| author | wenzelm | 
| Sat, 07 Jan 2006 12:26:33 +0100 | |
| changeset 18608 | 9cdcc2a5c8b3 | 
| parent 16417 | 9bc16273c2d4 | 
| child 20050 | a2fb9d553aad | 
| permissions | -rw-r--r-- | 
| 13020 | 1  | 
|
2  | 
header {* \section{The Multi-Mutator Case} *}
 | 
|
3  | 
||
| 16417 | 4  | 
theory Mul_Gar_Coll imports Graph OG_Syntax begin  | 
| 13020 | 5  | 
|
6  | 
text {*  The full theory takes aprox. 18 minutes.  *}
 | 
|
7  | 
||
8  | 
record mut =  | 
|
9  | 
Z :: bool  | 
|
10  | 
R :: nat  | 
|
11  | 
T :: nat  | 
|
12  | 
||
13  | 
text {* Declaration of variables: *}
 | 
|
14  | 
||
15  | 
record mul_gar_coll_state =  | 
|
16  | 
M :: nodes  | 
|
17  | 
E :: edges  | 
|
18  | 
bc :: "nat set"  | 
|
19  | 
obc :: "nat set"  | 
|
20  | 
Ma :: nodes  | 
|
21  | 
ind :: nat  | 
|
22  | 
k :: nat  | 
|
23  | 
q :: nat  | 
|
24  | 
l :: nat  | 
|
25  | 
Muts :: "mut list"  | 
|
26  | 
||
27  | 
subsection {* The Mutators *}
 | 
|
28  | 
||
29  | 
constdefs  | 
|
30  | 
Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"  | 
|
31  | 
"Mul_mut_init \<equiv> \<guillemotleft> \<lambda>n. n=length \<acute>Muts \<and> (\<forall>i<n. R (\<acute>Muts!i)<length \<acute>E  | 
|
32  | 
\<and> T (\<acute>Muts!i)<length \<acute>M) \<guillemotright>"  | 
|
33  | 
||
34  | 
Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
35  | 
"Mul_Redirect_Edge j n \<equiv>  | 
|
36  | 
  .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.
 | 
|
37  | 
\<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN  | 
|
38  | 
\<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,,  | 
|
39  | 
\<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>"  | 
|
40  | 
||
41  | 
Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
42  | 
"Mul_Color_Target j n \<equiv>  | 
|
43  | 
  .{\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)}. 
 | 
|
44  | 
\<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>"  | 
|
45  | 
||
46  | 
Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
47  | 
"Mul_Mutator j n \<equiv>  | 
|
48  | 
  .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.  
 | 
|
49  | 
WHILE True  | 
|
50  | 
    INV .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.  
 | 
|
51  | 
DO Mul_Redirect_Edge j n ;;  | 
|
52  | 
Mul_Color_Target j n  | 
|
53  | 
OD"  | 
|
54  | 
||
55  | 
lemmas mul_mutator_defs = Mul_mut_init_def Mul_Redirect_Edge_def Mul_Color_Target_def  | 
|
56  | 
||
57  | 
subsubsection {* Correctness of the proof outline of one mutator *}
 | 
|
58  | 
||
59  | 
lemma Mul_Redirect_Edge: "0\<le>j \<and> j<n \<Longrightarrow>  | 
|
60  | 
\<turnstile> Mul_Redirect_Edge j n  | 
|
61  | 
pre(Mul_Color_Target j n)"  | 
|
62  | 
apply (unfold mul_mutator_defs)  | 
|
63  | 
apply annhoare  | 
|
64  | 
apply(simp_all)  | 
|
65  | 
apply clarify  | 
|
66  | 
apply(simp add:nth_list_update)  | 
|
67  | 
done  | 
|
68  | 
||
69  | 
lemma Mul_Color_Target: "0\<le>j \<and> j<n \<Longrightarrow>  | 
|
70  | 
\<turnstile> Mul_Color_Target j n  | 
|
71  | 
    .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}."
 | 
|
72  | 
apply (unfold mul_mutator_defs)  | 
|
73  | 
apply annhoare  | 
|
74  | 
apply(simp_all)  | 
|
75  | 
apply clarify  | 
|
76  | 
apply(simp add:nth_list_update)  | 
|
77  | 
done  | 
|
78  | 
||
79  | 
lemma Mul_Mutator: "0\<le>j \<and> j<n \<Longrightarrow>  | 
|
80  | 
 \<turnstile> Mul_Mutator j n .{False}."
 | 
|
81  | 
apply(unfold Mul_Mutator_def)  | 
|
82  | 
apply annhoare  | 
|
83  | 
apply(simp_all add:Mul_Redirect_Edge Mul_Color_Target)  | 
|
84  | 
apply(simp add:mul_mutator_defs Mul_Redirect_Edge_def)  | 
|
85  | 
done  | 
|
86  | 
||
87  | 
subsubsection {* Interference freedom between mutators *}
 | 
|
88  | 
||
89  | 
lemma Mul_interfree_Redirect_Edge_Redirect_Edge:  | 
|
90  | 
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
91  | 
  interfree_aux (Some (Mul_Redirect_Edge i n),{}, Some(Mul_Redirect_Edge j n))"
 | 
|
92  | 
apply (unfold mul_mutator_defs)  | 
|
93  | 
apply interfree_aux  | 
|
94  | 
apply safe  | 
|
95  | 
apply(simp_all add: nth_list_update)  | 
|
96  | 
done  | 
|
97  | 
||
98  | 
lemma Mul_interfree_Redirect_Edge_Color_Target:  | 
|
99  | 
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
100  | 
  interfree_aux (Some(Mul_Redirect_Edge i n),{},Some(Mul_Color_Target j n))"
 | 
|
101  | 
apply (unfold mul_mutator_defs)  | 
|
102  | 
apply interfree_aux  | 
|
103  | 
apply safe  | 
|
104  | 
apply(simp_all add: nth_list_update)  | 
|
105  | 
done  | 
|
106  | 
||
107  | 
lemma Mul_interfree_Color_Target_Redirect_Edge:  | 
|
108  | 
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
109  | 
  interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Redirect_Edge j n))"
 | 
|
110  | 
apply (unfold mul_mutator_defs)  | 
|
111  | 
apply interfree_aux  | 
|
112  | 
apply safe  | 
|
113  | 
apply(simp_all add:nth_list_update)  | 
|
114  | 
done  | 
|
115  | 
||
116  | 
lemma Mul_interfree_Color_Target_Color_Target:  | 
|
117  | 
" \<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
118  | 
  interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Color_Target j n))"
 | 
|
119  | 
apply (unfold mul_mutator_defs)  | 
|
120  | 
apply interfree_aux  | 
|
121  | 
apply safe  | 
|
122  | 
apply(simp_all add: nth_list_update)  | 
|
123  | 
done  | 
|
124  | 
||
125  | 
lemmas mul_mutator_interfree =  | 
|
126  | 
Mul_interfree_Redirect_Edge_Redirect_Edge Mul_interfree_Redirect_Edge_Color_Target  | 
|
127  | 
Mul_interfree_Color_Target_Redirect_Edge Mul_interfree_Color_Target_Color_Target  | 
|
128  | 
||
129  | 
lemma Mul_interfree_Mutator_Mutator: "\<lbrakk>i < n; j < n; i \<noteq> j\<rbrakk> \<Longrightarrow>  | 
|
130  | 
  interfree_aux (Some (Mul_Mutator i n), {}, Some (Mul_Mutator j n))"
 | 
|
131  | 
apply(unfold Mul_Mutator_def)  | 
|
132  | 
apply(interfree_aux)  | 
|
133  | 
apply(simp_all add:mul_mutator_interfree)  | 
|
134  | 
apply(simp_all add: mul_mutator_defs)  | 
|
135  | 
apply(tactic {* TRYALL (interfree_aux_tac) *})
 | 
|
136  | 
apply(tactic {* ALLGOALS Clarify_tac *})
 | 
|
137  | 
apply (simp_all add:nth_list_update)  | 
|
138  | 
done  | 
|
139  | 
||
140  | 
subsubsection {* Modular Parameterized Mutators *}
 | 
|
141  | 
||
142  | 
lemma Mul_Parameterized_Mutators: "0<n \<Longrightarrow>  | 
|
143  | 
 \<parallel>- .{\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.
