13957
|
1 |
(* Title: Complex.thy
|
|
2 |
Author: Jacques D. Fleuriot
|
|
3 |
Copyright: 2001 University of Edinburgh
|
|
4 |
Description: Complex numbers
|
|
5 |
*)
|
|
6 |
|
14323
|
7 |
theory Complex = HLog:
|
13957
|
8 |
|
|
9 |
typedef complex = "{p::(real*real). True}"
|
14323
|
10 |
by blast
|
13957
|
11 |
|
14323
|
12 |
instance complex :: zero ..
|
|
13 |
instance complex :: one ..
|
|
14 |
instance complex :: plus ..
|
|
15 |
instance complex :: times ..
|
|
16 |
instance complex :: minus ..
|
|
17 |
instance complex :: inverse ..
|
|
18 |
instance complex :: power ..
|
13957
|
19 |
|
|
20 |
consts
|
14323
|
21 |
"ii" :: complex ("ii")
|
13957
|
22 |
|
|
23 |
constdefs
|
|
24 |
|
|
25 |
(*--- real and Imaginary parts ---*)
|
14323
|
26 |
|
|
27 |
Re :: "complex => real"
|
13957
|
28 |
"Re(z) == fst(Rep_complex z)"
|
|
29 |
|
14323
|
30 |
Im :: "complex => real"
|
13957
|
31 |
"Im(z) == snd(Rep_complex z)"
|
|
32 |
|
|
33 |
(*----------- modulus ------------*)
|
|
34 |
|
14323
|
35 |
cmod :: "complex => real"
|
|
36 |
"cmod z == sqrt(Re(z) ^ 2 + Im(z) ^ 2)"
|
13957
|
37 |
|
14323
|
38 |
(*----- injection from reals -----*)
|
|
39 |
|
|
40 |
complex_of_real :: "real => complex"
|
13957
|
41 |
"complex_of_real r == Abs_complex(r,0::real)"
|
14323
|
42 |
|
13957
|
43 |
(*------- complex conjugate ------*)
|
|
44 |
|
14323
|
45 |
cnj :: "complex => complex"
|
13957
|
46 |
"cnj z == Abs_complex(Re z, -Im z)"
|
|
47 |
|
14323
|
48 |
(*------------ Argand -------------*)
|
13957
|
49 |
|
14323
|
50 |
sgn :: "complex => complex"
|
13957
|
51 |
"sgn z == z / complex_of_real(cmod z)"
|
|
52 |
|
14323
|
53 |
arg :: "complex => real"
|
13957
|
54 |
"arg z == @a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a <= pi"
|
14323
|
55 |
|
13957
|
56 |
|
14323
|
57 |
defs (overloaded)
|
|
58 |
|
|
59 |
complex_zero_def:
|
13957
|
60 |
"0 == Abs_complex(0::real,0)"
|
|
61 |
|
14323
|
62 |
complex_one_def:
|
13957
|
63 |
"1 == Abs_complex(1,0::real)"
|
|
64 |
|
14323
|
65 |
(*------ imaginary unit ----------*)
|
|
66 |
|
|
67 |
i_def:
|
13957
|
68 |
"ii == Abs_complex(0::real,1)"
|
|
69 |
|
|
70 |
(*----------- negation -----------*)
|
14323
|
71 |
|
|
72 |
complex_minus_def:
|
|
73 |
"- (z::complex) == Abs_complex(-Re z, -Im z)"
|
13957
|
74 |
|
14323
|
75 |
|
13957
|
76 |
(*----------- inverse -----------*)
|
14323
|
77 |
complex_inverse_def:
|
13957
|
78 |
"inverse (z::complex) == Abs_complex(Re(z)/(Re(z) ^ 2 + Im(z) ^ 2),
|
|
79 |
-Im(z)/(Re(z) ^ 2 + Im(z) ^ 2))"
|
|
80 |
|
14323
|
81 |
complex_add_def:
|
13957
|
82 |
"w + (z::complex) == Abs_complex(Re(w) + Re(z),Im(w) + Im(z))"
|
|
83 |
|
14323
|
84 |
complex_diff_def:
|
13957
|
85 |
"w - (z::complex) == w + -(z::complex)"
|
|
86 |
|
14323
|
87 |
complex_mult_def:
|
13957
|
88 |
"w * (z::complex) == Abs_complex(Re(w) * Re(z) - Im(w) * Im(z),
|
|
89 |
Re(w) * Im(z) + Im(w) * Re(z))"
|
|
90 |
|
|
91 |
|
|
92 |
(*----------- division ----------*)
|
14323
|
93 |
complex_divide_def:
|
13957
|
94 |
"w / (z::complex) == w * inverse z"
|
14323
|
95 |
|
13957
|
96 |
|
|
97 |
primrec
|
14323
|
98 |
complexpow_0: "z ^ 0 = complex_of_real 1"
|
|
99 |
complexpow_Suc: "z ^ (Suc n) = (z::complex) * (z ^ n)"
|
13957
|
100 |
|
|
101 |
|
|
102 |
constdefs
|
|
103 |
|
|
104 |
(* abbreviation for (cos a + i sin a) *)
|
14323
|
105 |
cis :: "real => complex"
|
13957
|
106 |
"cis a == complex_of_real(cos a) + ii * complex_of_real(sin a)"
|
|
107 |
|
|
108 |
(* abbreviation for r*(cos a + i sin a) *)
|
14323
|
109 |
rcis :: "[real, real] => complex"
|
13957
|
110 |
"rcis r a == complex_of_real r * cis a"
|
|
111 |
|
|
112 |
(* e ^ (x + iy) *)
|
14323
|
113 |
expi :: "complex => complex"
|
13957
|
114 |
"expi z == complex_of_real(exp (Re z)) * cis (Im z)"
|
14323
|
115 |
|
|
116 |
|
|
117 |
lemma inj_Rep_complex: "inj Rep_complex"
|
|
118 |
apply (rule inj_on_inverseI)
|
|
119 |
apply (rule Rep_complex_inverse)
|
|
120 |
done
|
|
121 |
|
|
122 |
lemma inj_Abs_complex: "inj Abs_complex"
|
|
123 |
apply (rule inj_on_inverseI)
|
|
124 |
apply (rule Abs_complex_inverse)
|
|
125 |
apply (simp (no_asm) add: complex_def)
|
|
126 |
done
|
|
127 |
declare inj_Abs_complex [THEN injD, simp]
|
|
128 |
|
|
129 |
lemma Abs_complex_cancel_iff: "(Abs_complex x = Abs_complex y) = (x = y)"
|
14334
|
130 |
by (auto dest: inj_Abs_complex [THEN injD])
|
14323
|
131 |
declare Abs_complex_cancel_iff [simp]
|
|
132 |
|
|
133 |
lemma pair_mem_complex: "(x,y) : complex"
|
14334
|
134 |
by (unfold complex_def, auto)
|
14323
|
135 |
declare pair_mem_complex [simp]
|
|
136 |
|
|
137 |
lemma Abs_complex_inverse2: "Rep_complex (Abs_complex (x,y)) = (x,y)"
|
|
138 |
apply (simp (no_asm) add: Abs_complex_inverse)
|
|
139 |
done
|
|
140 |
declare Abs_complex_inverse2 [simp]
|
|
141 |
|
|
142 |
lemma eq_Abs_complex: "(!!x y. z = Abs_complex(x,y) ==> P) ==> P"
|
|
143 |
apply (rule_tac p = "Rep_complex z" in PairE)
|
14334
|
144 |
apply (drule_tac f = Abs_complex in arg_cong)
|
14323
|
145 |
apply (force simp add: Rep_complex_inverse)
|
|
146 |
done
|
|
147 |
|
|
148 |
lemma Re: "Re(Abs_complex(x,y)) = x"
|
|
149 |
apply (unfold Re_def)
|
|
150 |
apply (simp (no_asm))
|
|
151 |
done
|
|
152 |
declare Re [simp]
|
|
153 |
|
|
154 |
lemma Im: "Im(Abs_complex(x,y)) = y"
|
|
155 |
apply (unfold Im_def)
|
|
156 |
apply (simp (no_asm))
|
|
157 |
done
|
|
158 |
declare Im [simp]
|
|
159 |
|
|
160 |
lemma Abs_complex_cancel: "Abs_complex(Re(z),Im(z)) = z"
|
14334
|
161 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
162 |
apply (simp (no_asm_simp))
|
|
163 |
done
|
|
164 |
declare Abs_complex_cancel [simp]
|
|
165 |
|
|
166 |
lemma complex_Re_Im_cancel_iff: "(w=z) = (Re(w) = Re(z) & Im(w) = Im(z))"
|
14334
|
167 |
apply (rule_tac z = w in eq_Abs_complex)
|
|
168 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
169 |
apply (auto dest: inj_Abs_complex [THEN injD])
|
|
170 |
done
|
|
171 |
|
|
172 |
lemma complex_Re_zero: "Re 0 = 0"
|
|
173 |
apply (unfold complex_zero_def)
|
|
174 |
apply (simp (no_asm))
|
|
175 |
done
|
|
176 |
|
|
177 |
lemma complex_Im_zero: "Im 0 = 0"
|
|
178 |
apply (unfold complex_zero_def)
|
|
179 |
apply (simp (no_asm))
|
|
180 |
done
|
|
181 |
declare complex_Re_zero [simp] complex_Im_zero [simp]
|
|
182 |
|
|
183 |
lemma complex_Re_one: "Re 1 = 1"
|
|
184 |
apply (unfold complex_one_def)
|
|
185 |
apply (simp (no_asm))
|
|
186 |
done
|
|
187 |
declare complex_Re_one [simp]
|
|
188 |
|
|
189 |
lemma complex_Im_one: "Im 1 = 0"
|
|
190 |
apply (unfold complex_one_def)
|
|
191 |
apply (simp (no_asm))
|
|
192 |
done
|
|
193 |
declare complex_Im_one [simp]
|
|
194 |
|
|
195 |
lemma complex_Re_i: "Re(ii) = 0"
|
14334
|
196 |
by (unfold i_def, auto)
|
14323
|
197 |
declare complex_Re_i [simp]
|
|
198 |
|
|
199 |
lemma complex_Im_i: "Im(ii) = 1"
|
14334
|
200 |
by (unfold i_def, auto)
|
14323
|
201 |
declare complex_Im_i [simp]
|
|
202 |
|
|
203 |
lemma Re_complex_of_real_zero: "Re(complex_of_real 0) = 0"
|
|
204 |
apply (unfold complex_of_real_def)
|
|
205 |
apply (simp (no_asm))
|
|
206 |
done
|
|
207 |
declare Re_complex_of_real_zero [simp]
|
|
208 |
|
|
209 |
lemma Im_complex_of_real_zero: "Im(complex_of_real 0) = 0"
|
|
210 |
apply (unfold complex_of_real_def)
|
|
211 |
apply (simp (no_asm))
|
|
212 |
done
|
|
213 |
declare Im_complex_of_real_zero [simp]
|
|
214 |
|
|
215 |
lemma Re_complex_of_real_one: "Re(complex_of_real 1) = 1"
|
|
216 |
apply (unfold complex_of_real_def)
|
|
217 |
apply (simp (no_asm))
|
|
218 |
done
|
|
219 |
declare Re_complex_of_real_one [simp]
|
|
220 |
|
|
221 |
lemma Im_complex_of_real_one: "Im(complex_of_real 1) = 0"
|
|
222 |
apply (unfold complex_of_real_def)
|
|
223 |
apply (simp (no_asm))
|
|
224 |
done
|
|
225 |
declare Im_complex_of_real_one [simp]
|
|
226 |
|
|
227 |
lemma Re_complex_of_real: "Re(complex_of_real z) = z"
|
14334
|
228 |
by (unfold complex_of_real_def, auto)
|
14323
|
229 |
declare Re_complex_of_real [simp]
|
|
230 |
|
|
231 |
lemma Im_complex_of_real: "Im(complex_of_real z) = 0"
|
14334
|
232 |
by (unfold complex_of_real_def, auto)
|
14323
|
233 |
declare Im_complex_of_real [simp]
|
|
234 |
|
|
235 |
|
|
236 |
subsection{*Negation*}
|
|
237 |
|
|
238 |
lemma complex_minus: "- Abs_complex(x,y) = Abs_complex(-x,-y)"
|
|
239 |
apply (unfold complex_minus_def)
|
|
240 |
apply (simp (no_asm))
|
|
241 |
done
|
|
242 |
|
|
243 |
lemma complex_Re_minus: "Re (-z) = - Re z"
|
|
244 |
apply (unfold Re_def)
|
14334
|
245 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
246 |
apply (auto simp add: complex_minus)
|
|
247 |
done
|
|
248 |
|
|
249 |
lemma complex_Im_minus: "Im (-z) = - Im z"
|
|
250 |
apply (unfold Im_def)
|
14334
|
251 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
252 |
apply (auto simp add: complex_minus)
|
|
253 |
done
|
|
254 |
|
|
255 |
lemma complex_minus_minus: "- (- z) = (z::complex)"
|
|
256 |
apply (unfold complex_minus_def)
|
|
257 |
apply (simp (no_asm))
|
|
258 |
done
|
|
259 |
declare complex_minus_minus [simp]
|
|
260 |
|
|
261 |
lemma inj_complex_minus: "inj(%r::complex. -r)"
|
|
262 |
apply (rule inj_onI)
|
14334
|
263 |
apply (drule_tac f = uminus in arg_cong, simp)
|
14323
|
264 |
done
|
|
265 |
|
|
266 |
lemma complex_minus_zero: "-(0::complex) = 0"
|
|
267 |
apply (unfold complex_zero_def)
|
|
268 |
apply (simp (no_asm) add: complex_minus)
|
|
269 |
done
|
|
270 |
declare complex_minus_zero [simp]
|
|
271 |
|
|
272 |
lemma complex_minus_zero_iff: "(-x = 0) = (x = (0::complex))"
|
14334
|
273 |
apply (rule_tac z = x in eq_Abs_complex)
|
14323
|
274 |
apply (auto dest: inj_Abs_complex [THEN injD]
|
|
275 |
simp add: complex_zero_def complex_minus)
|
|
276 |
done
|
|
277 |
declare complex_minus_zero_iff [simp]
|
|
278 |
|
|
279 |
lemma complex_minus_zero_iff2: "(0 = -x) = (x = (0::real))"
|
14334
|
280 |
by (auto dest: sym)
|
14323
|
281 |
declare complex_minus_zero_iff2 [simp]
|
|
282 |
|
|
283 |
lemma complex_minus_not_zero_iff: "(-x ~= 0) = (x ~= (0::complex))"
|
14334
|
284 |
by auto
|
14323
|
285 |
|
|
286 |
|
|
287 |
subsection{*Addition*}
|
|
288 |
|
|
289 |
lemma complex_add:
|
|
290 |
"Abs_complex(x1,y1) + Abs_complex(x2,y2) = Abs_complex(x1+x2,y1+y2)"
|
|
291 |
apply (unfold complex_add_def)
|
|
292 |
apply (simp (no_asm))
|
|
293 |
done
|
|
294 |
|
|
295 |
lemma complex_Re_add: "Re(x + y) = Re(x) + Re(y)"
|
|
296 |
apply (unfold Re_def)
|
14334
|
297 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
298 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
299 |
apply (auto simp add: complex_add)
|
|
300 |
done
|
|
301 |
|
|
302 |
lemma complex_Im_add: "Im(x + y) = Im(x) + Im(y)"
|
|
303 |
apply (unfold Im_def)
|
14334
|
304 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
305 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
