| author | huffman | 
| Tue, 27 Mar 2012 15:40:11 +0200 | |
| changeset 47162 | 9d7d919b9fd8 | 
| parent 44766 | d4d33a4d7548 | 
| child 47163 | 248376f8881d | 
| permissions | -rw-r--r-- | 
| 38159 | 1  | 
(* Title: HOL/Old_Number_Theory/IntPrimes.thy  | 
2  | 
Author: Thomas M. Rasmussen  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
3  | 
Copyright 2000 University of Cambridge  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
6  | 
header {* Divisibility and prime numbers (on integers) *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
7  | 
|
| 25596 | 8  | 
theory IntPrimes  | 
| 38159 | 9  | 
imports Primes  | 
| 25596 | 10  | 
begin  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
11  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
12  | 
text {*
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
13  | 
  The @{text dvd} relation, GCD, Euclid's extended algorithm, primes,
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
14  | 
  congruences (all on the Integers).  Comparable to theory @{text
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
15  | 
  Primes}, but @{text dvd} is included here as it is not present in
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
16  | 
main HOL. Also includes extended GCD and congruences not present in  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
17  | 
  @{text Primes}.
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
18  | 
*}  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
19  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
20  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
21  | 
subsection {* Definitions *}
 | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
22  | 
|
| 38159 | 23  | 
fun xzgcda :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int => (int * int * int)"  | 
| 35440 | 24  | 
where  | 
25  | 
"xzgcda m n r' r s' s t' t =  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32479 
diff
changeset
 | 
26  | 
(if r \<le> 0 then (r', s', t')  | 
| 35440 | 27  | 
else xzgcda m n r (r' mod r)  | 
28  | 
s (s' - (r' div r) * s)  | 
|
29  | 
t (t' - (r' div r) * t))"  | 
|
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
30  | 
|
| 38159 | 31  | 
definition zprime :: "int \<Rightarrow> bool"  | 
32  | 
where "zprime p = (1 < p \<and> (\<forall>m. 0 <= m & m dvd p --> m = 1 \<or> m = p))"  | 
|
| 13833 | 33  | 
|
| 38159 | 34  | 
definition xzgcd :: "int => int => int * int * int"  | 
35  | 
where "xzgcd m n = xzgcda m n m n 1 0 0 1"  | 
|
| 13833 | 36  | 
|
| 38159 | 37  | 
definition zcong :: "int => int => int => bool"  ("(1[_ = _] '(mod _'))")
 | 
38  | 
where "[a = b] (mod m) = (m dvd (a - b))"  | 
|
39  | 
||
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
40  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
41  | 
subsection {* Euclid's Algorithm and GCD *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
42  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
43  | 
|
| 13833 | 44  | 
lemma zrelprime_zdvd_zmult_aux:  | 
| 27556 | 45  | 
"zgcd n k = 1 ==> k dvd m * n ==> 0 \<le> m ==> k dvd m"  | 
| 44766 | 46  | 
by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs mult_1_right)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
47  | 
|
| 27556 | 48  | 
lemma zrelprime_zdvd_zmult: "zgcd n k = 1 ==> k dvd m * n ==> k dvd m"  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
49  | 
apply (case_tac "0 \<le> m")  | 
| 13524 | 50  | 
apply (blast intro: zrelprime_zdvd_zmult_aux)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
51  | 
apply (subgoal_tac "k dvd -m")  | 
| 13833 | 52  | 
apply (rule_tac [2] zrelprime_zdvd_zmult_aux, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
53  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
54  | 
|
| 27556 | 55  | 
lemma zgcd_geq_zero: "0 <= zgcd x y"  | 
| 13833 | 56  | 
by (auto simp add: zgcd_def)  | 
57  | 
||
| 
13837
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
58  | 
text{*This is merely a sanity check on zprime, since the previous version
 | 
| 
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
59  | 
denoted the empty set.*}  | 
| 16663 | 60  | 
lemma "zprime 2"  | 
| 
13837
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
61  | 
apply (auto simp add: zprime_def)  | 
| 
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
62  | 
apply (frule zdvd_imp_le, simp)  | 
| 
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
63  | 
apply (auto simp add: order_le_less dvd_def)  | 
| 
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
64  | 
done  | 
| 
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
65  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
66  | 
lemma zprime_imp_zrelprime:  | 
| 27556 | 67  | 
"zprime p ==> \<not> p dvd n ==> zgcd n p = 1"  | 
| 13833 | 68  | 
apply (auto simp add: zprime_def)  | 
| 30042 | 69  | 
apply (metis zgcd_geq_zero zgcd_zdvd1 zgcd_zdvd2)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
70  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
71  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
72  | 
lemma zless_zprime_imp_zrelprime:  | 
| 27556 | 73  | 
"zprime p ==> 0 < n ==> n < p ==> zgcd n p = 1"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