 | 
|
144  | 
COBEGIN  | 
|
145  | 
SCHEME [0\<le> j< n]  | 
|
146  | 
Mul_Mutator j n  | 
|
147  | 
 .{False}.
 | 
|
148  | 
COEND  | 
|
149  | 
 .{False}."
 | 
|
150  | 
apply oghoare  | 
|
151  | 
apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update)  | 
|
152  | 
apply(erule Mul_Mutator)  | 
|
| 13187 | 153  | 
apply(simp add:Mul_interfree_Mutator_Mutator)  | 
| 13020 | 154  | 
apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update)  | 
155  | 
done  | 
|
156  | 
||
157  | 
subsection {* The Collector *}
 | 
|
158  | 
||
159  | 
constdefs  | 
|
160  | 
Queue :: "mul_gar_coll_state \<Rightarrow> nat"  | 
|
161  | 
"Queue \<equiv> \<guillemotleft> length (filter (\<lambda>i. \<not> Z i \<and> \<acute>M!(T i) \<noteq> Black) \<acute>Muts) \<guillemotright>"  | 
|
162  | 
||
163  | 
consts M_init :: nodes  | 
|
164  | 
||
165  | 
constdefs  | 
|
166  | 
Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool"  | 
|
167  | 
"Proper_M_init \<equiv> \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>"  | 
|
168  | 
||
169  | 
Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"  | 
|
170  | 
"Mul_Proper \<equiv> \<guillemotleft> \<lambda>n. Proper_Roots \<acute>M \<and> Proper_Edges (\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<and> n=length \<acute>Muts \<guillemotright>"  | 
|
171  | 
||
172  | 
Safe :: "mul_gar_coll_state \<Rightarrow> bool"  | 
|
173  | 
"Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>"  | 
|
174  | 
||
175  | 
lemmas mul_collector_defs = Proper_M_init_def Mul_Proper_def Safe_def  | 
|
176  | 
||
177  | 
subsubsection {* Blackening Roots *}
 | 
|
178  | 
||
179  | 
constdefs  | 
|
180  | 
Mul_Blacken_Roots :: "nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
181  | 
"Mul_Blacken_Roots n \<equiv>  | 
|
182  | 
  .{\<acute>Mul_Proper n}.
 | 
|
183  | 
\<acute>ind:=0;;  | 
|
184  | 
  .{\<acute>Mul_Proper n \<and> \<acute>ind=0}.
 | 
|
185  | 
WHILE \<acute>ind<length \<acute>M  | 
|
186  | 
    INV .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M}.
 | 
|
187  | 
  DO .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
 | 
|
188  | 
IF \<acute>ind\<in>Roots THEN  | 
|
189  | 
     .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots}. 
 | 
|
190  | 
\<acute>M:=\<acute>M[\<acute>ind:=Black] FI;;  | 
|
191  | 
     .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
 | 
|
192  | 
\<acute>ind:=\<acute>ind+1  | 
|
193  | 
OD"  | 
|
194  | 
||
195  | 
lemma Mul_Blacken_Roots:  | 
|
196  | 
"\<turnstile> Mul_Blacken_Roots n  | 
|
197  | 
  .{\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M}."
 | 
|
198  | 
apply (unfold Mul_Blacken_Roots_def)  | 
|
199  | 
apply annhoare  | 
|
200  | 
apply(simp_all add:mul_collector_defs Graph_defs)  | 
|
201  | 
apply safe  | 
|
202  | 
apply(simp_all add:nth_list_update)  | 
|
203  | 
apply (erule less_SucE)  | 
|
204  | 
apply simp+  | 
|
205  | 
apply force  | 
|
206  | 
apply force  | 
|
207  | 
done  | 
|
208  | 
||
209  | 
subsubsection {* Propagating Black *} 
 | 
|
210  | 
||
211  | 
constdefs  | 
|
212  | 
Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool"  | 
|
213  | 
"Mul_PBInv \<equiv> \<guillemotleft>\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue  | 
|
214  | 
\<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue\<guillemotright>"  | 
|
215  | 
||
216  | 
Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool"  | 
|
217  | 
"Mul_Auxk \<equiv> \<guillemotleft>\<acute>l<\<acute>Queue \<or> \<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> \<acute>obc\<subset>Blacks \<acute>M\<guillemotright>"  | 
|
218  | 
||
219  | 
constdefs  | 
|
220  | 
Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
221  | 
"Mul_Propagate_Black n \<equiv>  | 
|
222  | 
 .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | 
|
223  | 
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)}.  | 
|
224  | 
\<acute>ind:=0;;  | 
|
225  | 
 .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
226  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
227  | 
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0}.  | 
|
228  | 
WHILE \<acute>ind<length \<acute>E  | 
|
229  | 
  INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
230  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
231  | 
\<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E}.  | 
|
232  | 
 DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
233  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
234  | 
\<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}.  | 
|
235  | 
IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN  | 
|
236  | 
   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
237  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
238  | 
\<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E}.  | 
|
239  | 
\<acute>k:=snd(\<acute>E!\<acute>ind);;  | 
|
240  | 
   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
241  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
242  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M))  | 
|
243  | 
\<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black  | 
|
244  | 
\<and> \<acute>ind<length \<acute>E}.  | 
|
245  | 
\<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle>  | 
|
246  | 
   ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
247  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
248  | 
\<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}.  | 
|
249  | 
\<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI  | 
|
250  | 
OD"  | 
|
251  | 
||
252  | 
lemma Mul_Propagate_Black:  | 
|
253  | 
"\<turnstile> Mul_Propagate_Black n  | 
|
254  | 
   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | 
|
255  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}."  | 
|
256  | 
apply(unfold Mul_Propagate_Black_def)  | 
|
257  | 
apply annhoare  | 
|
258  | 
apply(simp_all add:Mul_PBInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def)  | 
|
259  | 
--{* 8 subgoals left *}
 | 
|
260  | 
apply force  | 
|
261  | 
apply force  | 
|
262  | 
apply force  | 
|
263  | 
apply(force simp add:BtoW_def Graph_defs)  | 
|
264  | 
--{* 4 subgoals left *}
 | 
|
265  | 
apply clarify  | 
|
266  | 
apply(simp add: mul_collector_defs Graph12 Graph6 Graph7 Graph8)  | 
|
267  | 
apply(disjE_tac)  | 
|
268  | 
apply(simp_all add:Graph12 Graph13)  | 
|
269  | 
apply(case_tac "M x! k x=Black")  | 
|
270  | 
apply(simp add: Graph10)  | 
|
271  | 
apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force)  | 
|
272  | 
apply(case_tac "M x! k x=Black")  | 
|
273  | 
apply(simp add: Graph10 BtoW_def)  | 
|
274  | 
apply(rule disjI2, clarify, erule less_SucE, force)  | 
|
275  | 
apply(case_tac "M x!snd(E x! ind x)=Black")  | 
|
276  | 
apply(force)  | 
|
277  | 
apply(force)  | 
|
278  | 
apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force)  | 
|
279  | 
--{* 3 subgoals left *}
 | 
|
280  | 
apply force  | 
|
281  | 
--{* 2 subgoals left *}
 | 
|
282  | 
apply clarify  | 
|
283  | 
apply(conjI_tac)  | 
|
284  | 
apply(disjE_tac)  | 
|
285  | 
apply (simp_all)  | 
|
286  | 
apply clarify  | 
|
287  | 
apply(erule less_SucE)  | 
|
288  | 
apply force  | 
|
289  | 
apply (simp add:BtoW_def)  | 
|
| 
13022
 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 
prensani 
parents: 
13020 
diff
changeset
 | 
290  | 
--{* 1 subgoal left *}
 | 
| 13020 | 291  | 
apply clarify  | 
292  | 
apply simp  | 
|
293  | 
apply(disjE_tac)  | 
|
294  | 
apply (simp_all)  | 
|
295  | 
apply(rule disjI1 , rule Graph1)  | 
|
296  | 
apply simp_all  | 
|
297  | 
done  | 
|
298  | 
||
299  | 
subsubsection {* Counting Black Nodes *}
 | 
|
300  | 
||
301  | 
constdefs  | 
|
302  | 
Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"  | 
|
303  | 
 "Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
 | 
|
304  | 
||
305  | 
Mul_Count :: "nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
306  | 
"Mul_Count n \<equiv>  | 
|
307  | 
  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
308  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
309  | 
\<and> length \<acute>Ma=length \<acute>M  | 
|
310  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) )  | 
|
311  | 
    \<and> \<acute>q<n+1 \<and> \<acute>bc={}}.