306 |
apply (auto simp add: complex_add)
|
|
307 |
done
|
|
308 |
|
|
309 |
lemma complex_add_commute: "(u::complex) + v = v + u"
|
|
310 |
apply (unfold complex_add_def)
|
|
311 |
apply (simp (no_asm) add: real_add_commute)
|
|
312 |
done
|
|
313 |
|
|
314 |
lemma complex_add_assoc: "((u::complex) + v) + w = u + (v + w)"
|
|
315 |
apply (unfold complex_add_def)
|
|
316 |
apply (simp (no_asm) add: real_add_assoc)
|
|
317 |
done
|
|
318 |
|
|
319 |
lemma complex_add_left_commute: "(x::complex) + (y + z) = y + (x + z)"
|
|
320 |
apply (unfold complex_add_def)
|
14334
|
321 |
apply (simp (no_asm) add: add_left_commute)
|
14323
|
322 |
done
|
|
323 |
|
|
324 |
lemmas complex_add_ac = complex_add_assoc complex_add_commute
|
|
325 |
complex_add_left_commute
|
|
326 |
|
|
327 |
lemma complex_add_zero_left: "(0::complex) + z = z"
|
|
328 |
apply (unfold complex_add_def complex_zero_def)
|
|
329 |
apply (simp (no_asm))
|
|
330 |
done
|
|
331 |
declare complex_add_zero_left [simp]
|
|
332 |
|
|
333 |
lemma complex_add_zero_right: "z + (0::complex) = z"
|
|
334 |
apply (unfold complex_add_def complex_zero_def)
|
|
335 |
apply (simp (no_asm))
|
|
336 |
done
|
|
337 |
declare complex_add_zero_right [simp]
|
|
338 |
|
|
339 |
lemma complex_add_minus_right_zero:
|
|
340 |
"z + -z = (0::complex)"
|
|
341 |
apply (unfold complex_add_def complex_minus_def complex_zero_def)
|
|
342 |
apply (simp (no_asm))
|
|
343 |
done
|
|
344 |
declare complex_add_minus_right_zero [simp]
|
|
345 |
|
|
346 |
lemma complex_add_minus_left_zero:
|
|
347 |
"-z + z = (0::complex)"
|
|
348 |
apply (unfold complex_add_def complex_minus_def complex_zero_def)
|
|
349 |
apply (simp (no_asm))
|
|
350 |
done
|
|
351 |
declare complex_add_minus_left_zero [simp]
|
|
352 |
|
|
353 |
lemma complex_add_minus_cancel: "z + (- z + w) = (w::complex)"
|
|
354 |
apply (simp (no_asm) add: complex_add_assoc [symmetric])
|
|
355 |
done
|
|
356 |
|
|
357 |
lemma complex_minus_add_cancel: "(-z) + (z + w) = (w::complex)"
|
|
358 |
apply (simp (no_asm) add: complex_add_assoc [symmetric])
|
|
359 |
done
|
|
360 |
|
|
361 |
declare complex_add_minus_cancel [simp] complex_minus_add_cancel [simp]
|
|
362 |
|
|
363 |
lemma complex_add_minus_eq_minus: "x + y = (0::complex) ==> x = -y"
|
14334
|
364 |
by (auto simp add: complex_Re_Im_cancel_iff complex_Re_add complex_Im_add complex_Re_minus complex_Im_minus)
|
14323
|
365 |
|
|
366 |
lemma complex_minus_add_distrib: "-(x + y) = -x + -(y::complex)"
|
14334
|
367 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
368 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
369 |
apply (auto simp add: complex_minus complex_add)
|
|
370 |
done
|
|
371 |
declare complex_minus_add_distrib [simp]
|
|
372 |
|
|
373 |
lemma complex_add_left_cancel: "((x::complex) + y = x + z) = (y = z)"
|
14334
|
374 |
apply safe
|
14323
|
375 |
apply (drule_tac f = "%t.-x + t" in arg_cong)
|
|
376 |
apply (simp add: complex_add_assoc [symmetric])
|
|
377 |
done
|
|
378 |
declare complex_add_left_cancel [iff]
|
|
379 |
|
|
380 |
lemma complex_add_right_cancel: "(y + (x::complex)= z + x) = (y = z)"
|
|
381 |
apply (simp (no_asm) add: complex_add_commute)
|
|
382 |
done
|
|
383 |
declare complex_add_right_cancel [simp]
|
|
384 |
|
|
385 |
lemma complex_eq_minus_iff: "((x::complex) = y) = (0 = x + - y)"
|
14334
|
386 |
apply safe
|
|
387 |
apply (rule_tac [2] x1 = "-y" in complex_add_right_cancel [THEN iffD1], auto)
|
14323
|
388 |
done
|
|
389 |
|
|
390 |
lemma complex_eq_minus_iff2: "((x::complex) = y) = (x + - y = 0)"
|
14334
|
391 |
apply safe
|
|
392 |
apply (rule_tac [2] x1 = "-y" in complex_add_right_cancel [THEN iffD1], auto)
|
14323
|
393 |
done
|
|
394 |
|
|
395 |
lemma complex_diff_0: "(0::complex) - x = -x"
|
|
396 |
apply (simp (no_asm) add: complex_diff_def)
|
|
397 |
done
|
|
398 |
|
|
399 |
lemma complex_diff_0_right: "x - (0::complex) = x"
|
|
400 |
apply (simp (no_asm) add: complex_diff_def)
|
|
401 |
done
|
|
402 |
|
|
403 |
lemma complex_diff_self: "x - x = (0::complex)"
|
|
404 |
apply (simp (no_asm) add: complex_diff_def)
|
|
405 |
done
|
|
406 |
|
|
407 |
declare complex_diff_0 [simp] complex_diff_0_right [simp] complex_diff_self [simp]
|
|
408 |
|
|
409 |
lemma complex_diff:
|
|
410 |
"Abs_complex(x1,y1) - Abs_complex(x2,y2) = Abs_complex(x1-x2,y1-y2)"
|
|
411 |
apply (unfold complex_diff_def)
|
|
412 |
apply (simp (no_asm) add: complex_add complex_minus)
|
|
413 |
done
|
|
414 |
|
|
415 |
lemma complex_diff_eq_eq: "((x::complex) - y = z) = (x = z + y)"
|
14334
|
416 |
by (auto simp add: complex_diff_def complex_add_assoc)
|
14323
|
417 |
|
|
418 |
|
|
419 |
subsection{*Multiplication*}
|
|
420 |
|
|
421 |
lemma complex_mult:
|
|
422 |
"Abs_complex(x1,y1) * Abs_complex(x2,y2) =
|
|
423 |
Abs_complex(x1*x2 - y1*y2,x1*y2 + y1*x2)"
|
|
424 |
apply (unfold complex_mult_def)
|
|
425 |
apply (simp (no_asm))
|
|
426 |
done
|
|
427 |
|
|
428 |
lemma complex_mult_commute: "(w::complex) * z = z * w"
|
|
429 |
apply (unfold complex_mult_def)
|
|
430 |
apply (simp (no_asm) add: real_mult_commute real_add_commute)
|
|
431 |
done
|
|
432 |
|
|
433 |
lemma complex_mult_assoc: "((u::complex) * v) * w = u * (v * w)"
|
|
434 |
apply (unfold complex_mult_def)
|
14334
|
435 |
apply (simp (no_asm) add: complex_Re_Im_cancel_iff real_mult_assoc right_diff_distrib right_distrib left_diff_distrib left_distrib mult_left_commute)
|
14323
|
436 |
done
|
|
437 |
|
|
438 |
lemma complex_mult_left_commute: "(x::complex) * (y * z) = y * (x * z)"
|
|
439 |
apply (unfold complex_mult_def)
|
14334
|
440 |
apply (simp (no_asm) add: complex_Re_Im_cancel_iff mult_left_commute right_diff_distrib right_distrib)
|
14323
|
441 |
done
|
|
442 |
|
|
443 |
lemmas complex_mult_ac = complex_mult_assoc complex_mult_commute
|
|
444 |
complex_mult_left_commute
|
|
445 |
|
|
446 |
lemma complex_mult_one_left: "(1::complex) * z = z"
|
|
447 |
apply (unfold complex_one_def)
|
14334
|
448 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
449 |
apply (simp (no_asm_simp) add: complex_mult)
|
|
450 |
done
|
|
451 |
declare complex_mult_one_left [simp]
|
|
452 |
|
|
453 |
lemma complex_mult_one_right: "z * (1::complex) = z"
|
|
454 |
apply (simp (no_asm) add: complex_mult_commute)
|
|
455 |
done
|
|
456 |
declare complex_mult_one_right [simp]
|
|
457 |
|
|
458 |
lemma complex_mult_zero_left: "(0::complex) * z = 0"
|
|
459 |
apply (unfold complex_zero_def)
|
14334
|
460 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
461 |
apply (simp (no_asm_simp) add: complex_mult)
|
|
462 |
done
|
|
463 |
declare complex_mult_zero_left [simp]
|
|
464 |
|
|
465 |
lemma complex_mult_zero_right: "z * 0 = (0::complex)"
|
|
466 |
apply (simp (no_asm) add: complex_mult_commute)
|
|
467 |
done
|
|
468 |
declare complex_mult_zero_right [simp]
|
|
469 |
|
|
470 |
lemma complex_divide_zero: "0 / z = (0::complex)"
|
14334
|
471 |
by (unfold complex_divide_def, auto)
|
14323
|
472 |
declare complex_divide_zero [simp]
|
|
473 |
|
|
474 |
lemma complex_minus_mult_eq1: "-(x * y) = -x * (y::complex)"
|
14334
|
475 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
476 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
477 |
apply (auto simp add: complex_mult complex_minus real_diff_def)
|
|
478 |
done
|
|
479 |
|
|
480 |
lemma complex_minus_mult_eq2: "-(x * y) = x * -(y::complex)"
|
14334
|
481 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
482 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
483 |
apply (auto simp add: complex_mult complex_minus real_diff_def)
|
|
484 |
done
|
|
485 |
|
|
486 |
lemma complex_add_mult_distrib: "((z1::complex) + z2) * w = (z1 * w) + (z2 * w)"
|
14334
|
487 |
apply (rule_tac z = z1 in eq_Abs_complex)
|
|
488 |
apply (rule_tac z = z2 in eq_Abs_complex)
|
|
489 |
apply (rule_tac z = w in eq_Abs_complex)
|
|
490 |
apply (auto simp add: complex_mult complex_add left_distrib real_diff_def add_ac)
|
14323
|
491 |
done
|
|
492 |
|
|
493 |
lemma complex_add_mult_distrib2: "(w::complex) * (z1 + z2) = (w * z1) + (w * z2)"
|
|
494 |
apply (rule_tac z1 = "z1 + z2" in complex_mult_commute [THEN ssubst])
|
|
495 |
apply (simp (no_asm) add: complex_add_mult_distrib)
|
|
496 |
apply (simp (no_asm) add: complex_mult_commute)
|
|
497 |
done
|
|
498 |
|
|
499 |
lemma complex_zero_not_eq_one: "(0::complex) ~= 1"
|
|
500 |
apply (unfold complex_zero_def complex_one_def)
|
|
501 |
apply (simp (no_asm) add: complex_Re_Im_cancel_iff)
|
|
502 |
done
|
|
503 |
declare complex_zero_not_eq_one [simp]
|
|
504 |
declare complex_zero_not_eq_one [THEN not_sym, simp]
|
|
505 |
|
|
506 |
|
|
507 |
subsection{*Inverse*}
|
|
508 |
|
|
509 |
lemma complex_inverse: "inverse (Abs_complex(x,y)) =
|
|
510 |
Abs_complex(x/(x ^ 2 + y ^ 2),-y/(x ^ 2 + y ^ 2))"
|
|
511 |
apply (unfold complex_inverse_def)
|
|
512 |
apply (simp (no_asm))
|
|
513 |
done
|
|
514 |
|
|
515 |
lemma COMPLEX_INVERSE_ZERO: "inverse 0 = (0::complex)"
|
14334
|
516 |
by (unfold complex_inverse_def complex_zero_def, auto)
|
14323
|
517 |
|
|
518 |
lemma COMPLEX_DIVISION_BY_ZERO: "a / (0::complex) = 0"
|
|
519 |
apply (simp (no_asm) add: complex_divide_def COMPLEX_INVERSE_ZERO)
|
|
520 |
done
|
|
521 |
|
14335
|
522 |
instance complex :: division_by_zero
|
|
523 |
proof
|
|
524 |
fix x :: complex
|
|
525 |
show "inverse 0 = (0::complex)" by (rule COMPLEX_INVERSE_ZERO)
|
|
526 |
show "x/0 = 0" by (rule COMPLEX_DIVISION_BY_ZERO)
|
|
527 |
qed
|
|
528 |
|
14323
|
529 |
lemma complex_mult_inv_left: "z ~= (0::complex) ==> inverse(z) * z = 1"
|
14334
|
530 |
apply (rule_tac z = z in eq_Abs_complex)
|
|
531 |
apply (auto simp add: complex_mult complex_inverse complex_one_def
|
|
532 |
complex_zero_def add_divide_distrib [symmetric] real_power_two mult_ac)
|
|
533 |
apply (drule_tac y = y in real_sum_squares_not_zero)
|
|
534 |
apply (drule_tac [2] x = x in real_sum_squares_not_zero2, auto)
|
14323
|
535 |
done
|
|
536 |
declare complex_mult_inv_left [simp]
|
|
537 |
|
|
538 |
lemma complex_mult_inv_right: "z ~= (0::complex) ==> z * inverse(z) = 1"
|
14334
|
539 |
by (auto intro: complex_mult_commute [THEN subst])
|
14323
|
540 |
declare complex_mult_inv_right [simp]
|
|
541 |
|
14335
|
542 |
|
|
543 |
subsection {* The field of complex numbers *}
|
|
544 |
|
|
545 |
instance complex :: field
|
|
546 |
proof
|
|
547 |
fix z u v w :: complex
|
|
548 |
show "(u + v) + w = u + (v + w)"
|
|
549 |
by (rule complex_add_assoc)
|
|
550 |
show "z + w = w + z"
|
|
551 |
by (rule complex_add_commute)
|
|
552 |
show "0 + z = z"
|
|
553 |
by (rule complex_add_zero_left)
|
|
554 |
show "-z + z = 0"
|
|
555 |
by (rule complex_add_minus_left_zero)
|
|
556 |
show "z - w = z + -w"
|
|
557 |
by (simp add: complex_diff_def)
|
|
558 |
show "(u * v) * w = u * (v * w)"
|
|
559 |
by (rule complex_mult_assoc)
