author | wenzelm |
Thu, 01 Sep 2016 16:05:22 +0200 | |
changeset 63750 | 9c8a366778e1 |
parent 63532 | b01154b74314 |
child 66345 | 882abe912da9 |
permissions | -rw-r--r-- |
53538 | 1 |
(* Title: HOL/ex/Adhoc_Overloading_Examples.thy |
2 |
Author: Christian Sternagel |
|
52894 | 3 |
*) |
4 |
||
61343 | 5 |
section \<open>Ad Hoc Overloading\<close> |
52894 | 6 |
|
7 |
theory Adhoc_Overloading_Examples |
|
8 |
imports |
|
9 |
Main |
|
63532
b01154b74314
provide Pure.simp/simp_all, which only know about meta-equality;
wenzelm
parents:
61933
diff
changeset
|
10 |
"~~/src/HOL/Library/Infinite_Set" |
52894 | 11 |
"~~/src/Tools/Adhoc_Overloading" |
12 |
begin |
|
13 |
||
61343 | 14 |
text \<open>Adhoc overloading allows to overload a constant depending on |
52894 | 15 |
its type. Typically this involves to introduce an uninterpreted |
16 |
constant (used for input and output) and then add some variants (used |
|
61343 | 17 |
internally).\<close> |
52894 | 18 |
|
61343 | 19 |
subsection \<open>Plain Ad Hoc Overloading\<close> |
52894 | 20 |
|
61343 | 21 |
text \<open>Consider the type of first-order terms.\<close> |
58310 | 22 |
datatype ('a, 'b) "term" = |
52894 | 23 |
Var 'b | |
24 |
Fun 'a "('a, 'b) term list" |
|
25 |
||
61343 | 26 |
text \<open>The set of variables of a term might be computed as follows.\<close> |
52894 | 27 |
fun term_vars :: "('a, 'b) term \<Rightarrow> 'b set" where |
28 |
"term_vars (Var x) = {x}" | |
|
29 |
"term_vars (Fun f ts) = \<Union>set (map term_vars ts)" |
|
30 |
||
61343 | 31 |
text \<open>However, also for \emph{rules} (i.e., pairs of terms) and term |
52894 | 32 |
rewrite systems (i.e., sets of rules), the set of variables makes |
61933 | 33 |
sense. Thus we introduce an unspecified constant \<open>vars\<close>.\<close> |
52894 | 34 |
|
35 |
consts vars :: "'a \<Rightarrow> 'b set" |
|
36 |
||
61343 | 37 |
text \<open>Which is then overloaded with variants for terms, rules, and TRSs.\<close> |
52894 | 38 |
adhoc_overloading |
39 |
vars term_vars |
|
40 |
||
41 |
value "vars (Fun ''f'' [Var 0, Var 1])" |
|
42 |
||
43 |
fun rule_vars :: "('a, 'b) term \<times> ('a, 'b) term \<Rightarrow> 'b set" where |
|
44 |
"rule_vars (l, r) = vars l \<union> vars r" |
|
45 |
||
46 |
adhoc_overloading |
|
47 |
vars rule_vars |
|
48 |
||
49 |
value "vars (Var 1, Var 0)" |
|
50 |
||
51 |
definition trs_vars :: "(('a, 'b) term \<times> ('a, 'b) term) set \<Rightarrow> 'b set" where |
|
52 |
"trs_vars R = \<Union>(rule_vars ` R)" |
|
53 |
||
54 |
adhoc_overloading |
|
55 |
vars trs_vars |
|
56 |
||
57 |
value "vars {(Var 1, Var 0)}" |
|
58 |
||
61343 | 59 |
text \<open>Sometimes it is necessary to add explicit type constraints |
60 |
before a variant can be determined.\<close> |
|
52894 | 61 |
(*value "vars R" (*has multiple instances*)*) |
62 |
value "vars (R :: (('a, 'b) term \<times> ('a, 'b) term) set)" |
|
63 |
||
61343 | 64 |
text \<open>It is also possible to remove variants.\<close> |
52894 | 65 |
no_adhoc_overloading |
66 |
vars term_vars rule_vars |
|
67 |
||
68 |
(*value "vars (Var 1)" (*does not have an instance*)*) |
|
69 |
||
61343 | 70 |
text \<open>As stated earlier, the overloaded constant is only used for |
52894 | 71 |
input and output. Internally, always a variant is used, as can be |
61933 | 72 |
observed by the configuration option \<open>show_variants\<close>.\<close> |
52894 | 73 |
|
74 |
adhoc_overloading |
|
75 |
vars term_vars |
|
76 |
||
77 |
declare [[show_variants]] |
|
78 |
||
79 |