 | 
|
312  | 
\<acute>ind:=0;;  | 
|
313  | 
  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
314  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
315  | 
\<and> length \<acute>Ma=length \<acute>M  | 
|
316  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) )  | 
|
317  | 
    \<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0}.
 | 
|
318  | 
WHILE \<acute>ind<length \<acute>M  | 
|
319  | 
     INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
320  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
321  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind  | 
|
322  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
323  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M}.  | 
|
324  | 
  DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
325  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
326  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind  | 
|
327  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
328  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}.  | 
|
329  | 
IF \<acute>M!\<acute>ind=Black  | 
|
330  | 
     THEN .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
331  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
332  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind  | 
|
333  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
334  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}.  | 
|
335  | 
\<acute>bc:=insert \<acute>ind \<acute>bc  | 
|
336  | 
FI;;  | 
|
337  | 
  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
338  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
339  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv (\<acute>ind+1)  | 
|
340  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
341  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}.  | 
|
342  | 
\<acute>ind:=\<acute>ind+1  | 
|
343  | 
OD"  | 
|
344  | 
||
345  | 
lemma Mul_Count:  | 
|
346  | 
"\<turnstile> Mul_Count n  | 
|
347  | 
  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
348  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
349  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
350  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
351  | 
\<and> \<acute>q<n+1}."  | 
|
352  | 
apply (unfold Mul_Count_def)  | 
|
353  | 
apply annhoare  | 
|
354  | 
apply(simp_all add:Mul_CountInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def)  | 
|
355  | 
--{* 7 subgoals left *}
 | 
|
356  | 
apply force  | 
|
357  | 
apply force  | 
|
358  | 
apply force  | 
|
359  | 
--{* 4 subgoals left *}
 | 
|
360  | 
apply clarify  | 
|
361  | 
apply(conjI_tac)  | 
|
362  | 
apply(disjE_tac)  | 
|
363  | 
apply simp_all  | 
|
364  | 
apply(simp add:Blacks_def)  | 
|
365  | 
apply clarify  | 
|
366  | 
apply(erule less_SucE)  | 
|
367  | 
back  | 
|
368  | 
apply force  | 
|
369  | 
apply force  | 
|
370  | 
--{* 3 subgoals left *}
 | 
|
371  | 
apply clarify  | 
|
372  | 
apply(conjI_tac)  | 
|
373  | 
apply(disjE_tac)  | 
|
374  | 
apply simp_all  | 
|
375  | 
apply clarify  | 
|
376  | 
apply(erule less_SucE)  | 
|
377  | 
back  | 
|
378  | 
apply force  | 
|
379  | 
apply simp  | 
|
380  | 
apply(rotate_tac -1)  | 
|
381  | 
apply (force simp add:Blacks_def)  | 
|
382  | 
--{* 2 subgoals left *}
 | 
|
383  | 
apply force  | 
|
| 
13022
 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 
prensani 
parents: 
13020 
diff
changeset
 | 
384  | 
--{* 1 subgoal left *}
 | 
| 13020 | 385  | 
apply clarify  | 
386  | 
apply(drule le_imp_less_or_eq)  | 
|
387  | 
apply(disjE_tac)  | 
|
388  | 
apply (simp_all add:Blacks_def)  | 
|
389  | 
done  | 
|
390  | 
||
391  | 
subsubsection {* Appending garbage nodes to the free list *}
 | 
|
392  | 
||
393  | 
consts Append_to_free :: "nat \<times> edges \<Rightarrow> edges"  | 
|
394  | 
||
395  | 
axioms  | 
|
396  | 
Append_to_free0: "length (Append_to_free (i, e)) = length e"  | 
|
397  | 
Append_to_free1: "Proper_Edges (m, e)  | 
|
398  | 
\<Longrightarrow> Proper_Edges (m, Append_to_free(i, e))"  | 
|
399  | 
Append_to_free2: "i \<notin> Reach e  | 
|
400  | 
\<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)"  | 
|
401  | 
||
402  | 
constdefs  | 
|
403  | 
Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"  | 
|
404  | 
"Mul_AppendInv \<equiv> \<guillemotleft> \<lambda>ind. (\<forall>i. ind\<le>i \<longrightarrow> i<length \<acute>M \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black)\<guillemotright>"  | 
|
405  | 
||
406  | 
Mul_Append :: "nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
407  | 
"Mul_Append n \<equiv>  | 
|
408  | 
  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
 | 
|
409  | 
\<acute>ind:=0;;  | 
|
410  | 
  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0}.
 | 
|
411  | 
WHILE \<acute>ind<length \<acute>M  | 
|
412  | 
    INV .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M}.
 | 
|
413  | 
  DO .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M}.
 | 
|
414  | 
IF \<acute>M!\<acute>ind=Black THEN  | 
|
415  | 
     .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. 
 | 
|
416  | 
\<acute>M:=\<acute>M[\<acute>ind:=White]  | 
|
417  | 
ELSE  | 
|
418  | 
     .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E}. 
 | 
|
419  | 
\<acute>E:=Append_to_free(\<acute>ind,\<acute>E)  | 
|
420  | 
FI;;  | 
|
421  | 
  .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M}. 
 | 
|
422  | 
\<acute>ind:=\<acute>ind+1  | 
|
423  | 
OD"  | 
|
424  | 
||
425  | 
lemma Mul_Append:  | 
|
426  | 
"\<turnstile> Mul_Append n  | 
|
427  | 
     .{\<acute>Mul_Proper n}."
 | 
|
428  | 
apply(unfold Mul_Append_def)  | 
|
429  | 
apply annhoare  | 
|
430  | 
apply(simp_all add: mul_collector_defs Mul_AppendInv_def  | 
|
431  | 
Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
|
432  | 
apply(force simp add:Blacks_def)  | 
|
433  | 
apply(force simp add:Blacks_def)  | 
|
434  | 
apply(force simp add:Blacks_def)  | 
|
435  | 
apply(force simp add:Graph_defs)  | 
|
436  | 
apply force  | 
|
437  | 
apply(force simp add:Append_to_free1 Append_to_free2)  | 
|
438  | 
apply force  | 
|
439  | 
apply force  | 
|
440  | 
done  | 
|
441  | 
||
442  | 
subsubsection {* Collector *}
 | 
|
443  | 
||
444  | 
constdefs  | 
|
445  | 
Mul_Collector :: "nat \<Rightarrow> mul_gar_coll_state ann_com"  | 
|
446  | 
"Mul_Collector n \<equiv>  | 
|
447  | 
.{\<acute>Mul_Proper n}.  
 | 
|
448  | 
WHILE True INV .{\<acute>Mul_Proper n}. 
