src/HOL/Analysis/Arcwise_Connected.thy
author wenzelm
Sat, 13 Aug 2022 18:06:30 +0200
changeset 75848 9e4c0aaa30aa
parent 73932 fd21b4a93043
child 77943 ffdad62bc235
permissions -rw-r--r--
clarified signature;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     1
(*  Title:      HOL/Analysis/Arcwise_Connected.thy
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     2
    Authors:    LC Paulson, based on material from HOL Light
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     3
*)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
69517
dc20f278e8f3 tuned style and headers
nipkow
parents: 69313
diff changeset
     5
section \<open>Arcwise-Connected Sets\<close>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     6
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
theory Arcwise_Connected
69517
dc20f278e8f3 tuned style and headers
nipkow
parents: 69313
diff changeset
     8
imports Path_Connected Ordered_Euclidean_Space "HOL-Computational_Algebra.Primes"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     9
begin
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
71025
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70817
diff changeset
    11
lemma path_connected_interval [simp]:
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70817
diff changeset
    12
  fixes a b::"'a::ordered_euclidean_space"
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70817
diff changeset
    13
  shows "path_connected {a..b}"
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70817
diff changeset
    14
  using is_interval_cc is_interval_path_connected by blast
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70817
diff changeset
    15
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    16
lemma segment_to_closest_point:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    17
  fixes S :: "'a :: euclidean_space set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    18
  shows "\<lbrakk>closed S; S \<noteq> {}\<rbrakk> \<Longrightarrow> open_segment a (closest_point S a) \<inter> S = {}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
    19
  unfolding disjoint_iff
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
    20
  by (metis closest_point_le dist_commute dist_in_open_segment not_le)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    21
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    22
lemma segment_to_point_exists:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    23
  fixes S :: "'a :: euclidean_space set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    24
    assumes "closed S" "S \<noteq> {}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    25
    obtains b where "b \<in> S" "open_segment a b \<inter> S = {}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    26
  by (metis assms segment_to_closest_point closest_point_exists that)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    27
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents: 71025
diff changeset
    28
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
    29
subsection \<open>The Brouwer reduction theorem\<close>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    30
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
    31
theorem Brouwer_reduction_theorem_gen:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    32
  fixes S :: "'a::euclidean_space set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    33
  assumes "closed S" "\<phi> S"
69745
aec42cee2521 more canonical and less specialized syntax
nipkow
parents: 69683
diff changeset
    34
      and \<phi>: "\<And>F. \<lbrakk>\<And>n. closed(F n); \<And>n. \<phi>(F n); \<And>n. F(Suc n) \<subseteq> F n\<rbrakk> \<Longrightarrow> \<phi>(\<Inter>(range F))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    35
  obtains T where "T \<subseteq> S" "closed T" "\<phi> T" "\<And>U. \<lbrakk>U \<subseteq> S; closed U; \<phi> U\<rbrakk> \<Longrightarrow> \<not> (U \<subset> T)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
    36
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    37
  obtain B :: "nat \<Rightarrow> 'a set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    38
    where "inj B" "\<And>n. open(B n)" and open_cov: "\<And>S. open S \<Longrightarrow> \<exists>K. S = \<Union>(B ` K)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    39
      by (metis Setcompr_eq_image that univ_second_countable_sequence)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    40
  define A where "A \<equiv> rec_nat S (\<lambda>n a. if \<exists>U. U \<subseteq> a \<and> closed U \<and> \<phi> U \<and> U \<inter> (B n) = {}
67613
ce654b0e6d69 more symbols;
wenzelm
parents: 66912
diff changeset
    41
                                        then SOME U. U \<subseteq> a \<and> closed U \<and> \<phi> U \<and> U \<inter> (B n) = {}
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    42
                                        else a)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    43
  have [simp]: "A 0 = S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    44
    by (simp add: A_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    45
  have ASuc: "A(Suc n) = (if \<exists>U. U \<subseteq> A n \<and> closed U \<and> \<phi> U \<and> U \<inter> (B n) = {}
67613
ce654b0e6d69 more symbols;
wenzelm
parents: 66912
diff changeset
    46
                          then SOME U. U \<subseteq> A n \<and> closed U \<and> \<phi> U \<and> U \<inter> (B n) = {}
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    47
                          else A n)" for n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    48
    by (auto simp: A_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    49
  have sub: "\<And>n. A(Suc n) \<subseteq> A n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    50
    by (auto simp: ASuc dest!: someI_ex)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    51
  have subS: "A n \<subseteq> S" for n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    52
    by (induction n) (use sub in auto)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    53
  have clo: "closed (A n) \<and> \<phi> (A n)" for n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    54
    by (induction n) (auto simp: assms ASuc dest!: someI_ex)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    55
  show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    56
  proof
69745
aec42cee2521 more canonical and less specialized syntax
nipkow
parents: 69683
diff changeset
    57
    show "\<Inter>(range A) \<subseteq> S"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    58
      using \<open>\<And>n. A n \<subseteq> S\<close> by blast
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
    59
    show "closed (\<Inter>(A ` UNIV))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    60
      using clo by blast
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
    61
    show "\<phi> (\<Inter>(A ` UNIV))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    62
      by (simp add: clo \<phi> sub)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
    63
    show "\<not> U \<subset> \<Inter>(A ` UNIV)" if "U \<subseteq> S" "closed U" "\<phi> U" for U
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
    proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    65
      have "\<exists>y. x \<notin> A y" if "x \<notin> U" and Usub: "U \<subseteq> (\<Inter>x. A x)" for x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    66
      proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
        obtain e where "e > 0" and e: "ball x e \<subseteq> -U"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    68
          using \<open>closed U\<close> \<open>x \<notin> U\<close> openE [of "-U"] by blast
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
    69
        moreover obtain K where K: "ball x e = \<Union>(B ` K)"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    70
          using open_cov [of "ball x e"] by auto
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
    71
        ultimately have "\<Union>(B ` K) \<subseteq> -U"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    72
          by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    73
        have "K \<noteq> {}"
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
    74
          using \<open>0 < e\<close> \<open>ball x e = \<Union>(B ` K)\<close> by auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    75
        then obtain n where "n \<in> K" "x \<in> B n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    76
          by (metis K UN_E \<open>0 < e\<close> centre_in_ball)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
        then have "U \<inter> B n = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    78
          using K e by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
        show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    80
        proof (cases "\<exists>U\<subseteq>A n. closed U \<and> \<phi> U \<and> U \<inter> B n = {}")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    81
          case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    83
            apply (rule_tac x="Suc n" in exI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    84
            apply (simp add: ASuc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    85
            apply (erule someI2_ex)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    86
            using \<open>x \<in> B n\<close> by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    87
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    88
          case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    89
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    90
            by (meson Inf_lower Usub \<open>U \<inter> B n = {}\<close> \<open>\<phi> U\<close> \<open>closed U\<close> range_eqI subset_trans)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    93
      with that show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    94
        by (meson Inter_iff psubsetE rangeI subsetI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    97
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
    99
corollary Brouwer_reduction_theorem:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   100
  fixes S :: "'a::euclidean_space set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
  assumes "compact S" "\<phi> S" "S \<noteq> {}"
69745
aec42cee2521 more canonical and less specialized syntax
nipkow
parents: 69683
diff changeset
   102
      and \<phi>: "\<And>F. \<lbrakk>\<And>n. compact(F n); \<And>n. F n \<noteq> {}; \<And>n. \<phi>(F n); \<And>n. F(Suc n) \<subseteq> F n\<rbrakk> \<Longrightarrow> \<phi>(\<Inter>(range F))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
  obtains T where "T \<subseteq> S" "compact T" "T \<noteq> {}" "\<phi> T"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
                  "\<And>U. \<lbrakk>U \<subseteq> S; closed U; U \<noteq> {}; \<phi> U\<rbrakk> \<Longrightarrow> \<not> (U \<subset> T)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   105
proof (rule Brouwer_reduction_theorem_gen [of S "\<lambda>T. T \<noteq> {} \<and> T \<subseteq> S \<and> \<phi> T"])
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   106
  fix F
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   107
  assume cloF: "\<And>n. closed (F n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
     and F: "\<And>n. F n \<noteq> {} \<and> F n \<subseteq> S \<and> \<phi> (F n)" and Fsub: "\<And>n. F (Suc n) \<subseteq> F n"
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
   109
  show "\<Inter>(F ` UNIV) \<noteq> {} \<and> \<Inter>(F ` UNIV) \<subseteq> S \<and> \<phi> (\<Inter>(F ` UNIV))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   110
  proof (intro conjI)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
   111
    show "\<Inter>(F ` UNIV) \<noteq> {}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   112
      by (metis F Fsub \<open>compact S\<close> cloF closed_Int_compact compact_nest inf.orderE lift_Suc_antimono_le)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
   113
    show " \<Inter>(F ` UNIV) \<subseteq> S"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   114
      using F by blast
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
   115
    show "\<phi> (\<Inter>(F ` UNIV))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
      by (metis F Fsub \<phi> \<open>compact S\<close> cloF closed_Int_compact inf.orderE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   119
  show "S \<noteq> {} \<and> S \<subseteq> S \<and> \<phi> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
    by (simp add: assms)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
qed (meson assms compact_imp_closed seq_compact_closed_subset seq_compact_eq_compact)+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69922
diff changeset
   124
subsection\<^marker>\<open>tag unimportant\<close>\<open>Arcwise Connections\<close>(*FIX ME this subsection is empty(?) *)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   125
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
   126
subsection\<open>Density of points with dyadic rational coordinates\<close>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   127
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   128
proposition closure_dyadic_rationals:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
    "closure (\<Union>k. \<Union>f \<in> Basis \<rightarrow> \<int>.
