Var}~0)\end{aligned}$ \\ |
|
1113 |
\hbox{}\qquad\qquad $t = \textit{Lam}~(\textit{Lam}~(\textit{Var}~1))$ \\[2\smallskipamount] |
|
1114 |
Total time: $4679$ ms. |
|
1115 |
\postw |
|
1116 |
||
1117 |
Using \textit{eval}, we find out that $\textit{subst}~\sigma~t = |
|
1118 |
\textit{Lam}~(\textit{Lam}~(\textit{Var}~0))$. Using the traditional |
|
1119 |
$\lambda$-term notation, $t$~is |
|
1120 |
$\lambda x\, y.\> x$ whereas $\textit{subst}~\sigma~t$ is $\lambda x\, y.\> y$. |
|
1121 |
The bug is in \textit{subst}: The $\textit{lift}~(\sigma~m)~1$ call should be |
|
1122 |
replaced with $\textit{lift}~(\sigma~m)~0$. |
|
1123 |
||
1124 |
An interesting aspect of Nitpick's verbose output is that it assigned inceasing |
|
1125 |
cardinalities from 1 to 8 to the type $\textit{nat} \Rightarrow \textit{tm}$. |
|
1126 |
For the formula of interest, knowing 6 values of that type was enough to find |
|
1127 |
the counterexample. Without boxing, $46\,656$ ($= 6^6$) values must be |
|
1128 |
considered, a hopeless undertaking: |
|
1129 |
||
1130 |
\prew |
|
1131 |
\textbf{nitpick} [\textit{dont\_box}] \\[2\smallskipamount] |
|
1132 |
{\slshape Nitpick ran out of time after checking 4 of 8 scopes.} |
|
1133 |
\postw |
|
1134 |
||
1135 |
{\looseness=-1 |
|
1136 |
Boxing can be enabled or disabled globally or on a per-type basis using the |
|
1137 |
\textit{box} option. Moreover, setting the cardinality of a function or |
|
1138 |
product type implicitly enables boxing for that type. Nitpick usually performs |
|
1139 |
reasonable choices about which types should be boxed, but option tweaking |
|
1140 |
sometimes helps. |
|
1141 |
||
1142 |
} |
|
1143 |
||
1144 |
\subsection{Scope Monotonicity} |
|
1145 |
\label{scope-monotonicity} |
|
1146 |
||
1147 |
The \textit{card} option (together with \textit{iter}, \textit{bisim\_depth}, |
|
1148 |
and \textit{max}) controls which scopes are actually tested. In general, to |
|
1149 |
exhaust all models below a certain cardinality bound, the number of scopes that |
|
1150 |
Nitpick must consider increases exponentially with the number of type variables |
|
1151 |
(and \textbf{typedecl}'d types) occurring in the formula. Given the default |
|
1152 |
cardinality specification of 1--8, no fewer than $8^4 = 4096$ scopes must be |
|
1153 |
considered for a formula involving $'a$, $'b$, $'c$, and $'d$. |
|
1154 |
||
1155 |
Fortunately, many formulas exhibit a property called \textsl{scope |
|
1156 |
monotonicity}, meaning that if the formula is falsifiable for a given scope, |
|
1157 |
it is also falsifiable for all larger scopes \cite[p.~165]{jackson-2006}. |
|
1158 |
||
1159 |
Consider the formula |
|
1160 |
||
1161 |
\prew |
|
1162 |
\textbf{lemma}~``$\textit{length~xs} = \textit{length~ys} \,\Longrightarrow\, \textit{rev}~(\textit{zip~xs~ys}) = \textit{zip~xs}~(\textit{rev~ys})$'' |
|
1163 |
\postw |
|
1164 |
||
1165 |
where \textit{xs} is of type $'a~\textit{list}$ and \textit{ys} is of type |
|
1166 |
$'b~\textit{list}$. A priori, Nitpick would need to consider 512 scopes to |
|
1167 |
exhaust the specification \textit{card}~= 1--8. However, our intuition tells us |
|
1168 |
that any counterexample found with a small scope would still be a counterexample |
|
1169 |
in a larger scope---by simply ignoring the fresh $'a$ and $'b$ values provided |
|
1170 |
by the larger scope. Nitpick comes to the same conclusion after a careful |
|
1171 |
inspection of the formula and the relevant definitions: |
|
1172 |
||
1173 |
\prew |
|
1174 |
\textbf{nitpick}~[\textit{verbose}] \\[2\smallskipamount] |
|
1175 |
\slshape |
|
1176 |
The types ``\kern1pt$'a$'' and ``\kern1pt$'b$'' passed the monotonicity test. |
|
1177 |
Nitpick might be able to skip some scopes. |
|
1178 |
\\[2\smallskipamount] |
|
1179 |
Trying 8 scopes: \\ |
|
1180 |
\hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} $'b$~= 1, |
|
1181 |
\textit{card} \textit{nat}~= 1, \textit{card} ``$('a \times {'}b)$ |
|
1182 |
\textit{list}''~= 1, \\ |
|
1183 |
\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 1, and |
|
1184 |
\textit{card} ``\kern1pt$'b$ \textit{list}''~= 1. \\ |
|
1185 |
\hbox{}\qquad \textit{card} $'a$~= 2, \textit{card} $'b$~= 2, |
|
1186 |
\textit{card} \textit{nat}~= 2, \textit{card} ``$('a \times {'}b)$ |
|
1187 |
\textit{list}''~= 2, \\ |
|
1188 |
\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 2, and |
|
1189 |
\textit{card} ``\kern1pt$'b$ \textit{list}''~= 2. \\ |
|
1190 |
\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount] |
|
1191 |
\hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} $'b$~= 8, |
|
1192 |
\textit{card} \textit{nat}~= 8, \textit{card} ``$('a \times {'}b)$ |
|
1193 |
\textit{list}''~= 8, \\ |
|
1194 |
\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 8, and |
|
1195 |
\textit{card} ``\kern1pt$'b$ \textit{list}''~= 8. |
|
1196 |
\\[2\smallskipamount] |
|
1197 |
Nitpick found a counterexample for |
|
1198 |
\textit{card} $'a$~= 5, \textit{card} $'b$~= 5, |
|
1199 |
\textit{card} \textit{nat}~= 5, \textit{card} ``$('a \times {'}b)$ |
|
1200 |
\textit{list}''~= 5, \textit{card} ``\kern1pt$'a$ \textit{list}''~= 5, and |
|
1201 |
\textit{card} ``\kern1pt$'b$ \textit{list}''~= 5: |
|
1202 |
\\[2\smallskipamount] |
|
1203 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1204 |
\hbox{}\qquad\qquad $\textit{xs} = [a_1, a_2]$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1205 |
\hbox{}\qquad\qquad $\textit{ys} = [b_1, b_1]$ \\[2\smallskipamount] |
33191 | 1206 |
Total time: 1636 ms. |
1207 |
\postw |
|
1208 |
||
1209 |
In theory, it should be sufficient to test a single scope: |
|
1210 |
||
1211 |
\prew |
|
1212 |
\textbf{nitpick}~[\textit{card}~= 8] |
|
1213 |
\postw |
|
1214 |
||
1215 |
However, this is often less efficient in practice and may lead to overly complex |
|
1216 |
counterexamples. |
|
1217 |
||
1218 |
If the monotonicity check fails but we believe that the formula is monotonic (or |
|
1219 |
we don't mind missing some counterexamples), we can pass the |
|
1220 |
\textit{mono} option. To convince yourself that this option is risky, |
|
1221 |
simply consider this example from \S\ref{skolemization}: |
|
1222 |
||
1223 |
\prew |
|
1224 |
\textbf{lemma} ``$\exists g.\; \forall x\Colon 'b.~g~(f~x) = x |
|
1225 |
\,\Longrightarrow\, \forall y\Colon {'}a.\; \exists x.~y = f~x$'' \\ |
|
1226 |
\textbf{nitpick} [\textit{mono}] \\[2\smallskipamount] |
|
1227 |
{\slshape Nitpick found no counterexample.} \\[2\smallskipamount] |
|
1228 |
\textbf{nitpick} \\[2\smallskipamount] |
|
1229 |
\slshape |
|
1230 |
Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\ |
|
1231 |
\hbox{}\qquad $\vdots$ |
|
1232 |
\postw |
|
1233 |
||
1234 |
(It turns out the formula holds if and only if $\textit{card}~'a \le |
|
1235 |
\textit{card}~'b$.) Although this is rarely advisable, the automatic |
|
1236 |
monotonicity checks can be disabled by passing \textit{non\_mono} |
|
1237 |
(\S\ref{optimizations}). |
|
1238 |
||
1239 |
As insinuated in \S\ref{natural-numbers-and-integers} and |
|
1240 |
\S\ref{inductive-datatypes}, \textit{nat}, \textit{int}, and inductive datatypes |
|
1241 |
are normally monotonic and treated as such. The same is true for record types, |
|
1242 |
\textit{rat}, \textit{real}, and some \textbf{typedef}'d types. Thus, given the |
|
1243 |
cardinality specification 1--8, a formula involving \textit{nat}, \textit{int}, |
|
1244 |
\textit{int~list}, \textit{rat}, and \textit{rat~list} will lead Nitpick to |
|
1245 |
consider only 8~scopes instead of $32\,768$. |
|
1246 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1247 |
\subsection{Inductive Properties} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1248 |
\label{inductive-properties} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1249 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1250 |
Inductive properties are a particular pain to prove, because the failure to |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1251 |
establish an induction step can mean several things: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1252 |
% |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1253 |
\begin{enumerate} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1254 |
\item The property is invalid. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1255 |
\item The property is valid but is too weak to support the induction step. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1256 |
\item The property is valid and strong enough; it's just that we haven't found |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1257 |
the proof yet. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1258 |
\end{enumerate} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1259 |
% |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1260 |
Depending on which scenario applies, we would take the appropriate course of |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1261 |
action: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1262 |
% |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1263 |
\begin{enumerate} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1264 |
\item Repair the statement of the property so that it becomes valid. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1265 |
\item Generalize the property and/or prove auxiliary properties. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1266 |
\item Work harder on a proof. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1267 |
\end{enumerate} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1268 |
% |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1269 |
How can we distinguish between the three scenarios? Nitpick's normal mode of |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1270 |
operation can often detect scenario 1, and Isabelle's automatic tactics help with |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1271 |
scenario 3. Using appropriate techniques, it is also often possible to use |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1272 |
Nitpick to identify scenario 2. Consider the following transition system, |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1273 |
in which natural numbers represent states: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1274 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1275 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1276 |
\textbf{inductive\_set}~\textit{reach}~\textbf{where} \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1277 |
``$(4\Colon\textit{nat}) \in \textit{reach\/}$'' $\mid$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1278 |
``$\lbrakk n < 4;\> n \in \textit{reach\/}\rbrakk \,\Longrightarrow\, 3 * n + 1 \in \textit{reach\/}$'' $\mid$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1279 |
``$n \in \textit{reach} \,\Longrightarrow n + 2 \in \textit{reach\/}$'' |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1280 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1281 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1282 |
We will try to prove that only even numbers are reachable: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1283 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1284 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1285 |
\textbf{lemma}~``$n \in \textit{reach} \,\Longrightarrow\, 2~\textrm{dvd}~n$'' |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1286 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1287 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1288 |
Does this property hold? Nitpick cannot find a counterexample within 30 seconds, |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1289 |
so let's attempt a proof by induction: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1290 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1291 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1292 |
\textbf{apply}~(\textit{induct~set}{:}~\textit{reach\/}) \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1293 |
\textbf{apply}~\textit{auto} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1294 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1295 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1296 |
This leaves us in the following proof state: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1297 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1298 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1299 |
{\slshape goal (2 subgoals): \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1300 |
\phantom{0}1. ${\bigwedge}n.\;\, \lbrakk n \in \textit{reach\/};\, n < 4;\, 2~\textsl{dvd}~n\rbrakk \,\Longrightarrow\, 2~\textsl{dvd}~\textit{Suc}~(3 * n)$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1301 |
\phantom{0}2. ${\bigwedge}n.\;\, \lbrakk n \in \textit{reach\/};\, 2~\textsl{dvd}~n\rbrakk \,\Longrightarrow\, 2~\textsl{dvd}~\textit{Suc}~(\textit{Suc}~n)$ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1302 |
} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1303 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1304 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1305 |
If we run Nitpick on the first subgoal, it still won't find any |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1306 |
counterexample; and yet, \textit{auto} fails to go further, and \textit{arith} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1307 |
is helpless. However, notice the $n \in \textit{reach}$ assumption, which |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1308 |
strengthens the induction hypothesis but is not immediately usable in the proof. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1309 |