term "vars (Var 1)" (*which yields: "term_vars (Var 1)"*) |
|
80 |
||
81 |
||
61343 | 82 |
subsection \<open>Adhoc Overloading inside Locales\<close> |
52894 | 83 |
|
61343 | 84 |
text \<open>As example we use permutations that are parametrized over an |
85 |
atom type @{typ "'a"}.\<close> |
|
52894 | 86 |
|
87 |
definition perms :: "('a \<Rightarrow> 'a) set" where |
|
88 |
"perms = {f. bij f \<and> finite {x. f x \<noteq> x}}" |
|
89 |
||
90 |
typedef 'a perm = "perms :: ('a \<Rightarrow> 'a) set" |
|
61169 | 91 |
by standard (auto simp: perms_def) |
52894 | 92 |
|
61343 | 93 |
text \<open>First we need some auxiliary lemmas.\<close> |
52894 | 94 |
lemma permsI [Pure.intro]: |
95 |
assumes "bij f" and "MOST x. f x = x" |
|
96 |
shows "f \<in> perms" |
|
97 |
using assms by (auto simp: perms_def) (metis MOST_iff_finiteNeg) |
|
98 |
||
99 |
lemma perms_imp_bij: |
|
100 |
"f \<in> perms \<Longrightarrow> bij f" |
|
101 |
by (simp add: perms_def) |
|
102 |
||
103 |
lemma perms_imp_MOST_eq: |
|
104 |
"f \<in> perms \<Longrightarrow> MOST x. f x = x" |
|
105 |
by (simp add: perms_def) (metis MOST_iff_finiteNeg) |
|
106 |
||
107 |
lemma id_perms [simp]: |
|
108 |
"id \<in> perms" |
|
109 |
"(\<lambda>x. x) \<in> perms" |
|
110 |
by (auto simp: perms_def bij_def) |
|
111 |
||
112 |
lemma perms_comp [simp]: |
|
113 |
assumes f: "f \<in> perms" and g: "g \<in> perms" |
|
114 |
shows "(f \<circ> g) \<in> perms" |
|
115 |
apply (intro permsI bij_comp) |
|
116 |
apply (rule perms_imp_bij [OF g]) |
|
117 |
apply (rule perms_imp_bij [OF f]) |
|
118 |
apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF g]]) |
|
119 |
apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF f]]) |
|
120 |
by simp |
|
121 |
||
122 |
lemma perms_inv: |
|
123 |
assumes f: "f \<in> perms" |
|
124 |
shows "inv f \<in> perms" |
|
125 |
apply (rule permsI) |
|
126 |
apply (rule bij_imp_bij_inv) |
|
127 |
apply (rule perms_imp_bij [OF f]) |
|
128 |
apply (rule MOST_mono [OF perms_imp_MOST_eq [OF f]]) |
|
129 |
apply (erule subst, rule inv_f_f) |
|
57507 | 130 |
apply (rule bij_is_inj [OF perms_imp_bij [OF f]]) |
131 |
done |
|
52894 | 132 |
|
133 |
lemma bij_Rep_perm: "bij (Rep_perm p)" |
|
134 |
using Rep_perm [of p] unfolding perms_def by simp |
|
135 |
||
136 |
instantiation perm :: (type) group_add |
|
137 |
begin |
|
138 |
||
139 |
definition "0 = Abs_perm id" |
|
140 |
definition "- p = Abs_perm (inv (Rep_perm p))" |
|
141 |
definition "p + q = Abs_perm (Rep_perm p \<circ> Rep_perm q)" |
|
142 |
definition "(p1::'a perm) - p2 = p1 + - p2" |
|
143 |
||
144 |
lemma Rep_perm_0: "Rep_perm 0 = id" |
|
145 |
unfolding zero_perm_def by (simp add: Abs_perm_inverse) |
|
146 |
||
147 |
lemma Rep_perm_add: |
|
148 |
"Rep_perm (p1 + p2) = Rep_perm p1 \<circ> Rep_perm p2" |
|
149 |
unfolding plus_perm_def by (simp add: Abs_perm_inverse Rep_perm) |
|
150 |
||
151 |
lemma Rep_perm_uminus: |
|
152 |
"Rep_perm (- p) = inv (Rep_perm p)" |
|
153 |
unfolding uminus_perm_def by (simp add: Abs_perm_inverse perms_inv Rep_perm) |
|
154 |
||
155 |
instance |
|
61169 | 156 |
apply standard |
52894 | 157 |
unfolding Rep_perm_inject [symmetric] |
158 |
unfolding minus_perm_def |
|
159 |
unfolding Rep_perm_add |
|
160 |
unfolding Rep_perm_uminus |
|
161 |
unfolding Rep_perm_0 |
|
61169 | 162 |
apply (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]]) |
163 |
done |
|
52894 | 164 |
|
165 |
end |
|
166 |
||
167 |
lemmas Rep_perm_simps = |
|
168 |
Rep_perm_0 |
|
169 |
Rep_perm_add |
