| 13957 |      1 | (*  Title       : CSeries.thy
 | 
|  |      2 |     Author      : Jacques D. Fleuriot
 | 
|  |      3 |     Copyright   : 2002  University of Edinburgh
 | 
|  |      4 | *)
 | 
|  |      5 | 
 | 
| 14406 |      6 | header{*Finite Summation and Infinite Series for Complex Numbers*}
 | 
|  |      7 | 
 | 
| 15131 |      8 | theory CSeries
 | 
| 15140 |      9 | imports CStar
 | 
| 15131 |     10 | begin
 | 
| 13957 |     11 | 
 | 
|  |     12 | consts sumc :: "[nat,nat,(nat=>complex)] => complex"
 | 
|  |     13 | primrec
 | 
| 14406 |     14 |    sumc_0:   "sumc m 0 f = 0"
 | 
|  |     15 |    sumc_Suc: "sumc m (Suc n) f = (if n < m then 0 else sumc m n f + f(n))"
 | 
| 13957 |     16 | 
 | 
|  |     17 | (*  
 | 
|  |     18 | constdefs
 | 
|  |     19 | 
 | 
|  |     20 |    needs convergence of complex sequences  
 | 
|  |     21 | 
 | 
|  |     22 |   csums  :: [nat=>complex,complex] => bool     (infixr 80)
 | 
|  |     23 |    "f sums s  == (%n. sumr 0 n f) ----C> s"
 | 
|  |     24 |   
 | 
|  |     25 |    csummable :: (nat=>complex) => bool
 | 
|  |     26 |    "csummable f == (EX s. f csums s)"
 | 
|  |     27 | 
 | 
|  |     28 |    csuminf   :: (nat=>complex) => complex
 | 
|  |     29 |    "csuminf f == (@s. f csums s)"
 | 
|  |     30 | *)
 | 
|  |     31 | 
 | 
| 14406 |     32 | lemma sumc_Suc_zero [simp]: "sumc (Suc n) n f = 0"
 | 
| 15251 |     33 | by (induct "n", auto)
 | 
| 14406 |     34 | 
 | 
|  |     35 | lemma sumc_eq_bounds [simp]: "sumc m m f = 0"
 | 
| 15251 |     36 | by (induct "m", auto)
 | 
| 14406 |     37 | 
 | 
|  |     38 | lemma sumc_Suc_eq [simp]: "sumc m (Suc m) f = f(m)"
 | 
|  |     39 | by auto
 | 
|  |     40 | 
 | 
|  |     41 | lemma sumc_add_lbound_zero [simp]: "sumc (m+k) k f = 0"
 | 
| 15251 |     42 | by (induct "k", auto)
 | 
| 14406 |     43 | 
 | 
|  |     44 | lemma sumc_add: "sumc m n f + sumc m n g = sumc m n (%n. f n + g n)"
 | 
| 15251 |     45 | apply (induct "n")
 | 
| 14406 |     46 | apply (auto simp add: add_ac)
 | 
|  |     47 | done
 | 
|  |     48 | 
 | 
|  |     49 | lemma sumc_mult: "r * sumc m n f = sumc m n (%n. r * f n)"
 | 
| 15251 |     50 | apply (induct "n", auto)
 | 
| 14406 |     51 | apply (auto simp add: right_distrib)
 | 
|  |     52 | done
 | 
|  |     53 | 
 | 
|  |     54 | lemma sumc_split_add [rule_format]:
 | 
|  |     55 |      "n < p --> sumc 0 n f + sumc n p f = sumc 0 p f"
 | 
| 15251 |     56 | apply (induct "p") 
 | 
| 14406 |     57 | apply (auto dest!: leI dest: le_anti_sym)
 | 
|  |     58 | done
 | 
|  |     59 | 
 | 
|  |     60 | lemma sumc_split_add_minus:
 | 
|  |     61 |      "n < p ==> sumc 0 p f + - sumc 0 n f = sumc n p f"
 | 
|  |     62 | apply (drule_tac f1 = f in sumc_split_add [symmetric])
 | 
|  |     63 | apply (simp add: add_ac)
 | 
|  |     64 | done
 | 
|  |     65 | 
 | 
| 15539 |     66 | lemma sumc_cmod: "cmod(sumc m n f) \<le> (\<Sum>i=m..<n. cmod(f i))"
 | 
| 15251 |     67 | apply (induct "n")
 | 
| 14406 |     68 | apply (auto intro: complex_mod_triangle_ineq [THEN order_trans])
 | 
|  |     69 | done
 | 
|  |     70 | 
 | 
|  |     71 | lemma sumc_fun_eq [rule_format (no_asm)]:
 | 
|  |     72 |      "(\<forall>r. m \<le> r & r < n --> f r = g r) --> sumc m n f = sumc m n g"
 | 
| 15251 |     73 | by (induct "n", auto)
 | 
| 14406 |     74 | 
 | 
|  |     75 | lemma sumc_const [simp]: "sumc 0 n (%i. r) = complex_of_real (real n) * r"
 | 