|
|
560 |
show "z * w = w * z"
|
|
561 |
by (rule complex_mult_commute)
|
|
562 |
show "1 * z = z"
|
|
563 |
by (rule complex_mult_one_left)
|
|
564 |
show "0 \<noteq> (1::complex)" --{*for some reason it has to be early*}
|
|
565 |
by (rule complex_zero_not_eq_one)
|
|
566 |
show "(u + v) * w = u * w + v * w"
|
|
567 |
by (rule complex_add_mult_distrib)
|
|
568 |
assume neq: "w \<noteq> 0"
|
|
569 |
thus "z / w = z * inverse w"
|
|
570 |
by (simp add: complex_divide_def)
|
|
571 |
show "inverse w * w = 1"
|
|
572 |
by (simp add: neq complex_mult_inv_left)
|
|
573 |
qed
|
|
574 |
|
|
575 |
|
|
576 |
lemma complex_mult_minus_one: "-(1::complex) * z = -z"
|
|
577 |
apply (simp (no_asm))
|
|
578 |
done
|
|
579 |
declare complex_mult_minus_one [simp]
|
|
580 |
|
|
581 |
lemma complex_mult_minus_one_right: "z * -(1::complex) = -z"
|
|
582 |
apply (subst complex_mult_commute)
|
|
583 |
apply (simp (no_asm))
|
|
584 |
done
|
|
585 |
declare complex_mult_minus_one_right [simp]
|
|
586 |
|
|
587 |
lemma complex_minus_mult_cancel: "-x * -y = x * (y::complex)"
|
|
588 |
apply (simp (no_asm))
|
|
589 |
done
|
|
590 |
declare complex_minus_mult_cancel [simp]
|
|
591 |
|
|
592 |
lemma complex_minus_mult_commute: "-x * y = x * -(y::complex)"
|
|
593 |
apply (simp (no_asm))
|
|
594 |
done
|
|
595 |
|
|
596 |
|
14323
|
597 |
lemma complex_mult_left_cancel: "(c::complex) ~= 0 ==> (c*a=c*b) = (a=b)"
|
|
598 |
apply auto
|
|
599 |
apply (drule_tac f = "%x. x*inverse c" in arg_cong)
|
|
600 |
apply (simp add: complex_mult_ac)
|
|
601 |
done
|
|
602 |
|
|
603 |
lemma complex_mult_right_cancel: "(c::complex) ~= 0 ==> (a*c=b*c) = (a=b)"
|
14334
|
604 |
apply safe
|
14323
|
605 |
apply (drule_tac f = "%x. x*inverse c" in arg_cong)
|
|
606 |
apply (simp add: complex_mult_ac)
|
|
607 |
done
|
|
608 |
|
|
609 |
lemma complex_inverse_not_zero: "z ~= 0 ==> inverse(z::complex) ~= 0"
|
14334
|
610 |
apply safe
|
14323
|
611 |
apply (frule complex_mult_right_cancel [THEN iffD2])
|
|
612 |
apply (erule_tac [2] V = "inverse z = 0" in thin_rl)
|
14334
|
613 |
apply (assumption, auto)
|
14323
|
614 |
done
|
|
615 |
declare complex_inverse_not_zero [simp]
|
|
616 |
|
|
617 |
lemma complex_mult_not_zero: "!!x. [| x ~= 0; y ~= (0::complex) |] ==> x * y ~= 0"
|
14334
|
618 |
apply safe
|
14323
|
619 |
apply (drule_tac f = "%z. inverse x*z" in arg_cong)
|
|
620 |
apply (simp add: complex_mult_assoc [symmetric])
|
|
621 |
done
|
|
622 |
|
|
623 |
lemmas complex_mult_not_zeroE = complex_mult_not_zero [THEN notE, standard]
|
|
624 |
|
|
625 |
lemma complex_inverse_inverse: "inverse(inverse (x::complex)) = x"
|
|
626 |
apply (case_tac "x = 0", simp add: COMPLEX_INVERSE_ZERO)
|
|
627 |
apply (rule_tac c1 = "inverse x" in complex_mult_right_cancel [THEN iffD1])
|
|
628 |
apply (erule complex_inverse_not_zero)
|
|
629 |
apply (auto dest: complex_inverse_not_zero)
|
|
630 |
done
|
|
631 |
declare complex_inverse_inverse [simp]
|
|
632 |
|
|
633 |
lemma complex_inverse_one: "inverse(1::complex) = 1"
|
|
634 |
apply (unfold complex_one_def)
|
|
635 |
apply (simp (no_asm) add: complex_inverse)
|
|
636 |
done
|
|
637 |
declare complex_inverse_one [simp]
|
|
638 |
|
|
639 |
lemma complex_minus_inverse: "inverse(-x) = -inverse(x::complex)"
|
|
640 |
apply (case_tac "x = 0", simp add: COMPLEX_INVERSE_ZERO)
|
14334
|
641 |
apply (rule_tac c1 = "-x" in complex_mult_right_cancel [THEN iffD1], force)
|
|
642 |
apply (subst complex_mult_inv_left, auto)
|
14323
|
643 |
done
|
|
644 |
|
|
645 |
lemma complex_inverse_distrib: "inverse(x*y) = inverse x * inverse (y::complex)"
|
14335
|
646 |
apply (rule inverse_mult_distrib)
|
14323
|
647 |
done
|
|
648 |
|
|
649 |
|
|
650 |
subsection{*Division*}
|
|
651 |
|
|
652 |
(*adding some of these theorems to simpset as for reals:
|
|
653 |
not 100% convinced for some*)
|
|
654 |
|
|
655 |
lemma complex_times_divide1_eq: "(x::complex) * (y/z) = (x*y)/z"
|
|
656 |
apply (simp (no_asm) add: complex_divide_def complex_mult_assoc)
|
|
657 |
done
|
|
658 |
|
|
659 |
lemma complex_times_divide2_eq: "(y/z) * (x::complex) = (y*x)/z"
|
|
660 |
apply (simp (no_asm) add: complex_divide_def complex_mult_ac)
|
|
661 |
done
|
|
662 |
|
|
663 |
declare complex_times_divide1_eq [simp] complex_times_divide2_eq [simp]
|
|
664 |
|
|
665 |
lemma complex_divide_divide1_eq: "(x::complex) / (y/z) = (x*z)/y"
|
|
666 |
apply (simp (no_asm) add: complex_divide_def complex_inverse_distrib complex_mult_ac)
|
|
667 |
done
|
|
668 |
|
|
669 |
lemma complex_divide_divide2_eq: "((x::complex) / y) / z = x/(y*z)"
|
|
670 |
apply (simp (no_asm) add: complex_divide_def complex_inverse_distrib complex_mult_assoc)
|
|
671 |
done
|
|
672 |
|
|
673 |
declare complex_divide_divide1_eq [simp] complex_divide_divide2_eq [simp]
|
|
674 |
|
|
675 |
(** As with multiplication, pull minus signs OUT of the / operator **)
|
|
676 |
|
|
677 |
lemma complex_minus_divide_eq: "(-x) / (y::complex) = - (x/y)"
|
|
678 |
apply (simp (no_asm) add: complex_divide_def)
|
|
679 |
done
|
|
680 |
declare complex_minus_divide_eq [simp]
|
|
681 |
|
|
682 |
lemma complex_divide_minus_eq: "(x / -(y::complex)) = - (x/y)"
|
|
683 |
apply (simp (no_asm) add: complex_divide_def complex_minus_inverse)
|
|
684 |
done
|
|
685 |
declare complex_divide_minus_eq [simp]
|
|
686 |
|
|
687 |
lemma complex_add_divide_distrib: "(x+y)/(z::complex) = x/z + y/z"
|
|
688 |
apply (simp (no_asm) add: complex_divide_def complex_add_mult_distrib)
|
|
689 |
done
|
|
690 |
|
|
691 |
subsection{*Embedding Properties for @{term complex_of_real} Map*}
|
|
692 |
|
|
693 |
lemma inj_complex_of_real: "inj complex_of_real"
|
|
694 |
apply (rule inj_onI)
|
|
695 |
apply (auto dest: inj_Abs_complex [THEN injD] simp add: complex_of_real_def)
|
|
696 |
done
|
|
697 |
|
|
698 |
lemma complex_of_real_one:
|
|
699 |
"complex_of_real 1 = 1"
|
|
700 |
apply (unfold complex_one_def complex_of_real_def)
|
|
701 |
apply (rule refl)
|
|
702 |
done
|
|
703 |
declare complex_of_real_one [simp]
|
|
704 |
|
|
705 |
lemma complex_of_real_zero:
|
|
706 |
"complex_of_real 0 = 0"
|
|
707 |
apply (unfold complex_zero_def complex_of_real_def)
|
|
708 |
apply (rule refl)
|
|
709 |
done
|
|
710 |
declare complex_of_real_zero [simp]
|
|
711 |
|
|
712 |
lemma complex_of_real_eq_iff: "(complex_of_real x = complex_of_real y) = (x = y)"
|
14334
|
713 |
by (auto dest: inj_complex_of_real [THEN injD])
|
14323
|
714 |
declare complex_of_real_eq_iff [iff]
|
|
715 |
|
|
716 |
lemma complex_of_real_minus: "complex_of_real(-x) = - complex_of_real x"
|
|
717 |
apply (simp (no_asm) add: complex_of_real_def complex_minus)
|
|
718 |
done
|
|
719 |
|
|
720 |
lemma complex_of_real_inverse: "complex_of_real(inverse x) = inverse(complex_of_real x)"
|
|
721 |
apply (case_tac "x=0")
|
|
722 |
apply (simp add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO)
|
14334
|
723 |
apply (simp add: complex_inverse complex_of_real_def real_divide_def
|
|
724 |
inverse_mult_distrib real_power_two)
|
14323
|
725 |
done
|
|
726 |
|
|
727 |
lemma complex_of_real_add: "complex_of_real x + complex_of_real y = complex_of_real (x + y)"
|
|
728 |
apply (simp (no_asm) add: complex_add complex_of_real_def)
|
|
729 |
done
|
|
730 |
|
|
731 |
lemma complex_of_real_diff: "complex_of_real x - complex_of_real y = complex_of_real (x - y)"
|
|
732 |
apply (simp (no_asm) add: complex_of_real_minus [symmetric] complex_diff_def complex_of_real_add)
|
|
733 |
done
|
|
734 |
|
|
735 |
lemma complex_of_real_mult: "complex_of_real x * complex_of_real y = complex_of_real (x * y)"
|
|
736 |
apply (simp (no_asm) add: complex_mult complex_of_real_def)
|
|
737 |
done
|
|
738 |
|
|
739 |
lemma complex_of_real_divide:
|
|
740 |
"complex_of_real x / complex_of_real y = complex_of_real(x/y)"
|
|
741 |
apply (unfold complex_divide_def)
|
|
742 |
apply (case_tac "y=0")
|
|
743 |
apply (simp (no_asm_simp) add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO)
|
|
744 |
apply (simp (no_asm_simp) add: complex_of_real_mult [symmetric] complex_of_real_inverse real_divide_def)
|
|
745 |
done
|
|
746 |
|
|
747 |
lemma complex_of_real_pow: "complex_of_real (x ^ n) = (complex_of_real x) ^ n"
|
|
748 |
apply (induct_tac "n")
|
|
749 |
apply (auto simp add: complex_of_real_mult [symmetric])
|
|
750 |
done
|
|
751 |
|
|
752 |
lemma complex_mod: "cmod (Abs_complex(x,y)) = sqrt(x ^ 2 + y ^ 2)"
|
|
753 |
apply (unfold cmod_def)
|
|
754 |
apply (simp (no_asm))
|
|
755 |
done
|
|
756 |
|
|
757 |
lemma complex_mod_zero: "cmod(0) = 0"
|
|
758 |
apply (unfold cmod_def)
|
|
759 |
apply (simp (no_asm))
|
|
760 |
done
|
|
761 |
declare complex_mod_zero [simp]
|
|
762 |
|
|
763 |
lemma complex_mod_one: "cmod(1) = 1"
|
14334
|
764 |
by (unfold cmod_def, simp)
|
14323
|
765 |
declare complex_mod_one [simp]
|
|
766 |
|
|
767 |
lemma complex_mod_complex_of_real: "cmod(complex_of_real x) = abs x"
|
|
768 |
apply (unfold complex_of_real_def)
|
|
769 |
apply (simp (no_asm) add: complex_mod)
|
|
770 |
done
|
|
771 |
declare complex_mod_complex_of_real [simp]
|
|
772 |
|
|
773 |
lemma complex_of_real_abs: "complex_of_real (abs x) = complex_of_real(cmod(complex_of_real x))"
|
|
774 |
apply (simp (no_asm))
|
|
775 |
done
|
|
776 |
|
|
777 |
|
|
778 |
subsection{*Conjugation is an Automorphism*}
|
|
779 |
|
|
780 |
lemma complex_cnj: "cnj (Abs_complex(x,y)) = Abs_complex(x,-y)"
|
|
781 |
apply (unfold cnj_def)
|
|
782 |
apply (simp (no_asm))
|
|
783 |
done
|
|
784 |
|
|
785 |
lemma inj_cnj: "inj cnj"
|
|
786 |
apply (rule inj_onI)
|
|
787 |
apply (auto simp add: cnj_def Abs_complex_cancel_iff complex_Re_Im_cancel_iff)
|
|
788 |
done
|
|
789 |
|
|
790 |
lemma complex_cnj_cancel_iff: "(cnj x = cnj y) = (x = y)"
|
14334
|
791 |
by (auto dest: inj_cnj [THEN injD])
|
14323
|
792 |
declare complex_cnj_cancel_iff [simp]
|
|
793 |
|
|
794 |
lemma complex_cnj_cnj: "cnj (cnj z) = z"
|
|
795 |
apply (unfold cnj_def)
|
|
796 |
apply (simp (no_asm))
|
|
797 |
done
|
|
798 |
declare complex_cnj_cnj [simp]
|
|
799 |
|
|
800 |
lemma complex_cnj_complex_of_real: "cnj (complex_of_real x) = complex_of_real x"
|
|
801 |
apply (unfold complex_of_real_def)
|
|
802 |
apply (simp (no_asm) add: complex_cnj)
|
|
803 |
done
|
|
804 |
declare complex_cnj_complex_of_real [simp]
|
|
805 |
|
|
806 |
lemma complex_mod_cnj: "cmod (cnj z) = cmod z"
|
14334
|
807 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
808 |
apply (simp (no_asm_simp) add: complex_cnj complex_mod real_power_two)
|
|
809 |
done
|
|
810 |
declare complex_mod_cnj [simp]
|
|
811 |
|
|
812 |
lemma complex_cnj_minus: "cnj (-z) = - cnj z"
|
|
813 |
apply (unfold cnj_def)
|
|
814 |
apply (simp (no_asm) add: complex_minus complex_Re_minus complex_Im_minus)
|
|
815 |
done
|
|
816 |
|
|
817 |
lemma complex_cnj_inverse: "cnj(inverse z) = inverse(cnj z)"