74  | 
apply (erule zprime_imp_zrelprime)  | 
| 13833 | 75  | 
apply (erule zdvd_not_zless, assumption)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
76  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
77  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
78  | 
lemma zprime_zdvd_zmult:  | 
| 16663 | 79  | 
"0 \<le> (m::int) ==> zprime p ==> p dvd m * n ==> p dvd m \<or> p dvd n"  | 
| 27569 | 80  | 
by (metis zgcd_zdvd1 zgcd_zdvd2 zgcd_pos zprime_def zrelprime_dvd_mult)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
81  | 
|
| 27556 | 82  | 
lemma zgcd_zadd_zmult [simp]: "zgcd (m + n * k) n = zgcd m n"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
83  | 
apply (rule zgcd_eq [THEN trans])  | 
| 29948 | 84  | 
apply (simp add: mod_add_eq)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
85  | 
apply (rule zgcd_eq [symmetric])  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
86  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
87  | 
|
| 27556 | 88  | 
lemma zgcd_zdvd_zgcd_zmult: "zgcd m n dvd zgcd (k * m) n"  | 
| 30042 | 89  | 
by (simp add: zgcd_greatest_iff)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
90  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
91  | 
lemma zgcd_zmult_zdvd_zgcd:  | 
| 27569 | 92  | 
"zgcd k n = 1 ==> zgcd (k * m) n dvd zgcd m n"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
93  | 
apply (simp add: zgcd_greatest_iff)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
94  | 
apply (rule_tac n = k in zrelprime_zdvd_zmult)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
95  | 
prefer 2  | 
| 44766 | 96  | 
apply (simp add: mult_commute)  | 
| 23839 | 97  | 
apply (metis zgcd_1 zgcd_commute zgcd_left_commute)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
98  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
99  | 
|
| 27556 | 100  | 
lemma zgcd_zmult_cancel: "zgcd k n = 1 ==> zgcd (k * m) n = zgcd m n"  | 
| 13833 | 101  | 
by (simp add: zgcd_def nat_abs_mult_distrib gcd_mult_cancel)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
102  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
103  | 
lemma zgcd_zgcd_zmult:  | 
| 27569 | 104  | 
"zgcd k m = 1 ==> zgcd n m = 1 ==> zgcd (k * n) m = 1"  | 
| 13833 | 105  | 
by (simp add: zgcd_zmult_cancel)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
106  | 
|
| 27556 | 107  | 
lemma zdvd_iff_zgcd: "0 < m ==> m dvd n \<longleftrightarrow> zgcd n m = m"  | 
| 47162 | 108  | 
by (metis abs_of_pos dvd_mult_div_cancel zgcd_0 zgcd_commute zgcd_geq_zero zgcd_zdvd2 zgcd_zmult_eq_self)  | 
| 23839 | 109  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
110  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
111  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
112  | 
subsection {* Congruences *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
113  | 
|
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
114  | 
lemma zcong_1 [simp]: "[a = b] (mod 1)"  | 
| 13833 | 115  | 
by (unfold zcong_def, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
116  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
117  | 
lemma zcong_refl [simp]: "[k = k] (mod m)"  | 
| 13833 | 118  | 
by (unfold zcong_def, auto)  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
119  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
120  | 
lemma zcong_sym: "[a = b] (mod m) = [b = a] (mod m)"  | 
| 30042 | 121  | 
unfolding zcong_def minus_diff_eq [of a, symmetric] dvd_minus_iff ..  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
122  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
123  | 
lemma zcong_zadd:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
124  | 
"[a = b] (mod m) ==> [c = d] (mod m) ==> [a + c = b + d] (mod m)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
125  | 
apply (unfold zcong_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
126  | 
apply (rule_tac s = "(a - b) + (c - d)" in subst)  | 
| 30042 | 127  | 
apply (rule_tac [2] dvd_add, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
128  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
129  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
130  | 
lemma zcong_zdiff:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
131  | 
"[a = b] (mod m) ==> [c = d] (mod m) ==> [a - c = b - d] (mod m)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
132  | 
apply (unfold zcong_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
133  | 
apply (rule_tac s = "(a - b) - (c - d)" in subst)  | 
| 30042 | 134  | 
apply (rule_tac [2] dvd_diff, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
135  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
136  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
137  | 
lemma zcong_trans:  | 
| 29925 | 138  | 
"[a = b] (mod m) ==> [b = c] (mod m) ==> [a = c] (mod m)"  | 
139  | 
unfolding zcong_def by (auto elim!: dvdE simp add: algebra_simps)  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
140  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
141  | 
lemma zcong_zmult:  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
142  | 
"[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
143  | 
apply (rule_tac b = "b * c" in zcong_trans)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
