| author | wenzelm | 
| Thu, 03 Jul 2008 19:47:05 +0200 | |
| changeset 27479 | 9bcd25618d0c | 
| parent 24147 | edc90be09ac1 | 
| child 32960 | 69916a850301 | 
| permissions | -rw-r--r-- | 
| 24147 | 1 | (* Title: HOL/UNITY/Project.thy | 
| 7630 | 2 | ID: $Id$ | 
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1999 University of Cambridge | |
| 5 | ||
| 6 | Projections of state sets (also of actions and programs) | |
| 7 | ||
| 8 | Inheritance of GUARANTEES properties under extension | |
| 9 | *) | |
| 10 | ||
| 13798 | 11 | header{*Projections of State Sets*}
 | 
| 12 | ||
| 16417 | 13 | theory Project imports Extend begin | 
| 7826 
c6a8b73b6c2a
working shapshot with "projecting" and "extending"
 paulson parents: 
7689diff
changeset | 14 | |
| 
c6a8b73b6c2a
working shapshot with "projecting" and "extending"
 paulson parents: 
7689diff
changeset | 15 | constdefs | 
| 
c6a8b73b6c2a
working shapshot with "projecting" and "extending"
 paulson parents: 
7689diff
changeset | 16 | projecting :: "['c program => 'c set, 'a*'b => 'c, | 
| 
c6a8b73b6c2a
working shapshot with "projecting" and "extending"
 paulson parents: 
7689diff
changeset | 17 | 'a program, 'c program set, 'a program set] => bool" | 
| 10064 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8055diff
changeset | 18 | "projecting C h F X' X == | 
| 13819 | 19 | \<forall>G. extend h F\<squnion>G \<in> X' --> F\<squnion>project h (C G) G \<in> X" | 
| 7826 
c6a8b73b6c2a
working shapshot with "projecting" and "extending"
 paulson parents: 
7689diff
changeset | 20 | |
| 10064 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8055diff
changeset | 21 | extending :: "['c program => 'c set, 'a*'b => 'c, 'a program, | 
| 8055 
bb15396278fb
abolition of localTo: instead "guarantees" has local vars as extra argument
 paulson parents: 
7947diff
changeset | 22 | 'c program set, 'a program set] => bool" | 
| 10064 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8055diff
changeset | 23 | "extending C h F Y' Y == | 
| 13819 | 24 | \<forall>G. extend h F ok G --> F\<squnion>project h (C G) G \<in> Y | 
| 25 | --> extend h F\<squnion>G \<in> Y'" | |
| 10064 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8055diff
changeset | 26 | |
| 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 paulson parents: 
8055diff
changeset | 27 | subset_closed :: "'a set set => bool" | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 28 | "subset_closed U == \<forall>A \<in> U. Pow A \<subseteq> U" | 
| 7826 
c6a8b73b6c2a
working shapshot with "projecting" and "extending"
 paulson parents: 
7689diff
changeset | 29 | |
| 13790 | 30 | |
| 31 | lemma (in Extend) project_extend_constrains_I: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 32 | "F \<in> A co B ==> project h C (extend h F) \<in> A co B" | 
| 13790 | 33 | apply (auto simp add: extend_act_def project_act_def constrains_def) | 
| 34 | done | |
| 35 | ||
| 36 | ||
| 13798 | 37 | subsection{*Safety*}
 | 
| 13790 | 38 | |
| 39 | (*used below to prove Join_project_ensures*) | |
| 13798 | 40 | lemma (in Extend) project_unless [rule_format]: | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 41 | "[| G \<in> stable C; project h C G \<in> A unless B |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 42 | ==> G \<in> (C \<inter> extend_set h A) unless (extend_set h B)" | 
| 13790 | 43 | apply (simp add: unless_def project_constrains) | 
| 44 | apply (blast dest: stable_constrains_Int intro: constrains_weaken) | |
| 45 | done | |
| 46 | ||
| 13819 | 47 | (*Generalizes project_constrains to the program F\<squnion>project h C G | 
| 13790 | 48 | useful with guarantees reasoning*) | 
| 49 | lemma (in Extend) Join_project_constrains: | |
| 13819 | 50 | "(F\<squnion>project h C G \<in> A co B) = | 
| 51 | (extend h F\<squnion>G \<in> (C \<inter> extend_set h A) co (extend_set h B) & | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 52 | F \<in> A co B)" | 
| 13790 | 53 | apply (simp (no_asm) add: project_constrains) | 
| 54 | apply (blast intro: extend_constrains [THEN iffD2, THEN constrains_weaken] | |
| 55 | dest: constrains_imp_subset) | |
| 56 | done | |
| 57 | ||
| 58 | (*The condition is required to prove the left-to-right direction | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 59 | could weaken it to G \<in> (C \<inter> extend_set h A) co C*) | 
| 13790 | 60 | lemma (in Extend) Join_project_stable: | 
| 13819 | 61 | "extend h F\<squnion>G \<in> stable C | 
| 62 | ==> (F\<squnion>project h C G \<in> stable A) = | |
| 63 | (extend h F\<squnion>G \<in> stable (C \<inter> extend_set h A) & | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 64 | F \<in> stable A)" | 
| 13790 | 65 | apply (unfold stable_def) | 
| 66 | apply (simp only: Join_project_constrains) | |