| 15251 |     76 | apply (induct "n")
 | 
| 15013 |     77 | apply (auto simp add: left_distrib real_of_nat_Suc)
 | 
| 14406 |     78 | done
 | 
|  |     79 | 
 | 
|  |     80 | lemma sumc_add_mult_const:
 | 
|  |     81 |      "sumc 0 n f + -(complex_of_real(real n) * r) = sumc 0 n (%i. f i + -r)"
 | 
|  |     82 | by (simp add: sumc_add [symmetric])
 | 
|  |     83 | 
 | 
|  |     84 | lemma sumc_diff_mult_const: 
 | 
|  |     85 |      "sumc 0 n f - (complex_of_real(real n)*r) = sumc 0 n (%i. f i - r)"
 | 
|  |     86 | by (simp add: diff_minus sumc_add_mult_const)
 | 
|  |     87 | 
 | 
|  |     88 | lemma sumc_less_bounds_zero [rule_format]: "n < m --> sumc m n f = 0"
 | 
| 15251 |     89 | by (induct "n", auto)
 | 
| 14406 |     90 | 
 | 
|  |     91 | lemma sumc_minus: "sumc m n (%i. - f i) = - sumc m n f"
 | 
| 15251 |     92 | by (induct "n", auto)
 | 
| 14406 |     93 | 
 | 
|  |     94 | lemma sumc_shift_bounds: "sumc (m+k) (n+k) f = sumc m n (%i. f(i + k))"
 | 
| 15251 |     95 | by (induct "n", auto)
 | 
| 14406 |     96 | 
 | 
|  |     97 | lemma sumc_minus_one_complexpow_zero [simp]:
 | 
|  |     98 |      "sumc 0 (2*n) (%i. (-1) ^ Suc i) = 0"
 | 
| 15251 |     99 | by (induct "n", auto)
 | 
| 14406 |    100 | 
 | 
|  |    101 | lemma sumc_interval_const [rule_format (no_asm)]:
 | 
|  |    102 |      "(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na  
 | 
| 15013 |    103 |       --> sumc m na f = (complex_of_real(real (na - m)) * r)"
 | 
| 15251 |    104 | apply (induct "na")
 | 
| 15013 |    105 | apply (auto simp add: Suc_diff_le real_of_nat_Suc left_distrib)
 | 
| 14406 |    106 | done
 | 
|  |    107 | 
 | 
|  |    108 | lemma sumc_interval_const2 [rule_format (no_asm)]:
 | 
|  |    109 |      "(\<forall>n. m \<le> n --> f n = r) & m \<le> na  
 | 
|  |    110 |       --> sumc m na f = (complex_of_real(real (na - m)) * r)"
 | 
| 15251 |    111 | apply (induct "na")
 | 
| 15013 |    112 | apply (auto simp add: left_distrib Suc_diff_le real_of_nat_Suc)
 | 
| 14406 |    113 | done
 | 
|  |    114 | 
 | 
|  |    115 | (*** 
 | 
|  |    116 | Goal "(\<forall>n. m \<le> n --> 0 \<le> cmod(f n)) & m < k --> cmod(sumc 0 m f) \<le> cmod(sumc 0 k f)"
 | 
|  |    117 | by (induct_tac "k" 1)
 | 
|  |    118 | by (Step_tac 1)
 | 
|  |    119 | by (ALLGOALS(asm_full_simp_tac (simpset() addsimps [less_Suc_eq_le])));
 | 
|  |    120 | by (ALLGOALS(dres_inst_tac [("x","n")] spec));
 | 
|  |    121 | by (Step_tac 1)
 | 
|  |    122 | by (dtac le_imp_less_or_eq 1 THEN Step_tac 1)
 | 
|  |    123 | by (dtac add_mono 2)
 | 
|  |    124 | by (dres_inst_tac [("i","sumr 0 m f")] (order_refl RS add_mono) 1);
 | 
|  |    125 | by Auto_tac
 | 
|  |    126 | qed_spec_mp "sumc_le";
 | 
|  |    127 | 
 | 
|  |    128 | Goal "!!f g. (\<forall>r. m \<le> r & r < n --> f r \<le> g r) \
 | 
|  |    129 | \                --> sumc m n f \<le> sumc m n g";
 | 
|  |    130 | by (induct_tac "n" 1)
 | 
|  |    131 | by (auto_tac (claset() addIs [add_mono],
 | 
|  |    132 |     simpset() addsimps [le_def]));
 | 
|  |    133 | qed_spec_mp "sumc_le2";
 | 
|  |    134 | 
 | 
|  |    135 | Goal "(\<forall>n. 0 \<le> f n) --> 0 \<le> sumc m n f";
 | 
|  |    136 | by (induct_tac "n" 1)
 | 
|  |    137 | by Auto_tac
 | 
|  |    138 | by (dres_inst_tac [("x","n")] spec 1);
 | 
|  |    139 | by (arith_tac 1)
 | 
|  |    140 | qed_spec_mp "sumc_ge_zero";
 | 
|  |    141 | 
 | 
