| author | blanchet | 
| Tue, 09 Sep 2014 20:51:36 +0200 | |
| changeset 58255 | 9dfe8506c04d | 
| parent 57512 | cc97b347b301 | 
| child 60974 | 6a6f15d8fbc4 | 
| permissions | -rw-r--r-- | 
| 47613 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
3  | 
theory Abs_Int1  | 
|
4  | 
imports Abs_State  | 
|
5  | 
begin  | 
|
6  | 
||
7  | 
subsection "Computable Abstract Interpretation"  | 
|
8  | 
||
| 51390 | 9  | 
text{* Abstract interpretation over type @{text st} instead of functions. *}
 | 
| 47613 | 10  | 
|
| 52504 | 11  | 
context Gamma_semilattice  | 
| 47613 | 12  | 
begin  | 
13  | 
||
14  | 
fun aval' :: "aexp \<Rightarrow> 'av st \<Rightarrow> 'av" where  | 
|
| 50896 | 15  | 
"aval' (N i) S = num' i" |  | 
| 47613 | 16  | 
"aval' (V x) S = fun S x" |  | 
17  | 
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"  | 
|
18  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
19  | 
lemma aval'_correct: "s : \<gamma>\<^sub>s S \<Longrightarrow> aval a s : \<gamma>(aval' a S)"  | 
| 47613 | 20  | 
by (induction a) (auto simp: gamma_num' gamma_plus' \<gamma>_st_def)  | 
21  | 
||
| 51390 | 22  | 
lemma gamma_Step_subcomm: fixes C1 C2 :: "'a::semilattice_sup acom"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
23  | 
assumes "!!x e S. f1 x e (\<gamma>\<^sub>o S) \<subseteq> \<gamma>\<^sub>o (f2 x e S)"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
24  | 
"!!b S. g1 b (\<gamma>\<^sub>o S) \<subseteq> \<gamma>\<^sub>o (g2 b S)"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
25  | 
shows "Step f1 g1 (\<gamma>\<^sub>o S) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (Step f2 g2 S C)"  | 
| 51390 | 26  | 
proof(induction C arbitrary: S)  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
27  | 
qed (auto simp: assms intro!: mono_gamma_o sup_ge1 sup_ge2)  | 
| 51390 | 28  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
29  | 
lemma in_gamma_update: "\<lbrakk> s : \<gamma>\<^sub>s S; i : \<gamma> a \<rbrakk> \<Longrightarrow> s(x := i) : \<gamma>\<^sub>s(update S x a)"  | 
| 51390 | 30  | 
by(simp add: \<gamma>_st_def)  | 
31  | 
||
| 47613 | 32  | 
end  | 
33  | 
||
| 51390 | 34  | 
|
| 52504 | 35  | 
locale Abs_Int = Gamma_semilattice where \<gamma>=\<gamma>  | 
| 51826 | 36  | 
for \<gamma> :: "'av::semilattice_sup_top \<Rightarrow> val set"  | 
| 47613 | 37  | 
begin  | 
38  | 
||
| 51390 | 39  | 
definition "step' = Step  | 
| 51389 | 40  | 
(\<lambda>x e S. case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S)))  | 
41  | 
(\<lambda>b S. S)"  | 
|
42  | 
||
| 47613 | 43  | 
definition AI :: "com \<Rightarrow> 'av st option acom option" where  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
44  | 
"AI c = pfp (step' \<top>) (bot c)"  | 
| 47613 | 45  | 
|
46  | 
||
47  | 
lemma strip_step'[simp]: "strip(step' S C) = strip C"  | 
|
| 51390 | 48  | 
by(simp add: step'_def)  | 
| 47613 | 49  | 
|
50  | 
||
| 51974 | 51  | 
text{* Correctness: *}
 | 
| 47613 | 52  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
53  | 
lemma step_step': "step (\<gamma>\<^sub>o S) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' S C)"  | 
| 51390 | 54  | 
unfolding step_def step'_def  | 
55  | 
by(rule gamma_Step_subcomm)  | 
|
| 51974 | 56  | 
(auto simp: intro!: aval'_correct in_gamma_update split: option.splits)  | 
| 47613 | 57  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
58  | 
lemma AI_correct: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c C"  | 
| 47613 | 59  | 
proof(simp add: CS_def AI_def)  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
60  | 
assume 1: "pfp (step' \<top>) (bot c) = Some C"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
61  | 
have pfp': "step' \<top> C \<le> C" by(rule pfp_pfp[OF 1])  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
62  | 
have 2: "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c C" --"transfer the pfp'"  | 
| 50986 | 63  | 
proof(rule order_trans)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
64  | 