 | 
|
449  | 
DO  | 
|
450  | 
Mul_Blacken_Roots n ;;  | 
|
451  | 
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M}.  
 | 
|
452  | 
 \<acute>obc:={};; 
 | 
|
453  | 
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}}.  
 | 
|
454  | 
\<acute>bc:=Roots;;  | 
|
455  | 
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots}. 
 | 
|
456  | 
\<acute>l:=0;;  | 
|
457  | 
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0}. 
 | 
|
458  | 
WHILE \<acute>l<n+1  | 
|
459  | 
   INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and>  
 | 
|
460  | 
(\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)}.  | 
|
461  | 
 DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | 
|
462  | 
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)}.  | 
|
463  | 
\<acute>obc:=\<acute>bc;;  | 
|
464  | 
Mul_Propagate_Black n;;  | 
|
465  | 
    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
466  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
467  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue  | 
|
468  | 
\<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}.  | 
|
469  | 
    \<acute>bc:={};;
 | 
|
470  | 
    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
471  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
472  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue  | 
|
473  | 
      \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}}. 
 | 
|
474  | 
\<langle> \<acute>Ma:=\<acute>M,, \<acute>q:=\<acute>Queue \<rangle>;;  | 
|
475  | 
Mul_Count n;;  | 
|
476  | 
    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
477  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
478  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
479  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
480  | 
\<and> \<acute>q<n+1}.  | 
|
481  | 
IF \<acute>obc=\<acute>bc THEN  | 
|
482  | 
    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
483  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
484  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
485  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
486  | 
\<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc}.  | 
|
487  | 
\<acute>l:=\<acute>l+1  | 
|
488  | 
    ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
|
489  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
490  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
491  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
492  | 
\<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc}.  | 
|
493  | 
\<acute>l:=0 FI  | 
|
494  | 
OD;;  | 
|
495  | 
Mul_Append n  | 
|
496  | 
OD"  | 
|
497  | 
||
498  | 
lemmas mul_modules = Mul_Redirect_Edge_def Mul_Color_Target_def  | 
|
499  | 
Mul_Blacken_Roots_def Mul_Propagate_Black_def  | 
|
500  | 
Mul_Count_def Mul_Append_def  | 
|
501  | 
||
502  | 
lemma Mul_Collector:  | 
|
503  | 
"\<turnstile> Mul_Collector n  | 
|
504  | 
  .{False}."
 | 
|
505  | 
apply(unfold Mul_Collector_def)  | 
|
506  | 
apply annhoare  | 
|
507  | 
apply(simp_all only:pre.simps Mul_Blacken_Roots  | 
|
508  | 
Mul_Propagate_Black Mul_Count Mul_Append)  | 
|
509  | 
apply(simp_all add:mul_modules)  | 
|
510  | 
apply(simp_all add:mul_collector_defs Queue_def)  | 
|
511  | 
apply force  | 
|
512  | 
apply force  | 
|
513  | 
apply force  | 
|
| 15247 | 514  | 
apply (force simp add: less_Suc_eq_le)  | 
| 13020 | 515  | 
apply force  | 
516  | 
apply (force dest:subset_antisym)  | 
|
517  | 
apply force  | 
|
518  | 
apply force  | 
|
519  | 
apply force  | 
|
520  | 
done  | 
|
521  | 
||
522  | 
subsection {* Interference Freedom *}
 | 
|
523  | 
||
524  | 
lemma le_length_filter_update[rule_format]:  | 
|
525  | 
"\<forall>i. (\<not>P (list!i) \<or> P j) \<and> i<length list  | 
|
526  | 
\<longrightarrow> length(filter P list) \<le> length(filter P (list[i:=j]))"  | 
|
527  | 
apply(induct_tac "list")  | 
|
528  | 
apply(simp)  | 
|
529  | 
apply(clarify)  | 
|
530  | 
apply(case_tac i)  | 
|
531  | 
apply(simp)  | 
|
532  | 
apply(simp)  | 
|
533  | 
done  | 
|
534  | 
||
535  | 
lemma less_length_filter_update [rule_format]:  | 
|
536  | 
"\<forall>i. P j \<and> \<not>(P (list!i)) \<and> i<length list  | 
|
537  | 
\<longrightarrow> length(filter P list) < length(filter P (list[i:=j]))"  | 
|
538  | 
apply(induct_tac "list")  | 
|
539  | 
apply(simp)  | 
|
540  | 
apply(clarify)  | 
|
541  | 
apply(case_tac i)  | 
|
542  | 
apply(simp)  | 
|
543  | 
apply(simp)  | 
|
544  | 
done  | 
|
545  | 
||
546  | 
lemma Mul_interfree_Blacken_Roots_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk> \<Longrightarrow>  | 
|
547  | 
  interfree_aux (Some(Mul_Blacken_Roots n),{},Some(Mul_Redirect_Edge j n))"
 | 
|
548  | 
apply (unfold mul_modules)  | 
|
549  | 
apply interfree_aux  | 
|
550  | 
apply safe  | 
|
551  | 
apply(simp_all add:Graph6 Graph9 Graph12 nth_list_update mul_mutator_defs mul_collector_defs)  | 
|
552  | 
done  | 
|
553  | 
||
554  | 
lemma Mul_interfree_Redirect_Edge_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
555  | 
  interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Blacken_Roots n))"
 | 
|
556  | 
apply (unfold mul_modules)  | 
|
557  | 
apply interfree_aux  | 
|
558  | 
apply safe  | 
|
559  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
560  | 
done  | 
|
561  | 
||
562  | 
lemma Mul_interfree_Blacken_Roots_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
563  | 
  interfree_aux (Some(Mul_Blacken_Roots n),{},Some (Mul_Color_Target j n ))"
 | 
|
564  | 
apply (unfold mul_modules)  | 
|
565  | 
apply interfree_aux  | 
|
566  | 
apply safe  | 
|
567  | 
apply(simp_all add:mul_mutator_defs mul_collector_defs nth_list_update Graph7 Graph8 Graph9 Graph12)  | 
|
568  | 
done  | 
|
569  | 
||
570  | 
lemma Mul_interfree_Color_Target_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
571  | 
  interfree_aux (Some(Mul_Color_Target j n ),{},Some (Mul_Blacken_Roots n ))"
 | 
|
572  | 
apply (unfold mul_modules)  | 
|
573  | 
apply interfree_aux  | 
|
574  | 
apply safe  | 
|
575  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
576  | 
done  | 
|
577  | 
||
578  | 
lemma Mul_interfree_Propagate_Black_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
579  | 
  interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Redirect_Edge j n ))"
 | 
|
580  | 
apply (unfold mul_modules)  | 
|
581  | 
apply interfree_aux  | 
|
582  | 
apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_PBInv_def nth_list_update Graph6)  | 
|
583  | 
--{* 7 subgoals left *}
 | 
|
584  | 
apply clarify  | 
|
585  | 
apply(disjE_tac)  | 
|
586  | 
apply(simp_all add:Graph6)  | 
|
587  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
588  | 
apply(rule conjI)  | 
|
589  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
590  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
591  | 
--{* 6 subgoals left *}
 | 
|
592  | 
apply clarify  | 
|
593  | 
apply(disjE_tac)  | 
|
594  | 
apply(simp_all add:Graph6)  | 
|
595  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
596  | 
apply(rule conjI)  | 
|
597  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
598  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
599  | 
--{* 5 subgoals left *}
 | 
|
600  | 
apply clarify  | 
|
601  | 
apply(disjE_tac)  | 
|
602  | 
apply(simp_all add:Graph6)  | 
|
603  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
604  | 
apply(rule conjI)  | 
|
605  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
606  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
607  | 
apply(erule conjE)  | 
|
608  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
609  | 
apply(rule conjI)  | 
|
610  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
611  | 
apply clarify  | 
|
612  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
613  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
614  | 
apply (force simp add: nth_list_update)  | 
|
615  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
616  | 
apply(rule impI,(rule disjI2)+, erule le_trans)  | 
|
617  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
618  | 
apply(rule conjI)  | 
|
619  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
620  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
621  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
622  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