144  | 
apply (unfold zcong_def)  | 
| 44766 | 145  | 
apply (metis right_diff_distrib dvd_mult mult_commute)  | 
146  | 
apply (metis right_diff_distrib dvd_mult)  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
147  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
148  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
149  | 
lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)"  | 
| 13833 | 150  | 
by (rule zcong_zmult, simp_all)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
151  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
152  | 
lemma zcong_scalar2: "[a = b] (mod m) ==> [k * a = k * b] (mod m)"  | 
| 13833 | 153  | 
by (rule zcong_zmult, simp_all)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
154  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
155  | 
lemma zcong_zmult_self: "[a * m = b * m] (mod m)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
156  | 
apply (unfold zcong_def)  | 
| 30042 | 157  | 
apply (rule dvd_diff, simp_all)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
158  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
159  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
160  | 
lemma zcong_square:  | 
| 16663 | 161  | 
"[| zprime p; 0 < a; [a * a = 1] (mod p)|]  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
162  | 
==> [a = 1] (mod p) \<or> [a = p - 1] (mod p)"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
163  | 
apply (unfold zcong_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
164  | 
apply (rule zprime_zdvd_zmult)  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
165  | 
apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
166  | 
prefer 4  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
167  | 
apply (simp add: zdvd_reduce)  | 
| 44766 | 168  | 
apply (simp_all add: left_diff_distrib mult_commute right_diff_distrib)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
169  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
170  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
171  | 
lemma zcong_cancel:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
172  | 
"0 \<le> m ==>  | 
| 27556 | 173  | 
zgcd k m = 1 ==> [a * k = b * k] (mod m) = [a = b] (mod m)"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
174  | 
apply safe  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
175  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
176  | 
apply (blast intro: zcong_scalar)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
177  | 
apply (case_tac "b < a")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
178  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
179  | 
apply (subst zcong_sym)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
180  | 
apply (unfold zcong_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
181  | 
apply (rule_tac [!] zrelprime_zdvd_zmult)  | 
| 44766 | 182  | 
apply (simp_all add: left_diff_distrib)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
183  | 
apply (subgoal_tac "m dvd (-(a * k - b * k))")  | 
| 14271 | 184  | 
apply simp  | 
| 30042 | 185  | 
apply (subst dvd_minus_iff, assumption)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
186  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
187  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
188  | 
lemma zcong_cancel2:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
189  | 
"0 \<le> m ==>  | 
| 27556 | 190  | 
zgcd k m = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)"  | 
| 44766 | 191  | 
by (simp add: mult_commute zcong_cancel)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
192  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
193  | 
lemma zcong_zgcd_zmult_zmod:  | 
| 27556 | 194  | 
"[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd m n = 1  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
195  | 
==> [a = b] (mod m * n)"  | 
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
27569 
diff
changeset
 | 
196  | 
apply (auto simp add: zcong_def dvd_def)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
197  | 
apply (subgoal_tac "m dvd n * ka")  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
198  | 
apply (subgoal_tac "m dvd ka")  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
199  | 
apply (case_tac [2] "0 \<le> ka")  | 
| 47162 | 200  | 
apply (metis dvd_mult_div_cancel dvd_refl dvd_mult_left mult_commute zrelprime_zdvd_zmult)  | 
| 44766 | 201  | 
apply (metis abs_dvd_iff abs_of_nonneg add_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs mult_1_right mult_commute)  | 
202  | 
apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff order_antisym linorder_linear order_refl mult_commute zrelprime_zdvd_zmult)  | 
|
| 30042 | 203  | 
apply (metis dvd_triv_left)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
204  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
205  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
206  | 
lemma zcong_zless_imp_eq:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
207  | 
"0 \<le> a ==>  | 
| 
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
208  | 
a < m ==> 0 \<le> b ==> b < m ==> [a = b] (mod m) ==> a = b"  | 
| 13833 | 209  | 