If we remove it and invoke Nitpick, this time we get a counterexample: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1310 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1311 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1312 |
\textbf{apply}~(\textit{thin\_tac}~``$n \in \textit{reach\/}$'') \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1313 |
\textbf{nitpick} \\[2\smallskipamount] |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1314 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1315 |
\hbox{}\qquad Skolem constant: \nopagebreak \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1316 |
\hbox{}\qquad\qquad $n = 0$ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1317 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1318 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1319 |
Indeed, 0 < 4, 2 divides 0, but 2 does not divide 1. We can use this information |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1320 |
to strength the lemma: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1321 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1322 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1323 |
\textbf{lemma}~``$n \in \textit{reach} \,\Longrightarrow\, 2~\textrm{dvd}~n \mathrel{\lor} n \not= 0$'' |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1324 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1325 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1326 |
Unfortunately, the proof by induction still gets stuck, except that Nitpick now |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1327 |
finds the counterexample $n = 2$. We generalize the lemma further to |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1328 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1329 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1330 |
\textbf{lemma}~``$n \in \textit{reach} \,\Longrightarrow\, 2~\textrm{dvd}~n \mathrel{\lor} n \ge 4$'' |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1331 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1332 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1333 |
and this time \textit{arith} can finish off the subgoals. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1334 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1335 |
A similar technique can be employed for structural induction. The |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1336 |
following mini formalization of full binary trees will serve as illustration: |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1337 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1338 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1339 |
\textbf{datatype} $\kern1pt'a$~\textit{bin\_tree} = $\textit{Leaf}~{\kern1pt'a}$ $\mid$ $\textit{Branch}$ ``\kern1pt$'a$ \textit{bin\_tree}'' ``\kern1pt$'a$ \textit{bin\_tree}'' \\[2\smallskipamount] |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1340 |
\textbf{primrec}~\textit{labels}~\textbf{where} \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1341 |
``$\textit{labels}~(\textit{Leaf}~a) = \{a\}$'' $\mid$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1342 |
``$\textit{labels}~(\textit{Branch}~t~u) = \textit{labels}~t \mathrel{\cup} \textit{labels}~u$'' \\[2\smallskipamount] |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1343 |
\textbf{primrec}~\textit{swap}~\textbf{where} \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1344 |
``$\textit{swap}~(\textit{Leaf}~c)~a~b =$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1345 |
\phantom{``}$(\textrm{if}~c = a~\textrm{then}~\textit{Leaf}~b~\textrm{else~if}~c = b~\textrm{then}~\textit{Leaf}~a~\textrm{else}~\textit{Leaf}~c)$'' $\mid$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1346 |
``$\textit{swap}~(\textit{Branch}~t~u)~a~b = \textit{Branch}~(\textit{swap}~t~a~b)~(\textit{swap}~u~a~b)$'' |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1347 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1348 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1349 |
The \textit{labels} function returns the set of labels occurring on leaves of a |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1350 |
tree, and \textit{swap} exchanges two labels. Intuitively, if two distinct |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1351 |
labels $a$ and $b$ occur in a tree $t$, they should also occur in the tree |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1352 |
obtained by swapping $a$ and $b$: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1353 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1354 |
\prew |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1355 |
\textbf{lemma} $``\{a, b\} \subseteq \textit{labels}~t \,\Longrightarrow\, \textit{labels}~(\textit{swap}~t~a~b) = \textit{labels}~t$'' |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1356 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1357 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1358 |
Nitpick can't find any counterexample, so we proceed with induction |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1359 |
(this time favoring a more structured style): |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1360 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1361 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1362 |
\textbf{proof}~(\textit{induct}~$t$) \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1363 |
\hbox{}\quad \textbf{case}~\textit{Leaf}~\textbf{thus}~\textit{?case}~\textbf{by}~\textit{simp} \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1364 |
\textbf{next} \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1365 |
\hbox{}\quad \textbf{case}~$(\textit{Branch}~t~u)$~\textbf{thus} \textit{?case} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1366 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1367 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1368 |
Nitpick can't find any counterexample at this point either, but it makes the |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1369 |
following suggestion: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1370 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1371 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1372 |
\slshape |
35178 | 1373 |
Hint: To check that the induction hypothesis is general enough, try this command: |
35183
8580ba651489
reintroduce structural induction hint in Nitpick
blanchet
parents:
35180
diff
changeset
|
1374 |
\textbf{nitpick}~[\textit{non\_std}, \textit{show\_all}]. |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1375 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1376 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1377 |
If we follow the hint, we get a ``nonstandard'' counterexample for the step: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1378 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1379 |
\prew |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1380 |
\slshape Nitpick found a nonstandard counterexample for \textit{card} $'a$ = 3: \\[2\smallskipamount] |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1381 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1382 |
\hbox{}\qquad\qquad $a = a_1$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1383 |
\hbox{}\qquad\qquad $b = a_2$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1384 |
\hbox{}\qquad\qquad $t = \xi_1$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1385 |
\hbox{}\qquad\qquad $u = \xi_2$ \\ |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1386 |
\hbox{}\qquad Datatype: \nopagebreak \\ |
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1387 |
\hbox{}\qquad\qquad $\alpha~\textit{btree} = \{\xi_1 \mathbin{=} \textit{Branch}~\xi_1~\xi_1,\> \xi_2 \mathbin{=} \textit{Branch}~\xi_2~\xi_2,\> \textit{Branch}~\xi_1~\xi_2\}$ \\ |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1388 |
\hbox{}\qquad {\slshape Constants:} \nopagebreak \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1389 |
\hbox{}\qquad\qquad $\textit{labels} = \undef |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1390 |
(\!\begin{aligned}[t]% |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1391 |
& \xi_1 := \{a_2, a_3\},\> \xi_2 := \{a_1\},\> \\[-2pt] |
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1392 |
& \textit{Branch}~\xi_1~\xi_2 := \{a_1, a_2, a_3\})\end{aligned}$ \\ |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1393 |
\hbox{}\qquad\qquad $\lambda x_1.\> \textit{swap}~x_1~a~b = \undef |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1394 |
(\!\begin{aligned}[t]% |
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1395 |
& \xi_1 := \xi_2,\> \xi_2 := \xi_2, \\[-2pt] |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1396 |
& \textit{Branch}~\xi_1~\xi_2 := \xi_2)\end{aligned}$ \\[2\smallskipamount] |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1397 |
The existence of a nonstandard model suggests that the induction hypothesis is not general enough or perhaps |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1398 |
even wrong. See the ``Inductive Properties'' section of the Nitpick manual for details (``\textit{isabelle doc nitpick}''). |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1399 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1400 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1401 |
Reading the Nitpick manual is a most excellent idea. |
35183
8580ba651489
reintroduce structural induction hint in Nitpick
blanchet
parents:
35180
diff
changeset
|
1402 |
But what's going on? The \textit{non\_std} option told the tool to look for |
8580ba651489
reintroduce structural induction hint in Nitpick
blanchet
parents:
35180
diff
changeset
|
1403 |
nonstandard models of binary trees, which means that new ``nonstandard'' trees |
8580ba651489
reintroduce structural induction hint in Nitpick
blanchet
parents:
35180
diff
changeset
|
1404 |
$\xi_1, \xi_2, \ldots$, are now allowed in addition to the standard trees |
8580ba651489
reintroduce structural induction hint in Nitpick
blanchet
parents:
35180
diff
changeset
|
1405 |
generated by the \textit{Leaf} and \textit{Branch} constructors.% |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1406 |
\footnote{Notice the similarity between allowing nonstandard trees here and |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1407 |
allowing unreachable states in the preceding example (by removing the ``$n \in |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1408 |
\textit{reach\/}$'' assumption). In both cases, we effectively enlarge the |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1409 |
set of objects over which the induction is performed while doing the step |
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1410 |
in order to test the induction hypothesis's strength.} |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1411 |
Unlike standard trees, these new trees contain cycles. We will see later that |
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1412 |
every property of acyclic trees that can be proved without using induction also |
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1413 |
holds for cyclic trees. Hence, |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1414 |
% |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1415 |
\begin{quote} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1416 |
\textsl{If the induction |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1417 |
hypothesis is strong enough, the induction step will hold even for nonstandard |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1418 |
objects, and Nitpick won't find any nonstandard counterexample.} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1419 |
\end{quote} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1420 |
% |
35180
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1421 |
But here the tool find some nonstandard trees $t = \xi_1$ |
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1422 |
and $u = \xi_2$ such that $a \notin \textit{labels}~t$, $b \in |
c57dba973391
more work on Nitpick's support for nonstandard models + fix in model reconstruction
blanchet
parents:
35178
diff
changeset
|
1423 |
\textit{labels}~t$, $a \in \textit{labels}~u$, and $b \notin \textit{labels}~u$. |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1424 |
Because neither tree contains both $a$ and $b$, the induction hypothesis tells |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1425 |
us nothing about the labels of $\textit{swap}~t~a~b$ and $\textit{swap}~u~a~b$, |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1426 |
and as a result we know nothing about the labels of the tree |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1427 |
$\textit{swap}~(\textit{Branch}~t~u)~a~b$, which by definition equals |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1428 |
$\textit{Branch}$ $(\textit{swap}~t~a~b)$ $(\textit{swap}~u~a~b)$, whose |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1429 |
labels are $\textit{labels}$ $(\textit{swap}~t~a~b) \mathrel{\cup} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1430 |
\textit{labels}$ $(\textit{swap}~u~a~b)$. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1431 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1432 |
The solution is to ensure that we always know what the labels of the subtrees |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1433 |
are in the inductive step, by covering the cases where $a$ and/or~$b$ is not in |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1434 |
$t$ in the statement of the lemma: |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1435 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1436 |
\prew |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1437 |