|
14334
|
818 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
819 |
apply (simp (no_asm_simp) add: complex_cnj complex_inverse real_power_two)
|
|
820 |
done
|
|
821 |
|
|
822 |
lemma complex_cnj_add: "cnj(w + z) = cnj(w) + cnj(z)"
|
14334
|
823 |
apply (rule_tac z = w in eq_Abs_complex)
|
|
824 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
825 |
apply (simp (no_asm_simp) add: complex_cnj complex_add)
|
|
826 |
done
|
|
827 |
|
|
828 |
lemma complex_cnj_diff: "cnj(w - z) = cnj(w) - cnj(z)"
|
|
829 |
apply (unfold complex_diff_def)
|
|
830 |
apply (simp (no_asm) add: complex_cnj_add complex_cnj_minus)
|
|
831 |
done
|
|
832 |
|
|
833 |
lemma complex_cnj_mult: "cnj(w * z) = cnj(w) * cnj(z)"
|
14334
|
834 |
apply (rule_tac z = w in eq_Abs_complex)
|
|
835 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
836 |
apply (simp (no_asm_simp) add: complex_cnj complex_mult)
|
|
837 |
done
|
|
838 |
|
|
839 |
lemma complex_cnj_divide: "cnj(w / z) = (cnj w)/(cnj z)"
|
|
840 |
apply (unfold complex_divide_def)
|
|
841 |
apply (simp (no_asm) add: complex_cnj_mult complex_cnj_inverse)
|
|
842 |
done
|
|
843 |
|
|
844 |
lemma complex_cnj_one: "cnj 1 = 1"
|
|
845 |
apply (unfold cnj_def complex_one_def)
|
|
846 |
apply (simp (no_asm))
|
|
847 |
done
|
|
848 |
declare complex_cnj_one [simp]
|
|
849 |
|
|
850 |
lemma complex_cnj_pow: "cnj(z ^ n) = cnj(z) ^ n"
|
|
851 |
apply (induct_tac "n")
|
|
852 |
apply (auto simp add: complex_cnj_mult)
|
|
853 |
done
|
|
854 |
|
|
855 |
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re(z))"
|
14334
|
856 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
857 |
apply (simp (no_asm_simp) add: complex_add complex_cnj complex_of_real_def)
|
|
858 |
done
|
|
859 |
|
|
860 |
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im(z)) * ii"
|
14334
|
861 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
862 |
apply (simp (no_asm_simp) add: complex_add complex_cnj complex_of_real_def complex_diff_def complex_minus i_def complex_mult)
|
|
863 |
done
|
|
864 |
|
|
865 |
lemma complex_cnj_zero: "cnj 0 = 0"
|
14334
|
866 |
by (simp add: cnj_def complex_zero_def)
|
14323
|
867 |
declare complex_cnj_zero [simp]
|
|
868 |
|
|
869 |
lemma complex_cnj_zero_iff: "(cnj z = 0) = (z = 0)"
|
14334
|
870 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
871 |
apply (auto simp add: complex_zero_def complex_cnj)
|
|
872 |
done
|
|
873 |
declare complex_cnj_zero_iff [iff]
|
|
874 |
|
|
875 |
lemma complex_mult_cnj: "z * cnj z = complex_of_real (Re(z) ^ 2 + Im(z) ^ 2)"
|
14334
|
876 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
877 |
apply (auto simp add: complex_cnj complex_mult complex_of_real_def real_power_two)
|
|
878 |
done
|
|
879 |
|
|
880 |
|
|
881 |
subsection{*Algebra*}
|
|
882 |
|
|
883 |
lemma complex_mult_zero_iff: "(x*y = (0::complex)) = (x = 0 | y = 0)"
|
|
884 |
apply auto
|
|
885 |
apply (auto intro: ccontr dest: complex_mult_not_zero)
|
|
886 |
done
|
|
887 |
declare complex_mult_zero_iff [iff]
|
|
888 |
|
|
889 |
lemma complex_add_left_cancel_zero: "(x + y = x) = (y = (0::complex))"
|
|
890 |
apply (unfold complex_zero_def)
|
14334
|
891 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
892 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
893 |
apply (auto simp add: complex_add)
|
|
894 |
done
|
|
895 |
declare complex_add_left_cancel_zero [simp]
|
|
896 |
|
|
897 |
lemma complex_diff_mult_distrib:
|
|
898 |
"((z1::complex) - z2) * w = (z1 * w) - (z2 * w)"
|
|
899 |
apply (unfold complex_diff_def)
|
|
900 |
apply (simp (no_asm) add: complex_add_mult_distrib)
|
|
901 |
done
|
|
902 |
|
|
903 |
lemma complex_diff_mult_distrib2:
|
|
904 |
"(w::complex) * (z1 - z2) = (w * z1) - (w * z2)"
|
|
905 |
apply (unfold complex_diff_def)
|
|
906 |
apply (simp (no_asm) add: complex_add_mult_distrib2)
|
|
907 |
done
|
|
908 |
|
|
909 |
|
|
910 |
subsection{*Modulus*}
|
|
911 |
|
|
912 |
(*
|
|
913 |
Goal "[| sqrt(x) = 0; 0 <= x |] ==> x = 0"
|
|
914 |
by (auto_tac (claset() addIs [real_sqrt_eq_zero_cancel],
|
|
915 |
simpset()));
|
|
916 |
qed "real_sqrt_eq_zero_cancel2";
|
|
917 |
*)
|
|
918 |
|
|
919 |
lemma complex_mod_eq_zero_cancel: "(cmod x = 0) = (x = 0)"
|
14334
|
920 |
apply (rule_tac z = x in eq_Abs_complex)
|
14323
|
921 |
apply (auto intro: real_sum_squares_cancel real_sum_squares_cancel2 simp add: complex_mod complex_zero_def real_power_two)
|
|
922 |
done
|
|
923 |
declare complex_mod_eq_zero_cancel [simp]
|
|
924 |
|
|
925 |
lemma complex_mod_complex_of_real_of_nat: "cmod (complex_of_real(real (n::nat))) = real n"
|
|
926 |
apply (simp (no_asm))
|
|
927 |
done
|
|
928 |
declare complex_mod_complex_of_real_of_nat [simp]
|
|
929 |
|
|
930 |
lemma complex_mod_minus: "cmod (-x) = cmod(x)"
|
14334
|
931 |
apply (rule_tac z = x in eq_Abs_complex)
|
14323
|
932 |
apply (simp (no_asm_simp) add: complex_mod complex_minus real_power_two)
|
|
933 |
done
|
|
934 |
declare complex_mod_minus [simp]
|
|
935 |
|
|
936 |
lemma complex_mod_mult_cnj: "cmod(z * cnj(z)) = cmod(z) ^ 2"
|
14334
|
937 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
938 |
apply (simp (no_asm_simp) add: complex_mod complex_cnj complex_mult);
|
|
939 |
apply (simp (no_asm) add: real_power_two real_abs_def)
|
|
940 |
done
|
|
941 |
|
|
942 |
lemma complex_mod_squared: "cmod(Abs_complex(x,y)) ^ 2 = x ^ 2 + y ^ 2"
|
14334
|
943 |
by (unfold cmod_def, auto)
|
14323
|
944 |
|
|
945 |
lemma complex_mod_ge_zero: "0 <= cmod x"
|
|
946 |
apply (unfold cmod_def)
|
|
947 |
apply (auto intro: real_sqrt_ge_zero)
|
|
948 |
done
|
|
949 |
declare complex_mod_ge_zero [simp]
|
|
950 |
|
|
951 |
lemma abs_cmod_cancel: "abs(cmod x) = cmod x"
|
14334
|
952 |
by (auto intro: abs_eqI1)
|
14323
|
953 |
declare abs_cmod_cancel [simp]
|
|
954 |
|
|
955 |
lemma complex_mod_mult: "cmod(x*y) = cmod(x) * cmod(y)"
|
14334
|
956 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
957 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
958 |
apply (auto simp add: complex_mult complex_mod real_sqrt_mult_distrib2 [symmetric] simp del: realpow_Suc)
|
14334
|
959 |
apply (rule_tac n = 1 in realpow_Suc_cancel_eq)
|
14323
|
960 |
apply (auto simp add: real_power_two [symmetric] simp del: realpow_Suc)
|
14334
|
961 |
apply (auto simp add: real_diff_def real_power_two right_distrib left_distrib add_ac mult_ac)
|
14323
|
962 |
done
|
|
963 |
|
|
964 |
lemma complex_mod_add_squared_eq: "cmod(x + y) ^ 2 = cmod(x) ^ 2 + cmod(y) ^ 2 + 2 * Re(x * cnj y)"
|
14334
|
965 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
966 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
967 |
apply (auto simp add: complex_add complex_mod_squared complex_mult complex_cnj real_diff_def simp del: realpow_Suc)
|
14334
|
968 |
apply (auto simp add: right_distrib left_distrib real_power_two mult_ac add_ac)
|
14323
|
969 |
done
|
|
970 |
|
|
971 |
lemma complex_Re_mult_cnj_le_cmod: "Re(x * cnj y) <= cmod(x * cnj y)"
|
14334
|
972 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
973 |
apply (rule_tac z = y in eq_Abs_complex)
|
14323
|
974 |
apply (auto simp add: complex_mod complex_mult complex_cnj real_diff_def simp del: realpow_Suc)
|
|
975 |
done
|
|
976 |
declare complex_Re_mult_cnj_le_cmod [simp]
|
|
977 |
|
|
978 |
lemma complex_Re_mult_cnj_le_cmod2: "Re(x * cnj y) <= cmod(x * y)"
|
14334
|
979 |
apply (cut_tac x = x and y = y in complex_Re_mult_cnj_le_cmod)
|
14323
|
980 |
apply (simp add: complex_mod_mult)
|
|
981 |
done
|
|
982 |
declare complex_Re_mult_cnj_le_cmod2 [simp]
|
|
983 |
|
|
984 |
lemma real_sum_squared_expand: "((x::real) + y) ^ 2 = x ^ 2 + y ^ 2 + 2 * x * y"
|
14334
|
985 |
apply (simp (no_asm) add: left_distrib right_distrib real_power_two)
|
14323
|
986 |
done
|
|
987 |
|
|
988 |
lemma complex_mod_triangle_squared: "cmod (x + y) ^ 2 <= (cmod(x) + cmod(y)) ^ 2"
|
|
989 |
apply (simp (no_asm) add: real_sum_squared_expand complex_mod_add_squared_eq real_mult_assoc complex_mod_mult [symmetric])
|
|
990 |
done
|
|
991 |
declare complex_mod_triangle_squared [simp]
|
|
992 |
|
|
993 |
lemma complex_mod_minus_le_complex_mod: "- cmod x <= cmod x"
|
|
994 |
apply (rule order_trans [OF _ complex_mod_ge_zero])
|
|
995 |
apply (simp (no_asm))
|
|
996 |
done
|
|
997 |
declare complex_mod_minus_le_complex_mod [simp]
|
|
998 |
|
|
999 |
lemma complex_mod_triangle_ineq: "cmod (x + y) <= cmod(x) + cmod(y)"
|
14334
|
1000 |
apply (rule_tac n = 1 in realpow_increasing)
|
14323
|
1001 |
apply (auto intro: order_trans [OF _ complex_mod_ge_zero]
|
|
1002 |
simp add: real_power_two [symmetric])
|
|
1003 |
done
|
|
1004 |
declare complex_mod_triangle_ineq [simp]
|
|
1005 |
|
|
1006 |
lemma complex_mod_triangle_ineq2: "cmod(b + a) - cmod b <= cmod a"
|
14334
|
1007 |
apply (cut_tac x1 = b and y1 = a and c = "-cmod b"
|
|
1008 |
in complex_mod_triangle_ineq [THEN add_right_mono])
|
14323
|
1009 |
apply (simp (no_asm))
|
|
1010 |
done
|
|
1011 |
declare complex_mod_triangle_ineq2 [simp]
|
|
1012 |
|
|
1013 |
lemma complex_mod_diff_commute: "cmod (x - y) = cmod (y - x)"
|
14334
|
1014 |
apply (rule_tac z = x in eq_Abs_complex)
|
|
1015 |
apply (rule_tac z = y in eq_Abs_complex)
|
|
1016 |
apply (auto simp add: complex_diff complex_mod right_diff_distrib real_power_two left_diff_distrib add_ac mult_ac)
|
14323
|
1017 |
done
|
|
1018 |
|
|
1019 |
lemma complex_mod_add_less: "[| cmod x < r; cmod y < s |] ==> cmod (x + y) < r + s"
|
14334
|
1020 |
by (auto intro: order_le_less_trans complex_mod_triangle_ineq)
|
14323
|
1021 |
|
|
1022 |
lemma complex_mod_mult_less: "[| cmod x < r; cmod y < s |] ==> cmod (x * y) < r * s"
|
14334
|
1023 |
by (auto intro: real_mult_less_mono' simp add: complex_mod_mult)
|
14323
|
1024 |
|
|
1025 |
lemma complex_mod_diff_ineq: "cmod(a) - cmod(b) <= cmod(a + b)"
|
|
1026 |
apply (rule linorder_cases [of "cmod(a)" "cmod (b)"])
|
|
1027 |
apply auto
|
14334
|
1028 |
apply (rule order_trans [of _ 0], rule order_less_imp_le)
|
|
1029 |
apply (simp add: compare_rls, simp)
|
14323
|
1030 |
apply (simp add: compare_rls)
|
|
1031 |
apply (rule complex_mod_minus [THEN subst])
|
|
1032 |
apply (rule order_trans)
|
|
1033 |
apply (rule_tac [2] complex_mod_triangle_ineq)
|
|
1034 |
apply (auto simp add: complex_add_ac)
|
|
1035 |
done
|
|
1036 |
declare complex_mod_diff_ineq [simp]
|
|
1037 |
|
|
1038 |
lemma complex_Re_le_cmod: "Re z <= cmod z"
|
14334
|
1039 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1040 |
apply (auto simp add: complex_mod simp del: realpow_Suc)
|
|
1041 |
done
|
|
1042 |
declare complex_Re_le_cmod [simp]
|
|
1043 |
|
|
1044 |
lemma complex_mod_gt_zero: "z ~= 0 ==> 0 < cmod z"
|
14334
|
1045 |
apply (cut_tac x = z in complex_mod_ge_zero)
|
|
1046 |
apply (drule order_le_imp_less_or_eq, auto)
|
14323
|
1047 |