| 67 | apply (blast intro: constrains_weaken dest: constrains_Int) | |
| 68 | done | |
| 69 | ||
| 70 | (*For using project_guarantees in particular cases*) | |
| 71 | lemma (in Extend) project_constrains_I: | |
| 13819 | 72 | "extend h F\<squnion>G \<in> extend_set h A co extend_set h B | 
| 73 | ==> F\<squnion>project h C G \<in> A co B" | |
| 13790 | 74 | apply (simp add: project_constrains extend_constrains) | 
| 75 | apply (blast intro: constrains_weaken dest: constrains_imp_subset) | |
| 76 | done | |
| 77 | ||
| 78 | lemma (in Extend) project_increasing_I: | |
| 13819 | 79 | "extend h F\<squnion>G \<in> increasing (func o f) | 
| 80 | ==> F\<squnion>project h C G \<in> increasing func" | |
| 13790 | 81 | apply (unfold increasing_def stable_def) | 
| 82 | apply (simp del: Join_constrains | |
| 83 | add: project_constrains_I extend_set_eq_Collect) | |
| 84 | done | |
| 85 | ||
| 86 | lemma (in Extend) Join_project_increasing: | |
| 13819 | 87 | "(F\<squnion>project h UNIV G \<in> increasing func) = | 
| 88 | (extend h F\<squnion>G \<in> increasing (func o f))" | |
| 13790 | 89 | apply (rule iffI) | 
| 90 | apply (erule_tac [2] project_increasing_I) | |
| 91 | apply (simp del: Join_stable | |
| 92 | add: increasing_def Join_project_stable) | |
| 93 | apply (auto simp add: extend_set_eq_Collect extend_stable [THEN iffD1]) | |
| 94 | done | |
| 95 | ||
| 96 | (*The UNIV argument is essential*) | |
| 97 | lemma (in Extend) project_constrains_D: | |
| 13819 | 98 | "F\<squnion>project h UNIV G \<in> A co B | 
| 99 | ==> extend h F\<squnion>G \<in> extend_set h A co extend_set h B" | |
| 13790 | 100 | by (simp add: project_constrains extend_constrains) | 
| 101 | ||
| 102 | ||
| 13798 | 103 | subsection{*"projecting" and union/intersection (no converses)*}
 | 
| 13790 | 104 | |
| 105 | lemma projecting_Int: | |
| 106 | "[| projecting C h F XA' XA; projecting C h F XB' XB |] | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 107 | ==> projecting C h F (XA' \<inter> XB') (XA \<inter> XB)" | 
| 13790 | 108 | by (unfold projecting_def, blast) | 
| 109 | ||
| 110 | lemma projecting_Un: | |
| 111 | "[| projecting C h F XA' XA; projecting C h F XB' XB |] | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 112 | ==> projecting C h F (XA' \<union> XB') (XA \<union> XB)" | 
| 13790 | 113 | by (unfold projecting_def, blast) | 
| 114 | ||
| 115 | lemma projecting_INT: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 116 | "[| !!i. i \<in> I ==> projecting C h F (X' i) (X i) |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 117 | ==> projecting C h F (\<Inter>i \<in> I. X' i) (\<Inter>i \<in> I. X i)" | 
| 13790 | 118 | by (unfold projecting_def, blast) | 
| 119 | ||
| 120 | lemma projecting_UN: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 121 | "[| !!i. i \<in> I ==> projecting C h F (X' i) (X i) |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 122 | ==> projecting C h F (\<Union>i \<in> I. X' i) (\<Union>i \<in> I. X i)" | 
| 13790 | 123 | by (unfold projecting_def, blast) | 
| 124 | ||
| 125 | lemma projecting_weaken: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 126 | "[| projecting C h F X' X; U'<=X'; X \<subseteq> U |] ==> projecting C h F U' U" | 
| 13790 | 127 | by (unfold projecting_def, auto) | 
| 128 | ||
| 129 | lemma projecting_weaken_L: | |
| 130 | "[| projecting C h F X' X; U'<=X' |] ==> projecting C h F U' X" | |
| 131 | by (unfold projecting_def, auto) | |
| 132 | ||
| 133 | lemma extending_Int: | |
| 134 | "[| extending C h F YA' YA; extending C h F YB' YB |] | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 135 | ==> extending C h F (YA' \<inter> YB') (YA \<inter> YB)" | 
| 13790 | 136 | by (unfold extending_def, blast) | 
| 137 | ||
| 138 | lemma extending_Un: | |
| 139 | "[| extending C h F YA' YA; extending C h F YB' YB |] | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 140 | ==> extending C h F (YA' \<union> YB') (YA \<union> YB)" | 
| 13790 | 141 | by (unfold extending_def, blast) | 
| 142 | ||
| 143 | lemma extending_INT: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 144 | "[| !!i. i \<in> I ==> extending C h F (Y' i) (Y i) |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 145 | ==> extending C h F (\<Inter>i \<in> I. Y' i) (\<Inter>i \<in> I. Y i)" | 
| 13790 | 146 | by (unfold extending_def, blast) | 
| 147 | ||
| 148 | lemma extending_UN: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 149 | "[| !!i. i \<in> I ==> extending C h F (Y' i) (Y i) |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 150 | ==> extending C h F (\<Union>i \<in> I. Y' i) (\<Union>i \<in> I. Y i)" | 
| 13790 | 151 | by (unfold extending_def, blast) | 
| 152 | ||