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   130
                   { \<Sum>i :: 'a :: euclidean_space \<in> Basis. (f i / 2^k) *\<^sub>R i }) = UNIV"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   131
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   132
  have "x \<in> closure (\<Union>k. \<Union>f \<in> Basis \<rightarrow> \<int>. {\<Sum>i \<in> Basis. (f i / 2^k) *\<^sub>R i})" for x::'a
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
  proof (clarsimp simp: closure_approachable)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   134
    fix e::real
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   135
    assume "e > 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
    then obtain k where k: "(1/2)^k < e/DIM('a)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
      by (meson DIM_positive divide_less_eq_1_pos of_nat_0_less_iff one_less_numeral_iff real_arch_pow_inv semiring_norm(76) zero_less_divide_iff zero_less_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
    have "dist (\<Sum>i\<in>Basis. (real_of_int \<lfloor>2^k*(x \<bullet> i)\<rfloor> / 2^k) *\<^sub>R i) x =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
          dist (\<Sum>i\<in>Basis. (real_of_int \<lfloor>2^k*(x \<bullet> i)\<rfloor> / 2^k) *\<^sub>R i) (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   140
      by (simp add: euclidean_representation)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   141
    also have "... = norm ((\<Sum>i\<in>Basis. (real_of_int \<lfloor>2^k*(x \<bullet> i)\<rfloor> / 2^k) *\<^sub>R i - (x \<bullet> i) *\<^sub>R i))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   142
      by (simp add: dist_norm sum_subtractf)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
    also have "... \<le> DIM('a)*((1/2)^k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
    proof (rule sum_norm_bound, simp add: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   145
      fix i::'a
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
      assume "i \<in> Basis"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
      then have "norm ((real_of_int \<lfloor>x \<bullet> i*2^k\<rfloor> / 2^k) *\<^sub>R i - (x \<bullet> i) *\<^sub>R i) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   148
                 \<bar>real_of_int \<lfloor>x \<bullet> i*2^k\<rfloor> / 2^k - x \<bullet> i\<bar>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   149
        by (simp add: scaleR_left_diff_distrib [symmetric])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   150
      also have "... \<le> (1/2) ^ k"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   151
        by (simp add: divide_simps) linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   152
      finally show "norm ((real_of_int \<lfloor>x \<bullet> i*2^k\<rfloor> / 2^k) *\<^sub>R i - (x \<bullet> i) *\<^sub>R i) \<le> (1/2) ^ k" .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   153
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
    also have "... < DIM('a)*(e/DIM('a))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
      using DIM_positive k linordered_comm_semiring_strict_class.comm_mult_strict_left_mono of_nat_0_less_iff by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
    also have "... = e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   157
      by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   158
    finally have "dist (\<Sum>i\<in>Basis. (\<lfloor>2^k*(x \<bullet> i)\<rfloor> / 2^k) *\<^sub>R i) x < e" .
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   159
    with Ints_of_int
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   160
    show "\<exists>k. \<exists>f \<in> Basis \<rightarrow> \<int>. dist (\<Sum>b\<in>Basis. (f b / 2^k) *\<^sub>R b) x < e"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   161
      by fastforce
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   162
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   163
  then show ?thesis by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   164
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   165
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   166
corollary closure_rational_coordinates:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   167
    "closure (\<Union>f \<in> Basis \<rightarrow> \<rat>. { \<Sum>i :: 'a :: euclidean_space \<in> Basis. f i *\<^sub>R i }) = UNIV"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   168
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
  have *: "(\<Union>k. \<Union>f \<in> Basis \<rightarrow> \<int>. { \<Sum>i::'a \<in> Basis. (f i / 2^k) *\<^sub>R i })
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   170
           \<subseteq> (\<Union>f \<in> Basis \<rightarrow> \<rat>. { \<Sum>i \<in> Basis. f i *\<^sub>R i })"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
  proof clarsimp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
    fix k and f :: "'a \<Rightarrow> real"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   173
    assume f: "f \<in> Basis \<rightarrow> \<int>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   174
    show "\<exists>x \<in> Basis \<rightarrow> \<rat>. (\<Sum>i \<in> Basis. (f i / 2^k) *\<^sub>R i) = (\<Sum>i \<in> Basis. x i *\<^sub>R i)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
      apply (rule_tac x="\<lambda>i. f i / 2^k" in bexI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   176
      using Ints_subset_Rats f by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   177
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   178
  show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   179
    using closure_dyadic_rationals closure_mono [OF *] by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   180
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   181
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   182
lemma closure_dyadic_rationals_in_convex_set:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   183
   "\<lbrakk>convex S; interior S \<noteq> {}\<rbrakk>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   184
        \<Longrightarrow> closure(S \<inter>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   185
                    (\<Union>k. \<Union>f \<in> Basis \<rightarrow> \<int>.
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   186
                   { \<Sum>i :: 'a :: euclidean_space \<in> Basis. (f i / 2^k) *\<^sub>R i })) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   187
            closure S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   188
  by (simp add: closure_dyadic_rationals closure_convex_Int_superset)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   189
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   190
lemma closure_rationals_in_convex_set:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   191
   "\<lbrakk>convex S; interior S \<noteq> {}\<rbrakk>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   192
    \<Longrightarrow> closure(S \<inter> (\<Union>f \<in> Basis \<rightarrow> \<rat>. { \<Sum>i :: 'a :: euclidean_space \<in> Basis. f i *\<^sub>R i })) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   193
        closure S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   194
  by (simp add: closure_rational_coordinates closure_convex_Int_superset)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   195
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   196
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   197
text\<open> Every path between distinct points contains an arc, and hence
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   198
path connection is equivalent to arcwise connection for distinct points.
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   199
The proof is based on Whyburn's "Topological Analysis".\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   200
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   201
lemma closure_dyadic_rationals_in_convex_set_pos_1:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   202
  fixes S :: "real set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   203
  assumes "convex S" and intnz: "interior S \<noteq> {}" and pos: "\<And>x. x \<in> S \<Longrightarrow> 0 \<le> x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   204
    shows "closure(S \<inter> (\<Union>k m. {of_nat m / 2^k})) = closure S"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   205
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   206
  have "\<exists>m. f 1/2^k = real m / 2^k" if "(f 1) / 2^k \<in> S" "f 1 \<in> \<int>" for k and f :: "real \<Rightarrow> real"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   207
    using that by (force simp: Ints_def zero_le_divide_iff power_le_zero_eq dest: pos zero_le_imp_eq_int)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   208
  then have "S \<inter> (\<Union>k m. {real m / 2^k}) = S \<inter>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   209
             (\<Union>k. \<Union>f\<in>Basis \<rightarrow> \<int>. {\<Sum>i\<in>Basis. (f i / 2^k) *\<^sub>R i})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   210
    by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   211
  then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   212
    using closure_dyadic_rationals_in_convex_set [OF \<open>convex S\<close> intnz] by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   213
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   214
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   215
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69922
diff changeset
   216
definition\<^marker>\<open>tag unimportant\<close> dyadics :: "'a::field_char_0 set" where "dyadics \<equiv> \<Union>k m. {of_nat m / 2^k}"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   217
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   218
lemma real_in_dyadics [simp]: "real m \<in> dyadics"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   219
  by (simp add: dyadics_def) (metis divide_numeral_1 numeral_One power_0)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   220
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   221
lemma nat_neq_4k1: "of_nat m \<noteq> (4 * of_nat k + 1) / (2 * 2^n :: 'a::field_char_0)"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   222
proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   223
  assume "of_nat m = (4 * of_nat k + 1) / (2 * 2^n :: 'a)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   224
  then have "of_nat (m * (2 * 2^n)) = (of_nat (Suc (4 * k)) :: 'a)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   225
    by (simp add: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   226
  then have "m * (2 * 2^n) = Suc (4 * k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   227
    using of_nat_eq_iff by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   228
  then have "odd (m * (2 * 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   229
    by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   230
  then show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   231
    by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   232
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   233
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   234
lemma nat_neq_4k3: "of_nat m \<noteq> (4 * of_nat k + 3) / (2 * 2^n :: 'a::field_char_0)"
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   235
proof
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   236
  assume "of_nat m = (4 * of_nat k + 3) / (2 * 2^n :: 'a)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   237
  then have "of_nat (m * (2 * 2^n)) = (of_nat (4 * k + 3) :: 'a)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   238
    by (simp add: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   239
  then have "m * (2 * 2^n) = (4 * k) + 3"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   240
    using of_nat_eq_iff by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   241
  then have "odd (m * (2 * 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   242
    by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   243
  then show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   244
    by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   245
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   246
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   247
lemma iff_4k:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   248
  assumes "r = real k" "odd k"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   249
    shows "(4 * real m + r) / (2 * 2^n) = (4 * real m' + r) / (2 * 2 ^ n') \<longleftrightarrow> m=m' \<and> n=n'"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   250
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   251
  { assume "(4 * real m + r) / (2 * 2^n) = (4 * real m' + r) / (2 * 2 ^ n')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   252
    then have "real ((4 * m + k) * (2 * 2 ^ n')) = real ((4 * m' + k) * (2 * 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   253
      using assms by (auto simp: field_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   254
    then have "(4 * m + k) * (2 * 2 ^ n') = (4 * m' + k) * (2 * 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   255
      using of_nat_eq_iff by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   256
    then have "(4 * m + k) * (2 ^ n') = (4 * m' + k) * (2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   257
      by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   258
    then obtain "4*m + k = 4*m' + k" "n=n'"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   259
      using prime_power_cancel2 [OF two_is_prime_nat] assms
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   260
      by (metis even_mult_iff even_numeral odd_add)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   261