done
|
|
1048 |
|
|
1049 |
|
|
1050 |
subsection{*A Few More Theorems*}
|
|
1051 |
|
|
1052 |
lemma complex_mod_complexpow: "cmod(x ^ n) = cmod(x) ^ n"
|
|
1053 |
apply (induct_tac "n")
|
|
1054 |
apply (auto simp add: complex_mod_mult)
|
|
1055 |
done
|
|
1056 |
|
|
1057 |
lemma complexpow_minus: "(-x::complex) ^ n = (if even n then (x ^ n) else -(x ^ n))"
|
14334
|
1058 |
by (induct_tac "n", auto)
|
14323
|
1059 |
|
|
1060 |
lemma complex_inverse_minus: "inverse (-x) = - inverse (x::complex)"
|
14334
|
1061 |
apply (rule_tac z = x in eq_Abs_complex)
|
14323
|
1062 |
apply (simp (no_asm_simp) add: complex_inverse complex_minus real_power_two)
|
|
1063 |
done
|
|
1064 |
|
|
1065 |
lemma complex_divide_one: "x / (1::complex) = x"
|
|
1066 |
apply (unfold complex_divide_def)
|
|
1067 |
apply (simp (no_asm))
|
|
1068 |
done
|
|
1069 |
declare complex_divide_one [simp]
|
|
1070 |
|
|
1071 |
lemma complex_mod_inverse: "cmod(inverse x) = inverse(cmod x)"
|
|
1072 |
apply (case_tac "x=0", simp add: COMPLEX_INVERSE_ZERO)
|
|
1073 |
apply (rule_tac c1 = "cmod x" in real_mult_left_cancel [THEN iffD1])
|
|
1074 |
apply (auto simp add: complex_mod_mult [symmetric])
|
|
1075 |
done
|
|
1076 |
|
|
1077 |
lemma complex_mod_divide:
|
|
1078 |
"cmod(x/y) = cmod(x)/(cmod y)"
|
|
1079 |
apply (unfold complex_divide_def real_divide_def)
|
|
1080 |
apply (auto simp add: complex_mod_mult complex_mod_inverse)
|
|
1081 |
done
|
|
1082 |
|
|
1083 |
lemma complex_inverse_divide:
|
|
1084 |
"inverse(x/y) = y/(x::complex)"
|
|
1085 |
apply (unfold complex_divide_def)
|
|
1086 |
apply (auto simp add: complex_inverse_distrib complex_mult_commute)
|
|
1087 |
done
|
|
1088 |
declare complex_inverse_divide [simp]
|
|
1089 |
|
|
1090 |
lemma complexpow_mult: "((r::complex) * s) ^ n = (r ^ n) * (s ^ n)"
|
|
1091 |
apply (induct_tac "n")
|
|
1092 |
apply (auto simp add: complex_mult_ac)
|
|
1093 |
done
|
|
1094 |
|
|
1095 |
|
|
1096 |
subsection{*More Exponentiation*}
|
|
1097 |
|
|
1098 |
lemma complexpow_zero: "(0::complex) ^ (Suc n) = 0"
|
14334
|
1099 |
by auto
|
14323
|
1100 |
declare complexpow_zero [simp]
|
|
1101 |
|
|
1102 |
lemma complexpow_not_zero [rule_format (no_asm)]: "r ~= (0::complex) --> r ^ n ~= 0"
|
|
1103 |
apply (induct_tac "n")
|
|
1104 |
apply (auto simp add: complex_mult_not_zero)
|
|
1105 |
done
|
|
1106 |
declare complexpow_not_zero [simp]
|
|
1107 |
declare complexpow_not_zero [intro]
|
|
1108 |
|
|
1109 |
lemma complexpow_zero_zero: "r ^ n = (0::complex) ==> r = 0"
|
14334
|
1110 |
by (blast intro: ccontr dest: complexpow_not_zero)
|
14323
|
1111 |
|
|
1112 |
lemma complexpow_i_squared: "ii ^ 2 = -(1::complex)"
|
|
1113 |
apply (unfold i_def)
|
|
1114 |
apply (auto simp add: complex_mult complex_one_def complex_minus numeral_2_eq_2)
|
|
1115 |
done
|
|
1116 |
declare complexpow_i_squared [simp]
|
|
1117 |
|
|
1118 |
lemma complex_i_not_zero: "ii ~= 0"
|
14334
|
1119 |
by (unfold i_def complex_zero_def, auto)
|
14323
|
1120 |
declare complex_i_not_zero [simp]
|
|
1121 |
|
|
1122 |
lemma complex_mult_eq_zero_cancel1: "x * y ~= (0::complex) ==> x ~= 0"
|
14334
|
1123 |
by auto
|
14323
|
1124 |
|
|
1125 |
lemma complex_mult_eq_zero_cancel2: "x * y ~= 0 ==> y ~= (0::complex)"
|
14334
|
1126 |
by auto
|
14323
|
1127 |
|
|
1128 |
lemma complex_mult_not_eq_zero_iff: "(x * y ~= 0) = (x ~= 0 & y ~= (0::complex))"
|
14334
|
1129 |
by auto
|
14323
|
1130 |
declare complex_mult_not_eq_zero_iff [iff]
|
|
1131 |
|
|
1132 |
lemma complexpow_inverse: "inverse ((r::complex) ^ n) = (inverse r) ^ n"
|
|
1133 |
apply (induct_tac "n")
|
|
1134 |
apply (auto simp add: complex_inverse_distrib)
|
|
1135 |
done
|
|
1136 |
|
|
1137 |
(*---------------------------------------------------------------------------*)
|
|
1138 |
(* sgn *)
|
|
1139 |
(*---------------------------------------------------------------------------*)
|
|
1140 |
|
|
1141 |
lemma sgn_zero: "sgn 0 = 0"
|
|
1142 |
|
|
1143 |
apply (unfold sgn_def)
|
|
1144 |
apply (simp (no_asm))
|
|
1145 |
done
|
|
1146 |
declare sgn_zero [simp]
|
|
1147 |
|
|
1148 |
lemma sgn_one: "sgn 1 = 1"
|
|
1149 |
apply (unfold sgn_def)
|
|
1150 |
apply (simp (no_asm))
|
|
1151 |
done
|
|
1152 |
declare sgn_one [simp]
|
|
1153 |
|
|
1154 |
lemma sgn_minus: "sgn (-z) = - sgn(z)"
|
14334
|
1155 |
by (unfold sgn_def, auto)
|
14323
|
1156 |
|
|
1157 |
lemma sgn_eq:
|
|
1158 |
"sgn z = z / complex_of_real (cmod z)"
|
|
1159 |
apply (unfold sgn_def)
|
|
1160 |
apply (simp (no_asm))
|
|
1161 |
done
|
|
1162 |
|
|
1163 |
lemma complex_split: "EX x y. z = complex_of_real(x) + ii * complex_of_real(y)"
|
14334
|
1164 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1165 |
apply (auto simp add: complex_of_real_def i_def complex_mult complex_add)
|
|
1166 |
done
|
|
1167 |
|
|
1168 |
lemma Re_complex_i: "Re(complex_of_real(x) + ii * complex_of_real(y)) = x"
|
14334
|
1169 |
by (auto simp add: complex_of_real_def i_def complex_mult complex_add)
|
14323
|
1170 |
declare Re_complex_i [simp]
|
|
1171 |
|
|
1172 |
lemma Im_complex_i: "Im(complex_of_real(x) + ii * complex_of_real(y)) = y"
|
14334
|
1173 |
by (auto simp add: complex_of_real_def i_def complex_mult complex_add)
|
14323
|
1174 |
declare Im_complex_i [simp]
|
|
1175 |
|
|
1176 |
lemma i_mult_eq: "ii * ii = complex_of_real (-1)"
|
|
1177 |
apply (unfold i_def complex_of_real_def)
|
|
1178 |
apply (auto simp add: complex_mult complex_add)
|
|
1179 |
done
|
|
1180 |
|
|
1181 |
lemma i_mult_eq2: "ii * ii = -(1::complex)"
|
|
1182 |
apply (unfold i_def complex_one_def)
|
|
1183 |
apply (simp (no_asm) add: complex_mult complex_minus)
|
|
1184 |
done
|
|
1185 |
declare i_mult_eq2 [simp]
|
|
1186 |
|
|
1187 |
lemma cmod_i: "cmod (complex_of_real(x) + ii * complex_of_real(y)) =
|
|
1188 |
sqrt (x ^ 2 + y ^ 2)"
|
|
1189 |
apply (auto simp add: complex_mult complex_add i_def complex_of_real_def cmod_def)
|
|
1190 |
done
|
|
1191 |
|
|
1192 |
lemma complex_eq_Re_eq:
|
|
1193 |
"complex_of_real xa + ii * complex_of_real ya =
|
|
1194 |
complex_of_real xb + ii * complex_of_real yb
|
|
1195 |
==> xa = xb"
|
|
1196 |
apply (unfold complex_of_real_def i_def)
|
|
1197 |
apply (auto simp add: complex_mult complex_add)
|
|
1198 |
done
|
|
1199 |
|
|
1200 |
lemma complex_eq_Im_eq:
|
|
1201 |
"complex_of_real xa + ii * complex_of_real ya =
|
|
1202 |
complex_of_real xb + ii * complex_of_real yb
|
|
1203 |
==> ya = yb"
|
|
1204 |
apply (unfold complex_of_real_def i_def)
|
|
1205 |
apply (auto simp add: complex_mult complex_add)
|
|
1206 |
done
|
|
1207 |
|
|
1208 |
lemma complex_eq_cancel_iff: "(complex_of_real xa + ii * complex_of_real ya =
|
|
1209 |
complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))"
|
|
1210 |
apply (auto intro: complex_eq_Im_eq complex_eq_Re_eq)
|
|
1211 |
done
|
|
1212 |
declare complex_eq_cancel_iff [iff]
|
|
1213 |
|
|
1214 |
lemma complex_eq_cancel_iffA: "(complex_of_real xa + complex_of_real ya * ii =
|
|
1215 |
complex_of_real xb + complex_of_real yb * ii ) = ((xa = xb) & (ya = yb))"
|
|
1216 |
apply (auto simp add: complex_mult_commute)
|
|
1217 |
done
|
|
1218 |
declare complex_eq_cancel_iffA [iff]
|
|
1219 |
|
|
1220 |
lemma complex_eq_cancel_iffB: "(complex_of_real xa + complex_of_real ya * ii =
|
|
1221 |
complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))"
|
|
1222 |
apply (auto simp add: complex_mult_commute)
|
|
1223 |
done
|
|
1224 |
declare complex_eq_cancel_iffB [iff]
|
|
1225 |
|
|
1226 |
lemma complex_eq_cancel_iffC: "(complex_of_real xa + ii * complex_of_real ya =
|
|
1227 |
complex_of_real xb + complex_of_real yb * ii) = ((xa = xb) & (ya = yb))"
|
|
1228 |
apply (auto simp add: complex_mult_commute)
|
|
1229 |
done
|
|
1230 |
declare complex_eq_cancel_iffC [iff]
|
|
1231 |
|
|
1232 |
lemma complex_eq_cancel_iff2: "(complex_of_real x + ii * complex_of_real y =
|
|
1233 |
complex_of_real xa) = (x = xa & y = 0)"
|
14334
|
1234 |
apply (cut_tac xa = x and ya = y and xb = xa and yb = 0 in complex_eq_cancel_iff)
|
14323
|
1235 |
apply (simp del: complex_eq_cancel_iff)
|
|
1236 |
done
|
|
1237 |
declare complex_eq_cancel_iff2 [simp]
|
|
1238 |
|
|
1239 |
lemma complex_eq_cancel_iff2a: "(complex_of_real x + complex_of_real y * ii =
|
|
1240 |
complex_of_real xa) = (x = xa & y = 0)"
|
|
1241 |
apply (auto simp add: complex_mult_commute)
|
|
1242 |
done
|
|
1243 |
declare complex_eq_cancel_iff2a [simp]
|
|
1244 |
|
|
1245 |
lemma complex_eq_cancel_iff3: "(complex_of_real x + ii * complex_of_real y =
|
|
1246 |
ii * complex_of_real ya) = (x = 0 & y = ya)"
|
14334
|
1247 |
apply (cut_tac xa = x and ya = y and xb = 0 and yb = ya in complex_eq_cancel_iff)
|
14323
|
1248 |
apply (simp del: complex_eq_cancel_iff)
|
|
1249 |
done
|
|
1250 |
declare complex_eq_cancel_iff3 [simp]
|
|
1251 |
|
|
1252 |
lemma complex_eq_cancel_iff3a: "(complex_of_real x + complex_of_real y * ii =
|
|
1253 |
ii * complex_of_real ya) = (x = 0 & y = ya)"
|
|
1254 |
apply (auto simp add: complex_mult_commute)
|
|
1255 |
done
|
|
1256 |
declare complex_eq_cancel_iff3a [simp]
|
|
1257 |
|
|
1258 |
lemma complex_split_Re_zero:
|
|
1259 |
"complex_of_real x + ii * complex_of_real y = 0
|
|
1260 |
==> x = 0"
|
|
1261 |
apply (unfold complex_of_real_def i_def complex_zero_def)
|
|
1262 |
apply (auto simp add: complex_mult complex_add)
|
|
1263 |
done
|
|
1264 |
|
|
1265 |
lemma complex_split_Im_zero:
|
|
1266 |
"complex_of_real x + ii * complex_of_real y = 0
|
|
1267 |
==> y = 0"
|
|
1268 |
apply (unfold complex_of_real_def i_def complex_zero_def)
|
|
1269 |
apply (auto simp add: complex_mult complex_add)
|
|
1270 |
done
|
|
1271 |
|
|
1272 |
lemma Re_sgn:
|
|
1273 |
"Re(sgn z) = Re(z)/cmod z"
|
|
1274 |
apply (unfold sgn_def complex_divide_def)
|
14334
|
1275 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1276 |
apply (auto simp add: complex_of_real_inverse [symmetric])
|
|
1277 |
apply (auto simp add: complex_of_real_def complex_mult real_divide_def)
|
|
1278 |
done
|
|
1279 |
declare Re_sgn [simp]
|
|
1280 |
|
|
1281 |
lemma Im_sgn:
|
|
1282 |
"Im(sgn z) = Im(z)/cmod z"
|
|
1283 |
apply (unfold sgn_def complex_divide_def)
|
14334
|
1284 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1285 |
apply (auto simp add: complex_of_real_inverse [symmetric])
|
|
1286 |
apply (auto simp add: complex_of_real_def complex_mult real_divide_def)
|
|
1287 |
done
|
|
1288 |
declare Im_sgn [simp]
|
|
1289 |
|
|
1290 |
lemma complex_inverse_complex_split:
|
|
1291 |
"inverse(complex_of_real x + ii * complex_of_real y) =
|
|
1292 |
complex_of_real(x/(x ^ 2 + y ^ 2)) -
|
|
1293 |
ii * complex_of_real(y/(x ^ 2 + y ^ 2))"
|
|
1294 |
apply (unfold complex_of_real_def i_def)
|
|
1295 |
apply (auto simp add: complex_mult complex_add complex_diff_def complex_minus complex_inverse real_divide_def)
|
|
1296 |