| 153 | lemma extending_weaken: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 154 | "[| extending C h F Y' Y; Y'<=V'; V \<subseteq> Y |] ==> extending C h F V' V" | 
| 13790 | 155 | by (unfold extending_def, auto) | 
| 156 | ||
| 157 | lemma extending_weaken_L: | |
| 158 | "[| extending C h F Y' Y; Y'<=V' |] ==> extending C h F V' Y" | |
| 159 | by (unfold extending_def, auto) | |
| 160 | ||
| 161 | lemma projecting_UNIV: "projecting C h F X' UNIV" | |
| 162 | by (simp add: projecting_def) | |
| 163 | ||
| 164 | lemma (in Extend) projecting_constrains: | |
| 165 | "projecting C h F (extend_set h A co extend_set h B) (A co B)" | |
| 166 | apply (unfold projecting_def) | |
| 167 | apply (blast intro: project_constrains_I) | |
| 168 | done | |
| 169 | ||
| 170 | lemma (in Extend) projecting_stable: | |
| 171 | "projecting C h F (stable (extend_set h A)) (stable A)" | |
| 172 | apply (unfold stable_def) | |
| 173 | apply (rule projecting_constrains) | |
| 174 | done | |
| 175 | ||
| 176 | lemma (in Extend) projecting_increasing: | |
| 177 | "projecting C h F (increasing (func o f)) (increasing func)" | |
| 178 | apply (unfold projecting_def) | |
| 179 | apply (blast intro: project_increasing_I) | |
| 180 | done | |
| 181 | ||
| 182 | lemma (in Extend) extending_UNIV: "extending C h F UNIV Y" | |
| 183 | apply (simp (no_asm) add: extending_def) | |
| 184 | done | |
| 185 | ||
| 186 | lemma (in Extend) extending_constrains: | |
| 187 | "extending (%G. UNIV) h F (extend_set h A co extend_set h B) (A co B)" | |
| 188 | apply (unfold extending_def) | |
| 189 | apply (blast intro: project_constrains_D) | |
| 190 | done | |
| 191 | ||
| 192 | lemma (in Extend) extending_stable: | |
| 193 | "extending (%G. UNIV) h F (stable (extend_set h A)) (stable A)" | |
| 194 | apply (unfold stable_def) | |
| 195 | apply (rule extending_constrains) | |
| 196 | done | |
| 197 | ||
| 198 | lemma (in Extend) extending_increasing: | |
| 199 | "extending (%G. UNIV) h F (increasing (func o f)) (increasing func)" | |
| 200 | by (force simp only: extending_def Join_project_increasing) | |
| 201 | ||
| 202 | ||
| 13798 | 203 | subsection{*Reachability and project*}
 | 
| 13790 | 204 | |
| 205 | (*In practice, C = reachable(...): the inclusion is equality*) | |
| 206 | lemma (in Extend) reachable_imp_reachable_project: | |
| 13819 | 207 | "[| reachable (extend h F\<squnion>G) \<subseteq> C; | 
| 208 | z \<in> reachable (extend h F\<squnion>G) |] | |
| 209 | ==> f z \<in> reachable (F\<squnion>project h C G)" | |
| 13790 | 210 | apply (erule reachable.induct) | 
| 211 | apply (force intro!: reachable.Init simp add: split_extended_all, auto) | |
| 212 | apply (rule_tac act = x in reachable.Acts) | |
| 213 | apply auto | |
| 214 | apply (erule extend_act_D) | |
| 215 | apply (rule_tac act1 = "Restrict C act" | |
| 216 | in project_act_I [THEN [3] reachable.Acts], auto) | |
| 217 | done | |
| 218 | ||
| 219 | lemma (in Extend) project_Constrains_D: | |
| 13819 | 220 | "F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Co B | 
| 221 | ==> extend h F\<squnion>G \<in> (extend_set h A) Co (extend_set h B)" | |
| 13790 | 222 | apply (unfold Constrains_def) | 
| 223 | apply (simp del: Join_constrains | |
| 224 | add: Join_project_constrains, clarify) | |
| 225 | apply (erule constrains_weaken) | |
| 226 | apply (auto intro: reachable_imp_reachable_project) | |
| 227 | done | |
| 228 | ||
| 229 | lemma (in Extend) project_Stable_D: | |
| 13819 | 230 | "F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Stable A | 
| 231 | ==> extend h F\<squnion>G \<in> Stable (extend_set h A)" | |
| 13790 | 232 | apply (unfold Stable_def) | 
| 233 | apply (simp (no_asm_simp) add: project_Constrains_D) | |
| 234 | done | |
| 235 | ||
| 236 | lemma (in Extend) project_Always_D: | |
| 13819 | 237 | "F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Always A | 
| 238 | ==> extend h F\<squnion>G \<in> Always (extend_set h A)" | |
| 13790 | 239 | apply (unfold Always_def) | 
| 240 | apply (force intro: reachable.Init simp add: project_Stable_D split_extended_all) | |
| 241 | done | |
| 242 | ||
| 243 | lemma (in Extend) project_Increasing_D: | |
| 13819 | 244 | "F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Increasing func | 
| 245 | ==> extend h F\<squnion>G \<in> Increasing (func o f)" | |
| 13790 | 246 | apply (unfold Increasing_def, auto) | 
| 247 | apply (subst extend_set_eq_Collect [symmetric]) | |
| 248 | apply (simp (no_asm_simp) add: project_Stable_D) | |
| 249 | done | |
| 250 | ||
| 251 | ||
| 13798 | 252 | subsection{*Converse results for weak safety: benefits of the argument C *}
 | 
| 13790 | 253 | |
| 254 | (*In practice, C = reachable(...): the inclusion is equality*) | |
| 255 | lemma (in Extend) reachable_project_imp_reachable: | |