    then have "m=m'" "n=n'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   262
      by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   263
  }
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   264
  then show ?thesis by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   265
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   266
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   267
lemma neq_4k1_k43: "(4 * real m + 1) / (2 * 2^n) \<noteq> (4 * real m' + 3) / (2 * 2 ^ n')"
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   268
proof
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   269
  assume "(4 * real m + 1) / (2 * 2^n) = (4 * real m' + 3) / (2 * 2 ^ n')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   270
  then have "real (Suc (4 * m) * (2 * 2 ^ n')) = real ((4 * m' + 3) * (2 * 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   271
    by (auto simp: field_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   272
  then have "Suc (4 * m) * (2 * 2 ^ n') = (4 * m' + 3) * (2 * 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   273
    using of_nat_eq_iff by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   274
  then have "Suc (4 * m) * (2 ^ n') = (4 * m' + 3) * (2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   275
    by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   276
  then have "Suc (4 * m) = (4 * m' + 3)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   277
    by (rule prime_power_cancel2 [OF two_is_prime_nat]) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   278
  then have "1 + 2 * m' = 2 * m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   279
    using \<open>Suc (4 * m) = 4 * m' + 3\<close> by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   280
  then show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   281
    using even_Suc by presburger
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   282
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   283
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   284
lemma dyadic_413_cases:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   285
  obtains "(of_nat m::'a::field_char_0) / 2^k \<in> Nats"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   286
  | m' k' where "k' < k" "(of_nat m:: 'a) / 2^k = of_nat (4*m' + 1) / 2^Suc k'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   287
  | m' k' where "k' < k" "(of_nat m:: 'a) / 2^k = of_nat (4*m' + 3) / 2^Suc k'"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   288
proof (cases "m>0")
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   289
  case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   290
  then have "m=0" by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   291
  with that show ?thesis by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   292
next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   293
  case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   294
  obtain k' m' where m': "odd m'" and k': "m = m' * 2^k'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   295
    using prime_power_canonical [OF two_is_prime_nat True] by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   296
  then obtain q r where q: "m' = 4*q + r" and r: "r < 4"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   297
    by (metis not_add_less2 split_div zero_neq_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   298
  show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   299
  proof (cases "k \<le> k'")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   300
    case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   301
    have "(of_nat m:: 'a) / 2^k = of_nat m' * (2 ^ k' / 2^k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   302
      using k' by (simp add: field_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   303
    also have "... = (of_nat m'::'a) * 2 ^ (k'-k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   304
      using k' True by (simp add: power_diff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   305
    also have "... \<in> \<nat>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   306
      by (metis Nats_mult of_nat_in_Nats of_nat_numeral of_nat_power)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   307
    finally show ?thesis by (auto simp: that)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   308
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   309
    case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   310
    then obtain kd where kd: "Suc kd = k - k'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   311
      using Suc_diff_Suc not_less by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   312
    have "(of_nat m:: 'a) / 2^k = of_nat m' * (2 ^ k' / 2^k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   313
      using k' by (simp add: field_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   314
    also have "... = (of_nat m'::'a) / 2 ^ (k-k')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   315
      using k' False by (simp add: power_diff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   316
    also have "... = ((of_nat r + 4 * of_nat q)::'a) / 2 ^ (k-k')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   317
      using q by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   318
    finally have meq: "(of_nat m:: 'a) / 2^k = (of_nat r + 4 * of_nat q) / 2 ^ (k - k')" .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   319
    have "r \<noteq> 0" "r \<noteq> 2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   320
      using q m' by presburger+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   321
    with r consider "r = 1" | "r = 3"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   322
      by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   323
    then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   324
    proof cases
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   325
      assume "r = 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   326
      with meq kd that(2) [of kd q] show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   327
        by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   328
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   329
      assume "r = 3"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   330
      with meq kd that(3) [of kd q]  show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   331
        by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   332
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   333
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   334
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   335
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   336
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   337
lemma dyadics_iff:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   338
   "(dyadics :: 'a::field_char_0 set) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   339
    Nats \<union> (\<Union>k m. {of_nat (4*m + 1) / 2^Suc k}) \<union> (\<Union>k m. {of_nat (4*m + 3) / 2^Suc k})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   340
           (is "_ = ?rhs")
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   341
proof
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   342
  show "dyadics \<subseteq> ?rhs"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   343
    unfolding dyadics_def
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   344
    apply clarify
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   345
    apply (rule dyadic_413_cases, force+)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   346
    done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   347
next
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   348
  have "range of_nat \<subseteq> (\<Union>k m. {(of_nat m::'a) / 2 ^ k})"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   349
    by clarsimp (metis divide_numeral_1 numeral_One power_0)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   350
  moreover have "\<And>k m. \<exists>k' m'. ((1::'a) + 4 * of_nat m) / 2 ^ Suc k = of_nat m' / 2 ^ k'"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   351
    by (metis (no_types) of_nat_Suc of_nat_mult of_nat_numeral)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   352
  moreover have "\<And>k m. \<exists>k' m'. (4 * of_nat m + (3::'a)) / 2 ^ Suc k = of_nat m' / 2 ^ k'"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   353
    by (metis of_nat_add of_nat_mult of_nat_numeral)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   354
  ultimately show "?rhs \<subseteq> dyadics"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   355
    by (auto simp: dyadics_def Nats_def)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   356
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   357
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   358
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69922
diff changeset
   359
function\<^marker>\<open>tag unimportant\<close> (domintros) dyad_rec :: "[nat \<Rightarrow> 'a, 'a\<Rightarrow>'a, 'a\<Rightarrow>'a, real] \<Rightarrow> 'a" where
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   360
    "dyad_rec b l r (real m) = b m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   361
  | "dyad_rec b l r ((4 * real m + 1) / 2 ^ (Suc n)) = l (dyad_rec b l r ((2*m + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   362
  | "dyad_rec b l r ((4 * real m + 3) / 2 ^ (Suc n)) = r (dyad_rec b l r ((2*m + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   363
  | "x \<notin> dyadics \<Longrightarrow> dyad_rec b l r x = undefined"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   364
  using iff_4k [of _ 1] iff_4k [of _ 3]
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   365
         apply (simp_all add: nat_neq_4k1 nat_neq_4k3 neq_4k1_k43 dyadics_iff Nats_def)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   366
  by (fastforce simp:  field_simps)+
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   367
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   368
lemma dyadics_levels: "dyadics = (\<Union>K. \<Union>k<K. \<Union> m. {of_nat m / 2^k})"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   369
  unfolding dyadics_def by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   370
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   371
lemma dyad_rec_level_termination:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   372
  assumes "k < K"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   373
  shows "dyad_rec_dom(b, l, r, real m / 2^k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   374
  using assms
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   375
proof (induction K arbitrary: k m)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   376
  case 0
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   377
  then show ?case by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   378
next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   379
  case (Suc K)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   380
  then consider "k = K" | "k < K"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   381
    using less_antisym by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   382
  then show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   383
  proof cases
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   384
    assume "k = K"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   385
    show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   386
    proof (rule dyadic_413_cases [of m k, where 'a=real])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   387
      show "real m / 2^k \<in> \<nat> \<Longrightarrow> dyad_rec_dom (b, l, r, real m / 2^k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   388
        by (force simp: Nats_def nat_neq_4k1 nat_neq_4k3 intro: dyad_rec.domintros)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   389
      show ?case if "k' < k" and eq: "real m / 2^k = real (4 * m' + 1) / 2^Suc k'" for m' k'
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   390
      proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   391
        have "dyad_rec_dom (b, l, r, (4 * real m' + 1) / 2^Suc k')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   392
        proof (rule dyad_rec.domintros)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   393
          fix m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   394
          assume "(4 * real m' + 1) / (2 * 2 ^ k') = (4 * real m + 1) / (2 * 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   395
          then have "m' = m" "k' = n" using iff_4k [of _ 1]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   396
            by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   397
          have "dyad_rec_dom (b, l, r, real (2 * m + 1) / 2 ^ k')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   398
            using Suc.IH \<open>k = K\<close> \<open>k' < k\<close> by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   399
          then show "dyad_rec_dom (b, l, r, (2 * real m + 1) / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   400
            using \<open>k' = n\<close> by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   401
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   402
          fix m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   403
          assume "(4 * real m' + 1) / (2 * 2 ^ k') = (4 * real m + 3) / (2 * 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   404
          then have "False"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   405
            by (metis neq_4k1_k43)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   406
          then show "dyad_rec_dom (b, l, r, (2 * real m + 1) / 2^n)" ..