623  | 
--{* 4 subgoals left *}
 | 
|
624  | 
apply clarify  | 
|
625  | 
apply(disjE_tac)  | 
|
626  | 
apply(simp_all add:Graph6)  | 
|
627  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
628  | 
apply(rule conjI)  | 
|
629  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
630  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
631  | 
apply(erule conjE)  | 
|
632  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
633  | 
apply(rule conjI)  | 
|
634  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
635  | 
apply clarify  | 
|
636  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
637  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
638  | 
apply (force simp add: nth_list_update)  | 
|
639  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
640  | 
apply(rule impI,(rule disjI2)+, erule le_trans)  | 
|
641  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
642  | 
apply(rule conjI)  | 
|
643  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
644  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
645  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
646  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
647  | 
--{* 3 subgoals left *}
 | 
|
648  | 
apply clarify  | 
|
649  | 
apply(disjE_tac)  | 
|
650  | 
apply(simp_all add:Graph6)  | 
|
651  | 
apply (rule impI)  | 
|
652  | 
apply(rule conjI)  | 
|
653  | 
apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
654  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
655  | 
apply(simp add:nth_list_update)  | 
|
656  | 
apply(simp add:nth_list_update)  | 
|
657  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
658  | 
apply(simp add:nth_list_update)  | 
|
659  | 
apply(simp add:nth_list_update)  | 
|
660  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
661  | 
apply(rule conjI)  | 
|
662  | 
apply(rule impI)  | 
|
663  | 
apply(rule conjI)  | 
|
664  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
665  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
666  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
667  | 
apply(simp add:nth_list_update)  | 
|
668  | 
apply(simp add:nth_list_update)  | 
|
669  | 
apply(rule impI)  | 
|
670  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
671  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
672  | 
apply(rule conjI)  | 
|
673  | 
apply(rule impI)  | 
|
674  | 
apply(rule conjI)  | 
|
675  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
676  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
677  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
678  | 
apply(simp add:nth_list_update)  | 
|
679  | 
apply(simp add:nth_list_update)  | 
|
680  | 
apply(rule impI)  | 
|
681  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
682  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
683  | 
apply(erule conjE)  | 
|
684  | 
apply(rule conjI)  | 
|
685  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
686  | 
apply(rule impI,rule conjI,(rule disjI2)+,rule conjI)  | 
|
687  | 
apply clarify  | 
|
688  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
689  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
690  | 
apply (force simp add: nth_list_update)  | 
|
691  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
692  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
693  | 
apply(simp add:nth_list_update)  | 
|
694  | 
apply(simp add:nth_list_update)  | 
|
695  | 
apply(rule impI,rule conjI)  | 
|
696  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
697  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
698  | 
apply(case_tac "R (Muts x! j)=ind x")  | 
|
699  | 
apply (force simp add: nth_list_update)  | 
|
700  | 
apply (force simp add: nth_list_update)  | 
|
701  | 
apply(rule impI, (rule disjI2)+, erule le_trans)  | 
|
702  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
703  | 
--{* 2 subgoals left *}
 | 
|
704  | 
apply clarify  | 
|
705  | 
apply(rule conjI)  | 
|
706  | 
apply(disjE_tac)  | 
|
707  | 
apply(simp_all add:Mul_Auxk_def Graph6)  | 
|
708  | 
apply (rule impI)  | 
|
709  | 
apply(rule conjI)  | 
|
710  | 
apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
711  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
712  | 
apply(simp add:nth_list_update)  | 
|
713  | 
apply(simp add:nth_list_update)  | 
|
714  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
715  | 
apply(simp add:nth_list_update)  | 
|
716  | 
apply(simp add:nth_list_update)  | 
|
717  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
718  | 
apply(rule impI)  | 
|
719  | 
apply(rule conjI)  | 
|
720  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
721  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
722  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
723  | 
apply(simp add:nth_list_update)  | 
|
724  | 
apply(simp add:nth_list_update)  | 
|
725  | 
apply(rule impI)  | 
|
726  | 
apply(rule conjI)  | 
|
727  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
728  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
729  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
730  | 
apply(simp add:nth_list_update)  | 
|
731  | 
apply(simp add:nth_list_update)  | 
|
732  | 
apply(rule impI)  | 
|
733  | 
apply(rule conjI)  | 
|
734  | 
apply(erule conjE)+  | 
|
735  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
736  | 
apply((rule disjI2)+,rule conjI)  | 
|
737  | 
apply clarify  | 
|
738  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
739  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
740  | 
apply (force simp add: nth_list_update)  | 
|
741  | 
apply(rule conjI)  | 
|
742  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
743  | 
apply(rule impI)  | 
|
744  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
745  | 
apply(simp add:nth_list_update BtoW_def)  | 
|
746  | 
apply (simp add:nth_list_update)  | 
|
747  | 
apply(rule impI)  | 
|
748  | 
apply simp  | 
|
749  | 
apply(disjE_tac)  | 
|
750  | 
apply(rule disjI1, erule less_le_trans)  | 
|
751  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
752  | 
apply force  | 
|
753  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
754  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
755  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
756  | 
apply(simp add:nth_list_update)  | 
|
757  | 
apply(simp add:nth_list_update)  | 
|
758  | 
apply(disjE_tac)  | 
|
759  | 
apply simp_all  | 
|
760  | 
apply(conjI_tac)  | 
|
761  | 
apply(rule impI)  | 
|
762  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
763  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
764  | 
apply(erule conjE)+  | 
|
765  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
766  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
767  | 
apply(rule impI)+  | 
|
768  | 
apply simp  | 
|
769  | 
apply(disjE_tac)  | 
|
770  | 
apply(rule disjI1, erule less_le_trans)  | 
|
771  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
772  | 
apply force  | 
|
| 
13022
 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 
prensani 
parents: 
13020 
diff
changeset
 | 
773  | 
--{* 1 subgoal left *} 
 | 
| 13020 | 774  | 
apply clarify  | 
775  | 
apply(disjE_tac)  | 
|
776  | 
apply(simp_all add:Graph6)  | 
|
777  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
778  | 
apply(rule conjI)  | 
|
779  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
780  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
781  | 
apply(erule conjE)  | 
|
782  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
783  | 
apply(rule conjI)  | 
|
784  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
785  | 
apply clarify  | 
|
786  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
787  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
788  | 
apply (force simp add: nth_list_update)  | 
|
789  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
790  | 
apply(rule impI,(rule disjI2)+, erule le_trans)  | 
|
791  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
792  | 
apply(rule conjI)  | 
|
793  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
794  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
795  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
796  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
797  | 
done  | 
|
798  | 
||