show "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' \<top> C)" by(rule step_step')  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
65  | 
show "... \<le> \<gamma>\<^sub>c C" by (metis mono_gamma_c[OF pfp'])  | 
| 47613 | 66  | 
qed  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
67  | 
have 3: "strip (\<gamma>\<^sub>c C) = c" by(simp add: strip_pfp[OF _ 1] step'_def)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
68  | 
have "lfp c (step (\<gamma>\<^sub>o \<top>)) \<le> \<gamma>\<^sub>c C"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
69  | 
by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^sub>o \<top>)", OF 3 2])  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
70  | 
thus "lfp c (step UNIV) \<le> \<gamma>\<^sub>c C" by simp  | 
| 47613 | 71  | 
qed  | 
72  | 
||
73  | 
end  | 
|
74  | 
||
75  | 
||
76  | 
subsubsection "Monotonicity"  | 
|
77  | 
||
78  | 
locale Abs_Int_mono = Abs_Int +  | 
|
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51036 
diff
changeset
 | 
79  | 
assumes mono_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> plus' a1 a2 \<le> plus' b1 b2"  | 
| 47613 | 80  | 
begin  | 
81  | 
||
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
82  | 
lemma mono_aval': "S1 \<le> S2 \<Longrightarrow> aval' e S1 \<le> aval' e S2"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
83  | 
by(induction e) (auto simp: mono_plus' mono_fun)  | 
| 47613 | 84  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
85  | 
theorem mono_step': "S1 \<le> S2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> step' S1 C1 \<le> step' S2 C2"  | 
| 51390 | 86  | 
unfolding step'_def  | 
87  | 
by(rule mono2_Step) (auto simp: mono_aval' split: option.split)  | 
|
| 47613 | 88  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
89  | 
lemma mono_step'_top: "C \<le> C' \<Longrightarrow> step' \<top> C \<le> step' \<top> C'"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
90  | 
by (metis mono_step' order_refl)  | 
| 47613 | 91  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
92  | 
lemma AI_least_pfp: assumes "AI c = Some C" "step' \<top> C' \<le> C'" "strip C' = c"  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51036 
diff
changeset
 | 
93  | 
shows "C \<le> C'"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
94  | 
by(rule pfp_bot_least[OF _ _ assms(2,3) assms(1)[unfolded AI_def]])  | 
| 51390 | 95  | 
(simp_all add: mono_step'_top)  | 
| 49464 | 96  | 
|
| 47613 | 97  | 
end  | 
98  | 
||
99  | 
||
100  | 
subsubsection "Termination"  | 
|
101  | 
||
| 49547 | 102  | 
locale Measure1 =  | 
| 55010 | 103  | 
fixes m :: "'av::order_top \<Rightarrow> nat"  | 
| 47613 | 104  | 
fixes h :: "nat"  | 
105  | 
assumes h: "m x \<le> h"  | 
|
106  | 
begin  | 
|
107  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
108  | 
definition m_s :: "'av st \<Rightarrow> vname set \<Rightarrow> nat" ("m\<^sub>s") where
 | 
| 51791 | 109  | 
"m_s S X = (\<Sum> x \<in> X. m(fun S x))"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
110  | 
|
| 51791 | 111  | 
lemma m_s_h: "finite X \<Longrightarrow> m_s S X \<le> h * card X"  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
55010 
diff
changeset
 | 
112  | 
by(simp add: m_s_def) (metis mult.commute of_nat_id setsum_bounded[OF h])  | 
| 47613 | 113  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
114  | 
definition m_o :: "'av st option \<Rightarrow> vname set \<Rightarrow> nat" ("m\<^sub>o") where
 | 
| 51791 | 115  | 
"m_o opt X = (case opt of None \<Rightarrow> h * card X + 1 | Some S \<Rightarrow> m_s S X)"  | 
| 49431 | 116  | 
|
| 51791 | 117  | 
lemma m_o_h: "finite X \<Longrightarrow> m_o opt X \<le> (h*card X + 1)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
118  | 
by(auto simp add: m_o_def m_s_h le_SucI split: option.split dest:m_s_h)  | 
| 47613 | 119  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
120  | 
definition m_c :: "'av st option acom \<Rightarrow> nat" ("m\<^sub>c") where
 | 
| 51791 | 121  | 