| 13819 | 256 | "[| C \<subseteq> reachable(extend h F\<squnion>G); | 
| 257 | x \<in> reachable (F\<squnion>project h C G) |] | |
| 258 | ==> \<exists>y. h(x,y) \<in> reachable (extend h F\<squnion>G)" | |
| 13790 | 259 | apply (erule reachable.induct) | 
| 260 | apply (force intro: reachable.Init) | |
| 261 | apply (auto simp add: project_act_def) | |
| 262 | apply (force del: Id_in_Acts intro: reachable.Acts extend_act_D)+ | |
| 263 | done | |
| 264 | ||
| 265 | lemma (in Extend) project_set_reachable_extend_eq: | |
| 13819 | 266 | "project_set h (reachable (extend h F\<squnion>G)) = | 
| 267 | reachable (F\<squnion>project h (reachable (extend h F\<squnion>G)) G)" | |
| 13790 | 268 | by (auto dest: subset_refl [THEN reachable_imp_reachable_project] | 
| 269 | subset_refl [THEN reachable_project_imp_reachable]) | |
| 270 | ||
| 271 | (*UNUSED*) | |
| 272 | lemma (in Extend) reachable_extend_Join_subset: | |
| 13819 | 273 | "reachable (extend h F\<squnion>G) \<subseteq> C | 
| 274 | ==> reachable (extend h F\<squnion>G) \<subseteq> | |
| 275 | extend_set h (reachable (F\<squnion>project h C G))" | |
| 13790 | 276 | apply (auto dest: reachable_imp_reachable_project) | 
| 277 | done | |
| 278 | ||
| 279 | lemma (in Extend) project_Constrains_I: | |
| 13819 | 280 | "extend h F\<squnion>G \<in> (extend_set h A) Co (extend_set h B) | 
| 281 | ==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Co B" | |
| 13790 | 282 | apply (unfold Constrains_def) | 
| 283 | apply (simp del: Join_constrains | |
| 284 | add: Join_project_constrains extend_set_Int_distrib) | |
| 285 | apply (rule conjI) | |
| 286 | prefer 2 | |
| 287 | apply (force elim: constrains_weaken_L | |
| 288 | dest!: extend_constrains_project_set | |
| 289 | subset_refl [THEN reachable_project_imp_reachable]) | |
| 290 | apply (blast intro: constrains_weaken_L) | |
| 291 | done | |
| 292 | ||
| 293 | lemma (in Extend) project_Stable_I: | |
| 13819 | 294 | "extend h F\<squnion>G \<in> Stable (extend_set h A) | 
| 295 | ==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Stable A" | |
| 13790 | 296 | apply (unfold Stable_def) | 
| 297 | apply (simp (no_asm_simp) add: project_Constrains_I) | |
| 298 | done | |
| 299 | ||
| 300 | lemma (in Extend) project_Always_I: | |
| 13819 | 301 | "extend h F\<squnion>G \<in> Always (extend_set h A) | 
| 302 | ==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Always A" | |
| 13790 | 303 | apply (unfold Always_def) | 
| 304 | apply (auto simp add: project_Stable_I) | |
| 305 | apply (unfold extend_set_def, blast) | |
| 306 | done | |
| 307 | ||
| 308 | lemma (in Extend) project_Increasing_I: | |
| 13819 | 309 | "extend h F\<squnion>G \<in> Increasing (func o f) | 
| 310 | ==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Increasing func" | |
| 13790 | 311 | apply (unfold Increasing_def, auto) | 
| 312 | apply (simp (no_asm_simp) add: extend_set_eq_Collect project_Stable_I) | |
| 313 | done | |
| 314 | ||
| 315 | lemma (in Extend) project_Constrains: | |
| 13819 | 316 | "(F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Co B) = | 
| 317 | (extend h F\<squnion>G \<in> (extend_set h A) Co (extend_set h B))" | |
| 13790 | 318 | apply (blast intro: project_Constrains_I project_Constrains_D) | 
| 319 | done | |
| 320 | ||
| 321 | lemma (in Extend) project_Stable: | |
| 13819 | 322 | "(F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Stable A) = | 
| 323 | (extend h F\<squnion>G \<in> Stable (extend_set h A))" | |
| 13790 | 324 | apply (unfold Stable_def) | 
| 325 | apply (rule project_Constrains) | |
| 326 | done | |
| 327 | ||
| 328 | lemma (in Extend) project_Increasing: | |
| 13819 | 329 | "(F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Increasing func) = | 
| 330 | (extend h F\<squnion>G \<in> Increasing (func o f))" | |
| 13790 | 331 | apply (simp (no_asm_simp) add: Increasing_def project_Stable extend_set_eq_Collect) | 
| 332 | done | |
| 333 | ||
| 13798 | 334 | subsection{*A lot of redundant theorems: all are proved to facilitate reasoning
 | 
| 335 | about guarantees.*} | |
| 13790 | 336 | |
| 337 | lemma (in Extend) projecting_Constrains: | |
| 13819 | 338 | "projecting (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 339 | (extend_set h A Co extend_set h B) (A Co B)" | 
| 340 | ||
| 341 | apply (unfold projecting_def) | |
| 342 | apply (blast intro: project_Constrains_I) | |
| 343 | done | |
| 344 | ||
| 345 | lemma (in Extend) projecting_Stable: | |
| 13819 | 346 | "projecting (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 347 | (Stable (extend_set h A)) (Stable A)" | 
| 348 | apply (unfold Stable_def) | |
| 349 | apply (rule projecting_Constrains) | |
| 350 | done | |
| 351 | ||
| 352 | lemma (in Extend) projecting_Always: | |