\textbf{lemma} ``$\textit{labels}~(\textit{swap}~t~a~b) = {}$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1438 |
\phantom{\textbf{lemma} ``}$(\textrm{if}~a \in \textit{labels}~t~\textrm{then}$ \nopagebreak \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1439 |
\phantom{\textbf{lemma} ``(\quad}$\textrm{if}~b \in \textit{labels}~t~\textrm{then}~\textit{labels}~t~\textrm{else}~(\textit{labels}~t - \{a\}) \mathrel{\cup} \{b\}$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1440 |
\phantom{\textbf{lemma} ``(}$\textrm{else}$ \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1441 |
\phantom{\textbf{lemma} ``(\quad}$\textrm{if}~b \in \textit{labels}~t~\textrm{then}~(\textit{labels}~t - \{b\}) \mathrel{\cup} \{a\}~\textrm{else}~\textit{labels}~t)$'' |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1442 |
\postw |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1443 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1444 |
This time, Nitpick won't find any nonstandard counterexample, and we can perform |
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1445 |
the induction step using \textit{auto}. |
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1446 |
|
33191 | 1447 |
\section{Case Studies} |
1448 |
\label{case-studies} |
|
1449 |
||
1450 |
As a didactic device, the previous section focused mostly on toy formulas whose |
|
1451 |
validity can easily be assessed just by looking at the formula. We will now |
|
1452 |
review two somewhat more realistic case studies that are within Nitpick's |
|
1453 |
reach:\ a context-free grammar modeled by mutually inductive sets and a |
|
1454 |
functional implementation of AA trees. The results presented in this |
|
1455 |
section were produced with the following settings: |
|
1456 |
||
1457 |
\prew |
|
1458 |
\textbf{nitpick\_params} [\textit{max\_potential}~= 0,\, \textit{max\_threads} = 2] |
|
1459 |
\postw |
|
1460 |
||
1461 |
\subsection{A Context-Free Grammar} |
|
1462 |
\label{a-context-free-grammar} |
|
1463 |
||
1464 |
Our first case study is taken from section 7.4 in the Isabelle tutorial |
|
1465 |
\cite{isa-tutorial}. The following grammar, originally due to Hopcroft and |
|
1466 |
Ullman, produces all strings with an equal number of $a$'s and $b$'s: |
|
1467 |
||
1468 |
\prew |
|
1469 |
\begin{tabular}{@{}r@{$\;\,$}c@{$\;\,$}l@{}} |
|
1470 |
$S$ & $::=$ & $\epsilon \mid bA \mid aB$ \\ |
|
1471 |
$A$ & $::=$ & $aS \mid bAA$ \\ |
|
1472 |
$B$ & $::=$ & $bS \mid aBB$ |
|
1473 |
\end{tabular} |
|
1474 |
\postw |
|
1475 |
||
1476 |
The intuition behind the grammar is that $A$ generates all string with one more |
|
1477 |
$a$ than $b$'s and $B$ generates all strings with one more $b$ than $a$'s. |
|
1478 |
||
1479 |
The alphabet consists exclusively of $a$'s and $b$'s: |
|
1480 |
||
1481 |
\prew |
|
1482 |
\textbf{datatype} \textit{alphabet}~= $a$ $\mid$ $b$ |
|
1483 |
\postw |
|
1484 |
||
1485 |
Strings over the alphabet are represented by \textit{alphabet list}s. |
|
1486 |
Nonterminals in the grammar become sets of strings. The production rules |
|
1487 |
presented above can be expressed as a mutually inductive definition: |
|
1488 |
||
1489 |
\prew |
|
1490 |
\textbf{inductive\_set} $S$ \textbf{and} $A$ \textbf{and} $B$ \textbf{where} \\ |
|
1491 |
\textit{R1}:\kern.4em ``$[] \in S$'' $\,\mid$ \\ |
|
1492 |
\textit{R2}:\kern.4em ``$w \in A\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\ |
|
1493 |
\textit{R3}:\kern.4em ``$w \in B\,\Longrightarrow\, a \mathbin{\#} w \in S$'' $\,\mid$ \\ |
|
1494 |
\textit{R4}:\kern.4em ``$w \in S\,\Longrightarrow\, a \mathbin{\#} w \in A$'' $\,\mid$ \\ |
|
1495 |
\textit{R5}:\kern.4em ``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\ |
|
1496 |
\textit{R6}:\kern.4em ``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$'' |
|
1497 |
\postw |
|
1498 |
||
1499 |
The conversion of the grammar into the inductive definition was done manually by |
|
1500 |
Joe Blow, an underpaid undergraduate student. As a result, some errors might |
|
1501 |
have sneaked in. |
|
1502 |
||
1503 |
Debugging faulty specifications is at the heart of Nitpick's \textsl{raison |
|
1504 |
d'\^etre}. A good approach is to state desirable properties of the specification |
|
1505 |
(here, that $S$ is exactly the set of strings over $\{a, b\}$ with as many $a$'s |
|
1506 |
as $b$'s) and check them with Nitpick. If the properties are correctly stated, |
|
1507 |
counterexamples will point to bugs in the specification. For our grammar |
|
1508 |
example, we will proceed in two steps, separating the soundness and the |
|
1509 |
completeness of the set $S$. First, soundness: |
|
1510 |
||
1511 |
\prew |
|
1512 |
\textbf{theorem}~\textit{S\_sound}: \\ |
|
1513 |
``$w \in S \longrightarrow \textit{length}~[x\mathbin{\leftarrow} w.\; x = a] = |
|
1514 |
\textit{length}~[x\mathbin{\leftarrow} w.\; x = b]$'' \\ |
|
1515 |
\textbf{nitpick} \\[2\smallskipamount] |
|
1516 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
1517 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
1518 |
\hbox{}\qquad\qquad $w = [b]$ |
|
1519 |
\postw |
|
1520 |
||
1521 |
It would seem that $[b] \in S$. How could this be? An inspection of the |
|
1522 |
introduction rules reveals that the only rule with a right-hand side of the form |
|
1523 |
$b \mathbin{\#} {\ldots} \in S$ that could have introduced $[b]$ into $S$ is |
|
1524 |
\textit{R5}: |
|
1525 |
||
1526 |
\prew |
|
1527 |
``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$'' |
|
1528 |
\postw |
|
1529 |
||
1530 |
On closer inspection, we can see that this rule is wrong. To match the |
|
1531 |
production $B ::= bS$, the second $S$ should be a $B$. We fix the typo and try |
|
1532 |
again: |
|
1533 |
||
1534 |
\prew |
|
1535 |
\textbf{nitpick} \\[2\smallskipamount] |
|
1536 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
1537 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
1538 |
\hbox{}\qquad\qquad $w = [a, a, b]$ |
|
1539 |
\postw |
|
1540 |
||
1541 |
Some detective work is necessary to find out what went wrong here. To get $[a, |
|
1542 |
a, b] \in S$, we need $[a, b] \in B$ by \textit{R3}, which in turn can only come |
|
1543 |
from \textit{R6}: |
|
1544 |
||
1545 |
\prew |
|
1546 |
``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$'' |
|
1547 |
\postw |
|
1548 |
||
1549 |
Now, this formula must be wrong: The same assumption occurs twice, and the |
|
1550 |
variable $w$ is unconstrained. Clearly, one of the two occurrences of $v$ in |
|
1551 |
the assumptions should have been a $w$. |
|
1552 |
||
1553 |
With the correction made, we don't get any counterexample from Nitpick. Let's |
|
1554 |
move on and check completeness: |
|
1555 |
||
1556 |
\prew |
|
1557 |
\textbf{theorem}~\textit{S\_complete}: \\ |
|
1558 |
``$\textit{length}~[x\mathbin{\leftarrow} w.\; x = a] = |
|
1559 |
\textit{length}~[x\mathbin{\leftarrow} w.\; x = b] |
|
1560 |
\longrightarrow w \in S$'' \\ |
|
1561 |
\textbf{nitpick} \\[2\smallskipamount] |
|
1562 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
1563 |
\hbox{}\qquad Free variable: \nopagebreak \\ |
|
1564 |
\hbox{}\qquad\qquad $w = [b, b, a, a]$ |
|
1565 |
\postw |
|
1566 |
||
1567 |
Apparently, $[b, b, a, a] \notin S$, even though it has the same numbers of |
|
1568 |
$a$'s and $b$'s. But since our inductive definition passed the soundness check, |
|
1569 |
the introduction rules we have are probably correct. Perhaps we simply lack an |
|
1570 |
introduction rule. Comparing the grammar with the inductive definition, our |
|
1571 |
suspicion is confirmed: Joe Blow simply forgot the production $A ::= bAA$, |
|
1572 |
without which the grammar cannot generate two or more $b$'s in a row. So we add |
|
1573 |
the rule |
|
1574 |
||
1575 |
\prew |
|
1576 |
``$\lbrakk v \in A;\> w \in A\rbrakk \,\Longrightarrow\, b \mathbin{\#} v \mathbin{@} w \in A$'' |
|
1577 |
\postw |
|
1578 |
||
1579 |
With this last change, we don't get any counterexamples from Nitpick for either |
|
1580 |
soundness or completeness. We can even generalize our result to cover $A$ and |
|
1581 |
$B$ as well: |
|
1582 |
||
1583 |
\prew |
|
1584 |
\textbf{theorem} \textit{S\_A\_B\_sound\_and\_complete}: \\ |
|
1585 |
``$w \in S \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b]$'' \\ |
|
1586 |
``$w \in A \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] + 1$'' \\ |
|
1587 |
``$w \in B \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] + 1$'' \\ |
|
1588 |
\textbf{nitpick} \\[2\smallskipamount] |
|
1589 |
\slshape Nitpick found no counterexample. |
|
1590 |
\postw |
|
1591 |
||
1592 |
\subsection{AA Trees} |
|
1593 |
\label{aa-trees} |
|
1594 |
||
1595 |
AA trees are a kind of balanced trees discovered by Arne Andersson that provide |
|
1596 |
similar performance to red-black trees, but with a simpler implementation |
|
1597 |
\cite{andersson-1993}. They can be used to store sets of elements equipped with |
|
1598 |
a total order $<$. We start by defining the datatype and some basic extractor |
|
1599 |
functions: |
|
1600 |
||
1601 |
\prew |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1602 |
\textbf{datatype} $'a$~\textit{aa\_tree} = \\ |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1603 |
\hbox{}\quad $\Lambda$ $\mid$ $N$ ``\kern1pt$'a\Colon \textit{linorder}$'' \textit{nat} ``\kern1pt$'a$ \textit{aa\_tree}'' ``\kern1pt$'a$ \textit{aa\_tree}'' \\[2\smallskipamount] |
33191 | 1604 |
\textbf{primrec} \textit{data} \textbf{where} \\ |
1605 |
``$\textit{data}~\Lambda = \undef$'' $\,\mid$ \\ |
|
1606 |
``$\textit{data}~(N~x~\_~\_~\_) = x$'' \\[2\smallskipamount] |
|
1607 |
\textbf{primrec} \textit{dataset} \textbf{where} \\ |
|
1608 |
``$\textit{dataset}~\Lambda = \{\}$'' $\,\mid$ \\ |
|
1609 |
``$\textit{dataset}~(N~x~\_~t~u) = \{x\} \cup \textit{dataset}~t \mathrel{\cup} \textit{dataset}~u$'' \\[2\smallskipamount] |
|
1610 |
\textbf{primrec} \textit{level} \textbf{where} \\ |
|
1611 |
``$\textit{level}~\Lambda = 0$'' $\,\mid$ \\ |
|
1612 |
``$\textit{level}~(N~\_~k~\_~\_) = k$'' \\[2\smallskipamount] |
|
1613 |
\textbf{primrec} \textit{left} \textbf{where} \\ |
|
1614 |
``$\textit{left}~\Lambda = \Lambda$'' $\,\mid$ \\ |
|
1615 |
``$\textit{left}~(N~\_~\_~t~\_) = t$'' \\[2\smallskipamount] |
|
1616 |
\textbf{primrec} \textit{right} \textbf{where} \\ |
|
1617 |
``$\textit{right}~\Lambda = \Lambda$'' $\,\mid$ \\ |
|
1618 |
``$\textit{right}~(N~\_~\_~\_~u) = u$'' |
|
1619 |
\postw |
|
1620 |
||
1621 |
The wellformedness criterion for AA trees is fairly complex. Wikipedia states it |
|
1622 |
as follows \cite{wikipedia-2009-aa-trees}: |
|
1623 |
||
1624 |
\kern.2\parskip %% TYPESETTING |
|
1625 |
||
1626 |
\pre |
|
1627 |
Each node has a level field, and the following invariants must remain true for |
|
1628 |
the tree to be valid: |
|
1629 |
||
1630 |
\raggedright |
|
1631 |
||
1632 |
\kern-.4\parskip %% TYPESETTING |
|
1633 |
||
1634 |
\begin{enum} |
|
1635 |
\item[] |
|
1636 |
\begin{enum} |
|
1637 |
\item[1.] The level of a leaf node is one. |
|
1638 |
\item[2.] The level of a left child is strictly less than that of its parent. |
|
1639 |
\item[3.] The level of a right child is less than or equal to that of its parent. |
|
1640 |
\item[4.] The level of a right grandchild is strictly less than that of its grandparent. |
|
1641 |
\item[5.] Every node of level greater than one must have two children. |
|
1642 |
\end{enum} |
|
1643 |
\end{enum} |
|
1644 |
\post |
|
1645 |
||
1646 |
\kern.4\parskip %% TYPESETTING |
|
1647 |
||
1648 |
The \textit{wf} predicate formalizes this description: |
|
1649 |
||
1650 |
\prew |
|
1651 |
\textbf{primrec} \textit{wf} \textbf{where} \\ |
|
1652 |
``$\textit{wf}~\Lambda = \textit{True}$'' $\,\mid$ \\ |
|
1653 |
``$\textit{wf}~(N~\_~k~t~u) =$ \\ |
|
1654 |
\phantom{``}$(\textrm{if}~t = \Lambda~\textrm{then}$ \\ |
|
1655 |
\phantom{``$(\quad$}$k = 1 \mathrel{\land} (u = \Lambda \mathrel{\lor} (\textit{level}~u = 1 \mathrel{\land} \textit{left}~u = \Lambda \mathrel{\land} \textit{right}~u = \Lambda))$ \\ |
|
1656 |
\phantom{``$($}$\textrm{else}$ \\ |
|
33193 | 1657 |
\hbox{}\phantom{``$(\quad$}$\textit{wf}~t \mathrel{\land} \textit{wf}~u |
33191 | 1658 |
\mathrel{\land} u \not= \Lambda \mathrel{\land} \textit{level}~t < k |
33193 | 1659 |
\mathrel{\land} \textit{level}~u \le k$ \\ |
1660 |
\hbox{}\phantom{``$(\quad$}${\land}\; \textit{level}~(\textit{right}~u) < k)$'' |
|
33191 | 1661 |
\postw |
1662 |
||
1663 |
Rebalancing the tree upon insertion and removal of elements is performed by two |
|
1664 |
auxiliary functions called \textit{skew} and \textit{split}, defined below: |
|
1665 |
||
1666 |
\prew |
|
1667 |
\textbf{primrec} \textit{skew} \textbf{where} \\ |
|
1668 |
``$\textit{skew}~\Lambda = \Lambda$'' $\,\mid$ \\ |
|
1669 |
``$\textit{skew}~(N~x~k~t~u) = {}$ \\ |
|
1670 |
\phantom{``}$(\textrm{if}~t \not= \Lambda \mathrel{\land} k = |
|
1671 |
\textit{level}~t~\textrm{then}$ \\ |
|
1672 |
\phantom{``(\quad}$N~(\textit{data}~t)~k~(\textit{left}~t)~(N~x~k~ |
|
1673 |
(\textit{right}~t)~u)$ \\ |
|
1674 |
\phantom{``(}$\textrm{else}$ \\ |
|
1675 |
\phantom{``(\quad}$N~x~k~t~u)$'' |
|
1676 |
\postw |
|
1677 |
||
1678 |
\prew |
|
1679 |
\textbf{primrec} \textit{split} \textbf{where} \\ |
|
1680 |
``$\textit{split}~\Lambda = \Lambda$'' $\,\mid$ \\ |
|
1681 |
``$\textit{split}~(N~x~k~t~u) = {}$ \\ |
|
1682 |
\phantom{``}$(\textrm{if}~u \not= \Lambda \mathrel{\land} k = |
|
1683 |
\textit{level}~(\textit{right}~u)~\textrm{then}$ \\ |
|
1684 |
\phantom{``(\quad}$N~(\textit{data}~u)~(\textit{Suc}~k)~ |
|
1685 |
(N~x~k~t~(\textit{left}~u))~(\textit{right}~u)$ \\ |
|
1686 |
\phantom{``(}$\textrm{else}$ \\ |
|
1687 |
\phantom{``(\quad}$N~x~k~t~u)$'' |
|
1688 |
\postw |
|
1689 |
||
1690 |
Performing a \textit{skew} or a \textit{split} should have no impact on the set |
