| author | haftmann | 
| Fri, 17 Jun 2005 16:12:49 +0200 | |
| changeset 16417 | 9bc16273c2d4 | 
| parent 13339 | 0f89104dd377 | 
| child 32960 | 69916a850301 | 
| permissions | -rw-r--r-- | 
| 12776 | 1  | 
(* Title: ZF/AC/Cardinal_aux.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Krzysztof Grabczewski  | 
|
4  | 
||
5  | 
Auxiliary lemmas concerning cardinalities  | 
|
6  | 
*)  | 
|
7  | 
||
| 16417 | 8  | 
theory Cardinal_aux imports AC_Equiv begin  | 
| 12776 | 9  | 
|
10  | 
lemma Diff_lepoll: "[| A \<lesssim> succ(m); B \<subseteq> A; B\<noteq>0 |] ==> A-B \<lesssim> m"  | 
|
| 12820 | 11  | 
apply (rule not_emptyE, assumption)  | 
| 12776 | 12  | 
apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll])  | 
13  | 
done  | 
|
14  | 
||
15  | 
||
16  | 
(* ********************************************************************** *)  | 
|
17  | 
(* Lemmas involving ordinals and cardinalities used in the proofs *)  | 
|
18  | 
(* concerning AC16 and DC *)  | 
|
19  | 
(* ********************************************************************** *)  | 
|
20  | 
||
21  | 
||
22  | 
(* j=|A| *)  | 
|
23  | 
lemma lepoll_imp_ex_le_eqpoll:  | 
|
24  | 
"[| A \<lesssim> i; Ord(i) |] ==> \<exists>j. j le i & A \<approx> j"  | 
|
25  | 
by (blast intro!: lepoll_cardinal_le well_ord_Memrel  | 
|
26  | 
well_ord_cardinal_eqpoll [THEN eqpoll_sym]  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
27  | 
dest: lepoll_well_ord)  | 
| 12776 | 28  | 
|
29  | 
(* j=|A| *)  | 
|
30  | 
lemma lesspoll_imp_ex_lt_eqpoll:  | 
|
31  | 
"[| A \<prec> i; Ord(i) |] ==> \<exists>j. j<i & A \<approx> j"  | 
|
32  | 
by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE)  | 
|
33  | 
||
34  | 
lemma Inf_Ord_imp_InfCard_cardinal: "[| ~Finite(i); Ord(i) |] ==> InfCard(|i|)"  | 
|
35  | 
apply (unfold InfCard_def)  | 
|
36  | 
apply (rule conjI)  | 
|
37  | 
apply (rule Card_cardinal)  | 
|
38  | 
apply (rule Card_nat  | 
|
39  | 
[THEN Card_def [THEN def_imp_iff, THEN iffD1, THEN ssubst]])  | 
|
40  | 
-- "rewriting would loop!"  | 
|
41  | 
apply (rule well_ord_Memrel [THEN well_ord_lepoll_imp_Card_le], assumption)  | 
|
42  | 
apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption+)  | 
|
43  | 
done  | 
|
44  | 
||
45  | 
text{*An alternative and more general proof goes like this: A and B are both
 | 
|
46  | 
well-ordered (because they are injected into an ordinal), either A lepoll B  | 
|
47  | 
or B lepoll A. Also both are equipollent to their cardinalities, so  | 
|
48  | 
(if A and B are infinite) then A Un B lepoll |A|+|B| = max(|A|,|B|) lepoll i.  | 
|
49  | 
In fact, the correctly strengthened version of this theorem appears below.*}  | 
|
50  | 
lemma Un_lepoll_Inf_Ord_weak:  | 
|
51  | 
"[|A \<approx> i; B \<approx> i; \<not> Finite(i); Ord(i)|] ==> A \<union> B \<lesssim> i"  | 