| 13819 | 353 | "projecting (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 354 | (Always (extend_set h A)) (Always A)" | 
| 355 | apply (unfold projecting_def) | |
| 356 | apply (blast intro: project_Always_I) | |
| 357 | done | |
| 358 | ||
| 359 | lemma (in Extend) projecting_Increasing: | |
| 13819 | 360 | "projecting (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 361 | (Increasing (func o f)) (Increasing func)" | 
| 362 | apply (unfold projecting_def) | |
| 363 | apply (blast intro: project_Increasing_I) | |
| 364 | done | |
| 365 | ||
| 366 | lemma (in Extend) extending_Constrains: | |
| 13819 | 367 | "extending (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 368 | (extend_set h A Co extend_set h B) (A Co B)" | 
| 369 | apply (unfold extending_def) | |
| 370 | apply (blast intro: project_Constrains_D) | |
| 371 | done | |
| 372 | ||
| 373 | lemma (in Extend) extending_Stable: | |
| 13819 | 374 | "extending (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 375 | (Stable (extend_set h A)) (Stable A)" | 
| 376 | apply (unfold extending_def) | |
| 377 | apply (blast intro: project_Stable_D) | |
| 378 | done | |
| 379 | ||
| 380 | lemma (in Extend) extending_Always: | |
| 13819 | 381 | "extending (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 382 | (Always (extend_set h A)) (Always A)" | 
| 383 | apply (unfold extending_def) | |
| 384 | apply (blast intro: project_Always_D) | |
| 385 | done | |
| 386 | ||
| 387 | lemma (in Extend) extending_Increasing: | |
| 13819 | 388 | "extending (%G. reachable (extend h F\<squnion>G)) h F | 
| 13790 | 389 | (Increasing (func o f)) (Increasing func)" | 
| 390 | apply (unfold extending_def) | |
| 391 | apply (blast intro: project_Increasing_D) | |
| 392 | done | |
| 393 | ||
| 394 | ||
| 13798 | 395 | subsection{*leadsETo in the precondition (??)*}
 | 
| 13790 | 396 | |
| 13798 | 397 | subsubsection{*transient*}
 | 
| 13790 | 398 | |
| 399 | lemma (in Extend) transient_extend_set_imp_project_transient: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 400 | "[| G \<in> transient (C \<inter> extend_set h A); G \<in> stable C |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 401 | ==> project h C G \<in> transient (project_set h C \<inter> A)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 402 | apply (auto simp add: transient_def Domain_project_act) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 403 | apply (subgoal_tac "act `` (C \<inter> extend_set h A) \<subseteq> - extend_set h A") | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 404 | prefer 2 | 
| 13790 | 405 | apply (simp add: stable_def constrains_def, blast) | 
| 406 | (*back to main goal*) | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 407 | apply (erule_tac V = "?AA \<subseteq> -C \<union> ?BB" in thin_rl) | 
| 13790 | 408 | apply (drule bspec, assumption) | 
| 409 | apply (simp add: extend_set_def project_act_def, blast) | |
| 410 | done | |
| 411 | ||
| 412 | (*converse might hold too?*) | |
| 413 | lemma (in Extend) project_extend_transient_D: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 414 | "project h C (extend h F) \<in> transient (project_set h C \<inter> D) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 415 | ==> F \<in> transient (project_set h C \<inter> D)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 416 | apply (simp add: transient_def Domain_project_act, safe) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 417 | apply blast+ | 
| 13790 | 418 | done | 
| 419 | ||
| 420 | ||
| 13798 | 421 | subsubsection{*ensures -- a primitive combining progress with safety*}
 | 
| 13790 | 422 | |
| 423 | (*Used to prove project_leadsETo_I*) | |
| 424 | lemma (in Extend) ensures_extend_set_imp_project_ensures: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 425 | "[| extend h F \<in> stable C; G \<in> stable C; | 
| 13819 | 426 | extend h F\<squnion>G \<in> A ensures B; A-B = C \<inter> extend_set h D |] | 
| 427 | ==> F\<squnion>project h C G | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 428 | \<in> (project_set h C \<inter> project_set h A) ensures (project_set h B)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 429 | apply (simp add: ensures_def project_constrains Join_transient extend_transient, | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 430 | clarify) | 
| 13790 | 431 | apply (intro conjI) | 
| 432 | (*first subgoal*) | |
| 433 | apply (blast intro: extend_stable_project_set | |
| 434 | [THEN stableD, THEN constrains_Int, THEN constrains_weaken] | |
| 435 | dest!: extend_constrains_project_set equalityD1) | |
| 436 | (*2nd subgoal*) | |
| 437 | apply (erule stableD [THEN constrains_Int, THEN constrains_weaken]) | |
| 438 | apply assumption | |