799  | 
lemma Mul_interfree_Redirect_Edge_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
800  | 
  interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Propagate_Black n))"
 | 
|
801  | 
apply (unfold mul_modules)  | 
|
802  | 
apply interfree_aux  | 
|
803  | 
apply safe  | 
|
804  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
805  | 
done  | 
|
806  | 
||
807  | 
lemma Mul_interfree_Propagate_Black_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
808  | 
  interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Color_Target j n ))"
 | 
|
809  | 
apply (unfold mul_modules)  | 
|
810  | 
apply interfree_aux  | 
|
811  | 
apply(simp_all add: mul_collector_defs mul_mutator_defs)  | 
|
812  | 
--{* 7 subgoals left *}
 | 
|
813  | 
apply clarify  | 
|
814  | 
apply (simp add:Graph7 Graph8 Graph12)  | 
|
815  | 
apply(disjE_tac)  | 
|
816  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
|
817  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
818  | 
apply(rule disjI2,rule disjI1, erule le_trans)  | 
|
819  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
820  | 
apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp)  | 
|
821  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
822  | 
--{* 6 subgoals left *}
 | 
|
823  | 
apply clarify  | 
|
824  | 
apply (simp add:Graph7 Graph8 Graph12)  | 
|
825  | 
apply(disjE_tac)  | 
|
826  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
|
827  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
828  | 
apply(rule disjI2,rule disjI1, erule le_trans)  | 
|
829  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
830  | 
apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp)  | 
|
831  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
832  | 
--{* 5 subgoals left *}
 | 
|
833  | 
apply clarify  | 
|
834  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
835  | 
apply(disjE_tac)  | 
|
836  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
|
837  | 
apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9)  | 
|
838  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
839  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
840  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
841  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
|
842  | 
apply(erule conjE)  | 
|
843  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
844  | 
apply((rule disjI2)+)  | 
|
845  | 
apply (rule conjI)  | 
|
846  | 
apply(simp add:Graph10)  | 
|
847  | 
apply(erule le_trans)  | 
|
848  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
849  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
|
850  | 
--{* 4 subgoals left *}
 | 
|
851  | 
apply clarify  | 
|
852  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
853  | 
apply(disjE_tac)  | 
|
854  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
|
855  | 
apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9)  | 
|
856  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
857  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
858  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
859  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
|
860  | 
apply(erule conjE)  | 
|
861  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
862  | 
apply((rule disjI2)+)  | 
|
863  | 
apply (rule conjI)  | 
|
864  | 
apply(simp add:Graph10)  | 
|
865  | 
apply(erule le_trans)  | 
|
866  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
867  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
|
868  | 
--{* 3 subgoals left *}
 | 
|
869  | 
apply clarify  | 
|
870  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
871  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
872  | 
apply(simp add:Graph10)  | 
|
873  | 
apply(disjE_tac)  | 
|
874  | 
apply simp_all  | 
|
875  | 
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans)  | 
|
876  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
877  | 
apply(erule conjE)  | 
|
878  | 
apply((rule disjI2)+,erule le_trans)  | 
|
879  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
880  | 
apply(rule conjI)  | 
|
881  | 
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11)  | 
|
882  | 
apply (force simp add:nth_list_update)  | 
|
883  | 
--{* 2 subgoals left *}
 | 
|
884  | 
apply clarify  | 
|
885  | 
apply(simp add:Mul_Auxk_def Graph7 Graph8 Graph12)  | 
|
886  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
887  | 
apply(simp add:Graph10)  | 
|
888  | 
apply(disjE_tac)  | 
|
889  | 
apply simp_all  | 
|
890  | 
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans)  | 
|
891  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
892  | 
apply(erule conjE)+  | 
|
893  | 
apply((rule disjI2)+,rule conjI, erule le_trans)  | 
|
894  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
895  | 
apply((rule impI)+)  | 
|
896  | 
apply simp  | 
|
897  | 
apply(erule disjE)  | 
|
898  | 
apply(rule disjI1, erule less_le_trans)  | 
|
899  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
900  | 
apply force  | 
|
901  | 
apply(rule conjI)  | 
|
902  | 
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11)  | 
|
903  | 
apply (force simp add:nth_list_update)  | 
|
| 
13022
 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 
prensani 
parents: 
13020 
diff
changeset
 | 
904  | 
--{* 1 subgoal left *}
 | 
| 13020 | 905  | 
apply clarify  | 
906  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
907  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
908  | 
apply(simp add:Graph10)  | 
|
909  | 
apply(disjE_tac)  | 
|
910  | 
apply simp_all  | 
|
911  | 
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans)  | 
|
912  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
913  | 
apply(erule conjE)  | 
|
914  | 
apply((rule disjI2)+,erule le_trans)  | 
|
915  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
916  | 
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11)  | 
|
917  | 
done  | 
|
918  | 
||
919  | 
lemma Mul_interfree_Color_Target_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
920  | 
  interfree_aux (Some(Mul_Color_Target j n),{},Some(Mul_Propagate_Black n ))"
 | 
|
921  | 
apply (unfold mul_modules)  | 
|
922  | 
apply interfree_aux  | 
|
923  | 
apply safe  | 
|
924  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
925  | 
done  | 
|
926  | 
||
927  | 
lemma Mul_interfree_Count_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
928  | 
  interfree_aux (Some(Mul_Count n ),{},Some(Mul_Redirect_Edge j n))"
 | 
|
929  | 
apply (unfold mul_modules)  | 
|
930  | 
apply interfree_aux  | 
|
931  | 
--{* 9 subgoals left *}
 | 
|
932  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def Graph6)  | 
|
933  | 
apply clarify  | 
|
934  | 
apply disjE_tac  | 
|
935  | 
apply(simp add:Graph6)  | 
|
936  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
937  | 
apply(simp add:Graph6)  | 
|
938  | 
apply clarify  | 
|
939  | 
apply disjE_tac  | 
|
940  | 
apply(simp add:Graph6)  | 
|
941  | 
apply(rule conjI)  | 
|
942  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
943  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
944  | 
apply(simp add:Graph6)  | 
|
945  | 
--{* 8 subgoals left *}
 | 
|
946  | 
apply(simp add:mul_mutator_defs nth_list_update)  | 
|
947  | 
--{* 7 subgoals left *}
 | 
|
948  | 
apply(simp add:mul_mutator_defs mul_collector_defs)  | 
|
949  | 
apply clarify  | 
|
950  | 
apply disjE_tac  | 
|
951  | 
apply(simp add:Graph6)  | 
|
952  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
953  | 
apply(simp add:Graph6)  | 
|
954  | 
apply clarify  | 
|
955  | 
apply disjE_tac  | 
|
956  | 
apply(simp add:Graph6)  | 
|
957  | 
apply(rule conjI)  | 
|
958  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
959  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
960  | 
apply(simp add:Graph6)  | 
|
961  | 
--{* 6 subgoals left *}
 | 
|
962  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
|
963  | 
apply clarify  | 
|
964  | 
apply disjE_tac  | 
|
965  | 
apply(simp add:Graph6 Queue_def)  | 
|
966  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
967  | 
apply(simp add:Graph6)  | 
|
968  | 
apply clarify  | 
|
969  | 
apply disjE_tac  | 
|
970  | 
apply(simp add:Graph6)  | 
|
971  | 
apply(rule conjI)  | 
|
972  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