"m_c C = listsum (map (\<lambda>a. m_o a (vars C)) (annos C))"  | 
| 49431 | 122  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
123  | 
text{* Upper complexity bound: *}
 | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
124  | 
lemma m_c_h: "m_c C \<le> size(annos C) * (h * card(vars C) + 1)"  | 
| 49431 | 125  | 
proof-  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
126  | 
let ?X = "vars C" let ?n = "card ?X" let ?a = "size(annos C)"  | 
| 51791 | 127  | 
have "m_c C = (\<Sum>i<?a. m_o (annos C ! i) ?X)"  | 
| 51786 | 128  | 
by(simp add: m_c_def listsum_setsum_nth atLeast0LessThan)  | 
| 49431 | 129  | 
also have "\<dots> \<le> (\<Sum>i<?a. h * ?n + 1)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
130  | 
apply(rule setsum_mono) using m_o_h[OF finite_Cvars] by simp  | 
| 49431 | 131  | 
also have "\<dots> = ?a * (h * ?n + 1)" by simp  | 
132  | 
finally show ?thesis .  | 
|
133  | 
qed  | 
|
134  | 
||
| 49547 | 135  | 
end  | 
136  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
137  | 
fun top_on_st :: "'a::order_top st \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>s") where
 | 
| 51785 | 138  | 
"top_on_st S X = (\<forall>x\<in>X. fun S x = \<top>)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
139  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
140  | 
fun top_on_opt :: "'a::order_top st option \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>o") where
 | 
| 51785 | 141  | 
"top_on_opt (Some S) X = top_on_st S X" |  | 
142  | 
"top_on_opt None X = True"  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
143  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52729 
diff
changeset
 | 
144  | 
definition top_on_acom :: "'a::order_top st option acom \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>c") where
 | 
| 51785 | 145  | 
"top_on_acom C X = (\<forall>a \<in> set(annos C). top_on_opt a X)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
146  | 
|
| 51785 | 147  | 
lemma top_on_top: "top_on_opt (\<top>::_ st option) X"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
148  | 
by(auto simp: top_option_def fun_top)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
149  | 
|
| 51785 | 150  | 
lemma top_on_bot: "top_on_acom (bot c) X"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
151  | 
by(auto simp add: top_on_acom_def bot_def)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
152  | 
|
| 51785 | 153  | 
lemma top_on_post: "top_on_acom C X \<Longrightarrow> top_on_opt (post C) X"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
154  | 
by(simp add: top_on_acom_def post_in_annos)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
155  | 
|
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
156  | 
lemma top_on_acom_simps:  | 
| 51785 | 157  | 
  "top_on_acom (SKIP {Q}) X = top_on_opt Q X"
 | 
158  | 
  "top_on_acom (x ::= e {Q}) X = top_on_opt Q X"
 | 
|
| 
52046
 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 
nipkow 
parents: 
51974 
diff
changeset
 | 
159  | 
"top_on_acom (C1;;C2) X = (top_on_acom C1 X \<and> top_on_acom C2 X)"  | 
| 51785 | 160  | 
  "top_on_acom (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) X =
 | 
161  | 
(top_on_opt P1 X \<and> top_on_acom C1 X \<and> top_on_opt P2 X \<and> top_on_acom C2 X \<and> top_on_opt Q X)"  | 
|
162  | 
  "top_on_acom ({I} WHILE b DO {P} C {Q}) X =
 | 
|
163  | 
(top_on_opt I X \<and> top_on_acom C X \<and> top_on_opt P X \<and> top_on_opt Q X)"  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
164  | 
by(auto simp add: top_on_acom_def)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
165  | 
|
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
166  | 
lemma top_on_sup:  | 
| 51785 | 167  | 
"top_on_opt o1 X \<Longrightarrow> top_on_opt o2 X \<Longrightarrow> top_on_opt (o1 \<squnion> o2 :: _ st option) X"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
168  | 
apply(induction o1 o2 rule: sup_option.induct)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