|
1691 |
of elements stored in the tree: |
|
1692 |
||
1693 |
\prew |
|
1694 |
\textbf{theorem}~\textit{dataset\_skew\_split}:\\ |
|
1695 |
``$\textit{dataset}~(\textit{skew}~t) = \textit{dataset}~t$'' \\ |
|
1696 |
``$\textit{dataset}~(\textit{split}~t) = \textit{dataset}~t$'' \\ |
|
1697 |
\textbf{nitpick} \\[2\smallskipamount] |
|
35072
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1698 |
{\slshape Nitpick found no counterexample.} |
33191 | 1699 |
\postw |
1700 |
||
1701 |
Furthermore, applying \textit{skew} or \textit{split} to a well-formed tree |
|
1702 |
should not alter the tree: |
|
1703 |
||
1704 |
\prew |
|
1705 |
\textbf{theorem}~\textit{wf\_skew\_split}:\\ |
|
1706 |
``$\textit{wf}~t\,\Longrightarrow\, \textit{skew}~t = t$'' \\ |
|
1707 |
``$\textit{wf}~t\,\Longrightarrow\, \textit{split}~t = t$'' \\ |
|
1708 |
\textbf{nitpick} \\[2\smallskipamount] |
|
1709 |
{\slshape Nitpick found no counterexample.} |
|
1710 |
\postw |
|
1711 |
||
1712 |
Insertion is implemented recursively. It preserves the sort order: |
|
1713 |
||
1714 |
\prew |
|
1715 |
\textbf{primrec}~\textit{insort} \textbf{where} \\ |
|
1716 |
``$\textit{insort}~\Lambda~x = N~x~1~\Lambda~\Lambda$'' $\,\mid$ \\ |
|
1717 |
``$\textit{insort}~(N~y~k~t~u)~x =$ \\ |
|
1718 |
\phantom{``}$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~(\textrm{if}~x < y~\textrm{then}~\textit{insort}~t~x~\textrm{else}~t)$ \\ |
|
1719 |
\phantom{``$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~$}$(\textrm{if}~x > y~\textrm{then}~\textit{insort}~u~x~\textrm{else}~u))$'' |
|
1720 |
\postw |
|
1721 |
||
1722 |
Notice that we deliberately commented out the application of \textit{skew} and |
|
1723 |
\textit{split}. Let's see if this causes any problems: |
|
1724 |
||
1725 |
\prew |
|
1726 |
\textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\ |
|
1727 |
\textbf{nitpick} \\[2\smallskipamount] |
|
1728 |
\slshape Nitpick found a counterexample for \textit{card} $'a$ = 4: \\[2\smallskipamount] |
|
1729 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1730 |
\hbox{}\qquad\qquad $t = N~a_1~1~\Lambda~\Lambda$ \\ |
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
1731 |
\hbox{}\qquad\qquad $x = a_2$ |
33191 | 1732 |
\postw |
1733 |
||
34038
a2736debeabd
make Nitpick output the message "Hint: Maybe you forgot a type constraint?" only for syntactic classes
blanchet
parents:
33887
diff
changeset
|
1734 |
It's hard to see why this is a counterexample. To improve readability, we will |
a2736debeabd
make Nitpick output the message "Hint: Maybe you forgot a type constraint?" only for syntactic classes
blanchet
parents:
33887
diff
changeset
|
1735 |
restrict the theorem to \textit{nat}, so that we don't need to look up the value |
a2736debeabd
make Nitpick output the message "Hint: Maybe you forgot a type constraint?" only for syntactic classes
blanchet
parents:
33887
diff
changeset
|
1736 |
of the $\textit{op}~{<}$ constant to find out which element is smaller than the |
a2736debeabd
make Nitpick output the message "Hint: Maybe you forgot a type constraint?" only for syntactic classes
blanchet
parents:
33887
diff
changeset
|
1737 |
other. In addition, we will tell Nitpick to display the value of |
a2736debeabd
make Nitpick output the message "Hint: Maybe you forgot a type constraint?" only for syntactic classes
blanchet
parents:
33887
diff
changeset
|
1738 |
$\textit{insort}~t~x$ using the \textit{eval} option. This gives |
33191 | 1739 |
|
1740 |
\prew |
|
1741 |
\textbf{theorem} \textit{wf\_insort\_nat}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~(x\Colon\textit{nat}))$'' \\ |
|
1742 |
\textbf{nitpick} [\textit{eval} = ``$\textit{insort}~t~x$''] \\[2\smallskipamount] |
|
1743 |
\slshape Nitpick found a counterexample: \\[2\smallskipamount] |
|
1744 |
\hbox{}\qquad Free variables: \nopagebreak \\ |
|
1745 |
\hbox{}\qquad\qquad $t = N~1~1~\Lambda~\Lambda$ \\ |
|
1746 |
\hbox{}\qquad\qquad $x = 0$ \\ |
|
1747 |
\hbox{}\qquad Evaluated term: \\ |
|
1748 |
\hbox{}\qquad\qquad $\textit{insort}~t~x = N~1~1~(N~0~1~\Lambda~\Lambda)~\Lambda$ |
|
1749 |
\postw |
|
1750 |
||
1751 |
Nitpick's output reveals that the element $0$ was added as a left child of $1$, |
|
1752 |
where both have a level of 1. This violates the second AA tree invariant, which |
|
1753 |
states that a left child's level must be less than its parent's. This shouldn't |
|
1754 |
come as a surprise, considering that we commented out the tree rebalancing code. |
|
1755 |
Reintroducing the code seems to solve the problem: |
|
1756 |
||
1757 |
\prew |
|
1758 |
\textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\ |
|
1759 |
\textbf{nitpick} \\[2\smallskipamount] |
|
35072
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1760 |
{\slshape Nitpick ran out of time after checking 7 of 8 scopes.} |
33191 | 1761 |
\postw |
1762 |
||
1763 |
Insertion should transform the set of elements represented by the tree in the |
|
1764 |
obvious way: |
|
1765 |
||
1766 |
\prew |
|
1767 |
\textbf{theorem} \textit{dataset\_insort}:\kern.4em |
|
1768 |
``$\textit{dataset}~(\textit{insort}~t~x) = \{x\} \cup \textit{dataset}~t$'' \\ |
|
1769 |
\textbf{nitpick} \\[2\smallskipamount] |
|
35072
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1770 |
{\slshape Nitpick ran out of time after checking 6 of 8 scopes.} |
33191 | 1771 |
\postw |
1772 |
||
35072
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1773 |
We could continue like this and sketch a complete theory of AA trees. Once the |
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1774 |
definitions and main theorems are in place and have been thoroughly tested using |
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1775 |
Nitpick, we could start working on the proofs. Developing theories this way |
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1776 |
usually saves time, because faulty theorems and definitions are discovered much |
d79308423aea
optimize Nitpick's encoding for other datatypes than list that have a constant constructor like "Nil";
blanchet
parents:
34998
diff
changeset
|
1777 |
earlier in the process. |
33191 | 1778 |
|
1779 |
\section{Option Reference} |
|
1780 |
\label{option-reference} |
|
1781 |
||
1782 |
\def\flushitem#1{\item[]\noindent\kern-\leftmargin \textbf{#1}} |
|
1783 |
\def\qty#1{$\left<\textit{#1}\right>$} |
|
1784 |
\def\qtybf#1{$\mathbf{\left<\textbf{\textit{#1}}\right>}$} |
|
1785 |
\def\optrue#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{true}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]} |
|
1786 |
\def\opfalse#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{false}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]} |
|
1787 |
\def\opsmart#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\quad [\textit{smart}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]} |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1788 |
\def\opnodefault#1#2{\flushitem{\textit{#1} = \qtybf{#2}} \nopagebreak\\[\parskip]} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1789 |
\def\opdefault#1#2#3{\flushitem{\textit{#1} = \qtybf{#2}\quad [\textit{#3}]} \nopagebreak\\[\parskip]} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1790 |
\def\oparg#1#2#3{\flushitem{\textit{#1} \qtybf{#2} = \qtybf{#3}} \nopagebreak\\[\parskip]} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1791 |
\def\opargbool#1#2#3{\flushitem{\textit{#1} \qtybf{#2} $\bigl[$= \qtybf{bool}$\bigr]$\hfill (neg.: \textit{#3})}\nopagebreak\\[\parskip]} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1792 |
\def\opargboolorsmart#1#2#3{\flushitem{\textit{#1} \qtybf{#2} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\hfill (neg.: \textit{#3})}\nopagebreak\\[\parskip]} |
33191 | 1793 |
|
1794 |
Nitpick's behavior can be influenced by various options, which can be specified |
|
1795 |
in brackets after the \textbf{nitpick} command. Default values can be set |
|
1796 |
using \textbf{nitpick\_\allowbreak params}. For example: |
|
1797 |
||
1798 |
\prew |
|
1799 |
\textbf{nitpick\_params} [\textit{verbose}, \,\textit{timeout} = 60$\,s$] |
|
1800 |
\postw |
|
1801 |
||
1802 |
The options are categorized as follows:\ mode of operation |
|
1803 |
(\S\ref{mode-of-operation}), scope of search (\S\ref{scope-of-search}), output |
|
1804 |
format (\S\ref{output-format}), automatic counterexample checks |
|
1805 |
(\S\ref{authentication}), optimizations |
|
1806 |
(\S\ref{optimizations}), and timeouts (\S\ref{timeouts}). |
|
1807 |
||
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1808 |
You can instruct Nitpick to run automatically on newly entered theorems by |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1809 |
enabling the ``Auto Nitpick'' option from the ``Isabelle'' menu in Proof |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1810 |
General. For automatic runs, \textit{user\_axioms} (\S\ref{mode-of-operation}) |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1811 |
and \textit{assms} (\S\ref{mode-of-operation}) are implicitly enabled, |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1812 |
\textit{blocking} (\S\ref{mode-of-operation}), \textit{verbose} |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1813 |
(\S\ref{output-format}), and \textit{debug} (\S\ref{output-format}) are |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1814 |
disabled, \textit{max\_potential} (\S\ref{output-format}) is taken to be 0, and |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1815 |
\textit{timeout} (\S\ref{timeouts}) is superseded by the ``Auto Counterexample |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1816 |
Time Limit'' in Proof General's ``Isabelle'' menu. Nitpick's output is also more |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1817 |
concise. |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1818 |
|
33191 | 1819 |
The number of options can be overwhelming at first glance. Do not let that worry |
1820 |
you: Nitpick's defaults have been chosen so that it almost always does the right |
|
1821 |
thing, and the most important options have been covered in context in |
|
1822 |
\S\ref{first-steps}. |
|
1823 |
||
1824 |
The descriptions below refer to the following syntactic quantities: |
|
1825 |
||
1826 |
\begin{enum} |
|
1827 |
\item[$\bullet$] \qtybf{string}: A string. |
|
1828 |
\item[$\bullet$] \qtybf{bool}: \textit{true} or \textit{false}. |
|
1829 |
\item[$\bullet$] \qtybf{bool\_or\_smart}: \textit{true}, \textit{false}, or \textit{smart}. |
|
1830 |
\item[$\bullet$] \qtybf{int}: An integer. Negative integers are prefixed with a hyphen. |
|
1831 |
\item[$\bullet$] \qtybf{int\_or\_smart}: An integer or \textit{smart}. |
|
1832 |
\item[$\bullet$] \qtybf{int\_range}: An integer (e.g., 3) or a range |
|
1833 |
of nonnegative integers (e.g., $1$--$4$). The range symbol `--' can be entered as \texttt{-} (hyphen) or \texttt{\char`\\\char`\<midarrow\char`\>}. |
|
1834 |
||
1835 |
\item[$\bullet$] \qtybf{int\_seq}: A comma-separated sequence of ranges of integers (e.g.,~1{,}3{,}\allowbreak6--8). |
|
1836 |
\item[$\bullet$] \qtybf{time}: An integer followed by $\textit{min}$ (minutes), $s$ (seconds), or \textit{ms} |
|
1837 |
(milliseconds), or the keyword \textit{none} ($\infty$ years). |
|
1838 |
\item[$\bullet$] \qtybf{const}: The name of a HOL constant. |
|
1839 |
\item[$\bullet$] \qtybf{term}: A HOL term (e.g., ``$f~x$''). |
|
1840 |
\item[$\bullet$] \qtybf{term\_list}: A space-separated list of HOL terms (e.g., |
|
1841 |
``$f~x$''~``$g~y$''). |
|
1842 |
\item[$\bullet$] \qtybf{type}: A HOL type. |
|
1843 |
\end{enum} |
|
1844 |
||
1845 |
Default values are indicated in square brackets. Boolean options have a negated |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1846 |
counterpart (e.g., \textit{blocking} vs.\ \textit{no\_blocking}). When setting |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1847 |
Boolean options, ``= \textit{true}'' may be omitted. |
33191 | 1848 |
|
1849 |
\subsection{Mode of Operation} |
|
1850 |
\label{mode-of-operation} |
|
1851 |
||
1852 |
\begin{enum} |
|
1853 |
\optrue{blocking}{non\_blocking} |
|
1854 |
Specifies whether the \textbf{nitpick} command should operate synchronously. |
|
1855 |
The asynchronous (non-blocking) mode lets the user start proving the putative |
|
1856 |
theorem while Nitpick looks for a counterexample, but it can also be more |
|
1857 |
confusing. For technical reasons, automatic runs currently always block. |
|
1858 |
||
1859 |
\optrue{falsify}{satisfy} |
|
1860 |
Specifies whether Nitpick should look for falsifying examples (countermodels) or |
|
1861 |
satisfying examples (models). This manual assumes throughout that |
|
1862 |
\textit{falsify} is enabled. |
|
1863 |
||
1864 |
\opsmart{user\_axioms}{no\_user\_axioms} |
|
1865 |
Specifies whether the user-defined axioms (specified using |
|
1866 |
\textbf{axiomatization} and \textbf{axioms}) should be considered. If the option |
|
1867 |
is set to \textit{smart}, Nitpick performs an ad hoc axiom selection based on |
|
1868 |
the constants that occur in the formula to falsify. The option is implicitly set |
|
1869 |
to \textit{true} for automatic runs. |
|
1870 |
||
1871 |
\textbf{Warning:} If the option is set to \textit{true}, Nitpick might |
|
1872 |
nonetheless ignore some polymorphic axioms. Counterexamples generated under |
|
1873 |
these conditions are tagged as ``likely genuine.'' The \textit{debug} |
|
1874 |
(\S\ref{output-format}) option can be used to find out which axioms were |
|
1875 |
considered. |
|
1876 |
||
1877 |
\nopagebreak |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1878 |
{\small See also \textit{assms} (\S\ref{mode-of-operation}) and \textit{debug} |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1879 |