| 439 | apply (simp (no_asm_use) add: extend_set_def) | |
| 440 | apply blast | |
| 441 | apply (simp add: extend_set_Int_distrib extend_set_Un_distrib) | |
| 442 | apply (blast intro!: extend_set_project_set [THEN subsetD], blast) | |
| 443 | (*The transient part*) | |
| 444 | apply auto | |
| 445 | prefer 2 | |
| 446 | apply (force dest!: equalityD1 | |
| 447 | intro: transient_extend_set_imp_project_transient | |
| 448 | [THEN transient_strengthen]) | |
| 449 | apply (simp (no_asm_use) add: Int_Diff) | |
| 450 | apply (force dest!: equalityD1 | |
| 451 | intro: transient_extend_set_imp_project_transient | |
| 452 | [THEN project_extend_transient_D, THEN transient_strengthen]) | |
| 453 | done | |
| 454 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 455 | text{*Transferring a transient property upwards*}
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 456 | lemma (in Extend) project_transient_extend_set: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 457 | "project h C G \<in> transient (project_set h C \<inter> A - B) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 458 | ==> G \<in> transient (C \<inter> extend_set h A - extend_set h B)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 459 | apply (simp add: transient_def project_set_def extend_set_def project_act_def) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 460 | apply (elim disjE bexE) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 461 | apply (rule_tac x=Id in bexI) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 462 | apply (blast intro!: rev_bexI )+ | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 463 | done | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 464 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 465 | lemma (in Extend) project_unless2 [rule_format]: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 466 | "[| G \<in> stable C; project h C G \<in> (project_set h C \<inter> A) unless B |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 467 | ==> G \<in> (C \<inter> extend_set h A) unless (extend_set h B)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 468 | by (auto dest: stable_constrains_Int intro: constrains_weaken | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 469 | simp add: unless_def project_constrains Diff_eq Int_assoc | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 470 | Int_extend_set_lemma) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 471 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 472 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 473 | lemma (in Extend) extend_unless: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 474 | "[|extend h F \<in> stable C; F \<in> A unless B|] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 475 | ==> extend h F \<in> C \<inter> extend_set h A unless extend_set h B" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 476 | apply (simp add: unless_def stable_def) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 477 | apply (drule constrains_Int) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 478 | apply (erule extend_constrains [THEN iffD2]) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 479 | apply (erule constrains_weaken, blast) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 480 | apply blast | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 481 | done | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 482 | |
| 13790 | 483 | (*Used to prove project_leadsETo_D*) | 
| 13798 | 484 | lemma (in Extend) Join_project_ensures [rule_format]: | 
| 13819 | 485 | "[| extend h F\<squnion>G \<in> stable C; | 
| 486 | F\<squnion>project h C G \<in> A ensures B |] | |
| 487 | ==> extend h F\<squnion>G \<in> (C \<inter> extend_set h A) ensures (extend_set h B)" | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 488 | apply (auto simp add: ensures_eq extend_unless project_unless) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 489 | apply (blast intro: extend_transient [THEN iffD2] transient_strengthen) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 490 | apply (blast intro: project_transient_extend_set transient_strengthen) | 
| 13790 | 491 | done | 
| 492 | ||
| 13798 | 493 | text{*Lemma useful for both STRONG and WEAK progress, but the transient
 | 
| 494 | condition's very strong*} | |
| 13790 | 495 | |
| 496 | (*The strange induction formula allows induction over the leadsTo | |
| 497 | assumption's non-atomic precondition*) | |
| 498 | lemma (in Extend) PLD_lemma: | |
| 13819 | 499 | "[| extend h F\<squnion>G \<in> stable C; | 
| 500 | F\<squnion>project h C G \<in> (project_set h C \<inter> A) leadsTo B |] | |
| 501 | ==> extend h F\<squnion>G \<in> | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 502 | C \<inter> extend_set h (project_set h C \<inter> A) leadsTo (extend_set h B)" | 