973  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
974  | 
apply(simp add:Graph6)  | 
|
975  | 
--{* 5 subgoals left *}
 | 
|
976  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
|
977  | 
apply clarify  | 
|
978  | 
apply disjE_tac  | 
|
979  | 
apply(simp add:Graph6)  | 
|
980  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
981  | 
apply(simp add:Graph6)  | 
|
982  | 
apply clarify  | 
|
983  | 
apply disjE_tac  | 
|
984  | 
apply(simp add:Graph6)  | 
|
985  | 
apply(rule conjI)  | 
|
986  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
987  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
988  | 
apply(simp add:Graph6)  | 
|
989  | 
--{* 4 subgoals left *}
 | 
|
990  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
|
991  | 
apply clarify  | 
|
992  | 
apply disjE_tac  | 
|
993  | 
apply(simp add:Graph6)  | 
|
994  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
995  | 
apply(simp add:Graph6)  | 
|
996  | 
apply clarify  | 
|
997  | 
apply disjE_tac  | 
|
998  | 
apply(simp add:Graph6)  | 
|
999  | 
apply(rule conjI)  | 
|
1000  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1001  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1002  | 
apply(simp add:Graph6)  | 
|
1003  | 
--{* 3 subgoals left *}
 | 
|
1004  | 
apply(simp add:mul_mutator_defs nth_list_update)  | 
|
1005  | 
--{* 2 subgoals left *}
 | 
|
1006  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
|
1007  | 
apply clarify  | 
|
1008  | 
apply disjE_tac  | 
|
1009  | 
apply(simp add:Graph6)  | 
|
1010  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
1011  | 
apply(simp add:Graph6)  | 
|
1012  | 
apply clarify  | 
|
1013  | 
apply disjE_tac  | 
|
1014  | 
apply(simp add:Graph6)  | 
|
1015  | 
apply(rule conjI)  | 
|
1016  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1017  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1018  | 
apply(simp add:Graph6)  | 
|
| 
13022
 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 
prensani 
parents: 
13020 
diff
changeset
 | 
1019  | 
--{* 1 subgoal left *}
 | 
| 13020 | 1020  | 
apply(simp add:mul_mutator_defs nth_list_update)  | 
1021  | 
done  | 
|
1022  | 
||
1023  | 
lemma Mul_interfree_Redirect_Edge_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
1024  | 
  interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Count n ))"
 | 
|
1025  | 
apply (unfold mul_modules)  | 
|
1026  | 
apply interfree_aux  | 
|
1027  | 
apply safe  | 
|
1028  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
1029  | 
done  | 
|
1030  | 
||
1031  | 
lemma Mul_interfree_Count_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
1032  | 
  interfree_aux (Some(Mul_Count n ),{},Some(Mul_Color_Target j n))"
 | 
|
1033  | 
apply (unfold mul_modules)  | 
|
1034  | 
apply interfree_aux  | 
|
1035  | 
apply(simp_all add:mul_collector_defs mul_mutator_defs Mul_CountInv_def)  | 
|
1036  | 
--{* 6 subgoals left *}
 | 
|
1037  | 
apply clarify  | 
|
1038  | 
apply disjE_tac  | 
|
1039  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1040  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1041  | 
apply clarify  | 
|
1042  | 
apply disjE_tac  | 
|
1043  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1044  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1045  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1046  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1047  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1048  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1049  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1050  | 
--{* 5 subgoals left *}
 | 
|
1051  | 
apply clarify  | 
|
1052  | 
apply disjE_tac  | 
|
1053  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1054  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1055  | 
apply clarify  | 
|
1056  | 
apply disjE_tac  | 
|
1057  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1058  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1059  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1060  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1061  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1062  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1063  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1064  | 
--{* 4 subgoals left *}
 | 
|
1065  | 
apply clarify  | 
|
1066  | 
apply disjE_tac  | 
|
1067  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1068  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1069  | 
apply clarify  | 
|
1070  | 
apply disjE_tac  | 
|
1071  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1072  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1073  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1074  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1075  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1076  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1077  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1078  | 
--{* 3 subgoals left *}
 | 
|
1079  | 
apply clarify  | 
|
1080  | 
apply disjE_tac  | 
|
1081  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1082  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1083  | 
apply clarify  | 
|
1084  | 
apply disjE_tac  | 
|
1085  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1086  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1087  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1088  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1089  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1090  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1091  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1092  | 
--{* 2 subgoals left *}
 | 
|
1093  | 
apply clarify  | 
|
1094  | 
apply disjE_tac  | 
|
1095  | 
apply (simp add: Graph7 Graph8 Graph12 nth_list_update)  | 
|
1096  | 
apply (simp add: Graph7 Graph8 Graph12 nth_list_update)  | 
|
1097  | 
apply clarify  | 
|
1098  | 
apply disjE_tac  | 
|
1099  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1100  | 
apply(rule conjI)  | 
|
1101  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1102  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1103  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1104  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1105  | 
apply (simp add: nth_list_update)  | 
|
1106  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1107  | 
apply(rule conjI)  | 
|
1108  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1109  | 
apply (simp add: nth_list_update)  | 
|
| 
13022
 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 
prensani 
parents: 
13020 
diff
changeset
 | 
1110  | 
--{* 1 subgoal left *}
 | 
| 13020 | 1111  | 
apply clarify  | 
1112  | 
apply disjE_tac  | 
|
1113  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1114  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1115  | 
apply clarify  | 
|
1116  | 
apply disjE_tac  | 
|
1117  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1118  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1119  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1120  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1121  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1122  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1123  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1124  | 
done  | 
|
1125  | 
||
1126  | 
lemma Mul_interfree_Color_Target_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
1127  | 
  interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Count n ))"
 | 
|
1128  | 
apply (unfold mul_modules)  | 
|
1129  | 
apply interfree_aux  | 
|
1130  | 
apply safe  | 
|
1131  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
1132  | 
done  | 
|
1133  | 
||
1134  | 
lemma Mul_interfree_Append_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
1135  | 
  interfree_aux (Some(Mul_Append n),{}, Some(Mul_Redirect_Edge j n))"
 | 
|
1136  | 
apply (unfold mul_modules)  | 
|
1137  | 
apply interfree_aux  | 
|
1138  | 
apply(tactic {* ALLGOALS Clarify_tac *})
 | 
|
1139  | 
apply(simp_all add:Graph6 Append_to_free0 Append_to_free1 mul_collector_defs mul_mutator_defs Mul_AppendInv_def)  | 
|
1140  | 
apply(erule_tac x=j in allE, force dest:Graph3)+  | 
|
1141  | 
done  | 
|
1142  | 
||
1143  | 
lemma Mul_interfree_Redirect_Edge_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