apply (unfold zcong_def dvd_def, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
210  | 
apply (drule_tac f = "\<lambda>z. z mod m" in arg_cong)  | 
| 44766 | 211  | 
apply (metis diff_add_cancel mod_pos_pos_trivial add_0 add_commute zmod_eq_0_iff mod_add_right_eq)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
212  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
213  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
214  | 
lemma zcong_square_zless:  | 
| 16663 | 215  | 
"zprime p ==> 0 < a ==> a < p ==>  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
216  | 
[a * a = 1] (mod p) ==> a = 1 \<or> a = p - 1"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
217  | 
apply (cut_tac p = p and a = a in zcong_square)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
218  | 
apply (simp add: zprime_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
219  | 
apply (auto intro: zcong_zless_imp_eq)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
220  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
221  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
222  | 
lemma zcong_not:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
223  | 
"0 < a ==> a < m ==> 0 < b ==> b < a ==> \<not> [a = b] (mod m)"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
224  | 
apply (unfold zcong_def)  | 
| 13833 | 225  | 
apply (rule zdvd_not_zless, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
226  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
227  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
228  | 
lemma zcong_zless_0:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
229  | 
"0 \<le> a ==> a < m ==> [a = 0] (mod m) ==> a = 0"  | 
| 13833 | 230  | 
apply (unfold zcong_def dvd_def, auto)  | 
| 30042 | 231  | 
apply (metis div_pos_pos_trivial linorder_not_less div_mult_self1_is_id)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
232  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
233  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
234  | 
lemma zcong_zless_unique:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
235  | 
"0 < m ==> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
236  | 
apply auto  | 
| 23839 | 237  | 
prefer 2 apply (metis zcong_sym zcong_trans zcong_zless_imp_eq)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
238  | 
apply (unfold zcong_def dvd_def)  | 
| 13833 | 239  | 
apply (rule_tac x = "a mod m" in exI, auto)  | 
| 23839 | 240  | 
apply (metis zmult_div_cancel)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
241  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
242  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
243  | 
lemma zcong_iff_lin: "([a = b] (mod m)) = (\<exists>k. b = a + m * k)"  | 
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
27569 
diff
changeset
 | 
244  | 
unfolding zcong_def  | 
| 29667 | 245  | 
apply (auto elim!: dvdE simp add: algebra_simps)  | 
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
27569 
diff
changeset
 | 
246  | 
apply (rule_tac x = "-k" in exI) apply simp  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
247  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
248  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
249  | 
lemma zgcd_zcong_zgcd:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
250  | 
"0 < m ==>  | 
| 27556 | 251  | 
zgcd a m = 1 ==> [a = b] (mod m) ==> zgcd b m = 1"  | 
| 13833 | 252  | 
by (auto simp add: zcong_iff_lin)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
253  | 
|
| 13833 | 254  | 
lemma zcong_zmod_aux:  | 
255  | 
"a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)"  | 
|
| 44766 | 256  | 
by(simp add: right_diff_distrib add_diff_eq eq_diff_eq add_ac)  | 
| 13517 | 257  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
258  | 
lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
259  | 
apply (unfold zcong_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
260  | 
apply (rule_tac t = "a - b" in ssubst)  | 
| 
14174
 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 
ballarin 
parents: 
13837 
diff
changeset
 | 
261  | 
apply (rule_tac m = m in zcong_zmod_aux)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
262  | 
apply (rule trans)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
263  | 
apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce)  | 
| 44766 | 264  | 
apply (simp add: add_commute)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
265  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
266  | 
|
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
267  | 
lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
268  | 
apply auto  | 
| 23839 | 269  | 
apply (metis pos_mod_conj zcong_zless_imp_eq zcong_zmod)  | 
270  | 
apply (metis zcong_refl zcong_zmod)  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
271  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
272  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
273  | 
lemma zcong_zminus [iff]: "[a = b] (mod -m) = [a = b] (mod m)"  | 
| 13833 | 274  | 
by (auto simp add: zcong_def)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
275  | 
|
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
276  | 
lemma zcong_zero [iff]: "[a = b] (mod 0) = (a = b)"  | 