|
52  | 
apply (rule Un_lepoll_sum [THEN lepoll_trans])  | 
|
53  | 
apply (rule lepoll_imp_sum_lepoll_prod [THEN lepoll_trans])  | 
|
54  | 
apply (erule eqpoll_trans [THEN eqpoll_imp_lepoll])  | 
|
55  | 
apply (erule eqpoll_sym)  | 
|
56  | 
apply (rule subset_imp_lepoll [THEN lepoll_trans, THEN lepoll_trans])  | 
|
57  | 
apply (rule nat_2I [THEN OrdmemD], rule Ord_nat)  | 
|
58  | 
apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption+)  | 
|
59  | 
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])  | 
|
60  | 
apply (erule prod_eqpoll_cong [THEN eqpoll_imp_lepoll, THEN lepoll_trans],  | 
|
61  | 
assumption)  | 
|
62  | 
apply (rule eqpoll_imp_lepoll)  | 
|
63  | 
apply (rule well_ord_Memrel [THEN well_ord_InfCard_square_eq], assumption)  | 
|
64  | 
apply (rule Inf_Ord_imp_InfCard_cardinal, assumption+)  | 
|
65  | 
done  | 
|
66  | 
||
67  | 
lemma Un_eqpoll_Inf_Ord:  | 
|
68  | 
"[| A \<approx> i; B \<approx> i; ~Finite(i); Ord(i) |] ==> A Un B \<approx> i"  | 
|
69  | 
apply (rule eqpollI)  | 
|
70  | 
apply (blast intro: Un_lepoll_Inf_Ord_weak)  | 
|
71  | 
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans])  | 
|
72  | 
apply (rule Un_upper1 [THEN subset_imp_lepoll])  | 
|
73  | 
done  | 
|
74  | 
||
75  | 
lemma paired_bij: "?f \<in> bij({{y,z}. y \<in> x}, x)"
 | 
|
76  | 
apply (rule RepFun_bijective)  | 
|
77  | 
apply (simp add: doubleton_eq_iff, blast)  | 
|
78  | 
done  | 
|
79  | 
||
80  | 
lemma paired_eqpoll: "{{y,z}. y \<in> x} \<approx> x"
 | 
|
81  | 
by (unfold eqpoll_def, fast intro!: paired_bij)  | 
|
82  | 
||
83  | 
lemma ex_eqpoll_disjoint: "\<exists>B. B \<approx> A & B Int C = 0"  | 
|
84  | 
by (fast intro!: paired_eqpoll equals0I elim: mem_asym)  | 
|
85  | 
||
86  | 
(*Finally we reach this result. Surely there's a simpler proof, as sketched  | 
|
87  | 
above?*)  | 
|
88  | 
lemma Un_lepoll_Inf_Ord:  | 
|
89  | 
"[| A \<lesssim> i; B \<lesssim> i; ~Finite(i); Ord(i) |] ==> A Un B \<lesssim> i"  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
90  | 
apply (rule_tac A1 = i and C1 = i in ex_eqpoll_disjoint [THEN exE])  | 
| 12776 | 91  | 
apply (erule conjE)  | 
92  | 
apply (drule lepoll_trans)  | 
|
93  | 
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])  | 
|
94  | 
apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+))  | 
|
95  | 
apply (blast intro: eqpoll_refl Un_eqpoll_Inf_Ord eqpoll_imp_lepoll)  | 
|
96  | 
done  | 
|
97  | 
||
98  | 
lemma Least_in_Ord: "[| P(i); i \<in> j; Ord(j) |] ==> (LEAST i. P(i)) \<in> j"  | 
|
99  | 
apply (erule Least_le [THEN leE])  | 
|
100  | 
apply (erule Ord_in_Ord, assumption)  | 
|
101  | 
apply (erule ltE)  | 
|
102  | 
apply (fast dest: OrdmemD)  | 
|
103  | 
apply (erule subst_elem, assumption)  | 
|
104  | 
done  | 
|
| 1196 | 105  | 
|
| 12776 | 106  | 