done
|
|
1297 |
|
|
1298 |
(*----------------------------------------------------------------------------*)
|
|
1299 |
(* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *)
|
|
1300 |
(* many of the theorems are not used - so should they be kept? *)
|
|
1301 |
(*----------------------------------------------------------------------------*)
|
|
1302 |
|
|
1303 |
lemma Re_mult_i_eq:
|
|
1304 |
"Re (ii * complex_of_real y) = 0"
|
|
1305 |
apply (unfold i_def complex_of_real_def)
|
|
1306 |
apply (auto simp add: complex_mult)
|
|
1307 |
done
|
|
1308 |
declare Re_mult_i_eq [simp]
|
|
1309 |
|
|
1310 |
lemma Im_mult_i_eq:
|
|
1311 |
"Im (ii * complex_of_real y) = y"
|
|
1312 |
apply (unfold i_def complex_of_real_def)
|
|
1313 |
apply (auto simp add: complex_mult)
|
|
1314 |
done
|
|
1315 |
declare Im_mult_i_eq [simp]
|
|
1316 |
|
|
1317 |
lemma complex_mod_mult_i:
|
|
1318 |
"cmod (ii * complex_of_real y) = abs y"
|
|
1319 |
apply (unfold i_def complex_of_real_def)
|
|
1320 |
apply (auto simp add: complex_mult complex_mod real_power_two)
|
|
1321 |
done
|
|
1322 |
declare complex_mod_mult_i [simp]
|
|
1323 |
|
|
1324 |
lemma cos_arg_i_mult_zero:
|
|
1325 |
"0 < y ==> cos (arg(ii * complex_of_real y)) = 0"
|
|
1326 |
apply (unfold arg_def)
|
|
1327 |
apply (auto simp add: abs_eqI2)
|
14334
|
1328 |
apply (rule_tac a = "pi/2" in someI2, auto)
|
|
1329 |
apply (rule order_less_trans [of _ 0], auto)
|
14323
|
1330 |
done
|
|
1331 |
declare cos_arg_i_mult_zero [simp]
|
|
1332 |
|
|
1333 |
lemma cos_arg_i_mult_zero2:
|
|
1334 |
"y < 0 ==> cos (arg(ii * complex_of_real y)) = 0"
|
|
1335 |
apply (unfold arg_def)
|
|
1336 |
apply (auto simp add: abs_minus_eqI2)
|
14334
|
1337 |
apply (rule_tac a = "- pi/2" in someI2, auto)
|
|
1338 |
apply (rule order_trans [of _ 0], auto)
|
14323
|
1339 |
done
|
|
1340 |
declare cos_arg_i_mult_zero2 [simp]
|
|
1341 |
|
|
1342 |
lemma complex_of_real_not_zero_iff:
|
|
1343 |
"(complex_of_real y ~= 0) = (y ~= 0)"
|
14334
|
1344 |
apply (unfold complex_zero_def complex_of_real_def, auto)
|
14323
|
1345 |
done
|
|
1346 |
declare complex_of_real_not_zero_iff [simp]
|
|
1347 |
|
|
1348 |
lemma complex_of_real_zero_iff: "(complex_of_real y = 0) = (y = 0)"
|
|
1349 |
apply auto
|
14334
|
1350 |
apply (rule ccontr, drule complex_of_real_not_zero_iff [THEN iffD2], simp)
|
14323
|
1351 |
done
|
|
1352 |
declare complex_of_real_zero_iff [simp]
|
|
1353 |
|
|
1354 |
lemma cos_arg_i_mult_zero3: "y ~= 0 ==> cos (arg(ii * complex_of_real y)) = 0"
|
14334
|
1355 |
by (cut_tac x = y and y = 0 in linorder_less_linear, auto)
|
14323
|
1356 |
declare cos_arg_i_mult_zero3 [simp]
|
|
1357 |
|
|
1358 |
|
|
1359 |
subsection{*Finally! Polar Form for Complex Numbers*}
|
|
1360 |
|
|
1361 |
lemma complex_split_polar: "EX r a. z = complex_of_real r *
|
|
1362 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))"
|
14334
|
1363 |
apply (cut_tac z = z in complex_split)
|
14323
|
1364 |
apply (auto simp add: polar_Ex complex_add_mult_distrib2 complex_of_real_mult complex_mult_ac)
|
|
1365 |
done
|
|
1366 |
|
|
1367 |
lemma rcis_Ex: "EX r a. z = rcis r a"
|
|
1368 |
apply (unfold rcis_def cis_def)
|
|
1369 |
apply (rule complex_split_polar)
|
|
1370 |
done
|
|
1371 |
|
|
1372 |
lemma Re_complex_polar: "Re(complex_of_real r *
|
|
1373 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))) = r * cos a"
|
|
1374 |
apply (auto simp add: complex_add_mult_distrib2 complex_of_real_mult complex_mult_ac)
|
|
1375 |
done
|
|
1376 |
declare Re_complex_polar [simp]
|
|
1377 |
|
|
1378 |
lemma Re_rcis: "Re(rcis r a) = r * cos a"
|
14334
|
1379 |
by (unfold rcis_def cis_def, auto)
|
14323
|
1380 |
declare Re_rcis [simp]
|
|
1381 |
|
|
1382 |
lemma Im_complex_polar: "Im(complex_of_real r *
|
|
1383 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))) = r * sin a"
|
|
1384 |
apply (auto simp add: complex_add_mult_distrib2 complex_of_real_mult complex_mult_ac)
|
|
1385 |
done
|
|
1386 |
declare Im_complex_polar [simp]
|
|
1387 |
|
|
1388 |
lemma Im_rcis: "Im(rcis r a) = r * sin a"
|
14334
|
1389 |
by (unfold rcis_def cis_def, auto)
|
14323
|
1390 |
declare Im_rcis [simp]
|
|
1391 |
|
|
1392 |
lemma complex_mod_complex_polar: "cmod (complex_of_real r *
|
|
1393 |
(complex_of_real(cos a) + ii * complex_of_real(sin a))) = abs r"
|
14334
|
1394 |
apply (auto simp add: complex_add_mult_distrib2 cmod_i complex_of_real_mult right_distrib [symmetric] realpow_mult complex_mult_ac mult_ac simp del: realpow_Suc)
|
14323
|
1395 |
done
|
|
1396 |
declare complex_mod_complex_polar [simp]
|
|
1397 |
|
|
1398 |
lemma complex_mod_rcis: "cmod(rcis r a) = abs r"
|
14334
|
1399 |
by (unfold rcis_def cis_def, auto)
|
14323
|
1400 |
declare complex_mod_rcis [simp]
|
|
1401 |
|
|
1402 |
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
|
|
1403 |
apply (unfold cmod_def)
|
|
1404 |
apply (rule real_sqrt_eq_iff [THEN iffD2])
|
|
1405 |
apply (auto simp add: complex_mult_cnj)
|
|
1406 |
done
|
|
1407 |
|
|
1408 |
lemma complex_Re_cnj: "Re(cnj z) = Re z"
|
14334
|
1409 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1410 |
apply (auto simp add: complex_cnj)
|
|
1411 |
done
|
|
1412 |
declare complex_Re_cnj [simp]
|
|
1413 |
|
|
1414 |
lemma complex_Im_cnj: "Im(cnj z) = - Im z"
|
14334
|
1415 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1416 |
apply (auto simp add: complex_cnj)
|
|
1417 |
done
|
|
1418 |
declare complex_Im_cnj [simp]
|
|
1419 |
|
|
1420 |
lemma complex_In_mult_cnj_zero: "Im (z * cnj z) = 0"
|
14334
|
1421 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1422 |
apply (auto simp add: complex_cnj complex_mult)
|
|
1423 |
done
|
|
1424 |
declare complex_In_mult_cnj_zero [simp]
|
|
1425 |
|
|
1426 |
lemma complex_Re_mult: "[| Im w = 0; Im z = 0 |] ==> Re(w * z) = Re(w) * Re(z)"
|
14334
|
1427 |
apply (rule_tac z = z in eq_Abs_complex)
|
|
1428 |
apply (rule_tac z = w in eq_Abs_complex)
|
14323
|
1429 |
apply (auto simp add: complex_mult)
|
|
1430 |
done
|
|
1431 |
|
|
1432 |
lemma complex_Re_mult_complex_of_real: "Re (z * complex_of_real c) = Re(z) * c"
|
|
1433 |
apply (unfold complex_of_real_def)
|
14334
|
1434 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1435 |
apply (auto simp add: complex_mult)
|
|
1436 |
done
|
|
1437 |
declare complex_Re_mult_complex_of_real [simp]
|
|
1438 |
|
|
1439 |
lemma complex_Im_mult_complex_of_real: "Im (z * complex_of_real c) = Im(z) * c"
|
|
1440 |
apply (unfold complex_of_real_def)
|
14334
|
1441 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1442 |
apply (auto simp add: complex_mult)
|
|
1443 |
done
|
|
1444 |
declare complex_Im_mult_complex_of_real [simp]
|
|
1445 |
|
|
1446 |
lemma complex_Re_mult_complex_of_real2: "Re (complex_of_real c * z) = c * Re(z)"
|
|
1447 |
apply (unfold complex_of_real_def)
|
14334
|
1448 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1449 |
apply (auto simp add: complex_mult)
|
|
1450 |
done
|
|
1451 |
declare complex_Re_mult_complex_of_real2 [simp]
|
|
1452 |
|
|
1453 |
lemma complex_Im_mult_complex_of_real2: "Im (complex_of_real c * z) = c * Im(z)"
|
|
1454 |
apply (unfold complex_of_real_def)
|
14334
|
1455 |
apply (rule_tac z = z in eq_Abs_complex)
|
14323
|
1456 |
apply (auto simp add: complex_mult)
|
|
1457 |
done
|
|
1458 |
declare complex_Im_mult_complex_of_real2 [simp]
|
|
1459 |
|
|
1460 |
(*---------------------------------------------------------------------------*)
|
|
1461 |
(* (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b) *)
|
|
1462 |
(*---------------------------------------------------------------------------*)
|
|
1463 |
|
|
1464 |
lemma cis_rcis_eq: "cis a = rcis 1 a"
|
|
1465 |
apply (unfold rcis_def)
|
|
1466 |
apply (simp (no_asm))
|
|
1467 |
done
|
|
1468 |
|
|
1469 |
lemma rcis_mult:
|
|
1470 |
"rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)"
|
|
1471 |
apply (unfold rcis_def cis_def)
|
|
1472 |
apply (auto simp add: cos_add sin_add complex_add_mult_distrib2 complex_add_mult_distrib complex_mult_ac complex_add_ac)
|
|
1473 |
apply (auto simp add: complex_add_mult_distrib2 [symmetric] complex_mult_assoc [symmetric] complex_of_real_mult complex_of_real_add complex_add_assoc [symmetric] i_mult_eq simp del: i_mult_eq2)
|
|
1474 |
apply (auto simp add: complex_add_ac)
|
14334
|
1475 |
apply (auto simp add: complex_add_assoc [symmetric] complex_of_real_add right_distrib real_diff_def mult_ac add_ac)
|
14323
|
1476 |
done
|
|
1477 |
|
|
1478 |
lemma cis_mult: "cis a * cis b = cis (a + b)"
|
|
1479 |
apply (simp (no_asm) add: cis_rcis_eq rcis_mult)
|
|
1480 |
done
|
|
1481 |
|
|
1482 |
lemma cis_zero: "cis 0 = 1"
|
14334
|
1483 |
by (unfold cis_def, auto)
|
14323
|
1484 |
declare cis_zero [simp]
|
|
1485 |
|
|
1486 |
lemma cis_zero2: "cis 0 = complex_of_real 1"
|
14334
|
1487 |
by (unfold cis_def, auto)
|
14323
|
1488 |
declare cis_zero2 [simp]
|
|
1489 |
|
|
1490 |
lemma rcis_zero_mod: "rcis 0 a = 0"
|
|
1491 |
apply (unfold rcis_def)
|
|
1492 |
apply (simp (no_asm))
|
|
1493 |
done
|
|
1494 |
declare rcis_zero_mod [simp]
|
|
1495 |
|
|
1496 |
lemma rcis_zero_arg: "rcis r 0 = complex_of_real r"
|
|
1497 |
apply (unfold rcis_def)
|
|
1498 |
apply (simp (no_asm))
|
|
1499 |
done
|
|
1500 |
declare rcis_zero_arg [simp]
|
|
1501 |
|
|
1502 |
lemma complex_of_real_minus_one:
|
|
1503 |
"complex_of_real (-(1::real)) = -(1::complex)"
|
|
1504 |
apply (unfold complex_of_real_def complex_one_def)
|
|
1505 |
apply (simp (no_asm) add: complex_minus)
|
|
1506 |
done
|
|
1507 |
|
|
1508 |
lemma complex_i_mult_minus: "ii * (ii * x) = - x"
|
|
1509 |
apply (simp (no_asm) add: complex_mult_assoc [symmetric])
|
|
1510 |
done
|
|
1511 |
declare complex_i_mult_minus [simp]
|
|
1512 |
|
|
1513 |
lemma complex_i_mult_minus2: "ii * ii * x = - x"
|
|
1514 |
apply (simp (no_asm))
|
|
1515 |
done
|
|
1516 |
declare complex_i_mult_minus2 [simp]
|
|
1517 |
|
|
1518 |
lemma cis_real_of_nat_Suc_mult:
|
|
1519 |
"cis (real (Suc n) * a) = cis a * cis (real n * a)"
|
|
1520 |
apply (unfold cis_def)
|
14334
|
1521 |
apply (auto simp add: real_of_nat_Suc left_distrib cos_add sin_add complex_add_mult_distrib complex_add_mult_distrib2 complex_of_real_add complex_of_real_mult complex_mult_ac complex_add_ac)
|
14323
|
1522 |
apply (auto simp add: complex_add_mult_distrib2 [symmetric] complex_mult_assoc [symmetric] i_mult_eq complex_of_real_mult complex_of_real_add complex_add_assoc [symmetric] complex_of_real_minus [symmetric] real_diff_def mult_ac simp del: i_mult_eq2)
|
|
1523 |
done
|
|
1524 |
|
|
1525 |
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
|
|
1526 |
apply (induct_tac "n")
|
|
1527 |
apply (auto simp add: cis_real_of_nat_Suc_mult)
|
|
1528 |
done
|
|
1529 |
|
|
1530 |
lemma DeMoivre2:
|
|
1531 |
"(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