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   407
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   408
        then show ?case by (simp add: eq add_ac)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   409
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   410
      show ?case if "k' < k" and eq: "real m / 2^k = real (4 * m' + 3) / 2^Suc k'" for m' k'
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   411
      proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   412
        have "dyad_rec_dom (b, l, r, (4 * real m' + 3) / 2^Suc k')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   413
        proof (rule dyad_rec.domintros)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   414
          fix m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   415
          assume "(4 * real m' + 3) / (2 * 2 ^ k') = (4 * real m + 1) / (2 * 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   416
          then have "False"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   417
            by (metis neq_4k1_k43)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   418
          then show "dyad_rec_dom (b, l, r, (2 * real m + 1) / 2^n)" ..
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   419
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   420
          fix m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   421
          assume "(4 * real m' + 3) / (2 * 2 ^ k') = (4 * real m + 3) / (2 * 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   422
          then have "m' = m" "k' = n" using iff_4k [of _ 3]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   423
            by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   424
          have "dyad_rec_dom (b, l, r, real (2 * m + 1) / 2 ^ k')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   425
            using Suc.IH \<open>k = K\<close> \<open>k' < k\<close> by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   426
          then show "dyad_rec_dom (b, l, r, (2 * real m + 1) / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   427
            using \<open>k' = n\<close> by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   428
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   429
        then show ?case by (simp add: eq add_ac)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   430
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   431
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   432
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   433
    assume "k < K"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   434
    then show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   435
      using Suc.IH by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   436
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   437
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   438
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   439
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   440
lemma dyad_rec_termination: "x \<in> dyadics \<Longrightarrow> dyad_rec_dom(b,l,r,x)"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   441
  by (auto simp: dyadics_levels intro: dyad_rec_level_termination)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   442
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   443
lemma dyad_rec_of_nat [simp]: "dyad_rec b l r (real m) = b m"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   444
  by (simp add: dyad_rec.psimps dyad_rec_termination)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   445
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   446
lemma dyad_rec_41 [simp]: "dyad_rec b l r ((4 * real m + 1) / 2 ^ (Suc n)) = l (dyad_rec b l r ((2*m + 1) / 2^n))"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   447
proof (rule dyad_rec.psimps)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   448
  show "dyad_rec_dom (b, l, r, (4 * real m + 1) / 2 ^ Suc n)"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   449
    by (metis add.commute dyad_rec_level_termination lessI of_nat_Suc of_nat_mult of_nat_numeral)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   450
qed
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   451
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   452
lemma dyad_rec_43 [simp]: "dyad_rec b l r ((4 * real m + 3) / 2 ^ (Suc n)) = r (dyad_rec b l r ((2*m + 1) / 2^n))"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   453
proof (rule dyad_rec.psimps)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   454
  show "dyad_rec_dom (b, l, r, (4 * real m + 3) / 2 ^ Suc n)"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   455
    by (metis dyad_rec_level_termination lessI of_nat_add of_nat_mult of_nat_numeral)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   456
qed
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   457
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   458
lemma dyad_rec_41_times2:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   459
  assumes "n > 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   460
    shows "dyad_rec b l r (2 * ((4 * real m + 1) / 2^Suc n)) = l (dyad_rec b l r (2 * (2 * real m + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   461
proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   462
  obtain n' where n': "n = Suc n'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   463
    using assms not0_implies_Suc by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   464
  have "dyad_rec b l r (2 * ((4 * real m + 1) / 2^Suc n)) = dyad_rec b l r ((2 * (4 * real m + 1)) / (2 * 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   465
    by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   466
  also have "... = dyad_rec b l r ((4 * real m + 1) / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   467
    by (subst mult_divide_mult_cancel_left) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   468
  also have "... = l (dyad_rec b l r ((2 * real m + 1) / 2 ^ n'))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   469
    by (simp add: add.commute [of 1] n' del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   470
  also have "... = l (dyad_rec b l r ((2 * (2 * real m + 1)) / (2 * 2 ^ n')))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   471
    by (subst mult_divide_mult_cancel_left) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   472
  also have "... = l (dyad_rec b l r (2 * (2 * real m + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   473
    by (simp add: add.commute n')
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   474
  finally show ?thesis .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   475
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   476
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   477
lemma dyad_rec_43_times2:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   478
  assumes "n > 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   479
    shows "dyad_rec b l r (2 * ((4 * real m + 3) / 2^Suc n)) = r (dyad_rec b l r (2 * (2 * real m + 1) / 2^n))"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   480
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   481
  obtain n' where n': "n = Suc n'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   482
    using assms not0_implies_Suc by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   483
  have "dyad_rec b l r (2 * ((4 * real m + 3) / 2^Suc n)) = dyad_rec b l r ((2 * (4 * real m + 3)) / (2 * 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   484
    by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   485
  also have "... = dyad_rec b l r ((4 * real m + 3) / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   486
    by (subst mult_divide_mult_cancel_left) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   487
  also have "... = r (dyad_rec b l r ((2 * real m + 1) / 2 ^ n'))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   488
    by (simp add: n' del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   489
  also have "... = r (dyad_rec b l r ((2 * (2 * real m + 1)) / (2 * 2 ^ n')))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   490
    by (subst mult_divide_mult_cancel_left) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   491
  also have "... = r (dyad_rec b l r (2 * (2 * real m + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   492
    by (simp add: n')
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   493
  finally show ?thesis .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   494
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   495
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69922
diff changeset
   496
definition\<^marker>\<open>tag unimportant\<close> dyad_rec2
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   497
    where "dyad_rec2 u v lc rc x =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   498
             dyad_rec (\<lambda>z. (u,v)) (\<lambda>(a,b). (a, lc a b (midpoint a b))) (\<lambda>(a,b). (rc a b (midpoint a b), b)) (2*x)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   499
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69922
diff changeset
   500
abbreviation\<^marker>\<open>tag unimportant\<close> leftrec where "leftrec u v lc rc x \<equiv> fst (dyad_rec2 u v lc rc x)"
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69922
diff changeset
   501
abbreviation\<^marker>\<open>tag unimportant\<close> rightrec where "rightrec u v lc rc x \<equiv> snd (dyad_rec2 u v lc rc x)"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   502
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   503
lemma leftrec_base: "leftrec u v lc rc (real m / 2) = u"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   504
  by (simp add: dyad_rec2_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   505
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   506
lemma leftrec_41: "n > 0 \<Longrightarrow> leftrec u v lc rc ((4 * real m + 1) / 2 ^ (Suc n)) = leftrec u v lc rc ((2 * real m + 1) / 2^n)"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   507
  unfolding dyad_rec2_def dyad_rec_41_times2
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   508
  by (simp add: case_prod_beta)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   509
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   510
lemma leftrec_43: "n > 0 \<Longrightarrow>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   511
             leftrec u v lc rc ((4 * real m + 3) / 2 ^ (Suc n)) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   512
                 rc (leftrec u v lc rc ((2 * real m + 1) / 2^n)) (rightrec u v lc rc ((2 * real m + 1) / 2^n))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   513
                 (midpoint (leftrec u v lc rc ((2 * real m + 1) / 2^n)) (rightrec u v lc rc ((2 * real m + 1) / 2^n)))"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   514
  unfolding dyad_rec2_def dyad_rec_43_times2
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   515
  by (simp add: case_prod_beta)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   516
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   517
lemma rightrec_base: "rightrec u v lc rc (real m / 2) = v"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   518
  by (simp add: dyad_rec2_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   519
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   520
lemma rightrec_41: "n > 0 \<Longrightarrow>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   521
             rightrec u v lc rc ((4 * real m + 1) / 2 ^ (Suc n)) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   522
                 lc (leftrec u v lc rc ((2 * real m + 1) / 2^n)) (rightrec u v lc rc ((2 * real m + 1) / 2^n))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   523
                 (midpoint (leftrec u v lc rc ((2 * real m + 1) / 2^n)) (rightrec u v lc rc ((2 * real m + 1) / 2^n)))"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   524
  unfolding dyad_rec2_def dyad_rec_41_times2
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   525
  by (simp add: case_prod_beta)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   526
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   527
lemma rightrec_43: "n > 0 \<Longrightarrow> rightrec u v lc rc ((4 * real m + 3) / 2 ^ (Suc n)) = rightrec u v lc rc ((2 * real m + 1) / 2^n)"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   528
  unfolding dyad_rec2_def dyad_rec_43_times2
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   529
  by (simp add: case_prod_beta)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   530
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   531
lemma dyadics_in_open_unit_interval:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   532
   "{0<..<1} \<inter> (\<Union>k m. {real m / 2^k}) = (\<Union>k. \<Union>m \<in> {0<..<2^k}. {real m / 2^k})"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   533
  by (auto simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   534
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   535
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   536
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   537
theorem homeomorphic_monotone_image_interval:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   538
  fixes f :: "real \<Rightarrow> 'a::{real_normed_vector,complete_space}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   539
  assumes cont_f: "continuous_on {0..1} f"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   540
      and conn: "\<And>y. connected ({0..1} \<inter> f -` {y})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   541
      and f_1not0: "f 1 \<noteq> f 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   542
    shows "(f ` {0..1}) homeomorphic {0..1::real}"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
   543
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   544
  have "\<exists>c d. a \<le> c \<and> c \<le> m \<and> m \<le> d \<and> d \<le> b \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   545
              (\<forall>x \<in> {c..d}. f x = f m) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   546