|  |    142 | Goal "(\<forall>n. m \<le> n --> 0 \<le> f n) --> 0 \<le> sumc m n f";
 | 
|  |    143 | by (induct_tac "n" 1)
 | 
|  |    144 | by Auto_tac
 | 
|  |    145 | by (dres_inst_tac [("x","n")] spec 1);
 | 
|  |    146 | by (arith_tac 1)
 | 
|  |    147 | qed_spec_mp "sumc_ge_zero2";
 | 
|  |    148 | ***)
 | 
|  |    149 | 
 | 
| 15539 |    150 | lemma sumr_cmod_ge_zero [iff]: "0 \<le> (\<Sum>n=m..<n::nat. cmod (f n))"
 | 
|  |    151 | by (induct "n", auto simp add: add_increasing)
 | 
| 14406 |    152 | 
 | 
|  |    153 | lemma rabs_sumc_cmod_cancel [simp]:
 | 
| 15539 |    154 |      "abs (\<Sum>n=m..<n::nat. cmod (f n)) = (\<Sum>n=m..<n. cmod (f n))"
 | 
| 14406 |    155 | by (simp add: abs_if linorder_not_less)
 | 
|  |    156 | 
 | 
|  |    157 | lemma sumc_one_lb_complexpow_zero [simp]: "sumc 1 n (%n. f(n) * 0 ^ n) = 0"
 | 
| 15251 |    158 | apply (induct "n")
 | 
| 14406 |    159 | apply (case_tac [2] "n", auto)
 | 
|  |    160 | done
 | 
|  |    161 | 
 | 
|  |    162 | lemma sumc_diff: "sumc m n f - sumc m n g = sumc m n (%n. f n - g n)"
 | 
|  |    163 | by (simp add: diff_minus sumc_add [symmetric] sumc_minus)
 | 
|  |    164 | 
 | 
|  |    165 | lemma sumc_subst [rule_format (no_asm)]:
 | 
|  |    166 |      "(\<forall>p. (m \<le> p & p < m + n --> (f p = g p))) --> sumc m n f = sumc m n g"
 | 
| 15251 |    167 | by (induct "n", auto)
 | 
| 14406 |    168 | 
 | 
|  |    169 | lemma sumc_group [simp]:
 | 
|  |    170 |      "sumc 0 n (%m. sumc (m * k) (m*k + k) f) = sumc 0 (n * k) f"
 | 
|  |    171 | apply (subgoal_tac "k = 0 | 0 < k", auto)
 | 
| 15251 |    172 | apply (induct "n")
 | 
| 14406 |    173 | apply (auto simp add: sumc_split_add add_commute)
 | 
|  |    174 | done
 | 
|  |    175 | 
 | 
|  |    176 | ML
 | 
|  |    177 | {*
 | 
|  |    178 | val sumc_Suc_zero = thm "sumc_Suc_zero";
 | 
|  |    179 | val sumc_eq_bounds = thm "sumc_eq_bounds";
 | 
|  |    180 | val sumc_Suc_eq = thm "sumc_Suc_eq";
 | 
|  |    181 | val sumc_add_lbound_zero = thm "sumc_add_lbound_zero";
 | 
|  |    182 | val sumc_add = thm "sumc_add";
 | 
|  |    183 | val sumc_mult = thm "sumc_mult";
 | 
|  |    184 | val sumc_split_add = thm "sumc_split_add";
 | 
|  |    185 | val sumc_split_add_minus = thm "sumc_split_add_minus";
 | 
|  |    186 | val sumc_cmod = thm "sumc_cmod";
 | 
|  |    187 | val sumc_fun_eq = thm "sumc_fun_eq";
 | 
|  |    188 | val sumc_const = thm "sumc_const";
 | 
|  |    189 | val sumc_add_mult_const = thm "sumc_add_mult_const";
 | 
|  |    190 | val sumc_diff_mult_const = thm "sumc_diff_mult_const";
 | 
|  |    191 | val sumc_less_bounds_zero = thm "sumc_less_bounds_zero";
 | 
|  |    192 | val sumc_minus = thm "sumc_minus";
 | 
|  |    193 | val sumc_shift_bounds = thm "sumc_shift_bounds";
 | 
|  |    194 | val sumc_minus_one_complexpow_zero = thm "sumc_minus_one_complexpow_zero";
 | 
|  |    195 | val sumc_interval_const = thm "sumc_interval_const";
 | 
|  |    196 | val sumc_interval_const2 = thm "sumc_interval_const2";
 | 
|  |    197 | val sumr_cmod_ge_zero = thm "sumr_cmod_ge_zero";
 | 
|  |    198 | val rabs_sumc_cmod_cancel = thm "rabs_sumc_cmod_cancel";
 | 
|  |    199 | val sumc_one_lb_complexpow_zero = thm "sumc_one_lb_complexpow_zero";
 | 
|  |    200 | val sumc_diff = thm "sumc_diff";
 | 
|  |    201 | val sumc_subst = thm "sumc_subst";
 | 
|  |    202 | val sumc_group = thm "sumc_group";
 | 
|  |    203 | *}
 | 
|  |    204 | 
 | 
| 13957 |    205 | end
 | 
|  |    206 | 
 |