| 13790 | 503 | apply (erule leadsTo_induct) | 
| 504 | apply (blast intro: leadsTo_Basis Join_project_ensures) | |
| 505 | apply (blast intro: psp_stable2 [THEN leadsTo_weaken_L] leadsTo_Trans) | |
| 506 | apply (simp del: UN_simps add: Int_UN_distrib leadsTo_UN extend_set_Union) | |
| 507 | done | |
| 508 | ||
| 509 | lemma (in Extend) project_leadsTo_D_lemma: | |
| 13819 | 510 | "[| extend h F\<squnion>G \<in> stable C; | 
| 511 | F\<squnion>project h C G \<in> (project_set h C \<inter> A) leadsTo B |] | |
| 512 | ==> extend h F\<squnion>G \<in> (C \<inter> extend_set h A) leadsTo (extend_set h B)" | |
| 13790 | 513 | apply (rule PLD_lemma [THEN leadsTo_weaken]) | 
| 514 | apply (auto simp add: split_extended_all) | |
| 515 | done | |
| 516 | ||
| 517 | lemma (in Extend) Join_project_LeadsTo: | |
| 13819 | 518 | "[| C = (reachable (extend h F\<squnion>G)); | 
| 519 | F\<squnion>project h C G \<in> A LeadsTo B |] | |
| 520 | ==> extend h F\<squnion>G \<in> (extend_set h A) LeadsTo (extend_set h B)" | |
| 13790 | 521 | by (simp del: Join_stable add: LeadsTo_def project_leadsTo_D_lemma | 
| 522 | project_set_reachable_extend_eq) | |
| 523 | ||
| 524 | ||
| 13798 | 525 | subsection{*Towards the theorem @{text project_Ensures_D}*}
 | 
| 13790 | 526 | |
| 527 | lemma (in Extend) project_ensures_D_lemma: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 528 | "[| G \<in> stable ((C \<inter> extend_set h A) - (extend_set h B)); | 
| 13819 | 529 | F\<squnion>project h C G \<in> (project_set h C \<inter> A) ensures B; | 
| 530 | extend h F\<squnion>G \<in> stable C |] | |
| 531 | ==> extend h F\<squnion>G \<in> (C \<inter> extend_set h A) ensures (extend_set h B)" | |
| 13790 | 532 | (*unless*) | 
| 533 | apply (auto intro!: project_unless2 [unfolded unless_def] | |
| 534 | intro: project_extend_constrains_I | |
| 535 | simp add: ensures_def) | |
| 536 | (*transient*) | |
| 537 | (*A G-action cannot occur*) | |
| 538 | prefer 2 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 539 | apply (blast intro: project_transient_extend_set) | 
| 13790 | 540 | (*An F-action*) | 
| 541 | apply (force elim!: extend_transient [THEN iffD2, THEN transient_strengthen] | |
| 542 | simp add: split_extended_all) | |
| 543 | done | |
| 544 | ||
| 545 | lemma (in Extend) project_ensures_D: | |
| 13819 | 546 | "[| F\<squnion>project h UNIV G \<in> A ensures B; | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 547 | G \<in> stable (extend_set h A - extend_set h B) |] | 
| 13819 | 548 | ==> extend h F\<squnion>G \<in> (extend_set h A) ensures (extend_set h B)" | 
| 13790 | 549 | apply (rule project_ensures_D_lemma [of _ UNIV, THEN revcut_rl], auto) | 
| 550 | done | |
| 551 | ||
| 552 | lemma (in Extend) project_Ensures_D: | |
| 13819 | 553 | "[| F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Ensures B; | 
| 554 | G \<in> stable (reachable (extend h F\<squnion>G) \<inter> extend_set h A - | |
| 13790 | 555 | extend_set h B) |] | 
| 13819 | 556 | ==> extend h F\<squnion>G \<in> (extend_set h A) Ensures (extend_set h B)" | 
| 13790 | 557 | apply (unfold Ensures_def) | 
| 558 | apply (rule project_ensures_D_lemma [THEN revcut_rl]) | |
| 559 | apply (auto simp add: project_set_reachable_extend_eq [symmetric]) | |
| 560 | done | |
| 561 | ||
| 562 | ||
| 13798 | 563 | subsection{*Guarantees*}
 | 
| 13790 | 564 | |
| 565 | lemma (in Extend) project_act_Restrict_subset_project_act: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 566 | "project_act h (Restrict C act) \<subseteq> project_act h act" | 
| 13790 | 567 | apply (auto simp add: project_act_def) | 
| 568 | done | |
| 569 | ||
| 570 | ||
| 571 | lemma (in Extend) subset_closed_ok_extend_imp_ok_project: | |
| 572 | "[| extend h F ok G; subset_closed (AllowedActs F) |] | |
| 573 | ==> F ok project h C G" | |
| 574 | apply (auto simp add: ok_def) | |
| 575 | apply (rename_tac act) | |
| 576 | apply (drule subsetD, blast) | |
| 577 | apply (rule_tac x = "Restrict C (extend_act h act)" in rev_image_eqI) | |
| 578 | apply simp + | |
| 579 | apply (cut_tac project_act_Restrict_subset_project_act) | |
| 580 | apply (auto simp add: subset_closed_def) | |
| 581 | done | |
| 582 | ||
| 583 | ||
| 584 | (*Weak precondition and postcondition | |
| 585 | Not clear that it has a converse [or that we want one!]*) | |
| 586 | ||
| 587 | (*The raw version; 3rd premise could be weakened by adding the | |
| 13819 | 588 | precondition extend h F\<squnion>G \<in> X' *) | 
| 13790 | 589 | lemma (in Extend) project_guarantees_raw: | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 590 | assumes xguary: "F \<in> X guarantees Y" | 
| 13790 | 591 | and closed: "subset_closed (AllowedActs F)" | 