169  | 
apply(auto)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
170  | 
by transfer simp  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
171  | 
|
| 51826 | 172  | 
lemma top_on_Step: fixes C :: "('a::semilattice_sup_top)st option acom"
 | 
| 51785 | 173  | 
assumes "!!x e S. \<lbrakk>top_on_opt S X; x \<notin> X; vars e \<subseteq> -X\<rbrakk> \<Longrightarrow> top_on_opt (f x e S) X"  | 
174  | 
"!!b S. top_on_opt S X \<Longrightarrow> vars b \<subseteq> -X \<Longrightarrow> top_on_opt (g b S) X"  | 
|
175  | 
shows "\<lbrakk> vars C \<subseteq> -X; top_on_opt S X; top_on_acom C X \<rbrakk> \<Longrightarrow> top_on_acom (Step f g S C) X"  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
176  | 
proof(induction C arbitrary: S)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
177  | 
qed (auto simp: top_on_acom_simps vars_acom_def top_on_post top_on_sup assms)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
178  | 
|
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
179  | 
|
| 49547 | 180  | 
locale Measure = Measure1 +  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51036 
diff
changeset
 | 
181  | 
assumes m2: "x < y \<Longrightarrow> m x > m y"  | 
| 49547 | 182  | 
begin  | 
183  | 
||
| 51372 | 184  | 
lemma m1: "x \<le> y \<Longrightarrow> m x \<ge> m y"  | 
185  | 
by(auto simp: le_less m2)  | 
|
186  | 
||
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
187  | 
lemma m_s2_rep: assumes "finite(X)" and "S1 = S2 on -X" and "\<forall>x. S1 x \<le> S2 x" and "S1 \<noteq> S2"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
188  | 
shows "(\<Sum>x\<in>X. m (S2 x)) < (\<Sum>x\<in>X. m (S1 x))"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
189  | 
proof-  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
190  | 
from assms(3) have 1: "\<forall>x\<in>X. m(S1 x) \<ge> m(S2 x)" by (simp add: m1)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
191  | 
from assms(2,3,4) have "EX x:X. S1 x < S2 x"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
192  | 
by(simp add: fun_eq_iff) (metis Compl_iff le_neq_trans)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
193  | 
hence 2: "\<exists>x\<in>X. m(S1 x) > m(S2 x)" by (metis m2)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
194  | 
from setsum_strict_mono_ex1[OF `finite X` 1 2]  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
195  | 
show "(\<Sum>x\<in>X. m (S2 x)) < (\<Sum>x\<in>X. m (S1 x))" .  | 
| 49547 | 196  | 
qed  | 
197  | 
||
| 51791 | 198  | 
lemma m_s2: "finite(X) \<Longrightarrow> fun S1 = fun S2 on -X  | 
199  | 
\<Longrightarrow> S1 < S2 \<Longrightarrow> m_s S1 X > m_s S2 X"  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
200  | 
apply(auto simp add: less_st_def m_s_def)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
201  | 
apply (transfer fixing: m)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
202  | 
apply(simp add: less_eq_st_rep_iff eq_st_def m_s2_rep)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
203  | 
done  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
204  | 
|
| 51785 | 205  | 
lemma m_o2: "finite X \<Longrightarrow> top_on_opt o1 (-X) \<Longrightarrow> top_on_opt o2 (-X) \<Longrightarrow>  | 
| 51791 | 206  | 
o1 < o2 \<Longrightarrow> m_o o1 X > m_o o2 X"  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51036 
diff
changeset
 | 
207  | 
proof(induction o1 o2 rule: less_eq_option.induct)  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
208  | 
case 1 thus ?case by (auto simp: m_o_def m_s2 less_option_def)  | 
| 49547 | 209  | 
next  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51036 
diff
changeset
 | 
210  | 
case 2 thus ?case by(auto simp: m_o_def less_option_def le_imp_less_Suc m_s_h)  | 
| 49547 | 211  | 
next  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51036 
diff
changeset
 | 
212  | 
case 3 thus ?case by (auto simp: less_option_def)  | 
| 49547 | 213  | 
qed  | 
214  | 
||
| 51785 | 215  | 