|
170 |
Rep_perm_uminus |
|
171 |
||
172 |
||
61343 | 173 |
section \<open>Permutation Types\<close> |
52894 | 174 |
|
61343 | 175 |
text \<open>We want to be able to apply permutations to arbitrary types. To |
61933 | 176 |
this end we introduce a constant \<open>PERMUTE\<close> together with |
61343 | 177 |
convenient infix syntax.\<close> |
52894 | 178 |
|
179 |
consts PERMUTE :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" (infixr "\<bullet>" 75) |
|
180 |
||
61343 | 181 |
text \<open>Then we add a locale for types @{typ 'b} that support |
182 |
appliciation of permutations.\<close> |
|
52894 | 183 |
locale permute = |
184 |
fixes permute :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" |
|
185 |
assumes permute_zero [simp]: "permute 0 x = x" |
|
186 |
and permute_plus [simp]: "permute (p + q) x = permute p (permute q x)" |
|
187 |
begin |
|
188 |
||
189 |
adhoc_overloading |
|
190 |
PERMUTE permute |
|
191 |
||
192 |
end |
|
193 |
||
61343 | 194 |
text \<open>Permuting atoms.\<close> |
52894 | 195 |
definition permute_atom :: "'a perm \<Rightarrow> 'a \<Rightarrow> 'a" where |
196 |
"permute_atom p a = (Rep_perm p) a" |
|
197 |
||
198 |
adhoc_overloading |
|
199 |
PERMUTE permute_atom |
|
200 |
||
201 |
interpretation atom_permute: permute permute_atom |
|
61169 | 202 |
by standard (simp_all add: permute_atom_def Rep_perm_simps) |
52894 | 203 |
|
61343 | 204 |
text \<open>Permuting permutations.\<close> |
52894 | 205 |
definition permute_perm :: "'a perm \<Rightarrow> 'a perm \<Rightarrow> 'a perm" where |
206 |
"permute_perm p q = p + q - p" |
|
207 |
||
208 |
adhoc_overloading |
|
209 |
PERMUTE permute_perm |
|
210 |
||
211 |
interpretation perm_permute: permute permute_perm |
|
61169 | 212 |
apply standard |
57507 | 213 |
unfolding permute_perm_def |
214 |
apply simp |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57507
diff
changeset
|
215 |
apply (simp only: diff_conv_add_uminus minus_add add.assoc) |
57507 | 216 |
done |
52894 | 217 |
|
61343 | 218 |
text \<open>Permuting functions.\<close> |
52894 | 219 |
locale fun_permute = |
220 |
dom: permute perm1 + ran: permute perm2 |
|
221 |
for perm1 :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" |
|
222 |
and perm2 :: "'a perm \<Rightarrow> 'c \<Rightarrow> 'c" |
|
223 |
begin |
|
224 |
||
225 |
adhoc_overloading |
|
226 |
PERMUTE perm1 perm2 |
|
227 |
||
228 |
definition permute_fun :: "'a perm \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c)" where |
|
229 |
"permute_fun p f = (\<lambda>x. p \<bullet> (f (-p \<bullet> x)))" |
|
230 |
||
231 |
adhoc_overloading |
|
232 |
PERMUTE permute_fun |
|
233 |
||
234 |
end |
|
235 |
||
236 |
sublocale fun_permute \<subseteq> permute permute_fun |
|
237 |
by (unfold_locales, auto simp: permute_fun_def) |
|
238 |
(metis dom.permute_plus minus_add) |
|
239 |
||
240 |
lemma "(Abs_perm id :: nat perm) \<bullet> Suc 0 = Suc 0" |
|
241 |
unfolding permute_atom_def |
|
242 |
by (metis Rep_perm_0 id_apply zero_perm_def) |
|
243 |
||
244 |
interpretation atom_fun_permute: fun_permute permute_atom permute_atom |
|
245 |
by (unfold_locales) |
|
246 |
||
247 |
adhoc_overloading |
|
248 |
PERMUTE atom_fun_permute.permute_fun |
|
249 |
||
250 |
lemma "(Abs_perm id :: 'a perm) \<bullet> id = id" |
|
251 |
unfolding atom_fun_permute.permute_fun_def |
|
252 |
unfolding permute_atom_def |
|
253 |
by (metis Rep_perm_0 id_def inj_imp_inv_eq inj_on_id uminus_perm_def zero_perm_def) |
|
254 |
||
255 |
end |
|
256 |