              (\<forall>x \<in> {a..<c}. (f x \<noteq> f m)) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   547
              (\<forall>x \<in> {d<..b}. (f x \<noteq> f m)) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   548
              (\<forall>x \<in> {a..<c}. \<forall>y \<in> {d<..b}. f x \<noteq> f y)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   549
    if m: "m \<in> {a..b}" and ab01: "{a..b} \<subseteq> {0..1}" for a b m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   550
  proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   551
    have comp: "compact (f -` {f m} \<inter> {0..1})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   552
      by (simp add: compact_eq_bounded_closed bounded_Int closed_vimage_Int cont_f)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   553
    obtain c0 d0 where cd0: "{0..1} \<inter> f -` {f m} = {c0..d0}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   554
      using connected_compact_interval_1 [of "{0..1} \<inter> f -` {f m}"] conn comp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   555
      by (metis Int_commute)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   556
    with that have "m \<in> cbox c0 d0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   557
      by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   558
    obtain c d where cd: "{a..b} \<inter> f -` {f m} = {c..d}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   559
      using ab01 cd0
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   560
      by (rule_tac c="max a c0" and d="min b d0" in that) auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   561
    then have cdab: "{c..d} \<subseteq> {a..b}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   562
      by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   563
    show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   564
    proof (intro exI conjI ballI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   565
      show "a \<le> c" "d \<le> b"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   566
        using cdab cd m by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   567
      show "c \<le> m" "m \<le> d"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   568
        using cd m by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   569
      show "\<And>x. x \<in> {c..d} \<Longrightarrow> f x = f m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   570
        using cd by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   571
      show "f x \<noteq> f m" if "x \<in> {a..<c}" for x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   572
        using that m cd [THEN equalityD1, THEN subsetD] \<open>c \<le> m\<close> by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   573
      show "f x \<noteq> f m" if "x \<in> {d<..b}" for x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   574
        using that m cd [THEN equalityD1, THEN subsetD, of x] \<open>m \<le> d\<close> by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   575
      show "f x \<noteq> f y" if "x \<in> {a..<c}" "y \<in> {d<..b}" for x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   576
      proof (cases "f x = f m \<or> f y = f m")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   577
        case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   578
        then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   579
          using \<open>\<And>x. x \<in> {a..<c} \<Longrightarrow> f x \<noteq> f m\<close> that by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   580
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   581
        case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   582
        have False if "f x = f y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   583
        proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   584
          have "x \<le> m" "m \<le> y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   585
            using \<open>c \<le> m\<close> \<open>x \<in> {a..<c}\<close>  \<open>m \<le> d\<close> \<open>y \<in> {d<..b}\<close> by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   586
          then have "x \<in> ({0..1} \<inter> f -` {f y})" "y \<in> ({0..1} \<inter> f -` {f y})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   587
            using \<open>x \<in> {a..<c}\<close> \<open>y \<in> {d<..b}\<close> ab01 by (auto simp: that)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   588
          then have "m \<in> ({0..1} \<inter> f -` {f y})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   589
            by (meson \<open>m \<le> y\<close> \<open>x \<le> m\<close> is_interval_connected_1 conn [of "f y"] is_interval_1)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   590
          with False show False by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   591
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   592
        then show ?thesis by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   593
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   594
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   595
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   596
  then obtain leftcut rightcut where LR:
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   597
    "\<And>a b m. \<lbrakk>m \<in> {a..b}; {a..b} \<subseteq> {0..1}\<rbrakk> \<Longrightarrow>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   598
            (a \<le> leftcut a b m \<and> leftcut a b m \<le> m \<and> m \<le> rightcut a b m \<and> rightcut a b m \<le> b \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   599
            (\<forall>x \<in> {leftcut a b m..rightcut a b m}. f x = f m) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   600
            (\<forall>x \<in> {a..<leftcut a b m}. f x \<noteq> f m) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   601
            (\<forall>x \<in> {rightcut a b m<..b}. f x \<noteq> f m) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   602
            (\<forall>x \<in> {a..<leftcut a b m}. \<forall>y \<in> {rightcut a b m<..b}. f x \<noteq> f y))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   603
    apply atomize
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   604
    apply (clarsimp simp only: imp_conjL [symmetric] choice_iff choice_iff')
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   605
    apply (rule that, blast)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   606
    done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   607
  then have left_right: "\<And>a b m. \<lbrakk>m \<in> {a..b}; {a..b} \<subseteq> {0..1}\<rbrakk> \<Longrightarrow> a \<le> leftcut a b m \<and> rightcut a b m \<le> b"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   608
       and  left_right_m: "\<And>a b m. \<lbrakk>m \<in> {a..b}; {a..b} \<subseteq> {0..1}\<rbrakk> \<Longrightarrow> leftcut a b m \<le> m \<and> m \<le> rightcut a b m"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   609
    by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   610
  have left_neq: "\<lbrakk>a \<le> x; x < leftcut a b m; a \<le> m; m \<le> b; {a..b} \<subseteq> {0..1}\<rbrakk> \<Longrightarrow> f x \<noteq> f m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   611
    and right_neq: "\<lbrakk>rightcut a b m < x; x \<le> b; a \<le> m; m \<le> b; {a..b} \<subseteq> {0..1}\<rbrakk> \<Longrightarrow> f x \<noteq> f m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   612
    and left_right_neq: "\<lbrakk>a \<le> x; x < leftcut a b m; rightcut a b m < y; y \<le> b; a \<le> m; m \<le> b; {a..b} \<subseteq> {0..1}\<rbrakk> \<Longrightarrow> f x \<noteq> f m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   613
    and feqm: "\<lbrakk>leftcut a b m \<le> x; x \<le> rightcut a b m; a \<le> m; m \<le> b; {a..b} \<subseteq> {0..1}\<rbrakk>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   614
                         \<Longrightarrow> f x = f m" for a b m x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   615
    by (meson atLeastAtMost_iff greaterThanAtMost_iff atLeastLessThan_iff LR)+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   616
  have f_eqI: "\<And>a b m x y. \<lbrakk>leftcut a b m \<le> x; x \<le> rightcut a b m; leftcut a b m \<le> y; y \<le> rightcut a b m;
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   617
                             a \<le> m; m \<le> b; {a..b} \<subseteq> {0..1}\<rbrakk>  \<Longrightarrow> f x = f y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   618
    by (metis feqm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   619
  define u where "u \<equiv> rightcut 0 1 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   620
  have lc[simp]: "leftcut 0 1 0 = 0" and u01: "0 \<le> u" "u \<le> 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   621
    using LR [of 0 0 1] by (auto simp: u_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   622
  have f0u: "\<And>x. x \<in> {0..u} \<Longrightarrow> f x = f 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   623
    using LR [of 0 0 1] unfolding u_def [symmetric]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   624
    by (metis \<open>leftcut 0 1 0 = 0\<close> atLeastAtMost_iff order_refl zero_le_one)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   625
  have fu1: "\<And>x. x \<in> {u<..1} \<Longrightarrow> f x \<noteq> f 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   626
    using LR [of 0 0 1] unfolding u_def [symmetric] by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   627
  define v where "v \<equiv> leftcut u 1 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   628
  have rc[simp]: "rightcut u 1 1 = 1" and v01: "u \<le> v" "v \<le> 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   629
    using LR [of 1 u 1] u01  by (auto simp: v_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   630
  have fuv: "\<And>x. x \<in> {u..<v} \<Longrightarrow> f x \<noteq> f 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   631
    using LR [of 1 u 1] u01 v_def by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   632
  have f0v: "\<And>x. x \<in> {0..<v} \<Longrightarrow> f x \<noteq> f 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   633
    by (metis f_1not0 atLeastAtMost_iff atLeastLessThan_iff f0u fuv linear)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   634
  have fv1: "\<And>x. x \<in> {v..1} \<Longrightarrow> f x = f 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   635
    using LR [of 1 u 1] u01 v_def by (metis atLeastAtMost_iff atLeastatMost_subset_iff order_refl rc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   636
  define a where "a \<equiv> leftrec u v leftcut rightcut"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   637
  define b where "b \<equiv> rightrec u v leftcut rightcut"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   638
  define c where "c \<equiv> \<lambda>x. midpoint (a x) (b x)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   639
  have a_real [simp]: "a (real j) = u" for j
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   640
    using a_def leftrec_base
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   641
    by (metis nonzero_mult_div_cancel_right of_nat_mult of_nat_numeral zero_neq_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   642
  have b_real [simp]: "b (real j) = v" for j
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   643
    using b_def rightrec_base
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   644
    by (metis nonzero_mult_div_cancel_right of_nat_mult of_nat_numeral zero_neq_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   645
  have a41: "a ((4 * real m + 1) / 2^Suc n) = a ((2 * real m + 1) / 2^n)" if "n > 0" for m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   646
    using that a_def leftrec_41 by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   647
  have b41: "b ((4 * real m + 1) / 2^Suc n) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   648
               leftcut (a ((2 * real m + 1) / 2^n))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   649
                       (b ((2 * real m + 1) / 2^n))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   650
                       (c ((2 * real m + 1) / 2^n))" if "n > 0" for m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   651
    using that a_def b_def c_def rightrec_41 by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   652
  have a43: "a ((4 * real m + 3) / 2^Suc n) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   653
               rightcut (a ((2 * real m + 1) / 2^n))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   654
                        (b ((2 * real m + 1) / 2^n))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   655
                        (c ((2 * real m + 1) / 2^n))" if "n > 0" for m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   656
    using that a_def b_def c_def leftrec_43 by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   657
  have b43: "b ((4 * real m + 3) / 2^Suc n) = b ((2 * real m + 1) / 2^n)" if "n > 0" for m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   658
    using that b_def rightrec_43 by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   659
  have uabv: "u \<le> a (real m / 2 ^ n) \<and> a (real m / 2 ^ n) \<le> b (real m / 2 ^ n) \<and> b (real m / 2 ^ n) \<le> v" for m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   660
  proof (induction n arbitrary: m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   661
    case 0
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   662
    then show ?case by (simp add: v01)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   663
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   664
    case (Suc n p)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   665
    show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   666
    proof (cases "even p")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   667
      case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   668