(\S\ref{output-format}).} |
33191 | 1880 |
|
1881 |
\optrue{assms}{no\_assms} |
|
1882 |
Specifies whether the relevant assumptions in structured proof should be |
|
1883 |
considered. The option is implicitly enabled for automatic runs. |
|
1884 |
||
1885 |
\nopagebreak |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
1886 |
{\small See also \textit{user\_axioms} (\S\ref{mode-of-operation}).} |
33191 | 1887 |
|
1888 |
\opfalse{overlord}{no\_overlord} |
|
1889 |
Specifies whether Nitpick should put its temporary files in |
|
1890 |
\texttt{\$ISABELLE\_\allowbreak HOME\_\allowbreak USER}, which is useful for |
|
1891 |
debugging Nitpick but also unsafe if several instances of the tool are run |
|
34998 | 1892 |
simultaneously. The files are identified by the extensions |
1893 |
\texttt{.kki}, \texttt{.cnf}, \texttt{.out}, and |
|
1894 |
\texttt{.err}; you may safely remove them after Nitpick has run. |
|
33191 | 1895 |
|
1896 |
\nopagebreak |
|
1897 |
{\small See also \textit{debug} (\S\ref{output-format}).} |
|
1898 |
\end{enum} |
|
1899 |
||
1900 |
\subsection{Scope of Search} |
|
1901 |
\label{scope-of-search} |
|
1902 |
||
1903 |
\begin{enum} |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1904 |
\oparg{card}{type}{int\_seq} |
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1905 |
Specifies the sequence of cardinalities to use for a given type. |
33191 | 1906 |
For free types, and often also for \textbf{typedecl}'d types, it usually makes |
1907 |
sense to specify cardinalities as a range of the form \textit{$1$--$n$}. |
|
1908 |
Although function and product types are normally mapped directly to the |
|
1909 |
corresponding Kodkod concepts, setting |
|
1910 |
the cardinality of such types is also allowed and implicitly enables ``boxing'' |
|
1911 |
for them, as explained in the description of the \textit{box}~\qty{type} |
|
1912 |
and \textit{box} (\S\ref{scope-of-search}) options. |
|
1913 |
||
1914 |
\nopagebreak |
|
1915 |
{\small See also \textit{mono} (\S\ref{scope-of-search}).} |
|
1916 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1917 |
\opdefault{card}{int\_seq}{$\mathbf{1}$--$\mathbf{8}$} |
33191 | 1918 |
Specifies the default sequence of cardinalities to use. This can be overridden |
1919 |
on a per-type basis using the \textit{card}~\qty{type} option described above. |
|
1920 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1921 |
\oparg{max}{const}{int\_seq} |
33191 | 1922 |
Specifies the sequence of maximum multiplicities to use for a given |
1923 |
(co)in\-duc\-tive datatype constructor. A constructor's multiplicity is the |
|
1924 |
number of distinct values that it can construct. Nonsensical values (e.g., |
|
1925 |
\textit{max}~[]~$=$~2) are silently repaired. This option is only available for |
|
1926 |
datatypes equipped with several constructors. |
|
1927 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1928 |
\opnodefault{max}{int\_seq} |
33191 | 1929 |
Specifies the default sequence of maximum multiplicities to use for |
1930 |
(co)in\-duc\-tive datatype constructors. This can be overridden on a per-constructor |
|
1931 |
basis using the \textit{max}~\qty{const} option described above. |
|
1932 |
||
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1933 |
\opsmart{binary\_ints}{unary\_ints} |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1934 |
Specifies whether natural numbers and integers should be encoded using a unary |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1935 |
or binary notation. In unary mode, the cardinality fully specifies the subset |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1936 |
used to approximate the type. For example: |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1937 |
% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1938 |
$$\hbox{\begin{tabular}{@{}rll@{}}% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1939 |
\textit{card nat} = 4 & induces & $\{0,\, 1,\, 2,\, 3\}$ \\ |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1940 |
\textit{card int} = 4 & induces & $\{-1,\, 0,\, +1,\, +2\}$ \\ |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1941 |
\textit{card int} = 5 & induces & $\{-2,\, -1,\, 0,\, +1,\, +2\}.$% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1942 |
\end{tabular}}$$ |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1943 |
% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1944 |
In general: |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1945 |
% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1946 |
$$\hbox{\begin{tabular}{@{}rll@{}}% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1947 |
\textit{card nat} = $K$ & induces & $\{0,\, \ldots,\, K - 1\}$ \\ |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1948 |
\textit{card int} = $K$ & induces & $\{-\lceil K/2 \rceil + 1,\, \ldots,\, +\lfloor K/2 \rfloor\}.$% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1949 |
\end{tabular}}$$ |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1950 |
% |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1951 |
In binary mode, the cardinality specifies the number of distinct values that can |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1952 |
be constructed. Each of these value is represented by a bit pattern whose length |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1953 |
is specified by the \textit{bits} (\S\ref{scope-of-search}) option. By default, |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1954 |
Nitpick attempts to choose the more appropriate encoding by inspecting the |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1955 |
formula at hand, preferring the binary notation for problems involving |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1956 |
multiplicative operators or large constants. |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1957 |
|
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1958 |
\textbf{Warning:} For technical reasons, Nitpick always reverts to unary for |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1959 |
problems that refer to the types \textit{rat} or \textit{real} or the constants |
34126 | 1960 |
\textit{Suc}, \textit{gcd}, or \textit{lcm}. |
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1961 |
|
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1962 |
{\small See also \textit{bits} (\S\ref{scope-of-search}) and |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1963 |
\textit{show\_datatypes} (\S\ref{output-format}).} |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1964 |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1965 |
\opdefault{bits}{int\_seq}{$\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{6},\mathbf{8},\mathbf{10},\mathbf{12}$} |
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1966 |
Specifies the number of bits to use to represent natural numbers and integers in |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1967 |
binary, excluding the sign bit. The minimum is 1 and the maximum is 31. |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1968 |
|
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1969 |
{\small See also \textit{binary\_ints} (\S\ref{scope-of-search}).} |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
34038
diff
changeset
|
1970 |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1971 |
\opargboolorsmart{wf}{const}{non\_wf} |
33191 | 1972 |
Specifies whether the specified (co)in\-duc\-tively defined predicate is |
1973 |
well-founded. The option can take the following values: |
|
1974 |
||
1975 |
\begin{enum} |
|
1976 |
\item[$\bullet$] \textbf{\textit{true}}: Tentatively treat the (co)in\-duc\-tive |
|
1977 |
predicate as if it were well-founded. Since this is generally not sound when the |
|
1978 |
predicate is not well-founded, the counterexamples are tagged as ``likely |
|
1979 |
genuine.'' |
|
1980 |
||
1981 |
\item[$\bullet$] \textbf{\textit{false}}: Treat the (co)in\-duc\-tive predicate |
|
1982 |
as if it were not well-founded. The predicate is then unrolled as prescribed by |
|
1983 |
the \textit{star\_linear\_preds}, \textit{iter}~\qty{const}, and \textit{iter} |
|
1984 |
options. |
|
1985 |
||
1986 |
\item[$\bullet$] \textbf{\textit{smart}}: Try to prove that the inductive |
|
1987 |
predicate is well-founded using Isabelle's \textit{lexicographic\_order} and |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
1988 |
\textit{size\_change} tactics. If this succeeds (or the predicate occurs with an |
33191 | 1989 |
appropriate polarity in the formula to falsify), use an efficient fixed point |
1990 |
equation as specification of the predicate; otherwise, unroll the predicates |
|
1991 |
according to the \textit{iter}~\qty{const} and \textit{iter} options. |
|
1992 |
\end{enum} |
|
1993 |
||
1994 |
\nopagebreak |
|
1995 |
{\small See also \textit{iter} (\S\ref{scope-of-search}), |
|
1996 |
\textit{star\_linear\_preds} (\S\ref{optimizations}), and \textit{tac\_timeout} |
|
1997 |
(\S\ref{timeouts}).} |
|
1998 |
||
1999 |
\opsmart{wf}{non\_wf} |
|
2000 |
Specifies the default wellfoundedness setting to use. This can be overridden on |
|
2001 |
a per-predicate basis using the \textit{wf}~\qty{const} option above. |
|
2002 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2003 |
\oparg{iter}{const}{int\_seq} |
33191 | 2004 |
Specifies the sequence of iteration counts to use when unrolling a given |
2005 |
(co)in\-duc\-tive predicate. By default, unrolling is applied for inductive |
|
2006 |
predicates that occur negatively and coinductive predicates that occur |
|
2007 |
positively in the formula to falsify and that cannot be proved to be |
|
2008 |
well-founded, but this behavior is influenced by the \textit{wf} option. The |
|
2009 |
iteration counts are automatically bounded by the cardinality of the predicate's |
|
2010 |
domain. |
|
2011 |
||
2012 |
{\small See also \textit{wf} (\S\ref{scope-of-search}) and |
|
2013 |
\textit{star\_linear\_preds} (\S\ref{optimizations}).} |
|
2014 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2015 |
\opdefault{iter}{int\_seq}{$\mathbf{1{,}2{,}4{,}8{,}12{,}16{,}24{,}32}$} |
33191 | 2016 |
Specifies the sequence of iteration counts to use when unrolling (co)in\-duc\-tive |
2017 |
predicates. This can be overridden on a per-predicate basis using the |
|
2018 |
\textit{iter} \qty{const} option above. |
|
2019 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2020 |
\opdefault{bisim\_depth}{int\_seq}{$\mathbf{7}$} |
33191 | 2021 |
Specifies the sequence of iteration counts to use when unrolling the |
2022 |
bisimilarity predicate generated by Nitpick for coinductive datatypes. A value |
|
2023 |
of $-1$ means that no predicate is generated, in which case Nitpick performs an |
|
2024 |
after-the-fact check to see if the known coinductive datatype values are |
|
2025 |
bidissimilar. If two values are found to be bisimilar, the counterexample is |
|
2026 |
tagged as ``likely genuine.'' The iteration counts are automatically bounded by |
|
2027 |
the sum of the cardinalities of the coinductive datatypes occurring in the |
|
2028 |
formula to falsify. |
|
2029 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2030 |
\opargboolorsmart{box}{type}{dont\_box} |
33191 | 2031 |
Specifies whether Nitpick should attempt to wrap (``box'') a given function or |
2032 |
product type in an isomorphic datatype internally. Boxing is an effective mean |
|
2033 |
to reduce the search space and speed up Nitpick, because the isomorphic datatype |
|
2034 |
is approximated by a subset of the possible function or pair values; |
|
2035 |
like other drastic optimizations, it can also prevent the discovery of |
|
2036 |
counterexamples. The option can take the following values: |
|
2037 |
||
2038 |
\begin{enum} |
|
2039 |
\item[$\bullet$] \textbf{\textit{true}}: Box the specified type whenever |
|
2040 |
practicable. |
|
2041 |
\item[$\bullet$] \textbf{\textit{false}}: Never box the type. |
|
2042 |
\item[$\bullet$] \textbf{\textit{smart}}: Box the type only in contexts where it |
|
2043 |
is likely to help. For example, $n$-tuples where $n > 2$ and arguments to |
|
2044 |
higher-order functions are good candidates for boxing. |
|
2045 |
\end{enum} |
|
2046 |
||
2047 |
Setting the \textit{card}~\qty{type} option for a function or product type |
|
2048 |
implicitly enables boxing for that type. |
|
2049 |
||
2050 |
\nopagebreak |
|
2051 |
{\small See also \textit{verbose} (\S\ref{output-format}) |
|
2052 |
and \textit{debug} (\S\ref{output-format}).} |
|
2053 |
||
2054 |
\opsmart{box}{dont\_box} |
|
2055 |
Specifies the default boxing setting to use. This can be overridden on a |
|
2056 |
per-type basis using the \textit{box}~\qty{type} option described above. |
|
2057 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2058 |
\opargboolorsmart{mono}{type}{non\_mono} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2059 |
Specifies whether the given type should be considered monotonic when |
33191 | 2060 |
enumerating scopes. If the option is set to \textit{smart}, Nitpick performs a |
2061 |
monotonicity check on the type. Setting this option to \textit{true} can reduce |
|
2062 |
the number of scopes tried, but it also diminishes the theoretical chance of |
|
2063 |
finding a counterexample, as demonstrated in \S\ref{scope-monotonicity}. |
|
2064 |
||
2065 |
\nopagebreak |
|
2066 |
{\small See also \textit{card} (\S\ref{scope-of-search}), |
|
33556
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33232
diff
changeset
|
2067 |
\textit{merge\_type\_vars} (\S\ref{scope-of-search}), and \textit{verbose} |
33191 | 2068 |
(\S\ref{output-format}).} |
2069 |
||
2070 |
\opsmart{mono}{non\_box} |
|
2071 |