|
|
1532 |
apply (unfold rcis_def)
|
|
1533 |
apply (auto simp add: complexpow_mult DeMoivre complex_of_real_pow)
|
|
1534 |
done
|
|
1535 |
|
|
1536 |
lemma cis_inverse: "inverse(cis a) = cis (-a)"
|
|
1537 |
apply (unfold cis_def)
|
|
1538 |
apply (auto simp add: complex_inverse_complex_split complex_of_real_minus complex_diff_def)
|
|
1539 |
done
|
|
1540 |
declare cis_inverse [simp]
|
|
1541 |
|
|
1542 |
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)"
|
|
1543 |
apply (case_tac "r=0")
|
|
1544 |
apply (simp (no_asm_simp) add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO)
|
14334
|
1545 |
apply (auto simp add: complex_inverse_complex_split complex_add_mult_distrib2 complex_of_real_mult rcis_def cis_def real_power_two complex_mult_ac mult_ac)
|
|
1546 |
apply (auto simp add: right_distrib [symmetric] complex_of_real_minus complex_diff_def)
|
14323
|
1547 |
done
|
|
1548 |
|
|
1549 |
lemma cis_divide: "cis a / cis b = cis (a - b)"
|
|
1550 |
apply (unfold complex_divide_def)
|
|
1551 |
apply (auto simp add: cis_mult real_diff_def)
|
|
1552 |
done
|
|
1553 |
|
|
1554 |
lemma rcis_divide:
|
|
1555 |
"rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)"
|
|
1556 |
apply (unfold complex_divide_def)
|
|
1557 |
apply (case_tac "r2=0")
|
|
1558 |
apply (simp (no_asm_simp) add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO)
|
|
1559 |
apply (auto simp add: rcis_inverse rcis_mult real_diff_def)
|
|
1560 |
done
|
|
1561 |
|
|
1562 |
lemma Re_cis: "Re(cis a) = cos a"
|
14334
|
1563 |
by (unfold cis_def, auto)
|
14323
|
1564 |
declare Re_cis [simp]
|
|
1565 |
|
|
1566 |
lemma Im_cis: "Im(cis a) = sin a"
|
14334
|
1567 |
by (unfold cis_def, auto)
|
14323
|
1568 |
declare Im_cis [simp]
|
|
1569 |
|
|
1570 |
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
|
14334
|
1571 |
by (auto simp add: DeMoivre)
|
14323
|
1572 |
|
|
1573 |
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
|
14334
|
1574 |
by (auto simp add: DeMoivre)
|
14323
|
1575 |
|
|
1576 |
lemma expi_Im_split:
|
|
1577 |
"expi (ii * complex_of_real y) =
|
|
1578 |
complex_of_real (cos y) + ii * complex_of_real (sin y)"
|
14334
|
1579 |
apply (unfold expi_def cis_def, auto)
|
14323
|
1580 |
done
|
|
1581 |
|
|
1582 |
lemma expi_Im_cis:
|
|
1583 |
"expi (ii * complex_of_real y) = cis y"
|
14334
|
1584 |
apply (unfold expi_def, auto)
|
14323
|
1585 |
done
|
|
1586 |
|
|
1587 |
lemma expi_add: "expi(a + b) = expi(a) * expi(b)"
|
|
1588 |
apply (unfold expi_def)
|
|
1589 |
apply (auto simp add: complex_Re_add exp_add complex_Im_add cis_mult [symmetric] complex_of_real_mult complex_mult_ac)
|
|
1590 |
done
|
|
1591 |
|
|
1592 |
lemma expi_complex_split:
|
|
1593 |
"expi(complex_of_real x + ii * complex_of_real y) =
|
|
1594 |
complex_of_real (exp(x)) * cis y"
|
14334
|
1595 |
apply (unfold expi_def, auto)
|
14323
|
1596 |
done
|
|
1597 |
|
|
1598 |
lemma expi_zero: "expi (0::complex) = 1"
|
14334
|
1599 |
by (unfold expi_def, auto)
|
14323
|
1600 |
declare expi_zero [simp]
|
|
1601 |
|
|
1602 |
lemma complex_Re_mult_eq: "Re (w * z) = Re w * Re z - Im w * Im z"
|
14334
|
1603 |
apply (rule_tac z = z in eq_Abs_complex)
|
|
1604 |
apply (rule_tac z = w in eq_Abs_complex)
|
14323
|
1605 |
apply (auto simp add: complex_mult)
|
|
1606 |
done
|
|
1607 |
|
|
1608 |
lemma complex_Im_mult_eq:
|
|
1609 |
"Im (w * z) = Re w * Im z + Im w * Re z"
|
14334
|
1610 |
apply (rule_tac z = z in eq_Abs_complex)
|
|
1611 |
apply (rule_tac z = w in eq_Abs_complex)
|
14323
|
1612 |
apply (auto simp add: complex_mult)
|
|
1613 |
done
|
|
1614 |
|
|
1615 |
lemma complex_expi_Ex:
|
|
1616 |
"EX a r. z = complex_of_real r * expi a"
|
14334
|
1617 |
apply (cut_tac z = z in rcis_Ex)
|
14323
|
1618 |
apply (auto simp add: expi_def rcis_def complex_mult_assoc [symmetric] complex_of_real_mult)
|
14334
|
1619 |
apply (rule_tac x = "ii * complex_of_real a" in exI, auto)
|
14323
|
1620 |
done
|
|
1621 |
|
|
1622 |
|
|
1623 |
(****
|
|
1624 |
Goal "[| - pi < a; a <= pi |] ==> (-pi < a & a <= 0) | (0 <= a & a <= pi)"
|
14334
|
1625 |
by Auto_tac
|
14323
|
1626 |
qed "lemma_split_interval";
|
|
1627 |
|
|
1628 |
Goalw [arg_def]
|
|
1629 |
"[| r ~= 0; - pi < a; a <= pi |] \
|
|
1630 |
\ ==> arg(complex_of_real r * \
|
|
1631 |
\ (complex_of_real(cos a) + ii * complex_of_real(sin a))) = a";
|
14334
|
1632 |
by Auto_tac
|
14323
|
1633 |
by (cut_inst_tac [("x","0"),("y","r")] linorder_less_linear 1);
|
|
1634 |
by (auto_tac (claset(),simpset() addsimps (map (full_rename_numerals thy)
|
|
1635 |
[rabs_eqI2,rabs_minus_eqI2,real_minus_rinv]) [real_divide_def,
|
14334
|
1636 |
minus_mult_right RS sym] mult_ac));
|
14323
|
1637 |
by (auto_tac (claset(),simpset() addsimps [real_mult_assoc RS sym]));
|
14334
|
1638 |
by (dtac lemma_split_interval 1 THEN safe)
|
14323
|
1639 |
****)
|
|
1640 |
|
|
1641 |
|
|
1642 |
ML
|
|
1643 |
{*
|
|
1644 |
val complex_zero_def = thm"complex_zero_def";
|
|
1645 |
val complex_one_def = thm"complex_one_def";
|
|
1646 |
val complex_minus_def = thm"complex_minus_def";
|
|
1647 |
val complex_diff_def = thm"complex_diff_def";
|
|
1648 |
val complex_divide_def = thm"complex_divide_def";
|
|
1649 |
val complex_mult_def = thm"complex_mult_def";
|
|
1650 |
val complex_add_def = thm"complex_add_def";
|
|
1651 |
val complex_of_real_def = thm"complex_of_real_def";
|
|
1652 |
val i_def = thm"i_def";
|
|
1653 |
val expi_def = thm"expi_def";
|
|
1654 |
val cis_def = thm"cis_def";
|
|
1655 |
val rcis_def = thm"rcis_def";
|
|
1656 |
val cmod_def = thm"cmod_def";
|
|
1657 |
val cnj_def = thm"cnj_def";
|
|
1658 |
val sgn_def = thm"sgn_def";
|
|
1659 |
val arg_def = thm"arg_def";
|
|
1660 |
val complexpow_0 = thm"complexpow_0";
|
|
1661 |
val complexpow_Suc = thm"complexpow_Suc";
|
|
1662 |
|
|
1663 |
val inj_Rep_complex = thm"inj_Rep_complex";
|
|
1664 |
val inj_Abs_complex = thm"inj_Abs_complex";
|
|
1665 |
val Abs_complex_cancel_iff = thm"Abs_complex_cancel_iff";
|
|
1666 |
val pair_mem_complex = thm"pair_mem_complex";
|
|
1667 |
val Abs_complex_inverse2 = thm"Abs_complex_inverse2";
|
|
1668 |
val eq_Abs_complex = thm"eq_Abs_complex";
|
|
1669 |
val Re = thm"Re";
|
|
1670 |
val Im = thm"Im";
|
|
1671 |
val Abs_complex_cancel = thm"Abs_complex_cancel";
|
|
1672 |
val complex_Re_Im_cancel_iff = thm"complex_Re_Im_cancel_iff";
|
|
1673 |
val complex_Re_zero = thm"complex_Re_zero";
|
|
1674 |
val complex_Im_zero = thm"complex_Im_zero";
|
|
1675 |
val complex_Re_one = thm"complex_Re_one";
|
|
1676 |
val complex_Im_one = thm"complex_Im_one";
|
|
1677 |
val complex_Re_i = thm"complex_Re_i";
|
|
1678 |
val complex_Im_i = thm"complex_Im_i";
|
|
1679 |
val Re_complex_of_real_zero = thm"Re_complex_of_real_zero";
|
|
1680 |
val Im_complex_of_real_zero = thm"Im_complex_of_real_zero";
|
|
1681 |
val Re_complex_of_real_one = thm"Re_complex_of_real_one";
|
|
1682 |
val Im_complex_of_real_one = thm"Im_complex_of_real_one";
|
|
1683 |
val Re_complex_of_real = thm"Re_complex_of_real";
|
|
1684 |
val Im_complex_of_real = thm"Im_complex_of_real";
|
|
1685 |
val complex_minus = thm"complex_minus";
|
|
1686 |
val complex_Re_minus = thm"complex_Re_minus";
|
|
1687 |
val complex_Im_minus = thm"complex_Im_minus";
|
|
1688 |
val complex_minus_minus = thm"complex_minus_minus";
|
|
1689 |
val inj_complex_minus = thm"inj_complex_minus";
|
|
1690 |
val complex_minus_zero = thm"complex_minus_zero";
|
|
1691 |
val complex_minus_zero_iff = thm"complex_minus_zero_iff";
|
|
1692 |
val complex_minus_zero_iff2 = thm"complex_minus_zero_iff2";
|
|
1693 |
val complex_minus_not_zero_iff = thm"complex_minus_not_zero_iff";
|
|
1694 |
val complex_add = thm"complex_add";
|
|
1695 |
val complex_Re_add = thm"complex_Re_add";
|
|
1696 |
val complex_Im_add = thm"complex_Im_add";
|
|
1697 |
val complex_add_commute = thm"complex_add_commute";
|
|
1698 |
val complex_add_assoc = thm"complex_add_assoc";
|
|
1699 |
val complex_add_left_commute = thm"complex_add_left_commute";
|
|
1700 |
val complex_add_zero_left = thm"complex_add_zero_left";
|
|
1701 |
val complex_add_zero_right = thm"complex_add_zero_right";
|
|
1702 |
val complex_add_minus_right_zero = thm"complex_add_minus_right_zero";
|
|
1703 |
val complex_add_minus_left_zero = thm"complex_add_minus_left_zero";
|
|
1704 |
val complex_add_minus_cancel = thm"complex_add_minus_cancel";
|
|
1705 |
val complex_minus_add_cancel = thm"complex_minus_add_cancel";
|
|
1706 |
val complex_add_minus_eq_minus = thm"complex_add_minus_eq_minus";
|
|
1707 |
val complex_minus_add_distrib = thm"complex_minus_add_distrib";
|
|
1708 |
val complex_add_left_cancel = thm"complex_add_left_cancel";
|
|
1709 |
val complex_add_right_cancel = thm"complex_add_right_cancel";
|
|
1710 |
val complex_eq_minus_iff = thm"complex_eq_minus_iff";
|
|
1711 |
val complex_eq_minus_iff2 = thm"complex_eq_minus_iff2";
|
|
1712 |
val complex_diff_0 = thm"complex_diff_0";
|
|
1713 |
val complex_diff_0_right = thm"complex_diff_0_right";
|
|
1714 |
val complex_diff_self = thm"complex_diff_self";
|
|
1715 |
val complex_diff = thm"complex_diff";
|
|
1716 |
val complex_diff_eq_eq = thm"complex_diff_eq_eq";
|
|
1717 |
val complex_mult = thm"complex_mult";
|
|
1718 |
val complex_mult_commute = thm"complex_mult_commute";
|
|
1719 |
val complex_mult_assoc = thm"complex_mult_assoc";
|
|
1720 |
val complex_mult_left_commute = thm"complex_mult_left_commute";
|
|
1721 |
val complex_mult_one_left = thm"complex_mult_one_left";
|
|
1722 |
val complex_mult_one_right = thm"complex_mult_one_right";
|
|
1723 |
val complex_mult_zero_left = thm"complex_mult_zero_left";
|
|
1724 |
val complex_mult_zero_right = thm"complex_mult_zero_right";
|
|
1725 |
val complex_divide_zero = thm"complex_divide_zero";
|
|
1726 |
val complex_minus_mult_eq1 = thm"complex_minus_mult_eq1";
|
|
1727 |
val complex_minus_mult_eq2 = thm"complex_minus_mult_eq2";
|
|
1728 |
val complex_mult_minus_one = thm"complex_mult_minus_one";
|
|
1729 |
val complex_mult_minus_one_right = thm"complex_mult_minus_one_right";
|
|
1730 |
val complex_minus_mult_cancel = thm"complex_minus_mult_cancel";
|
|
1731 |
val complex_minus_mult_commute = thm"complex_minus_mult_commute";
|
|
1732 |
val complex_add_mult_distrib = thm"complex_add_mult_distrib";
|
|
1733 |
val complex_add_mult_distrib2 = thm"complex_add_mult_distrib2";
|
|
1734 |
val complex_zero_not_eq_one = thm"complex_zero_not_eq_one";
|
|
1735 |
val complex_inverse = thm"complex_inverse";
|
|
1736 |
val COMPLEX_INVERSE_ZERO = thm"COMPLEX_INVERSE_ZERO";
|
|
1737 |
val COMPLEX_DIVISION_BY_ZERO = thm"COMPLEX_DIVISION_BY_ZERO";
|
|
1738 |
val complex_mult_inv_left = thm"complex_mult_inv_left";
|
|
1739 |
val complex_mult_inv_right = thm"complex_mult_inv_right";
|
|
1740 |
val complex_mult_left_cancel = thm"complex_mult_left_cancel";
|
|
1741 |