      then obtain m where "p = 2*m" by (metis evenE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   669
      then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   670
        by (simp add: Suc.IH)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   671
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   672
      case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   673
      then obtain m where m: "p = 2*m + 1" by (metis oddE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   674
      show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   675
      proof (cases n)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   676
        case 0
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   677
        then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   678
          by (simp add: a_def b_def leftrec_base rightrec_base v01)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   679
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   680
        case (Suc n')
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   681
        then have "n > 0" by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   682
        have a_le_c: "a (real m / 2^n) \<le> c (real m / 2^n)" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   683
          unfolding c_def by (metis Suc.IH ge_midpoint_1)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   684
        have c_le_b: "c (real m / 2^n) \<le> b (real m / 2^n)" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   685
          unfolding c_def by (metis Suc.IH le_midpoint_1)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   686
        have c_ge_u: "c (real m / 2^n) \<ge> u" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   687
          using Suc.IH a_le_c order_trans by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   688
        have c_le_v: "c (real m / 2^n) \<le> v" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   689
          using Suc.IH c_le_b order_trans by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   690
        have a_ge_0: "0 \<le> a (real m / 2^n)" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   691
          using Suc.IH order_trans u01(1) by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   692
        have b_le_1: "b (real m / 2^n) \<le> 1" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   693
          using Suc.IH order_trans v01(2) by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   694
        have left_le: "leftcut (a ((real m) / 2^n)) (b ((real m) / 2^n)) (c ((real m) / 2^n)) \<le> c ((real m) / 2^n)" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   695
          by (simp add: LR a_ge_0 a_le_c b_le_1 c_le_b)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   696
        have right_ge: "rightcut (a ((real m) / 2^n)) (b ((real m) / 2^n)) (c ((real m) / 2^n)) \<ge> c ((real m) / 2^n)" for m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   697
          by (simp add: LR a_ge_0 a_le_c b_le_1 c_le_b)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   698
        show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   699
        proof (cases "even m")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   700
          case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   701
          then obtain r where r: "m = 2*r" by (metis evenE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   702
          show ?thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   703
            using order_trans [OF left_le c_le_v, of "1+2*r"] Suc.IH [of "m+1"] 
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   704
            using a_le_c [of "m+1"] c_le_b [of "m+1"] a_ge_0 [of "m+1"] b_le_1 [of "m+1"] left_right \<open>n > 0\<close>
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   705
            by (simp_all add: r m add.commute [of 1]  a41 b41 del: power_Suc)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   706
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   707
          case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   708
          then obtain r where r: "m = 2*r + 1" by (metis oddE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   709
          show ?thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   710
            using order_trans [OF c_ge_u right_ge, of "1+2*r"] Suc.IH [of "m"]
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   711
            using a_le_c [of "m"] c_le_b [of "m"] a_ge_0 [of "m"] b_le_1 [of "m"] left_right \<open>n > 0\<close>
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   712
            apply (simp_all add: r m add.commute [of 3] a43 b43 del: power_Suc)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   713
            by (simp add: add.commute)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   714
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   715
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   716
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   717
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   718
  have a_ge_0 [simp]: "0 \<le> a(m / 2^n)" and b_le_1 [simp]: "b(m / 2^n) \<le> 1" for m::nat and n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   719
    using uabv order_trans u01 v01 by blast+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   720
  then have b_ge_0 [simp]: "0 \<le> b(m / 2^n)" and a_le_1 [simp]: "a(m / 2^n) \<le> 1" for m::nat and n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   721
    using uabv order_trans by blast+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   722
  have alec [simp]: "a(m / 2^n) \<le> c(m / 2^n)" and cleb [simp]: "c(m / 2^n) \<le> b(m / 2^n)" for m::nat and n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   723
    by (auto simp: c_def ge_midpoint_1 le_midpoint_1 uabv)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   724
  have c_ge_0 [simp]: "0 \<le> c(m / 2^n)" and c_le_1 [simp]: "c(m / 2^n) \<le> 1" for m::nat and n
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   725
    using a_ge_0 alec b_le_1 cleb order_trans by blast+
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   726
  have "\<lbrakk>d = m-n; odd j; \<bar>real i / 2^m - real j / 2^n\<bar> < 1/2 ^ n\<rbrakk>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   727
        \<Longrightarrow> (a(j / 2^n)) \<le> (c(i / 2^m)) \<and> (c(i / 2^m)) \<le> (b(j / 2^n))" for d i j m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   728
  proof (induction d arbitrary: j n rule: less_induct)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   729
    case (less d j n)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   730
    show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   731
    proof (cases "m \<le> n")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   732
      case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   733
      have "\<bar>2^n\<bar> * \<bar>real i / 2^m - real j / 2^n\<bar> = 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   734
      proof (rule Ints_nonzero_abs_less1)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   735
        have "(real i * 2^n - real j * 2^m) / 2^m = (real i * 2^n) / 2^m - (real j * 2^m) / 2^m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   736
          using diff_divide_distrib by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   737
        also have "... = (real i * 2 ^ (n-m)) - (real j)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   738
          using True by (auto simp: power_diff field_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   739
        also have "... \<in> \<int>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   740
          by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   741
        finally have "(real i * 2^n - real j * 2^m) / 2^m \<in> \<int>" .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   742
        with True Ints_abs show "\<bar>2^n\<bar> * \<bar>real i / 2^m - real j / 2^n\<bar> \<in> \<int>"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   743
          by (fastforce simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   744
        show "\<bar>\<bar>2^n\<bar> * \<bar>real i / 2^m - real j / 2^n\<bar>\<bar> < 1"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   745
          using less.prems by (auto simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   746
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   747
      then have "real i / 2^m = real j / 2^n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   748
        by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   749
      then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   750
        by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   751
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   752
      case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   753
      then have "n < m" by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   754
      obtain k where k: "j = Suc (2*k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   755
        using \<open>odd j\<close> oddE by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   756
      show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   757
      proof (cases "n > 0")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   758
        case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   759
        then have "a (real j / 2^n) = u"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   760
          by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   761
        also have "... \<le> c (real i / 2^m)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   762
          using alec uabv by (blast intro: order_trans)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   763
        finally have ac: "a (real j / 2^n) \<le> c (real i / 2^m)" .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   764
        have "c (real i / 2^m) \<le> v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   765
          using cleb uabv by (blast intro: order_trans)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   766
        also have "... = b (real j / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   767
          using False by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   768
        finally show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   769
          by (auto simp: ac)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   770
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   771
        case True show ?thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   772
        proof (cases "i / 2^m" "j / 2^n" rule: linorder_cases)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   773
          case less
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   774
          moreover have "real (4 * k + 1) / 2 ^ Suc n + 1 / (2 ^ Suc n) = real j / 2 ^ n"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   775
            using k by (force simp: field_split_simps)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   776
          moreover have "\<bar>real i / 2 ^ m - j / 2 ^ n\<bar> < 2 / (2 ^ Suc n)"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   777
            using less.prems by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   778
          ultimately have closer: "\<bar>real i / 2 ^ m - real (4 * k + 1) / 2 ^ Suc n\<bar> < 1 / (2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   779
            using less.prems by linarith
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   780
          have "a (real (4 * k + 1) / 2 ^ Suc n) \<le> c (i / 2 ^ m) \<and>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   781
                   c (real i / 2 ^ m) \<le> b (real (4 * k + 1) / 2 ^ Suc n)"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   782
          proof (rule less.IH [OF _ refl])
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   783
            show "m - Suc n < d"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   784
              using \<open>n < m\<close> diff_less_mono2 less.prems(1) lessI by presburger
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   785
            show "\<bar>real i / 2 ^ m - real (4 * k + 1) / 2 ^ Suc n\<bar> < 1 / 2 ^ Suc n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   786
              using closer \<open>n < m\<close> \<open>d = m - n\<close> by (auto simp: field_split_simps \<open>n < m\<close> diff_less_mono2)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   787
          qed auto
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   788
          then show ?thesis
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   789
            using LR [of "c((2*k + 1) / 2^n)" "a((2*k + 1) / 2^n)" "b((2*k + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   790
            using alec [of "2*k+1"] cleb [of "2*k+1"] a_ge_0 [of "2*k+1"] b_le_1 [of "2*k+1"]
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   791
            using k a41 b41 \<open>0 < n\<close>
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   792
            by (simp add: add.commute)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   793
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   794
          case equal then show ?thesis by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   795
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   796
          case greater
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   797
          moreover have "real (4 * k + 3) / 2 ^ Suc n - 1 / (2 ^ Suc n) = real j / 2 ^ n"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   798
            using k by (force simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   799
          moreover have "\<bar>real i / 2 ^ m - real j / 2 ^ n\<bar> < 2 * 1 / (2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   800
            using less.prems by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   801
          ultimately have closer: "\<bar>real i / 2 ^ m - real (4 * k + 3) / 2 ^ Suc n\<bar> < 1 / (2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   802
            using less.prems by linarith
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   803