| 13833 | 277  | 
by (auto simp add: zcong_def)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
278  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
279  | 
lemma "[a = b] (mod m) = (a mod m = b mod m)"  | 
| 41541 | 280  | 
apply (cases "m = 0", simp)  | 
| 13193 | 281  | 
apply (simp add: linorder_neq_iff)  | 
282  | 
apply (erule disjE)  | 
|
283  | 
prefer 2 apply (simp add: zcong_zmod_eq)  | 
|
284  | 
  txt{*Remainding case: @{term "m<0"}*}
 | 
|
| 44766 | 285  | 
apply (rule_tac t = m in minus_minus [THEN subst])  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
286  | 
apply (subst zcong_zminus)  | 
| 13833 | 287  | 
apply (subst zcong_zmod_eq, arith)  | 
| 13193 | 288  | 
apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b])  | 
| 13788 | 289  | 
apply (simp add: zmod_zminus2_eq_if del: neg_mod_bound)  | 
| 13193 | 290  | 
done  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
291  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
292  | 
subsection {* Modulo *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
293  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
294  | 
lemma zmod_zdvd_zmod:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
295  | 
"0 < (m::int) ==> m dvd b ==> (a mod b mod m) = (a mod m)"  | 
| 30034 | 296  | 
by (rule mod_mod_cancel)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
297  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
298  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
299  | 
subsection {* Extended GCD *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
300  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
301  | 
declare xzgcda.simps [simp del]  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
302  | 
|
| 13524 | 303  | 
lemma xzgcd_correct_aux1:  | 
| 27556 | 304  | 
"zgcd r' r = k --> 0 < r -->  | 
| 35440 | 305  | 
(\<exists>sn tn. xzgcda m n r' r s' s t' t = (k, sn, tn))"  | 
306  | 
apply (induct m n r' r s' s t' t rule: xzgcda.induct)  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
307  | 
apply (subst zgcd_eq)  | 
| 13833 | 308  | 
apply (subst xzgcda.simps, auto)  | 
| 24759 | 309  | 
apply (case_tac "r' mod r = 0")  | 
310  | 
prefer 2  | 
|
311  | 
apply (frule_tac a = "r'" in pos_mod_sign, auto)  | 
|
312  | 
apply (rule exI)  | 
|
313  | 
apply (rule exI)  | 
|
314  | 
apply (subst xzgcda.simps, auto)  | 
|
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
315  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
316  | 
|
| 13524 | 317  | 
lemma xzgcd_correct_aux2:  | 
| 35440 | 318  | 
"(\<exists>sn tn. xzgcda m n r' r s' s t' t = (k, sn, tn)) --> 0 < r -->  | 
| 27556 | 319  | 
zgcd r' r = k"  | 
| 35440 | 320  | 
apply (induct m n r' r s' s t' t rule: xzgcda.induct)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
321  | 
apply (subst zgcd_eq)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
322  | 
apply (subst xzgcda.simps)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
323  | 
apply (auto simp add: linorder_not_le)  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
324  | 
apply (case_tac "r' mod r = 0")  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
325  | 
prefer 2  | 
| 13833 | 326  | 
apply (frule_tac a = "r'" in pos_mod_sign, auto)  | 
| 44766 | 327  | 
apply (metis Pair_eq xzgcda.simps order_refl)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
328  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
329  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
330  | 
lemma xzgcd_correct:  | 
| 27569 | 331  | 
"0 < n ==> (zgcd m n = k) = (\<exists>s t. xzgcd m n = (k, s, t))"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
332  | 
apply (unfold xzgcd_def)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
333  | 
apply (rule iffI)  | 
| 13524 | 334  | 
apply (rule_tac [2] xzgcd_correct_aux2 [THEN mp, THEN mp])  | 
| 13833 | 335  | 
apply (rule xzgcd_correct_aux1 [THEN mp, THEN mp], auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
336  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
337  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
338  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
339  | 
text {* \medskip @{term xzgcd} linear *}
 | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
340  | 
|
| 13524 | 341  | 
lemma xzgcda_linear_aux1:  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
342  | 
"(a - r * b) * m + (c - r * d) * (n::int) =  | 
| 13833 | 343  | 
(a * m + c * n) - r * (b * m + d * n)"  | 
| 44766 | 344  | 
by (simp add: left_diff_distrib right_distrib mult_assoc)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
345  | 
|
| 13524 | 346  | 
lemma xzgcda_linear_aux2:  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
347  | 
"r' = s' * m + t' * n ==> r = s * m + t * n  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
348  | 
==> (r' mod r) = (s' - (r' div r) * s) * m + (t' - (r' div r) * t) * (n::int)"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
349  | 
apply (rule trans)  | 
| 13524 | 350  | 
apply (rule_tac [2] xzgcda_linear_aux1 [symmetric])  | 
| 14271 | 351  | 
apply (simp add: eq_diff_eq mult_commute)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
352  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