| 13819 | 592 | and project: "!!G. extend h F\<squnion>G \<in> X' | 
| 593 | ==> F\<squnion>project h (C G) G \<in> X" | |
| 594 | and extend: "!!G. [| F\<squnion>project h (C G) G \<in> Y |] | |
| 595 | ==> extend h F\<squnion>G \<in> Y'" | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 596 | shows "extend h F \<in> X' guarantees Y'" | 
| 13790 | 597 | apply (rule xguary [THEN guaranteesD, THEN extend, THEN guaranteesI]) | 
| 598 | apply (blast intro: closed subset_closed_ok_extend_imp_ok_project) | |
| 599 | apply (erule project) | |
| 600 | done | |
| 601 | ||
| 602 | lemma (in Extend) project_guarantees: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 603 | "[| F \<in> X guarantees Y; subset_closed (AllowedActs F); | 
| 13790 | 604 | projecting C h F X' X; extending C h F Y' Y |] | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 605 | ==> extend h F \<in> X' guarantees Y'" | 
| 13790 | 606 | apply (rule guaranteesI) | 
| 607 | apply (auto simp add: guaranteesD projecting_def extending_def | |
| 608 | subset_closed_ok_extend_imp_ok_project) | |
| 609 | done | |
| 610 | ||
| 611 | ||
| 612 | (*It seems that neither "guarantees" law can be proved from the other.*) | |
| 613 | ||
| 614 | ||
| 13798 | 615 | subsection{*guarantees corollaries*}
 | 
| 13790 | 616 | |
| 13798 | 617 | subsubsection{*Some could be deleted: the required versions are easy to prove*}
 | 
| 13790 | 618 | |
| 619 | lemma (in Extend) extend_guar_increasing: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 620 | "[| F \<in> UNIV guarantees increasing func; | 
| 13790 | 621 | subset_closed (AllowedActs F) |] | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 622 | ==> extend h F \<in> X' guarantees increasing (func o f)" | 
| 13790 | 623 | apply (erule project_guarantees) | 
| 624 | apply (rule_tac [3] extending_increasing) | |
| 625 | apply (rule_tac [2] projecting_UNIV, auto) | |
| 626 | done | |
| 627 | ||
| 628 | lemma (in Extend) extend_guar_Increasing: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 629 | "[| F \<in> UNIV guarantees Increasing func; | 
| 13790 | 630 | subset_closed (AllowedActs F) |] | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 631 | ==> extend h F \<in> X' guarantees Increasing (func o f)" | 
| 13790 | 632 | apply (erule project_guarantees) | 
| 633 | apply (rule_tac [3] extending_Increasing) | |
| 634 | apply (rule_tac [2] projecting_UNIV, auto) | |
| 635 | done | |
| 636 | ||
| 637 | lemma (in Extend) extend_guar_Always: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 638 | "[| F \<in> Always A guarantees Always B; | 
| 13790 | 639 | subset_closed (AllowedActs F) |] | 
| 640 | ==> extend h F | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 641 | \<in> Always(extend_set h A) guarantees Always(extend_set h B)" | 
| 13790 | 642 | apply (erule project_guarantees) | 
| 643 | apply (rule_tac [3] extending_Always) | |
| 644 | apply (rule_tac [2] projecting_Always, auto) | |
| 645 | done | |
| 646 | ||
| 647 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 648 | subsubsection{*Guarantees with a leadsTo postcondition*}
 | 
| 13790 | 649 | |
| 650 | lemma (in Extend) project_leadsTo_D: | |
| 13819 | 651 | "F\<squnion>project h UNIV G \<in> A leadsTo B | 
| 652 | ==> extend h F\<squnion>G \<in> (extend_set h A) leadsTo (extend_set h B)" | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 653 | apply (rule_tac C1 = UNIV in project_leadsTo_D_lemma [THEN leadsTo_weaken], auto) | 
| 13790 | 654 | done | 
| 655 | ||
| 656 | lemma (in Extend) project_LeadsTo_D: | |
| 13819 | 657 | "F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A LeadsTo B | 
| 658 | ==> extend h F\<squnion>G \<in> (extend_set h A) LeadsTo (extend_set h B)" | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 659 | apply (rule refl [THEN Join_project_LeadsTo], auto) | 
| 13790 | 660 | done | 
| 661 | ||
| 662 | lemma (in Extend) extending_leadsTo: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 663 | "extending (%G. UNIV) h F | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 664 | (extend_set h A leadsTo extend_set h B) (A leadsTo B)" | 
| 13790 | 665 | apply (unfold extending_def) | 
| 666 | apply (blast intro: project_leadsTo_D) | |
| 667 | done | |
| 668 | ||
| 669 | lemma (in Extend) extending_LeadsTo: | |
| 13819 | 670 | "extending (%G. reachable (extend h F\<squnion>G)) h F | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 671 | (extend_set h A LeadsTo extend_set h B) (A LeadsTo B)" | 
| 13790 | 672 | apply (unfold extending_def) | 
| 673 | apply (blast intro: project_LeadsTo_D) | |
| 674 | done | |
| 675 | ||
| 7826 
c6a8b73b6c2a
working shapshot with "projecting" and "extending"
 paulson parents: 
7689diff
changeset | 676 | end |