| 
27468
 | 
     1  | 
(*  Title       : CStar.thy
  | 
| 
 | 
     2  | 
    Author      : Jacques D. Fleuriot
  | 
| 
 | 
     3  | 
    Copyright   : 2001 University of Edinburgh
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header{*Star-transforms in NSA, Extending Sets of Complex Numbers
 | 
| 
 | 
     7  | 
      and Complex Functions*}
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory CStar
  | 
| 
 | 
    10  | 
imports NSCA
  | 
| 
 | 
    11  | 
begin
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
subsection{*Properties of the *-Transform Applied to Sets of Reals*}
 | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
lemma STARC_hcomplex_of_complex_Int:
  | 
| 
 | 
    16  | 
     "*s* X Int SComplex = hcomplex_of_complex ` X"
  | 
| 
 | 
    17  | 
by (auto simp add: Standard_def)
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
lemma lemma_not_hcomplexA:
  | 
| 
 | 
    20  | 
     "x \<notin> hcomplex_of_complex ` A ==> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
  | 
| 
 | 
    21  | 
by auto
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
subsection{*Theorems about Nonstandard Extensions of Functions*}
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
lemma starfunC_hcpow: "!!Z. ( *f* (%z. z ^ n)) Z = Z pow hypnat_of_nat n"
  | 
| 
 | 
    26  | 
by transfer (rule refl)
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma starfunCR_cmod: "*f* cmod = hcmod"
  | 
| 
 | 
    29  | 
by transfer (rule refl)
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
subsection{*Internal Functions - Some Redundancy With *f* Now*}
 | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
(** subtraction: ( *fn) - ( *gn) = *(fn - gn) **)
  | 
| 
 | 
    34  | 
(*
  | 
| 
 | 
    35  | 
lemma starfun_n_diff:
  | 
| 
 | 
    36  | 
   "( *fn* f) z - ( *fn* g) z = ( *fn* (%i x. f i x - g i x)) z"
  | 
| 
 | 
    37  | 
apply (cases z)
  | 
| 
 | 
    38  | 
apply (simp add: starfun_n star_n_diff)
  | 
| 
 | 
    39  | 
done
  | 
| 
 | 
    40  | 
*)
  | 
| 
 | 
    41  | 
(** composition: ( *fn) o ( *gn) = *(fn o gn) **)
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma starfun_Re: "( *f* (\<lambda>x. Re (f x))) = (\<lambda>x. hRe (( *f* f) x))"
  | 
| 
 | 
    44  | 
by transfer (rule refl)
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma starfun_Im: "( *f* (\<lambda>x. Im (f x))) = (\<lambda>x. hIm (( *f* f) x))"
  | 
| 
 | 
    47  | 
by transfer (rule refl)
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
lemma starfunC_eq_Re_Im_iff:
  | 
| 
 | 
    50  | 
    "(( *f* f) x = z) = ((( *f* (%x. Re(f x))) x = hRe (z)) &
  | 
| 
 | 
    51  | 
                          (( *f* (%x. Im(f x))) x = hIm (z)))"
  | 
| 
 | 
    52  | 
by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma starfunC_approx_Re_Im_iff:
  | 
| 
 | 
    55  | 
    "(( *f* f) x @= z) = ((( *f* (%x. Re(f x))) x @= hRe (z)) &
  | 
| 
 | 
    56  | 
                            (( *f* (%x. Im(f x))) x @= hIm (z)))"
  | 
| 
 | 
    57  | 
by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
end
  |