lemma m_o1: "finite X \<Longrightarrow> top_on_opt o1 (-X) \<Longrightarrow> top_on_opt o2 (-X) \<Longrightarrow>  | 
| 51791 | 216  | 
o1 \<le> o2 \<Longrightarrow> m_o o1 X \<ge> m_o o2 X"  | 
| 51372 | 217  | 
by(auto simp: le_less m_o2)  | 
218  | 
||
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
219  | 
|
| 51785 | 220  | 
lemma m_c2: "top_on_acom C1 (-vars C1) \<Longrightarrow> top_on_acom C2 (-vars C2) \<Longrightarrow>  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51036 
diff
changeset
 | 
221  | 
C1 < C2 \<Longrightarrow> m_c C1 > m_c C2"  | 
| 51786 | 222  | 
proof(auto simp add: le_iff_le_annos size_annos_same[of C1 C2] vars_acom_def less_acom_def)  | 
| 49396 | 223  | 
let ?X = "vars(strip C2)"  | 
| 51785 | 224  | 
assume top: "top_on_acom C1 (- vars(strip C2))" "top_on_acom C2 (- vars(strip C2))"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
225  | 
and strip_eq: "strip C1 = strip C2"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
226  | 
and 0: "\<forall>i<size(annos C2). annos C1 ! i \<le> annos C2 ! i"  | 
| 51791 | 227  | 
hence 1: "\<forall>i<size(annos C2). m_o (annos C1 ! i) ?X \<ge> m_o (annos C2 ! i) ?X"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
228  | 
apply (auto simp: all_set_conv_all_nth vars_acom_def top_on_acom_def)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
229  | 
by (metis finite_cvars m_o1 size_annos_same2)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
230  | 
fix i assume i: "i < size(annos C2)" "\<not> annos C2 ! i \<le> annos C1 ! i"  | 
| 51785 | 231  | 
have topo1: "top_on_opt (annos C1 ! i) (- ?X)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
232  | 
using i(1) top(1) by(simp add: top_on_acom_def size_annos_same[OF strip_eq])  | 
| 51785 | 233  | 
have topo2: "top_on_opt (annos C2 ! i) (- ?X)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
234  | 
using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF strip_eq])  | 
| 51791 | 235  | 
from i have "m_o (annos C1 ! i) ?X > m_o (annos C2 ! i) ?X" (is "?P i")  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
236  | 
by (metis 0 less_option_def m_o2[OF finite_cvars topo1] topo2)  | 
| 49396 | 237  | 
hence 2: "\<exists>i < size(annos C2). ?P i" using `i < size(annos C2)` by blast  | 
| 51791 | 238  | 
have "(\<Sum>i<size(annos C2). m_o (annos C2 ! i) ?X)  | 
239  | 
< (\<Sum>i<size(annos C2). m_o (annos C1 ! i) ?X)"  | 
|
| 47613 | 240  | 
apply(rule setsum_strict_mono_ex1) using 1 2 by (auto)  | 
| 51786 | 241  | 
thus ?thesis  | 
242  | 
by(simp add: m_c_def vars_acom_def strip_eq listsum_setsum_nth atLeast0LessThan size_annos_same[OF strip_eq])  | 
|
| 47613 | 243  | 
qed  | 
244  | 
||
| 49547 | 245  | 
end  | 
246  | 
||
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
247  | 
|
| 49547 | 248  | 
locale Abs_Int_measure =  | 
249  | 
Abs_Int_mono where \<gamma>=\<gamma> + Measure where m=m  | 
|
| 51826 | 250  | 
for \<gamma> :: "'av::semilattice_sup_top \<Rightarrow> val set" and m :: "'av \<Rightarrow> nat"  | 
| 49547 | 251  | 
begin  | 
252  | 
||
| 51785 | 253  | 
lemma top_on_step': "\<lbrakk> top_on_acom C (-vars C) \<rbrakk> \<Longrightarrow> top_on_acom (step' \<top> C) (-vars C)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
254  | 
unfolding step'_def  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
255  | 
by(rule top_on_Step)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
256  | 
(auto simp add: top_option_def fun_top split: option.splits)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
257  | 
|
| 47613 | 258  | 
lemma AI_Some_measure: "\<exists>C. AI c = Some C"  | 
259  | 
unfolding AI_def  | 
|
| 51785 | 260  | 
apply(rule pfp_termination[where I = "\<lambda>C. top_on_acom C (- vars C)" and m="m_c"])  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
261  | 
apply(simp_all add: m_c2 mono_step'_top bot_least top_on_bot)  | 
| 51785 | 262  | 
using top_on_step' apply(auto simp add: vars_acom_def)  | 
| 47613 | 263  | 
done  | 
264  | 
||
265  | 
end  | 
|
266  | 
||
267  | 
end  |