Specifies the default monotonicity setting to use. This can be overridden on a |
|
2072 |
per-type basis using the \textit{mono}~\qty{type} option described above. |
|
2073 |
||
33556
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33232
diff
changeset
|
2074 |
\opfalse{merge\_type\_vars}{dont\_merge\_type\_vars} |
33191 | 2075 |
Specifies whether type variables with the same sort constraints should be |
2076 |
merged. Setting this option to \textit{true} can reduce the number of scopes |
|
2077 |
tried and the size of the generated Kodkod formulas, but it also diminishes the |
|
2078 |
theoretical chance of finding a counterexample. |
|
2079 |
||
2080 |
{\small See also \textit{mono} (\S\ref{scope-of-search}).} |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2081 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2082 |
\opargbool{std}{type}{non\_std} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2083 |
Specifies whether the given type should be given standard models. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2084 |
Nonstandard models are unsound but can help debug inductive arguments, |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2085 |
as explained in \S\ref{inductive-properties}. |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2086 |
|
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2087 |
\optrue{std}{non\_std} |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2088 |
Specifies the default standardness to use. This can be overridden on a per-type |
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2089 |
basis using the \textit{std}~\qty{type} option described above. |
33191 | 2090 |
\end{enum} |
2091 |
||
2092 |
\subsection{Output Format} |
|
2093 |
\label{output-format} |
|
2094 |
||
2095 |
\begin{enum} |
|
2096 |
\opfalse{verbose}{quiet} |
|
2097 |
Specifies whether the \textbf{nitpick} command should explain what it does. This |
|
2098 |
option is useful to determine which scopes are tried or which SAT solver is |
|
2099 |
used. This option is implicitly disabled for automatic runs. |
|
2100 |
||
2101 |
\opfalse{debug}{no\_debug} |
|
2102 |
Specifies whether Nitpick should display additional debugging information beyond |
|
2103 |
what \textit{verbose} already displays. Enabling \textit{debug} also enables |
|
2104 |
\textit{verbose} and \textit{show\_all} behind the scenes. The \textit{debug} |
|
2105 |
option is implicitly disabled for automatic runs. |
|
2106 |
||
2107 |
\nopagebreak |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2108 |
{\small See also \textit{overlord} (\S\ref{mode-of-operation}) and |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2109 |
\textit{batch\_size} (\S\ref{optimizations}).} |
33191 | 2110 |
|
2111 |
\optrue{show\_skolems}{hide\_skolem} |
|
2112 |
Specifies whether the values of Skolem constants should be displayed as part of |
|
2113 |
counterexamples. Skolem constants correspond to bound variables in the original |
|
2114 |
formula and usually help us to understand why the counterexample falsifies the |
|
2115 |
formula. |
|
2116 |
||
2117 |
\nopagebreak |
|
2118 |
{\small See also \textit{skolemize} (\S\ref{optimizations}).} |
|
2119 |
||
2120 |
\opfalse{show\_datatypes}{hide\_datatypes} |
|
2121 |
Specifies whether the subsets used to approximate (co)in\-duc\-tive datatypes should |
|
2122 |
be displayed as part of counterexamples. Such subsets are sometimes helpful when |
|
2123 |
investigating whether a potential counterexample is genuine or spurious, but |
|
2124 |
their potential for clutter is real. |
|
2125 |
||
2126 |
\opfalse{show\_consts}{hide\_consts} |
|
2127 |
Specifies whether the values of constants occurring in the formula (including |
|
2128 |
its axioms) should be displayed along with any counterexample. These values are |
|
2129 |
sometimes helpful when investigating why a counterexample is |
|
2130 |
genuine, but they can clutter the output. |
|
2131 |
||
2132 |
\opfalse{show\_all}{dont\_show\_all} |
|
2133 |
Enabling this option effectively enables \textit{show\_skolems}, |
|
2134 |
\textit{show\_datatypes}, and \textit{show\_consts}. |
|
2135 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2136 |
\opdefault{max\_potential}{int}{$\mathbf{1}$} |
33191 | 2137 |
Specifies the maximum number of potential counterexamples to display. Setting |
2138 |
this option to 0 speeds up the search for a genuine counterexample. This option |
|
2139 |
is implicitly set to 0 for automatic runs. If you set this option to a value |
|
2140 |
greater than 1, you will need an incremental SAT solver: For efficiency, it is |
|
2141 |
recommended to install the JNI version of MiniSat and set \textit{sat\_solver} = |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2142 |
\textit{MiniSat\_JNI}. Also be aware that many of the counterexamples may look |
33191 | 2143 |
identical, unless the \textit{show\_all} (\S\ref{output-format}) option is |
2144 |
enabled. |
|
2145 |
||
2146 |
\nopagebreak |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2147 |
{\small See also \textit{check\_potential} (\S\ref{authentication}) and |
33191 | 2148 |
\textit{sat\_solver} (\S\ref{optimizations}).} |
2149 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2150 |
\opdefault{max\_genuine}{int}{$\mathbf{1}$} |
33191 | 2151 |
Specifies the maximum number of genuine counterexamples to display. If you set |
2152 |
this option to a value greater than 1, you will need an incremental SAT solver: |
|
2153 |
For efficiency, it is recommended to install the JNI version of MiniSat and set |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2154 |
\textit{sat\_solver} = \textit{MiniSat\_JNI}. Also be aware that many of the |
33191 | 2155 |
counterexamples may look identical, unless the \textit{show\_all} |
2156 |
(\S\ref{output-format}) option is enabled. |
|
2157 |
||
2158 |
\nopagebreak |
|
2159 |
{\small See also \textit{check\_genuine} (\S\ref{authentication}) and |
|
2160 |
\textit{sat\_solver} (\S\ref{optimizations}).} |
|
2161 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2162 |
\opnodefault{eval}{term\_list} |
33191 | 2163 |
Specifies the list of terms whose values should be displayed along with |
2164 |
counterexamples. This option suffers from an ``observer effect'': Nitpick might |
|
2165 |
find different counterexamples for different values of this option. |
|
2166 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2167 |
\oparg{format}{term}{int\_seq} |
33191 | 2168 |
Specifies how to uncurry the value displayed for a variable or constant. |
2169 |
Uncurrying sometimes increases the readability of the output for high-arity |
|
2170 |
functions. For example, given the variable $y \mathbin{\Colon} {'a}\Rightarrow |
|
2171 |
{'b}\Rightarrow {'c}\Rightarrow {'d}\Rightarrow {'e}\Rightarrow {'f}\Rightarrow |
|
2172 |
{'g}$, setting \textit{format}~$y$ = 3 tells Nitpick to group the last three |
|
2173 |
arguments, as if the type had been ${'a}\Rightarrow {'b}\Rightarrow |
|
2174 |
{'c}\Rightarrow {'d}\times {'e}\times {'f}\Rightarrow {'g}$. In general, a list |
|
2175 |
of values $n_1,\ldots,n_k$ tells Nitpick to show the last $n_k$ arguments as an |
|
2176 |
$n_k$-tuple, the previous $n_{k-1}$ arguments as an $n_{k-1}$-tuple, and so on; |
|
2177 |
arguments that are not accounted for are left alone, as if the specification had |
|
2178 |
been $1,\ldots,1,n_1,\ldots,n_k$. |
|
2179 |
||
2180 |
\nopagebreak |
|
2181 |
{\small See also \textit{uncurry} (\S\ref{optimizations}).} |
|
2182 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2183 |
\opdefault{format}{int\_seq}{$\mathbf{1}$} |
33191 | 2184 |
Specifies the default format to use. Irrespective of the default format, the |
2185 |
extra arguments to a Skolem constant corresponding to the outer bound variables |
|
2186 |
are kept separated from the remaining arguments, the \textbf{for} arguments of |
|
2187 |
an inductive definitions are kept separated from the remaining arguments, and |
|
2188 |
the iteration counter of an unrolled inductive definition is shown alone. The |
|
2189 |
default format can be overridden on a per-variable or per-constant basis using |
|
2190 |
the \textit{format}~\qty{term} option described above. |
|
2191 |
\end{enum} |
|
2192 |
||
2193 |
%% MARK: Authentication |
|
2194 |
\subsection{Authentication} |
|
2195 |
\label{authentication} |
|
2196 |
||
2197 |
\begin{enum} |
|
2198 |
\opfalse{check\_potential}{trust\_potential} |
|
2199 |
Specifies whether potential counterexamples should be given to Isabelle's |
|
2200 |
\textit{auto} tactic to assess their validity. If a potential counterexample is |
|
2201 |
shown to be genuine, Nitpick displays a message to this effect and terminates. |
|
2202 |
||
2203 |
\nopagebreak |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2204 |
{\small See also \textit{max\_potential} (\S\ref{output-format}).} |
33191 | 2205 |
|
2206 |
\opfalse{check\_genuine}{trust\_genuine} |
|
2207 |
Specifies whether genuine and likely genuine counterexamples should be given to |
|
2208 |
Isabelle's \textit{auto} tactic to assess their validity. If a ``genuine'' |
|
2209 |
counterexample is shown to be spurious, the user is kindly asked to send a bug |
|
2210 |
report to the author at |
|
2211 |
\texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@in.tum.de}. |
|
2212 |
||
2213 |
\nopagebreak |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2214 |
{\small See also \textit{max\_genuine} (\S\ref{output-format}).} |
33191 | 2215 |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2216 |
\opnodefault{expect}{string} |
33191 | 2217 |
Specifies the expected outcome, which must be one of the following: |
2218 |
||
2219 |
\begin{enum} |
|
2220 |
\item[$\bullet$] \textbf{\textit{genuine}}: Nitpick found a genuine counterexample. |
|
2221 |
\item[$\bullet$] \textbf{\textit{likely\_genuine}}: Nitpick found a ``likely |
|
2222 |
genuine'' counterexample (i.e., a counterexample that is genuine unless |
|
2223 |
it contradicts a missing axiom or a dangerous option was used inappropriately). |
|
2224 |
\item[$\bullet$] \textbf{\textit{potential}}: Nitpick found a potential counterexample. |
|
2225 |
\item[$\bullet$] \textbf{\textit{none}}: Nitpick found no counterexample. |
|
2226 |
\item[$\bullet$] \textbf{\textit{unknown}}: Nitpick encountered some problem (e.g., |
|
2227 |
Kodkod ran out of memory). |
|
2228 |
\end{enum} |
|
2229 |
||
2230 |
Nitpick emits an error if the actual outcome differs from the expected outcome. |
|
2231 |
This option is useful for regression testing. |
|
2232 |
\end{enum} |
|
2233 |
||
2234 |
\subsection{Optimizations} |
|
2235 |
\label{optimizations} |
|
2236 |
||
2237 |
\def\cpp{C\nobreak\raisebox{.1ex}{+}\nobreak\raisebox{.1ex}{+}} |
|
2238 |
||
2239 |
\sloppy |
|
2240 |
||
2241 |
\begin{enum} |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2242 |
\opdefault{sat\_solver}{string}{smart} |
33191 | 2243 |
Specifies which SAT solver to use. SAT solvers implemented in C or \cpp{} tend |
2244 |
to be faster than their Java counterparts, but they can be more difficult to |
|
2245 |
install. Also, if you set the \textit{max\_potential} (\S\ref{output-format}) or |
|
2246 |
\textit{max\_genuine} (\S\ref{output-format}) option to a value greater than 1, |
|
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2247 |
you will need an incremental SAT solver, such as \textit{MiniSat\_JNI} |
33191 | 2248 |
(recommended) or \textit{SAT4J}. |
2249 |
||
2250 |
The supported solvers are listed below: |
|
2251 |
||
2252 |
\begin{enum} |
|
2253 |
||
2254 |
\item[$\bullet$] \textbf{\textit{MiniSat}}: MiniSat is an efficient solver |
|
2255 |
written in \cpp{}. To use MiniSat, set the environment variable |
|
2256 |
\texttt{MINISAT\_HOME} to the directory that contains the \texttt{minisat} |
|
2257 |
executable. The \cpp{} sources and executables for MiniSat are available at |
|
2258 |
\url{http://minisat.se/MiniSat.html}. Nitpick has been tested with versions 1.14 |
|
2259 |
and 2.0 beta (2007-07-21). |
|
2260 |
||
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2261 |
\item[$\bullet$] \textbf{\textit{MiniSat\_JNI}}: The JNI (Java Native Interface) |
33191 | 2262 |
version of MiniSat is bundled in \texttt{nativesolver.\allowbreak tgz}, which |
2263 |
you will find on Kodkod's web site \cite{kodkod-2009}. Unlike the standard |
|
2264 |
version of MiniSat, the JNI version can be used incrementally. |
|
2265 |
||
33731
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2266 |
%%% No longer true: |
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2267 |
%%% "It is bundled with Kodkodi and requires no further installation or |
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2268 |
%%% configuration steps. Alternatively," |
33191 | 2269 |
\item[$\bullet$] \textbf{\textit{PicoSAT}}: PicoSAT is an efficient solver |
33731
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2270 |
written in C. You can install a standard version of |
33191 | 2271 |
PicoSAT and set the environment variable \texttt{PICOSAT\_HOME} to the directory |
2272 |
that contains the \texttt{picosat} executable. The C sources for PicoSAT are |
|
2273 |
available at \url{http://fmv.jku.at/picosat/} and are also bundled with Kodkodi. |
|
2274 |
Nitpick has been tested with version 913. |
|
2275 |
||
2276 |
\item[$\bullet$] \textbf{\textit{zChaff}}: zChaff is an efficient solver written |
|
2277 |
in \cpp{}. To use zChaff, set the environment variable \texttt{ZCHAFF\_HOME} to |
|
2278 |
the directory that contains the \texttt{zchaff} executable. The \cpp{} sources |
|
2279 |
and executables for zChaff are available at |
|
2280 |
\url{http://www.princeton.edu/~chaff/zchaff.html}. Nitpick has been tested with |
|
2281 |