1144  | 
  interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Append n))"
 | 
|
1145  | 
apply (unfold mul_modules)  | 
|
1146  | 
apply interfree_aux  | 
|
1147  | 
apply(tactic {* ALLGOALS Clarify_tac *})
 | 
|
1148  | 
apply(simp_all add:mul_collector_defs Append_to_free0 Mul_AppendInv_def mul_mutator_defs nth_list_update)  | 
|
1149  | 
done  | 
|
1150  | 
||
1151  | 
lemma Mul_interfree_Append_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
1152  | 
  interfree_aux (Some(Mul_Append n),{}, Some(Mul_Color_Target j n))"
 | 
|
1153  | 
apply (unfold mul_modules)  | 
|
1154  | 
apply interfree_aux  | 
|
1155  | 
apply(tactic {* ALLGOALS Clarify_tac *})
 | 
|
1156  | 
apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_AppendInv_def Graph7 Graph8 Append_to_free0 Append_to_free1  | 
|
1157  | 
Graph12 nth_list_update)  | 
|
1158  | 
done  | 
|
1159  | 
||
1160  | 
lemma Mul_interfree_Color_Target_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
|
1161  | 
  interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Append n))"
 | 
|
1162  | 
apply (unfold mul_modules)  | 
|
1163  | 
apply interfree_aux  | 
|
1164  | 
apply(tactic {* ALLGOALS Clarify_tac *})
 | 
|
1165  | 
apply(simp_all add: mul_mutator_defs nth_list_update)  | 
|
1166  | 
apply(simp add:Mul_AppendInv_def Append_to_free0)  | 
|
1167  | 
done  | 
|
1168  | 
||
1169  | 
subsubsection {* Interference freedom Collector-Mutator *}
 | 
|
1170  | 
||
1171  | 
lemmas mul_collector_mutator_interfree =  | 
|
1172  | 
Mul_interfree_Blacken_Roots_Redirect_Edge Mul_interfree_Blacken_Roots_Color_Target  | 
|
1173  | 
Mul_interfree_Propagate_Black_Redirect_Edge Mul_interfree_Propagate_Black_Color_Target  | 
|
1174  | 
Mul_interfree_Count_Redirect_Edge Mul_interfree_Count_Color_Target  | 
|
1175  | 
Mul_interfree_Append_Redirect_Edge Mul_interfree_Append_Color_Target  | 
|
1176  | 
Mul_interfree_Redirect_Edge_Blacken_Roots Mul_interfree_Color_Target_Blacken_Roots  | 
|
1177  | 
Mul_interfree_Redirect_Edge_Propagate_Black Mul_interfree_Color_Target_Propagate_Black  | 
|
1178  | 
Mul_interfree_Redirect_Edge_Count Mul_interfree_Color_Target_Count  | 
|
1179  | 
Mul_interfree_Redirect_Edge_Append Mul_interfree_Color_Target_Append  | 
|
1180  | 
||
1181  | 
lemma Mul_interfree_Collector_Mutator: "j<n \<Longrightarrow>  | 
|
1182  | 
  interfree_aux (Some (Mul_Collector n), {}, Some (Mul_Mutator j n))"
 | 
|
1183  | 
apply(unfold Mul_Collector_def Mul_Mutator_def)  | 
|
1184  | 
apply interfree_aux  | 
|
1185  | 
apply(simp_all add:mul_collector_mutator_interfree)  | 
|
1186  | 
apply(unfold mul_modules mul_collector_defs mul_mutator_defs)  | 
|
1187  | 
apply(tactic  {* TRYALL (interfree_aux_tac) *})
 | 
|
1188  | 
--{* 42 subgoals left *}
 | 
|
1189  | 
apply (clarify,simp add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)+  | 
|
1190  | 
--{* 24 subgoals left *}
 | 
|
1191  | 
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
|
1192  | 
--{* 14 subgoals left *}
 | 
|
1193  | 
apply(tactic {* TRYALL Clarify_tac *})
 | 
|
1194  | 
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
|
1195  | 
apply(tactic {* TRYALL (rtac conjI) *})
 | 
|
1196  | 
apply(tactic {* TRYALL (rtac impI) *})
 | 
|
1197  | 
apply(tactic {* TRYALL (etac disjE) *})
 | 
|
1198  | 
apply(tactic {* TRYALL (etac conjE) *})
 | 
|
1199  | 
apply(tactic {* TRYALL (etac disjE) *})
 | 
|
1200  | 
apply(tactic {* TRYALL (etac disjE) *})
 | 
|
1201  | 
--{* 72 subgoals left *}
 | 
|
1202  | 
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
|
1203  | 
--{* 35 subgoals left *}
 | 
|
1204  | 
apply(tactic {* TRYALL(EVERY'[rtac disjI1,rtac subset_trans,etac (thm "Graph3"),Force_tac, assume_tac]) *})
 | 
|
1205  | 
--{* 28 subgoals left *}
 | 
|
1206  | 
apply(tactic {* TRYALL (etac conjE) *})
 | 
|
1207  | 
apply(tactic {* TRYALL (etac disjE) *})
 | 
|
1208  | 
--{* 34 subgoals left *}
 | 
|
1209  | 
apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1210  | 
apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1211  | 
apply(tactic {* ALLGOALS(case_tac "M x!(T (Muts x ! j))=Black") *})
 | 
|
1212  | 
apply(simp_all add:Graph10)  | 
|
1213  | 
--{* 47 subgoals left *}
 | 
|
1214  | 
apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac subset_psubset_trans,etac (thm "Graph11"),Force_tac]) *})
 | 
|
1215  | 
--{* 41 subgoals left *}
 | 
|
1216  | 
apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI1, etac le_trans, force_tac (claset(),simpset() addsimps [thm "Queue_def", less_Suc_eq_le, thm "le_length_filter_update"])]) *})
 | 
|
1217  | 
--{* 35 subgoals left *}
 | 
|
1218  | 
apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac psubset_subset_trans,rtac (thm "Graph9"),Force_tac]) *})
 | 
|
1219  | 
--{* 31 subgoals left *}
 | 
|
1220  | 
apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac subset_psubset_trans,etac (thm "Graph11"),Force_tac]) *})
 | 
|
1221  | 
--{* 29 subgoals left *}
 | 
|
1222  | 
apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac subset_psubset_trans,etac subset_psubset_trans,etac (thm "Graph11"),Force_tac]) *})
 | 
|
1223  | 
--{* 25 subgoals left *}
 | 
|
1224  | 
apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI2, rtac disjI1, etac le_trans, force_tac (claset(),simpset() addsimps [thm "Queue_def", less_Suc_eq_le, thm "le_length_filter_update"])]) *})
 | 
|
1225  | 
--{* 10 subgoals left *}
 | 
|
1226  | 
apply(rule disjI2,rule disjI2,rule conjI,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update, rule disjI1, rule less_imp_le, erule less_le_trans, force simp add:Queue_def less_Suc_eq_le le_length_filter_update)+  | 
|
1227  | 
done  | 
|
1228  | 
||
1229  | 
subsubsection {* Interference freedom Mutator-Collector *}
 | 
|
1230  | 
||
1231  | 
lemma Mul_interfree_Mutator_Collector: " j < n \<Longrightarrow>  | 
|
1232  | 
  interfree_aux (Some (Mul_Mutator j n), {}, Some (Mul_Collector n))"
 | 
|
1233  | 
apply(unfold Mul_Collector_def Mul_Mutator_def)  | 
|
1234  | 
apply interfree_aux  | 
|
1235  | 
apply(simp_all add:mul_collector_mutator_interfree)  | 
|
1236  | 
apply(unfold mul_modules mul_collector_defs mul_mutator_defs)  | 
|
1237  | 
apply(tactic  {* TRYALL (interfree_aux_tac) *})
 | 
|
1238  | 
--{* 76 subgoals left *}
 | 
|
1239  | 
apply (clarify,simp add: nth_list_update)+  | 
|
1240  | 
--{* 56 subgoals left *}
 | 
|
1241  | 
apply(clarify,simp add:Mul_AppendInv_def Append_to_free0 nth_list_update)+  | 
|
1242  | 
done  | 
|
1243  | 
||
1244  | 
subsubsection {* The Multi-Mutator Garbage Collection Algorithm *}
 | 
|
1245  | 
||
1246  | 
text {* The total number of verification conditions is 328 *}
 | 
|
1247  | 
||
1248  | 
lemma Mul_Gar_Coll:  | 
|
1249  | 
 "\<parallel>- .{\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.  
 | 
|
1250  | 
COBEGIN  | 
|
1251  | 
Mul_Collector n  | 
|
1252  | 
 .{False}.
 | 
|
1253  | 
\<parallel>  | 
|
1254  | 
SCHEME [0\<le> j< n]  | 
|
1255  | 
Mul_Mutator j n  | 
|
1256  | 
 .{False}.  
 | 
|
1257  | 
COEND  | 
|
1258  | 
 .{False}."
 | 
|
1259  | 
apply oghoare  | 
|
1260  | 
--{* Strengthening the precondition *}
 | 
|
1261  | 
apply(rule Int_greatest)  | 
|
1262  | 
apply (case_tac n)  | 
|
1263  | 
apply(force simp add: Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append)  | 
|
1264  | 
apply(simp add: Mul_Mutator_def mul_collector_defs mul_mutator_defs nth_append)  | 
|
1265  | 
apply force  | 
|
1266  | 
apply clarify  | 
|
1267  | 
apply(case_tac xa)  | 
|
1268  | 
apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append)  | 
|
1269  | 
apply(simp add: Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append nth_map_upt)  | 
|
1270  | 
--{* Collector *}
 | 
|
1271  | 
apply(rule Mul_Collector)  | 
|
1272  | 
--{* Mutator *}
 | 
|
1273  | 
apply(erule Mul_Mutator)  | 
|
1274  | 
--{* Interference freedom *}
 | 
|
1275  | 
apply(simp add:Mul_interfree_Collector_Mutator)  | 
|
1276  | 
apply(simp add:Mul_interfree_Mutator_Collector)  | 
|
1277  | 
apply(simp add:Mul_interfree_Mutator_Mutator)  | 
|
1278  | 
--{* Weakening of the postcondition *}
 | 
|
1279  | 
apply(case_tac n)  | 
|
1280  | 
apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append)  | 
|
1281  | 
apply(simp add:Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append)  | 
|
1282  | 
done  | 
|
1283  | 
||
| 13187 | 1284  | 
end  |