lemma Diff_first_lepoll:  | 
107  | 
"[| well_ord(x,r); y \<subseteq> x; y \<lesssim> succ(n); n \<in> nat |]  | 
|
108  | 
      ==> y - {THE b. first(b,y,r)} \<lesssim> n"
 | 
|
109  | 
apply (case_tac "y=0", simp add: empty_lepollI)  | 
|
110  | 
apply (fast intro!: Diff_sing_lepoll the_first_in)  | 
|
111  | 
done  | 
|
112  | 
||
113  | 
lemma UN_subset_split:  | 
|
114  | 
"(\<Union>x \<in> X. P(x)) \<subseteq> (\<Union>x \<in> X. P(x)-Q(x)) Un (\<Union>x \<in> X. Q(x))"  | 
|
115  | 
by blast  | 
|
116  | 
||
117  | 
lemma UN_sing_lepoll: "Ord(a) ==> (\<Union>x \<in> a. {P(x)}) \<lesssim> a"
 | 
|
118  | 
apply (unfold lepoll_def)  | 
|
119  | 
apply (rule_tac x = "\<lambda>z \<in> (\<Union>x \<in> a. {P (x) }) . (LEAST i. P (i) =z) " in exI)
 | 
|
120  | 
apply (rule_tac d = "%z. P (z) " in lam_injective)  | 
|
121  | 
apply (fast intro!: Least_in_Ord)  | 
|
122  | 
apply (fast intro: LeastI elim!: Ord_in_Ord)  | 
|
123  | 
done  | 
|
124  | 
||
125  | 
lemma UN_fun_lepoll_lemma [rule_format]:  | 
|
126  | 
"[| well_ord(T, R); ~Finite(a); Ord(a); n \<in> nat |]  | 
|
127  | 
==> \<forall>f. (\<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T) --> (\<Union>b \<in> a. f`b) \<lesssim> a"  | 
|
128  | 
apply (induct_tac "n")  | 
|
129  | 
apply (rule allI)  | 
|
130  | 
apply (rule impI)  | 
|
131  | 
apply (rule_tac b = "\<Union>b \<in> a. f`b" in subst)  | 
|
132  | 
apply (rule_tac [2] empty_lepollI)  | 
|
133  | 
apply (rule equals0I [symmetric], clarify)  | 
|
134  | 
apply (fast dest: lepoll_0_is_0 [THEN subst])  | 
|
135  | 
apply (rule allI)  | 
|
136  | 
apply (rule impI)  | 
|
137  | 
apply (erule_tac x = "\<lambda>x \<in> a. f`x - {THE b. first (b,f`x,R) }" in allE)
 | 
|
138  | 
apply (erule impE, simp)  | 
|
139  | 
apply (fast intro!: Diff_first_lepoll, simp)  | 
|
140  | 
apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans])  | 
|
141  | 
apply (fast intro: Un_lepoll_Inf_Ord UN_sing_lepoll)  | 
|
142  | 
done  | 
|
143  | 
||
144  | 
lemma UN_fun_lepoll:  | 
|
145  | 
"[| \<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T; well_ord(T, R);  | 
|
146  | 
~Finite(a); Ord(a); n \<in> nat |] ==> (\<Union>b \<in> a. f`b) \<lesssim> a"  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
147  | 
by (blast intro: UN_fun_lepoll_lemma)  | 
| 12776 | 148  | 
|
149  | 
lemma UN_lepoll:  | 
|
150  | 
"[| \<forall>b \<in> a. F(b) \<lesssim> n & F(b) \<subseteq> T; well_ord(T, R);  | 
|
151  | 
~Finite(a); Ord(a); n \<in> nat |]  | 
|
152  | 
==> (\<Union>b \<in> a. F(b)) \<lesssim> a"  | 
|
153  | 
apply (rule rev_mp)  | 
|
| 12820 | 154  | 
apply (rule_tac f="\<lambda>b \<in> a. F (b)" in UN_fun_lepoll)  | 
| 12776 | 155  | 
apply auto  | 
156  | 
done  | 
|
157  | 
||
158  | 
lemma UN_eq_UN_Diffs:  | 
|
159  | 