          have "a (real (4 * k + 3) / 2 ^ Suc n) \<le> c (real i / 2 ^ m) \<and>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   804
                   c (real i / 2 ^ m) \<le> b (real (4 * k + 3) / 2 ^ Suc n)"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   805
          proof (rule less.IH [OF _ refl])
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   806
            show "m - Suc n < d"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   807
              using \<open>n < m\<close> diff_less_mono2 less.prems(1) by blast
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   808
            show "\<bar>real i / 2 ^ m - real (4 * k + 3) / 2 ^ Suc n\<bar> < 1 / 2 ^ Suc n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   809
              using closer \<open>n < m\<close> \<open>d = m - n\<close> by (auto simp: field_split_simps  \<open>n < m\<close> diff_less_mono2)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   810
          qed auto
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   811
          then show ?thesis
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   812
            using LR [of "c((2*k + 1) / 2^n)" "a((2*k + 1) / 2^n)" "b((2*k + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   813
            using alec [of "2*k+1"] cleb [of "2*k+1"] a_ge_0 [of "2*k+1"] b_le_1 [of "2*k+1"]
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   814
            using k a43 b43 \<open>0 < n\<close>
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   815
            by (simp add: add.commute)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   816
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   817
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   818
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   819
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   820
  then have aj_le_ci: "a (real j / 2 ^ n) \<le> c (real i / 2 ^ m)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   821
    and ci_le_bj: "c (real i / 2 ^ m) \<le> b (real j / 2 ^ n)" if "odd j" "\<bar>real i / 2^m - real j / 2^n\<bar> < 1/2 ^ n" for i j m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   822
    using that by blast+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   823
  have close_ab: "odd m \<Longrightarrow> \<bar>a (real m / 2 ^ n) - b (real m / 2 ^ n)\<bar> \<le> 2 / 2^n" for m n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   824
  proof (induction n arbitrary: m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   825
    case 0
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   826
    with u01 v01 show ?case by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   827
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   828
    case (Suc n m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   829
    with oddE obtain k where k: "m = Suc (2*k)" by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   830
    show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   831
    proof (cases "n > 0")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   832
      case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   833
      with u01 v01 show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   834
        by (simp add: a_def b_def leftrec_base rightrec_base)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   835
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   836
      case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   837
      show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   838
      proof (cases "even k")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   839
        case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   840
        then obtain j where j: "k = 2*j" by (metis evenE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   841
        have "\<bar>a ((2 * real j + 1) / 2 ^ n) - (b ((2 * real j + 1) / 2 ^ n))\<bar> \<le> 2/2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   842
        proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   843
          have "odd (Suc k)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   844
            using True by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   845
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   846
            by (metis (no_types) Groups.add_ac(2) Suc.IH j of_nat_Suc of_nat_mult of_nat_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   847
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   848
        moreover have "a ((2 * real j + 1) / 2 ^ n) \<le>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   849
                       leftcut (a ((2 * real j + 1) / 2 ^ n)) (b ((2 * real j + 1) / 2 ^ n)) (c ((2 * real j + 1) / 2 ^ n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   850
          using alec [of "2*j+1"] cleb [of "2*j+1"] a_ge_0 [of "2*j+1"]  b_le_1 [of "2*j+1"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   851
          by (auto simp: add.commute left_right)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   852
        moreover have "leftcut (a ((2 * real j + 1) / 2 ^ n)) (b ((2 * real j + 1) / 2 ^ n)) (c ((2 * real j + 1) / 2 ^ n)) \<le>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   853
                         c ((2 * real j + 1) / 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   854
          using alec [of "2*j+1"] cleb [of "2*j+1"] a_ge_0 [of "2*j+1"]  b_le_1 [of "2*j+1"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   855
          by (auto simp: add.commute left_right_m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   856
        ultimately have "\<bar>a ((2 * real j + 1) / 2 ^ n) -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   857
                          leftcut (a ((2 * real j + 1) / 2 ^ n)) (b ((2 * real j + 1) / 2 ^ n)) (c ((2 * real j + 1) / 2 ^ n))\<bar>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   858
                   \<le> 2/2 ^ Suc n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   859
          by (simp add: c_def midpoint_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   860
        with j k \<open>n > 0\<close> show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   861
          by (simp add: add.commute [of 1] a41 b41 del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   862
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   863
        case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   864
        then obtain j where j: "k = 2*j + 1" by (metis oddE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   865
        have "\<bar>a ((2 * real j + 1) / 2 ^ n) - (b ((2 * real j + 1) / 2 ^ n))\<bar> \<le> 2/2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   866
          using Suc.IH [OF False] j by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   867
        moreover have "c ((2 * real j + 1) / 2 ^ n) \<le>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   868
                       rightcut (a ((2 * real j + 1) / 2 ^ n)) (b ((2 * real j + 1) / 2 ^ n)) (c ((2 * real j + 1) / 2 ^ n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   869
          using alec [of "2*j+1"] cleb [of "2*j+1"] a_ge_0 [of "2*j+1"]  b_le_1 [of "2*j+1"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   870
          by (auto simp: add.commute left_right_m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   871
        moreover have "rightcut (a ((2 * real j + 1) / 2 ^ n)) (b ((2 * real j + 1) / 2 ^ n)) (c ((2 * real j + 1) / 2 ^ n)) \<le>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   872
                         b ((2 * real j + 1) / 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   873
          using alec [of "2*j+1"] cleb [of "2*j+1"] a_ge_0 [of "2*j+1"]  b_le_1 [of "2*j+1"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   874
          by (auto simp: add.commute left_right)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   875
        ultimately have "\<bar>rightcut (a ((2 * real j + 1) / 2 ^ n)) (b ((2 * real j + 1) / 2 ^ n)) (c ((2 * real j + 1) / 2 ^ n)) -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   876
                          b ((2 * real j + 1) / 2 ^ n)\<bar>  \<le>  2/2 ^ Suc n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   877
          by (simp add: c_def midpoint_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   878
        with j k \<open>n > 0\<close> show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   879
          by (simp add: add.commute [of 3] a43 b43 del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   880
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   881
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   882
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   883
  have m1_to_3: "4 * real k - 1 = real (4 * (k-1)) + 3" if "0 < k" for k
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   884
    using that by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   885
  have fb_eq_fa: "\<lbrakk>0 < j; 2*j < 2 ^ n\<rbrakk> \<Longrightarrow> f(b((2 * real j - 1) / 2^n)) = f(a((2 * real j + 1) / 2^n))" for n j
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   886
  proof (induction n arbitrary: j)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   887
    case 0
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   888
    then show ?case by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   889
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   890
    case (Suc n j) show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   891
    proof (cases "n > 0")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   892
      case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   893
      with Suc.prems show ?thesis by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   894
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   895
      case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   896
      show ?thesis proof (cases "even j")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   897
        case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   898
        then obtain k where k: "j = 2*k" by (metis evenE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   899
        with \<open>0 < j\<close> have "k > 0" "2 * k < 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   900
          using Suc.prems(2) k by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   901
        with k \<open>0 < n\<close> Suc.IH [of k] show ?thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   902
          by (simp add: m1_to_3 a41 b43 del: power_Suc) (auto simp: of_nat_diff)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   903
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   904
        case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   905
        then obtain k where k: "j = 2*k + 1" by (metis oddE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   906
        have "f (leftcut (a ((2 * k + 1) / 2^n)) (b ((2 * k + 1) / 2^n)) (c ((2 * k + 1) / 2^n)))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   907
              = f (c ((2 * k + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   908
          "f (c ((2 * k + 1) / 2^n))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   909
              = f (rightcut (a ((2 * k + 1) / 2^n)) (b ((2 * k + 1) / 2^n)) (c ((2 * k + 1) / 2^n)))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   910
          using alec [of "2*k+1" n] cleb [of "2*k+1" n] a_ge_0 [of "2*k+1" n]  b_le_1 [of "2*k+1" n] k
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   911
          using left_right_m [of "c((2*k + 1) / 2^n)" "a((2*k + 1) / 2^n)" "b((2*k + 1) / 2^n)"]
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   912
          by (auto simp: add.commute  feqm [OF order_refl]  feqm [OF _ order_refl, symmetric])
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   913
        then
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   914
        show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   915
          by (simp add: k add.commute [of 1] add.commute [of 3] a43 b41\<open>0 < n\<close> del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   916
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   917
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   918
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   919
  have f_eq_fc: "\<lbrakk>0 < j; j < 2 ^ n\<rbrakk>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   920
                 \<Longrightarrow> f(b((2*j - 1) / 2 ^ (Suc n))) = f(c(j / 2^n)) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   921
                     f(a((2*j + 1) / 2 ^ (Suc n))) = f(c(j / 2^n))" for n and j::nat
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   922
  proof (induction n arbitrary: j)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   923
    case 0
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   924
    then show ?case by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   925
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   926
    case (Suc n)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   927
    show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   928
    proof (cases "even j")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   929
      case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   930
      then obtain k where k: "j = 2*k" by (metis evenE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   931
      then have less2n: "k < 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   932
        using Suc.prems(2) by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   933
      have "0 < k" using \<open>0 < j\<close> k by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   934
      then have m1_to_3: "real (4 * k - Suc 0) = real (4 * (k-1)) + 3"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   935
        by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   936
      then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   937
        using Suc.IH [of k] k \<open>0 < k\<close>
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   938