val complex_mult_right_cancel = thm"complex_mult_right_cancel";
|
|
1742 |
val complex_inverse_not_zero = thm"complex_inverse_not_zero";
|
|
1743 |
val complex_mult_not_zero = thm"complex_mult_not_zero";
|
|
1744 |
val complex_inverse_inverse = thm"complex_inverse_inverse";
|
|
1745 |
val complex_inverse_one = thm"complex_inverse_one";
|
|
1746 |
val complex_minus_inverse = thm"complex_minus_inverse";
|
|
1747 |
val complex_inverse_distrib = thm"complex_inverse_distrib";
|
|
1748 |
val complex_times_divide1_eq = thm"complex_times_divide1_eq";
|
|
1749 |
val complex_times_divide2_eq = thm"complex_times_divide2_eq";
|
|
1750 |
val complex_divide_divide1_eq = thm"complex_divide_divide1_eq";
|
|
1751 |
val complex_divide_divide2_eq = thm"complex_divide_divide2_eq";
|
|
1752 |
val complex_minus_divide_eq = thm"complex_minus_divide_eq";
|
|
1753 |
val complex_divide_minus_eq = thm"complex_divide_minus_eq";
|
|
1754 |
val complex_add_divide_distrib = thm"complex_add_divide_distrib";
|
|
1755 |
val inj_complex_of_real = thm"inj_complex_of_real";
|
|
1756 |
val complex_of_real_one = thm"complex_of_real_one";
|
|
1757 |
val complex_of_real_zero = thm"complex_of_real_zero";
|
|
1758 |
val complex_of_real_eq_iff = thm"complex_of_real_eq_iff";
|
|
1759 |
val complex_of_real_minus = thm"complex_of_real_minus";
|
|
1760 |
val complex_of_real_inverse = thm"complex_of_real_inverse";
|
|
1761 |
val complex_of_real_add = thm"complex_of_real_add";
|
|
1762 |
val complex_of_real_diff = thm"complex_of_real_diff";
|
|
1763 |
val complex_of_real_mult = thm"complex_of_real_mult";
|
|
1764 |
val complex_of_real_divide = thm"complex_of_real_divide";
|
|
1765 |
val complex_of_real_pow = thm"complex_of_real_pow";
|
|
1766 |
val complex_mod = thm"complex_mod";
|
|
1767 |
val complex_mod_zero = thm"complex_mod_zero";
|
|
1768 |
val complex_mod_one = thm"complex_mod_one";
|
|
1769 |
val complex_mod_complex_of_real = thm"complex_mod_complex_of_real";
|
|
1770 |
val complex_of_real_abs = thm"complex_of_real_abs";
|
|
1771 |
val complex_cnj = thm"complex_cnj";
|
|
1772 |
val inj_cnj = thm"inj_cnj";
|
|
1773 |
val complex_cnj_cancel_iff = thm"complex_cnj_cancel_iff";
|
|
1774 |
val complex_cnj_cnj = thm"complex_cnj_cnj";
|
|
1775 |
val complex_cnj_complex_of_real = thm"complex_cnj_complex_of_real";
|
|
1776 |
val complex_mod_cnj = thm"complex_mod_cnj";
|
|
1777 |
val complex_cnj_minus = thm"complex_cnj_minus";
|
|
1778 |
val complex_cnj_inverse = thm"complex_cnj_inverse";
|
|
1779 |
val complex_cnj_add = thm"complex_cnj_add";
|
|
1780 |
val complex_cnj_diff = thm"complex_cnj_diff";
|
|
1781 |
val complex_cnj_mult = thm"complex_cnj_mult";
|
|
1782 |
val complex_cnj_divide = thm"complex_cnj_divide";
|
|
1783 |
val complex_cnj_one = thm"complex_cnj_one";
|
|
1784 |
val complex_cnj_pow = thm"complex_cnj_pow";
|
|
1785 |
val complex_add_cnj = thm"complex_add_cnj";
|
|
1786 |
val complex_diff_cnj = thm"complex_diff_cnj";
|
|
1787 |
val complex_cnj_zero = thm"complex_cnj_zero";
|
|
1788 |
val complex_cnj_zero_iff = thm"complex_cnj_zero_iff";
|
|
1789 |
val complex_mult_cnj = thm"complex_mult_cnj";
|
|
1790 |
val complex_mult_zero_iff = thm"complex_mult_zero_iff";
|
|
1791 |
val complex_add_left_cancel_zero = thm"complex_add_left_cancel_zero";
|
|
1792 |
val complex_diff_mult_distrib = thm"complex_diff_mult_distrib";
|
|
1793 |
val complex_diff_mult_distrib2 = thm"complex_diff_mult_distrib2";
|
|
1794 |
val complex_mod_eq_zero_cancel = thm"complex_mod_eq_zero_cancel";
|
|
1795 |
val complex_mod_complex_of_real_of_nat = thm"complex_mod_complex_of_real_of_nat";
|
|
1796 |
val complex_mod_minus = thm"complex_mod_minus";
|
|
1797 |
val complex_mod_mult_cnj = thm"complex_mod_mult_cnj";
|
|
1798 |
val complex_mod_squared = thm"complex_mod_squared";
|
|
1799 |
val complex_mod_ge_zero = thm"complex_mod_ge_zero";
|
|
1800 |
val abs_cmod_cancel = thm"abs_cmod_cancel";
|
|
1801 |
val complex_mod_mult = thm"complex_mod_mult";
|
|
1802 |
val complex_mod_add_squared_eq = thm"complex_mod_add_squared_eq";
|
|
1803 |
val complex_Re_mult_cnj_le_cmod = thm"complex_Re_mult_cnj_le_cmod";
|
|
1804 |
val complex_Re_mult_cnj_le_cmod2 = thm"complex_Re_mult_cnj_le_cmod2";
|
|
1805 |
val real_sum_squared_expand = thm"real_sum_squared_expand";
|
|
1806 |
val complex_mod_triangle_squared = thm"complex_mod_triangle_squared";
|
|
1807 |
val complex_mod_minus_le_complex_mod = thm"complex_mod_minus_le_complex_mod";
|
|
1808 |
val complex_mod_triangle_ineq = thm"complex_mod_triangle_ineq";
|
|
1809 |
val complex_mod_triangle_ineq2 = thm"complex_mod_triangle_ineq2";
|
|
1810 |
val complex_mod_diff_commute = thm"complex_mod_diff_commute";
|
|
1811 |
val complex_mod_add_less = thm"complex_mod_add_less";
|
|
1812 |
val complex_mod_mult_less = thm"complex_mod_mult_less";
|
|
1813 |
val complex_mod_diff_ineq = thm"complex_mod_diff_ineq";
|
|
1814 |
val complex_Re_le_cmod = thm"complex_Re_le_cmod";
|
|
1815 |
val complex_mod_gt_zero = thm"complex_mod_gt_zero";
|
|
1816 |
val complex_mod_complexpow = thm"complex_mod_complexpow";
|
|
1817 |
val complexpow_minus = thm"complexpow_minus";
|
|
1818 |
val complex_inverse_minus = thm"complex_inverse_minus";
|
|
1819 |
val complex_divide_one = thm"complex_divide_one";
|
|
1820 |
val complex_mod_inverse = thm"complex_mod_inverse";
|
|
1821 |
val complex_mod_divide = thm"complex_mod_divide";
|
|
1822 |
val complex_inverse_divide = thm"complex_inverse_divide";
|
|
1823 |
val complexpow_mult = thm"complexpow_mult";
|
|
1824 |
val complexpow_zero = thm"complexpow_zero";
|
|
1825 |
val complexpow_not_zero = thm"complexpow_not_zero";
|
|
1826 |
val complexpow_zero_zero = thm"complexpow_zero_zero";
|
|
1827 |
val complexpow_i_squared = thm"complexpow_i_squared";
|
|
1828 |
val complex_i_not_zero = thm"complex_i_not_zero";
|
|
1829 |
val complex_mult_eq_zero_cancel1 = thm"complex_mult_eq_zero_cancel1";
|
|
1830 |
val complex_mult_eq_zero_cancel2 = thm"complex_mult_eq_zero_cancel2";
|
|
1831 |
val complex_mult_not_eq_zero_iff = thm"complex_mult_not_eq_zero_iff";
|
|
1832 |
val complexpow_inverse = thm"complexpow_inverse";
|
|
1833 |
val sgn_zero = thm"sgn_zero";
|
|
1834 |
val sgn_one = thm"sgn_one";
|
|
1835 |
val sgn_minus = thm"sgn_minus";
|
|
1836 |
val sgn_eq = thm"sgn_eq";
|
|
1837 |
val complex_split = thm"complex_split";
|
|
1838 |
val Re_complex_i = thm"Re_complex_i";
|
|
1839 |
val Im_complex_i = thm"Im_complex_i";
|
|
1840 |
val i_mult_eq = thm"i_mult_eq";
|
|
1841 |
val i_mult_eq2 = thm"i_mult_eq2";
|
|
1842 |
val cmod_i = thm"cmod_i";
|
|
1843 |
val complex_eq_Re_eq = thm"complex_eq_Re_eq";
|
|
1844 |
val complex_eq_Im_eq = thm"complex_eq_Im_eq";
|
|
1845 |
val complex_eq_cancel_iff = thm"complex_eq_cancel_iff";
|
|
1846 |
val complex_eq_cancel_iffA = thm"complex_eq_cancel_iffA";
|
|
1847 |
val complex_eq_cancel_iffB = thm"complex_eq_cancel_iffB";
|
|
1848 |
val complex_eq_cancel_iffC = thm"complex_eq_cancel_iffC";
|
|
1849 |
val complex_eq_cancel_iff2 = thm"complex_eq_cancel_iff2";
|
|
1850 |
val complex_eq_cancel_iff2a = thm"complex_eq_cancel_iff2a";
|
|
1851 |
val complex_eq_cancel_iff3 = thm"complex_eq_cancel_iff3";
|
|
1852 |
val complex_eq_cancel_iff3a = thm"complex_eq_cancel_iff3a";
|
|
1853 |
val complex_split_Re_zero = thm"complex_split_Re_zero";
|
|
1854 |
val complex_split_Im_zero = thm"complex_split_Im_zero";
|
|
1855 |
val Re_sgn = thm"Re_sgn";
|
|
1856 |
val Im_sgn = thm"Im_sgn";
|
|
1857 |
val complex_inverse_complex_split = thm"complex_inverse_complex_split";
|
|
1858 |
val Re_mult_i_eq = thm"Re_mult_i_eq";
|
|
1859 |
val Im_mult_i_eq = thm"Im_mult_i_eq";
|
|
1860 |
val complex_mod_mult_i = thm"complex_mod_mult_i";
|
|
1861 |
val cos_arg_i_mult_zero = thm"cos_arg_i_mult_zero";
|
|
1862 |
val cos_arg_i_mult_zero2 = thm"cos_arg_i_mult_zero2";
|
|
1863 |
val complex_of_real_not_zero_iff = thm"complex_of_real_not_zero_iff";
|
|
1864 |
val complex_of_real_zero_iff = thm"complex_of_real_zero_iff";
|
|
1865 |
val cos_arg_i_mult_zero3 = thm"cos_arg_i_mult_zero3";
|
|
1866 |
val complex_split_polar = thm"complex_split_polar";
|
|
1867 |
val rcis_Ex = thm"rcis_Ex";
|
|
1868 |
val Re_complex_polar = thm"Re_complex_polar";
|
|
1869 |
val Re_rcis = thm"Re_rcis";
|
|
1870 |
val Im_complex_polar = thm"Im_complex_polar";
|
|
1871 |
val Im_rcis = thm"Im_rcis";
|
|
1872 |
val complex_mod_complex_polar = thm"complex_mod_complex_polar";
|
|
1873 |
val complex_mod_rcis = thm"complex_mod_rcis";
|
|
1874 |
val complex_mod_sqrt_Re_mult_cnj = thm"complex_mod_sqrt_Re_mult_cnj";
|
|
1875 |
val complex_Re_cnj = thm"complex_Re_cnj";
|
|
1876 |
val complex_Im_cnj = thm"complex_Im_cnj";
|
|
1877 |
val complex_In_mult_cnj_zero = thm"complex_In_mult_cnj_zero";
|
|
1878 |
val complex_Re_mult = thm"complex_Re_mult";
|
|
1879 |
val complex_Re_mult_complex_of_real = thm"complex_Re_mult_complex_of_real";
|
|
1880 |
val complex_Im_mult_complex_of_real = thm"complex_Im_mult_complex_of_real";
|
|
1881 |
val complex_Re_mult_complex_of_real2 = thm"complex_Re_mult_complex_of_real2";
|
|
1882 |
val complex_Im_mult_complex_of_real2 = thm"complex_Im_mult_complex_of_real2";
|
|
1883 |
val cis_rcis_eq = thm"cis_rcis_eq";
|
|
1884 |
val rcis_mult = thm"rcis_mult";
|
|
1885 |
val cis_mult = thm"cis_mult";
|
|
1886 |
val cis_zero = thm"cis_zero";
|
|
1887 |
val cis_zero2 = thm"cis_zero2";
|
|
1888 |
val rcis_zero_mod = thm"rcis_zero_mod";
|
|
1889 |
val rcis_zero_arg = thm"rcis_zero_arg";
|
|
1890 |
val complex_of_real_minus_one = thm"complex_of_real_minus_one";
|
|
1891 |
val complex_i_mult_minus = thm"complex_i_mult_minus";
|
|
1892 |
val complex_i_mult_minus2 = thm"complex_i_mult_minus2";
|
|
1893 |
val cis_real_of_nat_Suc_mult = thm"cis_real_of_nat_Suc_mult";
|
|
1894 |
val DeMoivre = thm"DeMoivre";
|
|
1895 |
val DeMoivre2 = thm"DeMoivre2";
|
|
1896 |
val cis_inverse = thm"cis_inverse";
|
|
1897 |
val rcis_inverse = thm"rcis_inverse";
|
|
1898 |
val cis_divide = thm"cis_divide";
|
|
1899 |
val rcis_divide = thm"rcis_divide";
|
|
1900 |
val Re_cis = thm"Re_cis";
|
|
1901 |
val Im_cis = thm"Im_cis";
|
|
1902 |
val cos_n_Re_cis_pow_n = thm"cos_n_Re_cis_pow_n";
|
|
1903 |
val sin_n_Im_cis_pow_n = thm"sin_n_Im_cis_pow_n";
|
|
1904 |
val expi_Im_split = thm"expi_Im_split";
|
|
1905 |
val expi_Im_cis = thm"expi_Im_cis";
|
|
1906 |
val expi_add = thm"expi_add";
|
|
1907 |
val expi_complex_split = thm"expi_complex_split";
|
|
1908 |
val expi_zero = thm"expi_zero";
|
|
1909 |
val complex_Re_mult_eq = thm"complex_Re_mult_eq";
|
|
1910 |
val complex_Im_mult_eq = thm"complex_Im_mult_eq";
|
|
1911 |
val complex_expi_Ex = thm"complex_expi_Ex";
|
|
1912 |
|
|
1913 |
val complex_add_ac = thms"complex_add_ac";
|
|
1914 |
val complex_mult_ac = thms"complex_mult_ac";
|
|
1915 |
*}
|
|
1916 |
|
13957
|
1917 |
end
|
|
1918 |
|
|
1919 |
|