353  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
354  | 
lemma order_le_neq_implies_less: "(x::'a::order) \<le> y ==> x \<noteq> y ==> x < y"  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
355  | 
by (rule iffD2 [OF order_less_le conjI])  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
356  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
357  | 
lemma xzgcda_linear [rule_format]:  | 
| 35440 | 358  | 
"0 < r --> xzgcda m n r' r s' s t' t = (rn, sn, tn) -->  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
359  | 
r' = s' * m + t' * n --> r = s * m + t * n --> rn = sn * m + tn * n"  | 
| 35440 | 360  | 
apply (induct m n r' r s' s t' t rule: xzgcda.induct)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
361  | 
apply (subst xzgcda.simps)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
362  | 
apply (simp (no_asm))  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
363  | 
apply (rule impI)+  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
364  | 
apply (case_tac "r' mod r = 0")  | 
| 13833 | 365  | 
apply (simp add: xzgcda.simps, clarify)  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
366  | 
apply (subgoal_tac "0 < r' mod r")  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
367  | 
apply (rule_tac [2] order_le_neq_implies_less)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
368  | 
apply (rule_tac [2] pos_mod_sign)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
369  | 
apply (cut_tac m = m and n = n and r' = r' and r = r and s' = s' and  | 
| 13833 | 370  | 
s = s and t' = t' and t = t in xzgcda_linear_aux2, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
371  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
372  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
373  | 
lemma xzgcd_linear:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
374  | 
"0 < n ==> xzgcd m n = (r, s, t) ==> r = s * m + t * n"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
375  | 
apply (unfold xzgcd_def)  | 
| 
13837
 
8dd150d36c65
Reorganized, moving many results about the integer dvd relation from IntPrimes
 
paulson 
parents: 
13833 
diff
changeset
 | 
376  | 
apply (erule xzgcda_linear, assumption, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
377  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
378  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
379  | 
lemma zgcd_ex_linear:  | 
| 27556 | 380  | 
"0 < n ==> zgcd m n = k ==> (\<exists>s t. k = s * m + t * n)"  | 
| 13833 | 381  | 
apply (simp add: xzgcd_correct, safe)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
382  | 
apply (rule exI)+  | 
| 13833 | 383  | 
apply (erule xzgcd_linear, auto)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
384  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
385  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
386  | 
lemma zcong_lineq_ex:  | 
| 27556 | 387  | 
"0 < n ==> zgcd a n = 1 ==> \<exists>x. [a * x = 1] (mod n)"  | 
| 13833 | 388  | 
apply (cut_tac m = a and n = n and k = 1 in zgcd_ex_linear, safe)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
389  | 
apply (rule_tac x = s in exI)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
390  | 
apply (rule_tac b = "s * a + t * n" in zcong_trans)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
391  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
392  | 
apply simp  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
393  | 
apply (unfold zcong_def)  | 
| 44766 | 394  | 
apply (simp (no_asm) add: mult_commute)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
395  | 
done  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
396  | 
|
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
397  | 
lemma zcong_lineq_unique:  | 
| 
11868
 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 
paulson 
parents: 
11701 
diff
changeset
 | 
398  | 
"0 < n ==>  | 
| 27556 | 399  | 
zgcd a n = 1 ==> \<exists>!x. 0 \<le> x \<and> x < n \<and> [a * x = b] (mod n)"  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
400  | 
apply auto  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
401  | 
apply (rule_tac [2] zcong_zless_imp_eq)  | 
| 39159 | 402  | 
       apply (tactic {* stac (@{thm zcong_cancel2} RS sym) 6 *})
 | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
403  | 
apply (rule_tac [8] zcong_trans)  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
404  | 
apply (simp_all (no_asm_simp))  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
405  | 
prefer 2  | 
| 
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
406  | 
apply (simp add: zcong_sym)  | 
| 13833 | 407  | 
apply (cut_tac a = a and n = n in zcong_lineq_ex, auto)  | 
408  | 
apply (rule_tac x = "x * b mod n" in exI, safe)  | 
|
| 13788 | 409  | 
apply (simp_all (no_asm_simp))  | 
| 44766 | 410  | 
apply (metis zcong_scalar zcong_zmod zmod_zmult1_eq mult_1 mult_assoc)  | 
| 
11049
 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 
wenzelm 
parents: 
10147 
diff
changeset
 | 
411  | 
done  | 
| 
9508
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
412  | 
|
| 
 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 
paulson 
parents:  
diff
changeset
 | 
413  | 
end  |