versions 2004-05-13, 2004-11-15, and 2007-03-12. |
|
2282 |
||
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2283 |
\item[$\bullet$] \textbf{\textit{zChaff\_JNI}}: The JNI version of zChaff is |
33191 | 2284 |
bundled in \texttt{native\-solver.\allowbreak tgz}, which you will find on |
2285 |
Kodkod's web site \cite{kodkod-2009}. |
|
2286 |
||
2287 |
\item[$\bullet$] \textbf{\textit{RSat}}: RSat is an efficient solver written in |
|
2288 |
\cpp{}. To use RSat, set the environment variable \texttt{RSAT\_HOME} to the |
|
2289 |
directory that contains the \texttt{rsat} executable. The \cpp{} sources for |
|
2290 |
RSat are available at \url{http://reasoning.cs.ucla.edu/rsat/}. Nitpick has been |
|
2291 |
tested with version 2.01. |
|
2292 |
||
2293 |
\item[$\bullet$] \textbf{\textit{BerkMin}}: BerkMin561 is an efficient solver |
|
2294 |
written in C. To use BerkMin, set the environment variable |
|
2295 |
\texttt{BERKMIN\_HOME} to the directory that contains the \texttt{BerkMin561} |
|
2296 |
executable. The BerkMin executables are available at |
|
2297 |
\url{http://eigold.tripod.com/BerkMin.html}. |
|
2298 |
||
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2299 |
\item[$\bullet$] \textbf{\textit{BerkMin\_Alloy}}: Variant of BerkMin that is |
33191 | 2300 |
included with Alloy 4 and calls itself ``sat56'' in its banner text. To use this |
2301 |
version of BerkMin, set the environment variable |
|
2302 |
\texttt{BERKMINALLOY\_HOME} to the directory that contains the \texttt{berkmin} |
|
2303 |
executable. |
|
2304 |
||
2305 |
\item[$\bullet$] \textbf{\textit{Jerusat}}: Jerusat 1.3 is an efficient solver |
|
2306 |
written in C. To use Jerusat, set the environment variable |
|
2307 |
\texttt{JERUSAT\_HOME} to the directory that contains the \texttt{Jerusat1.3} |
|
2308 |
executable. The C sources for Jerusat are available at |
|
2309 |
\url{http://www.cs.tau.ac.il/~ale1/Jerusat1.3.tgz}. |
|
2310 |
||
2311 |
\item[$\bullet$] \textbf{\textit{SAT4J}}: SAT4J is a reasonably efficient solver |
|
2312 |
written in Java that can be used incrementally. It is bundled with Kodkodi and |
|
2313 |
requires no further installation or configuration steps. Do not attempt to |
|
2314 |
install the official SAT4J packages, because their API is incompatible with |
|
2315 |
Kodkod. |
|
2316 |
||
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2317 |
\item[$\bullet$] \textbf{\textit{SAT4J\_Light}}: Variant of SAT4J that is |
33191 | 2318 |
optimized for small problems. It can also be used incrementally. |
2319 |
||
2320 |
\item[$\bullet$] \textbf{\textit{HaifaSat}}: HaifaSat 1.0 beta is an |
|
2321 |
experimental solver written in \cpp. To use HaifaSat, set the environment |
|
2322 |
variable \texttt{HAIFASAT\_\allowbreak HOME} to the directory that contains the |
|
2323 |
\texttt{HaifaSat} executable. The \cpp{} sources for HaifaSat are available at |
|
2324 |
\url{http://cs.technion.ac.il/~gershman/HaifaSat.htm}. |
|
2325 |
||
2326 |
\item[$\bullet$] \textbf{\textit{smart}}: If \textit{sat\_solver} is set to |
|
33731
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2327 |
\textit{smart}, Nitpick selects the first solver among MiniSat, |
35078
6fd1052fe463
optimization to quantifiers in Nitpick's handling of simp rules + renamed some SAT solvers
blanchet
parents:
35072
diff
changeset
|
2328 |
PicoSAT, zChaff, RSat, BerkMin, BerkMin\_Alloy, Jerusat, MiniSat\_JNI, and zChaff\_JNI |
33731
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2329 |
that is recognized by Isabelle. If none is found, it falls back on SAT4J, which |
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2330 |
should always be available. If \textit{verbose} (\S\ref{output-format}) is |
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2331 |
enabled, Nitpick displays which SAT solver was chosen. |
33191 | 2332 |
\end{enum} |
2333 |
\fussy |
|
2334 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2335 |
\opdefault{batch\_size}{int\_or\_smart}{smart} |
33191 | 2336 |
Specifies the maximum number of Kodkod problems that should be lumped together |
2337 |
when invoking Kodkodi. Each problem corresponds to one scope. Lumping problems |
|
2338 |
together ensures that Kodkodi is launched less often, but it makes the verbose |
|
2339 |
output less readable and is sometimes detrimental to performance. If |
|
2340 |
\textit{batch\_size} is set to \textit{smart}, the actual value used is 1 if |
|
2341 |
\textit{debug} (\S\ref{output-format}) is set and 64 otherwise. |
|
2342 |
||
2343 |
\optrue{destroy\_constrs}{dont\_destroy\_constrs} |
|
2344 |
Specifies whether formulas involving (co)in\-duc\-tive datatype constructors should |
|
2345 |
be rewritten to use (automatically generated) discriminators and destructors. |
|
2346 |
This optimization can drastically reduce the size of the Boolean formulas given |
|
2347 |
to the SAT solver. |
|
2348 |
||
2349 |
\nopagebreak |
|
2350 |
{\small See also \textit{debug} (\S\ref{output-format}).} |
|
2351 |
||
2352 |
\optrue{specialize}{dont\_specialize} |
|
2353 |
Specifies whether functions invoked with static arguments should be specialized. |
|
2354 |
This optimization can drastically reduce the search space, especially for |
|
2355 |
higher-order functions. |
|
2356 |
||
2357 |
\nopagebreak |
|
2358 |
{\small See also \textit{debug} (\S\ref{output-format}) and |
|
2359 |
\textit{show\_consts} (\S\ref{output-format}).} |
|
2360 |
||
2361 |
\optrue{skolemize}{dont\_skolemize} |
|
2362 |
Specifies whether the formula should be skolemized. For performance reasons, |
|
2363 |
(positive) $\forall$-quanti\-fiers that occur in the scope of a higher-order |
|
2364 |
(positive) $\exists$-quanti\-fier are left unchanged. |
|
2365 |
||
2366 |
\nopagebreak |
|
2367 |
{\small See also \textit{debug} (\S\ref{output-format}) and |
|
2368 |
\textit{show\_skolems} (\S\ref{output-format}).} |
|
2369 |
||
2370 |
\optrue{star\_linear\_preds}{dont\_star\_linear\_preds} |
|
2371 |
Specifies whether Nitpick should use Kodkod's transitive closure operator to |
|
2372 |
encode non-well-founded ``linear inductive predicates,'' i.e., inductive |
|
2373 |
predicates for which each the predicate occurs in at most one assumption of each |
|
2374 |
introduction rule. Using the reflexive transitive closure is in principle |
|
2375 |
equivalent to setting \textit{iter} to the cardinality of the predicate's |
|
2376 |
domain, but it is usually more efficient. |
|
2377 |
||
2378 |
{\small See also \textit{wf} (\S\ref{scope-of-search}), \textit{debug} |
|
2379 |
(\S\ref{output-format}), and \textit{iter} (\S\ref{scope-of-search}).} |
|
2380 |
||
2381 |
\optrue{uncurry}{dont\_uncurry} |
|
2382 |
Specifies whether Nitpick should uncurry functions. Uncurrying has on its own no |
|
2383 |
tangible effect on efficiency, but it creates opportunities for the boxing |
|
2384 |
optimization. |
|
2385 |
||
2386 |
\nopagebreak |
|
2387 |
{\small See also \textit{box} (\S\ref{scope-of-search}), \textit{debug} |
|
2388 |
(\S\ref{output-format}), and \textit{format} (\S\ref{output-format}).} |
|
2389 |
||
2390 |
\optrue{fast\_descrs}{full\_descrs} |
|
2391 |
Specifies whether Nitpick should optimize the definite and indefinite |
|
2392 |
description operators (THE and SOME). The optimized versions usually help |
|
2393 |
Nitpick generate more counterexamples or at least find them faster, but only the |
|
2394 |
unoptimized versions are complete when all types occurring in the formula are |
|
2395 |
finite. |
|
2396 |
||
2397 |
{\small See also \textit{debug} (\S\ref{output-format}).} |
|
2398 |
||
2399 |
\optrue{peephole\_optim}{no\_peephole\_optim} |
|
2400 |
Specifies whether Nitpick should simplify the generated Kodkod formulas using a |
|
2401 |
peephole optimizer. These optimizations can make a significant difference. |
|
2402 |
Unless you are tracking down a bug in Nitpick or distrust the peephole |
|
2403 |
optimizer, you should leave this option enabled. |
|
2404 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2405 |
\opdefault{sym\_break}{int}{20} |
33191 | 2406 |
Specifies an upper bound on the number of relations for which Kodkod generates |
2407 |
symmetry breaking predicates. According to the Kodkod documentation |
|
2408 |
\cite{kodkod-2009-options}, ``in general, the higher this value, the more |
|
2409 |
symmetries will be broken, and the faster the formula will be solved. But, |
|
2410 |
setting the value too high may have the opposite effect and slow down the |
|
2411 |
solving.'' |
|
2412 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2413 |
\opdefault{sharing\_depth}{int}{3} |
33191 | 2414 |
Specifies the depth to which Kodkod should check circuits for equivalence during |
2415 |
the translation to SAT. The default of 3 is the same as in Alloy. The minimum |
|
2416 |
allowed depth is 1. Increasing the sharing may result in a smaller SAT problem, |
|
2417 |
but can also slow down Kodkod. |
|
2418 |
||
2419 |
\opfalse{flatten\_props}{dont\_flatten\_props} |
|
2420 |
Specifies whether Kodkod should try to eliminate intermediate Boolean variables. |
|
2421 |
Although this might sound like a good idea, in practice it can drastically slow |
|
2422 |
down Kodkod. |
|
2423 |
||
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2424 |
\opdefault{max\_threads}{int}{0} |
33191 | 2425 |
Specifies the maximum number of threads to use in Kodkod. If this option is set |
2426 |
to 0, Kodkod will compute an appropriate value based on the number of processor |
|
2427 |
cores available. |
|
2428 |
||
2429 |
\nopagebreak |
|
2430 |
{\small See also \textit{batch\_size} (\S\ref{optimizations}) and |
|
2431 |
\textit{timeout} (\S\ref{timeouts}).} |
|
2432 |
\end{enum} |
|
2433 |
||
2434 |
\subsection{Timeouts} |
|
2435 |
\label{timeouts} |
|
2436 |
||
2437 |
\begin{enum} |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2438 |
\opdefault{timeout}{time}{$\mathbf{30}$ s} |
33191 | 2439 |
Specifies the maximum amount of time that the \textbf{nitpick} command should |
2440 |
spend looking for a counterexample. Nitpick tries to honor this constraint as |
|
2441 |
well as it can but offers no guarantees. For automatic runs, |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2442 |
\textit{timeout} is ignored; instead, Auto Quickcheck and Auto Nitpick share |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2443 |
a time slot whose length is specified by the ``Auto Counterexample Time |
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2444 |
Limit'' option in Proof General. |
33191 | 2445 |
|
2446 |
\nopagebreak |
|
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33559
diff
changeset
|
2447 |
{\small See also \textit{max\_threads} (\S\ref{optimizations}).} |
33191 | 2448 |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2449 |
\opdefault{tac\_timeout}{time}{$\mathbf{500}$\,ms} |
33191 | 2450 |
Specifies the maximum amount of time that the \textit{auto} tactic should use |
2451 |
when checking a counterexample, and similarly that \textit{lexicographic\_order} |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2452 |
and \textit{size\_change} should use when checking whether a (co)in\-duc\-tive |
33191 | 2453 |
predicate is well-founded. Nitpick tries to honor this constraint as well as it |
2454 |
can but offers no guarantees. |
|
2455 |
||
2456 |
\nopagebreak |
|
2457 |
{\small See also \textit{wf} (\S\ref{scope-of-search}), |
|
2458 |
\textit{check\_potential} (\S\ref{authentication}), |
|
2459 |
and \textit{check\_genuine} (\S\ref{authentication}).} |
|
2460 |
\end{enum} |
|
2461 |
||
2462 |
\section{Attribute Reference} |
|
2463 |
\label{attribute-reference} |
|
2464 |
||
2465 |
Nitpick needs to consider the definitions of all constants occurring in a |
|
2466 |
formula in order to falsify it. For constants introduced using the |
|
2467 |
\textbf{definition} command, the definition is simply the associated |
|
2468 |
\textit{\_def} axiom. In contrast, instead of using the internal representation |
|
2469 |
of functions synthesized by Isabelle's \textbf{primrec}, \textbf{function}, and |
|
2470 |
\textbf{nominal\_primrec} packages, Nitpick relies on the more natural |
|
2471 |
equational specification entered by the user. |
|
2472 |
||
2473 |
Behind the scenes, Isabelle's built-in packages and theories rely on the |
|
2474 |
following attributes to affect Nitpick's behavior: |
|
2475 |
||
2476 |
\begin{itemize} |
|
2477 |
\flushitem{\textit{nitpick\_def}} |
|
2478 |
||
2479 |
\nopagebreak |
|
2480 |
This attribute specifies an alternative definition of a constant. The |
|
2481 |
alternative definition should be logically equivalent to the constant's actual |
|
2482 |
axiomatic definition and should be of the form |
|
2483 |
||
2484 |
\qquad $c~{?}x_1~\ldots~{?}x_n \,\equiv\, t$, |
|
2485 |
||
2486 |
where ${?}x_1, \ldots, {?}x_n$ are distinct variables and $c$ does not occur in |
|
2487 |
$t$. |
|
2488 |
||
2489 |
\flushitem{\textit{nitpick\_simp}} |
|
2490 |
||
2491 |
\nopagebreak |
|
2492 |
This attribute specifies the equations that constitute the specification of a |
|
2493 |
constant. For functions defined using the \textbf{primrec}, \textbf{function}, |
|
2494 |
and \textbf{nominal\_\allowbreak primrec} packages, this corresponds to the |
|
2495 |
\textit{simps} rules. The equations must be of the form |
|
2496 |
||
2497 |
\qquad $c~t_1~\ldots\ t_n \,=\, u.$ |
|
2498 |
||
2499 |
\flushitem{\textit{nitpick\_psimp}} |
|
2500 |
||
2501 |
\nopagebreak |
|
2502 |
This attribute specifies the equations that constitute the partial specification |
|
2503 |
of a constant. For functions defined using the \textbf{function} package, this |
|
2504 |
corresponds to the \textit{psimps} rules. The conditional equations must be of |
|
2505 |
the form |
|