"Ord(a) ==> (\<Union>b \<in> a. F(b)) = (\<Union>b \<in> a. F(b) - (\<Union>c \<in> b. F(c)))"  | 
|
160  | 
apply (rule equalityI)  | 
|
161  | 
prefer 2 apply fast  | 
|
162  | 
apply (rule subsetI)  | 
|
163  | 
apply (erule UN_E)  | 
|
164  | 
apply (rule UN_I)  | 
|
165  | 
apply (rule_tac P = "%z. x \<in> F (z) " in Least_in_Ord, (assumption+))  | 
|
166  | 
apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
167  | 
apply (erule_tac P = "%z. x \<in> F (z) " and i = c in less_LeastE)  | 
| 12776 | 168  | 
apply (blast intro: Ord_Least ltI)  | 
169  | 
done  | 
|
170  | 
||
171  | 
lemma lepoll_imp_eqpoll_subset:  | 
|
172  | 
"a \<lesssim> X ==> \<exists>Y. Y \<subseteq> X & a \<approx> Y"  | 
|
173  | 
apply (unfold lepoll_def eqpoll_def, clarify)  | 
|
174  | 
apply (blast intro: restrict_bij  | 
|
175  | 
dest: inj_is_fun [THEN fun_is_rel, THEN image_subset])  | 
|
176  | 
done  | 
|
177  | 
||
178  | 
(* ********************************************************************** *)  | 
|
179  | 
(* Diff_lesspoll_eqpoll_Card *)  | 
|
180  | 
(* ********************************************************************** *)  | 
|
181  | 
||
182  | 
lemma Diff_lesspoll_eqpoll_Card_lemma:  | 
|
183  | 
"[| A\<approx>a; ~Finite(a); Card(a); B \<prec> a; A-B \<prec> a |] ==> P"  | 
|
184  | 
apply (elim lesspoll_imp_ex_lt_eqpoll [THEN exE] Card_is_Ord conjE)  | 
|
185  | 
apply (frule_tac j=xa in Un_upper1_le [OF lt_Ord lt_Ord], assumption)  | 
|
186  | 
apply (frule_tac j=xa in Un_upper2_le [OF lt_Ord lt_Ord], assumption)  | 
|
187  | 
apply (drule Un_least_lt, assumption)  | 
|
188  | 
apply (drule eqpoll_imp_lepoll [THEN lepoll_trans],  | 
|
189  | 
rule le_imp_lepoll, assumption)+  | 
|
| 12820 | 190  | 
apply (case_tac "Finite(x Un xa)")  | 
| 12776 | 191  | 
txt{*finite case*}
 | 
192  | 
apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+)  | 
|
193  | 
apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite])  | 
|
194  | 
apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite])  | 
|
195  | 
txt{*infinite case*}
 | 
|
196  | 
apply (drule Un_lepoll_Inf_Ord, (assumption+))  | 
|
197  | 
apply (blast intro: le_Ord2)  | 
|
198  | 
apply (drule lesspoll_trans1  | 
|
199  | 
[OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans]  | 
|
200  | 
lt_Card_imp_lesspoll], assumption+)  | 
|
201  | 
apply (simp add: lesspoll_def)  | 
|
202  | 
done  | 
|
203  | 
||
204  | 
lemma Diff_lesspoll_eqpoll_Card:  | 
|
205  | 
"[| A \<approx> a; ~Finite(a); Card(a); B \<prec> a |] ==> A - B \<approx> a"  | 
|
206  | 
apply (rule ccontr)  | 
|
207  | 
apply (rule Diff_lesspoll_eqpoll_Card_lemma, (assumption+))  | 
|
208  | 
apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2]  | 
|
209  | 
subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)  | 
|
210  | 
done  | 
|
211  | 
||
212  | 
end  |