2506 |
||
2507 |
\qquad $\lbrakk P_1;\> \ldots;\> P_m\rbrakk \,\Longrightarrow\, c\ t_1\ \ldots\ t_n \,=\, u$. |
|
2508 |
||
2509 |
\flushitem{\textit{nitpick\_intro}} |
|
2510 |
||
2511 |
\nopagebreak |
|
2512 |
This attribute specifies the introduction rules of a (co)in\-duc\-tive predicate. |
|
2513 |
For predicates defined using the \textbf{inductive} or \textbf{coinductive} |
|
2514 |
command, this corresponds to the \textit{intros} rules. The introduction rules |
|
2515 |
must be of the form |
|
2516 |
||
2517 |
\qquad $\lbrakk P_1;\> \ldots;\> P_m;\> M~(c\ t_{11}\ \ldots\ t_{1n});\> |
|
2518 |
\ldots;\> M~(c\ t_{k1}\ \ldots\ t_{kn})\rbrakk \,\Longrightarrow\, c\ u_1\ |
|
2519 |
\ldots\ u_n$, |
|
2520 |
||
2521 |
where the $P_i$'s are side conditions that do not involve $c$ and $M$ is an |
|
2522 |
optional monotonic operator. The order of the assumptions is irrelevant. |
|
2523 |
||
2524 |
\end{itemize} |
|
2525 |
||
2526 |
When faced with a constant, Nitpick proceeds as follows: |
|
2527 |
||
2528 |
\begin{enum} |
|
2529 |
\item[1.] If the \textit{nitpick\_simp} set associated with the constant |
|
2530 |
is not empty, Nitpick uses these rules as the specification of the constant. |
|
2531 |
||
2532 |
\item[2.] Otherwise, if the \textit{nitpick\_psimp} set associated with |
|
2533 |
the constant is not empty, it uses these rules as the specification of the |
|
2534 |
constant. |
|
2535 |
||
2536 |
\item[3.] Otherwise, it looks up the definition of the constant: |
|
2537 |
||
2538 |
\begin{enum} |
|
2539 |
\item[1.] If the \textit{nitpick\_def} set associated with the constant |
|
2540 |
is not empty, it uses the latest rule added to the set as the definition of the |
|
2541 |
constant; otherwise it uses the actual definition axiom. |
|
2542 |
\item[2.] If the definition is of the form |
|
2543 |
||
2544 |
\qquad $c~{?}x_1~\ldots~{?}x_m \,\equiv\, \lambda y_1~\ldots~y_n.\; \textit{lfp}~(\lambda f.\; t)$, |
|
2545 |
||
2546 |
then Nitpick assumes that the definition was made using an inductive package and |
|
2547 |
based on the introduction rules marked with \textit{nitpick\_\allowbreak |
|
2548 |
ind\_\allowbreak intros} tries to determine whether the definition is |
|
2549 |
well-founded. |
|
2550 |
\end{enum} |
|
2551 |
\end{enum} |
|
2552 |
||
2553 |
As an illustration, consider the inductive definition |
|
2554 |
||
2555 |
\prew |
|
2556 |
\textbf{inductive}~\textit{odd}~\textbf{where} \\ |
|
2557 |
``\textit{odd}~1'' $\,\mid$ \\ |
|
2558 |
``\textit{odd}~$n\,\Longrightarrow\, \textit{odd}~(\textit{Suc}~(\textit{Suc}~n))$'' |
|
2559 |
\postw |
|
2560 |
||
2561 |
Isabelle automatically attaches the \textit{nitpick\_intro} attribute to |
|
2562 |
the above rules. Nitpick then uses the \textit{lfp}-based definition in |
|
2563 |
conjunction with these rules. To override this, we can specify an alternative |
|
2564 |
definition as follows: |
|
2565 |
||
2566 |
\prew |
|
2567 |
\textbf{lemma} $\mathit{odd\_def}'$ [\textit{nitpick\_def}]: ``$\textit{odd}~n \,\equiv\, n~\textrm{mod}~2 = 1$'' |
|
2568 |
\postw |
|
2569 |
||
2570 |
Nitpick then expands all occurrences of $\mathit{odd}~n$ to $n~\textrm{mod}~2 |
|
2571 |
= 1$. Alternatively, we can specify an equational specification of the constant: |
|
2572 |
||
2573 |
\prew |
|
2574 |
\textbf{lemma} $\mathit{odd\_simp}'$ [\textit{nitpick\_simp}]: ``$\textit{odd}~n = (n~\textrm{mod}~2 = 1)$'' |
|
2575 |
\postw |
|
2576 |
||
2577 |
Such tweaks should be done with great care, because Nitpick will assume that the |
|
2578 |
constant is completely defined by its equational specification. For example, if |
|
2579 |
you make ``$\textit{odd}~(2 * k + 1)$'' a \textit{nitpick\_simp} rule and neglect to provide rules to handle the $2 * k$ case, Nitpick will define |
|
2580 |
$\textit{odd}~n$ arbitrarily for even values of $n$. The \textit{debug} |
|
2581 |
(\S\ref{output-format}) option is extremely useful to understand what is going |
|
2582 |
on when experimenting with \textit{nitpick\_} attributes. |
|
2583 |
||
2584 |
\section{Standard ML Interface} |
|
2585 |
\label{standard-ml-interface} |
|
2586 |
||
2587 |
Nitpick provides a rich Standard ML interface used mainly for internal purposes |
|
2588 |
and debugging. Among the most interesting functions exported by Nitpick are |
|
2589 |
those that let you invoke the tool programmatically and those that let you |
|
2590 |
register and unregister custom coinductive datatypes. |
|
2591 |
||
2592 |
\subsection{Invocation of Nitpick} |
|
2593 |
\label{invocation-of-nitpick} |
|
2594 |
||
2595 |
The \textit{Nitpick} structure offers the following functions for invoking your |
|
2596 |
favorite counterexample generator: |
|
2597 |
||
2598 |
\prew |
|
2599 |
$\textbf{val}\,~\textit{pick\_nits\_in\_term} : \\ |
|
2600 |
\hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{term~list} \rightarrow \textit{term} \\ |
|
2601 |
\hbox{}\quad{\rightarrow}\; \textit{string} * \textit{Proof.state}$ \\ |
|
2602 |
$\textbf{val}\,~\textit{pick\_nits\_in\_subgoal} : \\ |
|
2603 |
\hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{int} \rightarrow \textit{string} * \textit{Proof.state}$ |
|
2604 |
\postw |
|
2605 |
||
2606 |
The return value is a new proof state paired with an outcome string |
|
2607 |
(``genuine'', ``likely\_genuine'', ``potential'', ``none'', or ``unknown''). The |
|
2608 |
\textit{params} type is a large record that lets you set Nitpick's options. The |
|
2609 |
current default options can be retrieved by calling the following function |
|
33232
f93390060bbe
internal renaming in Nitpick and fixed Kodkodi invokation on Linux;
blanchet
parents:
33229
diff
changeset
|
2610 |
defined in the \textit{Nitpick\_Isar} structure: |
33191 | 2611 |
|
2612 |
\prew |
|
2613 |
$\textbf{val}\,~\textit{default\_params} :\, |
|
2614 |
\textit{theory} \rightarrow (\textit{string} * \textit{string})~\textit{list} \rightarrow \textit{params}$ |
|
2615 |
\postw |
|
2616 |
||
2617 |
The second argument lets you override option values before they are parsed and |
|
2618 |
put into a \textit{params} record. Here is an example: |
|
2619 |
||
2620 |
\prew |
|
33232
f93390060bbe
internal renaming in Nitpick and fixed Kodkodi invokation on Linux;
blanchet
parents:
33229
diff
changeset
|
2621 |
$\textbf{val}\,~\textit{params} = \textit{Nitpick\_Isar.default\_params}~\textit{thy}~[(\textrm{``}\textrm{timeout}\textrm{''},\, \textrm{``}\textrm{none}\textrm{''})]$ \\ |
33191 | 2622 |
$\textbf{val}\,~(\textit{outcome},\, \textit{state}') = \textit{Nitpick.pick\_nits\_in\_subgoal}~\begin{aligned}[t] |
2623 |
& \textit{state}~\textit{params}~\textit{false} \\[-2pt] |
|
2624 |
& \textit{subgoal}\end{aligned}$ |
|
2625 |
\postw |
|
2626 |
||
33557
107f3df799f6
clean Nitpick's wellfoundedness cache once in a while, to avoid potential memory leak
blanchet
parents:
33556
diff
changeset
|
2627 |
\let\antiq=\textrm |
107f3df799f6
clean Nitpick's wellfoundedness cache once in a while, to avoid potential memory leak
blanchet
parents:
33556
diff
changeset
|
2628 |
|
33191 | 2629 |
\subsection{Registration of Coinductive Datatypes} |
2630 |
\label{registration-of-coinductive-datatypes} |
|
2631 |
||
2632 |
If you have defined a custom coinductive datatype, you can tell Nitpick about |
|
2633 |
it, so that it can use an efficient Kodkod axiomatization similar to the one it |
|
2634 |
uses for lazy lists. The interface for registering and unregistering coinductive |
|
2635 |
datatypes consists of the following pair of functions defined in the |
|
2636 |
\textit{Nitpick} structure: |
|
2637 |
||
2638 |
\prew |
|
2639 |
$\textbf{val}\,~\textit{register\_codatatype} :\, |
|
2640 |
\textit{typ} \rightarrow \textit{string} \rightarrow \textit{styp~list} \rightarrow \textit{theory} \rightarrow \textit{theory}$ \\ |
|
2641 |
$\textbf{val}\,~\textit{unregister\_codatatype} :\, |
|
2642 |
\textit{typ} \rightarrow \textit{theory} \rightarrow \textit{theory}$ |
|
2643 |
\postw |
|
2644 |
||
2645 |
The type $'a~\textit{llist}$ of lazy lists is already registered; had it |
|
2646 |
not been, you could have told Nitpick about it by adding the following line |
|
2647 |
to your theory file: |
|
2648 |
||
2649 |
\prew |
|
2650 |
$\textbf{setup}~\,\{{*}\,~\!\begin{aligned}[t] |
|
2651 |
& \textit{Nitpick.register\_codatatype} \\[-2pt] |
|
2652 |
& \qquad @\{\antiq{typ}~``\kern1pt'a~\textit{llist}\textrm{''}\}~@\{\antiq{const\_name}~ \textit{llist\_case}\} \\[-2pt] %% TYPESETTING |
|
2653 |
& \qquad (\textit{map}~\textit{dest\_Const}~[@\{\antiq{term}~\textit{LNil}\},\, @\{\antiq{term}~\textit{LCons}\}])\,\ {*}\}\end{aligned}$ |
|
2654 |
\postw |
|
2655 |
||
2656 |
The \textit{register\_codatatype} function takes a coinductive type, its case |
|
2657 |
function, and the list of its constructors. The case function must take its |
|
2658 |
arguments in the order that the constructors are listed. If no case function |
|
2659 |
with the correct signature is available, simply pass the empty string. |
|
2660 |
||
2661 |
On the other hand, if your goal is to cripple Nitpick, add the following line to |
|
2662 |
your theory file and try to check a few conjectures about lazy lists: |
|
2663 |
||
2664 |
\prew |
|
2665 |
$\textbf{setup}~\,\{{*}\,~\textit{Nitpick.unregister\_codatatype}~@\{\antiq{typ}~`` |
|
2666 |
\kern1pt'a~\textit{list}\textrm{''}\}\ \,{*}\}$ |
|
2667 |
\postw |
|
2668 |
||
33581
e1e77265fb1d
added possibility to register datatypes as codatatypes in Nitpick;
blanchet
parents:
33579
diff
changeset
|
2669 |
Inductive datatypes can be registered as coinductive datatypes, given |
e1e77265fb1d
added possibility to register datatypes as codatatypes in Nitpick;
blanchet
parents:
33579
diff
changeset
|
2670 |
appropriate coinductive constructors. However, doing so precludes |
e1e77265fb1d
added possibility to register datatypes as codatatypes in Nitpick;
blanchet
parents:
33579
diff
changeset
|
2671 |
the use of the inductive constructors---Nitpick will generate an error if they |
e1e77265fb1d
added possibility to register datatypes as codatatypes in Nitpick;
blanchet
parents:
33579
diff
changeset
|
2672 |
are needed. |
e1e77265fb1d
added possibility to register datatypes as codatatypes in Nitpick;
blanchet
parents:
33579
diff
changeset
|
2673 |
|
33191 | 2674 |
\section{Known Bugs and Limitations} |
2675 |
\label{known-bugs-and-limitations} |
|
2676 |
||
2677 |
Here are the known bugs and limitations in Nitpick at the time of writing: |
|
2678 |
||
2679 |
\begin{enum} |
|
2680 |
\item[$\bullet$] Underspecified functions defined using the \textbf{primrec}, |
|
2681 |
\textbf{function}, or \textbf{nominal\_\allowbreak primrec} packages can lead |
|
2682 |
Nitpick to generate spurious counterexamples for theorems that refer to values |
|
2683 |
for which the function is not defined. For example: |
|
2684 |
||
2685 |
\prew |
|
2686 |
\textbf{primrec} \textit{prec} \textbf{where} \\ |
|
2687 |
``$\textit{prec}~(\textit{Suc}~n) = n$'' \\[2\smallskipamount] |
|
2688 |
\textbf{lemma} ``$\textit{prec}~0 = \undef$'' \\ |
|
2689 |
\textbf{nitpick} \\[2\smallskipamount] |
|
2690 |
\quad{\slshape Nitpick found a counterexample for \textit{card nat}~= 2: |
|
2691 |
\nopagebreak |
|
2692 |
\\[2\smallskipamount] |
|
2693 |
\hbox{}\qquad Empty assignment} \nopagebreak\\[2\smallskipamount] |
|
34982
7b8c366e34a2
added support for nonstandard models to Nitpick (based on an idea by Koen Claessen) and did other fixes to Nitpick
blanchet
parents:
34126
diff
changeset
|
2694 |
\textbf{by}~(\textit{auto simp}:~\textit{prec\_def}) |
33191 | 2695 |
\postw |
2696 |
||
2697 |
Such theorems are considered bad style because they rely on the internal |
|
2698 |
representation of functions synthesized by Isabelle, which is an implementation |
|
2699 |
detail. |
|
2700 |
||
33559 | 2701 |
\item[$\bullet$] Nitpick maintains a global cache of wellfoundedness conditions, |
33556
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33232
diff
changeset
|
2702 |
which can become invalid if you change the definition of an inductive predicate |
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33232
diff
changeset
|
2703 |
that is registered in the cache. To clear the cache, |
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33232
diff
changeset
|
2704 |
run Nitpick with the \textit{tac\_timeout} option set to a new value (e.g., |
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33232
diff
changeset
|
2705 |
501$\,\textit{ms}$). |
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33232
diff
changeset
|
2706 |
|
33191 | 2707 |
\item[$\bullet$] Nitpick produces spurious counterexamples when invoked after a |
2708 |
\textbf{guess} command in a structured proof. |
|
2709 |
||
2710 |
\item[$\bullet$] The \textit{nitpick\_} attributes and the |
|
2711 |
\textit{Nitpick.register\_} functions can cause havoc if used improperly. |
|
2712 |
||
33579 | 2713 |
\item[$\bullet$] Although this has never been observed, arbitrary theorem |
33581
e1e77265fb1d
added possibility to register datatypes as codatatypes in Nitpick;
blanchet
parents:
33579
diff
changeset
|
2714 |
morphisms could possibly confuse Nitpick, resulting in spurious counterexamples. |
33579 | 2715 |
|
33191 | 2716 |
\item[$\bullet$] Local definitions are not supported and result in an error. |
2717 |
||
33731
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2718 |
%\item[$\bullet$] All constants and types whose names start with |
040852c71779
change the order in which Nitpick tries SAT solvers;
blanchet
parents:
33581
diff
changeset
|
2719 |
%\textit{Nitpick}{.} are reserved for internal use. |
33191 | 2720 |
\end{enum} |
2721 |
||
2722 |
\let\em=\sl |
|
2723 |
\bibliography{../manual}{} |
|
2724 |
\bibliographystyle{abbrv} |
|
2725 |
||
2726 |
\end{document} |