        by (simp add: less2n add.commute [of 1] m1_to_3 a41 b43 del: power_Suc) (auto simp: of_nat_diff)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   939
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   940
      case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   941
      then obtain k where k: "j = 2*k + 1" by (metis oddE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   942
      with Suc.prems have "k < 2^n" by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   943
      show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   944
        using alec [of "2*k+1" "Suc n"] cleb [of "2*k+1" "Suc n"] a_ge_0 [of "2*k+1" "Suc n"]  b_le_1 [of "2*k+1" "Suc n"] k
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   945
        using left_right_m [of "c((2*k + 1) / 2 ^ Suc n)" "a((2*k + 1) / 2 ^ Suc n)" "b((2*k + 1) / 2 ^ Suc n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   946
        apply (simp add: add.commute [of 1] add.commute [of 3] m1_to_3 b41 a43 del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   947
        apply (force intro: feqm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   948
        done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   949
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   950
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   951
  define D01 where "D01 \<equiv> {0<..<1} \<inter> (\<Union>k m. {real m / 2^k})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   952
  have cloD01 [simp]: "closure D01 = {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   953
    unfolding D01_def
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   954
    by (subst closure_dyadic_rationals_in_convex_set_pos_1) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   955
  have "uniformly_continuous_on D01 (f \<circ> c)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   956
  proof (clarsimp simp: uniformly_continuous_on_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   957
    fix e::real
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   958
    assume "0 < e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   959
    have ucontf: "uniformly_continuous_on {0..1} f"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   960
      by (simp add: compact_uniformly_continuous [OF cont_f])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   961
    then obtain d where "0 < d" and d: "\<And>x x'. \<lbrakk>x \<in> {0..1}; x' \<in> {0..1}; norm (x' - x) < d\<rbrakk> \<Longrightarrow> norm (f x' - f x) < e/2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   962
      unfolding uniformly_continuous_on_def dist_norm
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   963
      by (metis \<open>0 < e\<close> less_divide_eq_numeral1(1) mult_zero_left)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   964
    obtain n where n: "1/2^n < min d 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   965
      by (metis \<open>0 < d\<close> divide_less_eq_1 less_numeral_extra(1) min_def one_less_numeral_iff power_one_over real_arch_pow_inv semiring_norm(76) zero_less_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   966
    with gr0I have "n > 0"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   967
      by (force simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   968
    show "\<exists>d>0. \<forall>x\<in>D01. \<forall>x'\<in>D01. dist x' x < d \<longrightarrow> dist (f (c x')) (f (c x)) < e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   969
    proof (intro exI ballI impI conjI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   970
      show "(0::real) < 1/2^n" by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   971
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   972
      have dist_fc_close: "dist (f(c(real i / 2^m))) (f(c(real j / 2^n))) < e/2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   973
        if i: "0 < i" "i < 2 ^ m" and j: "0 < j" "j < 2 ^ n" and clo: "abs(i / 2^m - j / 2^n) < 1/2 ^ n" for i j m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   974
      proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   975
        have abs3: "\<bar>x - a\<bar> < e \<Longrightarrow> x = a \<or> \<bar>x - (a - e/2)\<bar> < e/2 \<or> \<bar>x - (a + e/2)\<bar> < e/2" for x a e::real
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   976
          by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   977
        consider "i / 2 ^ m = j / 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   978
          | "\<bar>i / 2 ^ m - (2 * j - 1) / 2 ^ Suc n\<bar> < 1/2 ^ Suc n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   979
          | "\<bar>i / 2 ^ m - (2 * j + 1) / 2 ^ Suc n\<bar> < 1/2 ^ Suc n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   980
          using abs3 [OF clo] j by (auto simp: field_simps of_nat_diff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   981
        then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   982
        proof cases
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   983
          case 1 with \<open>0 < e\<close> show ?thesis by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   984
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   985
          case 2
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   986
          have *: "abs(a - b) \<le> 1/2 ^ n \<and> 1/2 ^ n < d \<and> a \<le> c \<and> c \<le> b \<Longrightarrow> b - c < d" for a b c
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   987
            by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   988
          have "norm (c (real i / 2 ^ m) - b (real (2 * j - 1) / 2 ^ Suc n)) < d"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   989
            using 2 j n close_ab [of "2*j-1" "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   990
            using b_ge_0 [of "2*j-1" "Suc n"] b_le_1 [of "2*j-1" "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   991
            using aj_le_ci [of "2*j-1" i m "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   992
            using ci_le_bj [of "2*j-1" i m "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   993
            apply (simp add: divide_simps of_nat_diff del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   994
            apply (auto simp: divide_simps intro!: *)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   995
            done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   996
          moreover have "f(c(j / 2^n)) = f(b ((2*j - 1) / 2 ^ (Suc n)))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   997
            using f_eq_fc [OF j] by metis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   998
          ultimately show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   999
            by (metis dist_norm atLeastAtMost_iff b_ge_0 b_le_1 c_ge_0 c_le_1 d)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1000
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1001
          case 3
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1002
          have *: "abs(a - b) \<le> 1/2 ^ n \<and> 1/2 ^ n < d \<and> a \<le> c \<and> c \<le> b \<Longrightarrow> c - a < d" for a b c
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1003
            by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1004
          have "norm (c (real i / 2 ^ m) - a (real (2 * j + 1) / 2 ^ Suc n)) < d"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1005
            using 3 j n close_ab [of "2*j+1" "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1006
            using b_ge_0 [of "2*j+1" "Suc n"] b_le_1 [of "2*j+1" "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1007
            using aj_le_ci [of "2*j+1" i m "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1008
            using ci_le_bj [of "2*j+1" i m "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1009
            apply (simp add: divide_simps of_nat_diff del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1010
            apply (auto simp: divide_simps intro!: *)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1011
            done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1012
          moreover have "f(c(j / 2^n)) = f(a ((2*j + 1) / 2 ^ (Suc n)))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1013
            using f_eq_fc [OF j] by metis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1014
          ultimately show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1015
            by (metis dist_norm a_ge_0 atLeastAtMost_iff a_ge_0 a_le_1 c_ge_0 c_le_1 d)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1016
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1017
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1018
      show "dist (f (c x')) (f (c x)) < e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1019
        if "x \<in> D01" "x' \<in> D01" "dist x' x < 1/2^n" for x x'
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1020
        using that unfolding D01_def dyadics_in_open_unit_interval
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1021
      proof clarsimp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1022
        fix i k::nat and m p
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1023
        assume i: "0 < i" "i < 2 ^ m" and k: "0<k" "k < 2 ^ p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1024
        assume clo: "dist (real k / 2 ^ p) (real i / 2 ^ m) < 1/2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1025
        obtain j::nat where "0 < j" "j < 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1026
          and clo_ij: "abs(i / 2^m - j / 2^n) < 1/2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1027
          and clo_kj: "abs(k / 2^p - j / 2^n) < 1/2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1028
        proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1029
          have "max (2^n * i / 2^m) (2^n * k / 2^p) \<ge> 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1030
            by (auto simp: le_max_iff_disj)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1031
          then obtain j where "floor (max (2^n*i / 2^m) (2^n*k / 2^p)) = int j"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1032
            using zero_le_floor zero_le_imp_eq_int by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1033
          then have j_le: "real j \<le> max (2^n * i / 2^m) (2^n * k / 2^p)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1034
            and less_j1: "max (2^n * i / 2^m) (2^n * k / 2^p) < real j + 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1035
            using floor_correct [of "max (2^n * i / 2^m) (2^n * k / 2^p)"] by linarith+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1036
          show thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1037
          proof (cases "j = 0")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1038
            case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1039
            show thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1040
            proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1041
              show "(1::nat) < 2 ^ n"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1042
                by (metis Suc_1 \<open>0 < n\<close> lessI one_less_power)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1043
              show "\<bar>real i / 2 ^ m - real 1/2 ^ n\<bar> < 1/2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1044
                using i less_j1 by (simp add: dist_norm field_simps True)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1045
              show "\<bar>real k / 2 ^ p - real 1/2 ^ n\<bar> < 1/2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1046
                using k less_j1 by (simp add: dist_norm field_simps True)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1047
            qed simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1048
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1049
            case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1050
            have 1: "real j * 2 ^ m < real i * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1051
              if j: "real j * 2 ^ p \<le> real k * 2 ^ n" and k: "real k * 2 ^ m < real i * 2 ^ p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1052
              for i k m p
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1053
            proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1054
              have "real j * 2 ^ p * 2 ^ m \<le> real k * 2 ^ n * 2 ^ m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1055
                using j by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1056
              moreover have "real k * 2 ^ m * 2 ^ n < real i * 2 ^ p * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1057
                using k by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1058
              ultimately have "real j * 2 ^ p * 2 ^ m < real i * 2 ^ p * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1059
                by (simp only: mult_ac)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1060
              then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1061
                by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1062
            qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1063
            have 2: "real j * 2 ^ m < 2 ^ m + real i * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1064
              if j: "real j * 2 ^ p \<le> real k * 2 ^ n" and k: "real k * (2 ^ m * 2 ^ n) < 2 ^ m * 2 ^ p + real i * (2 ^ n * 2 ^ p)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1065
              for i k m p
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1066
            proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1067
              have "real j * 2 ^ p * 2 ^ m \<le> real k * (2 ^ m * 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1068
                using j by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1069
              also have "... < 2 ^ m * 2 ^ p + real i * (2 ^ n * 2 ^ p)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1070
                by (rule k)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1071
              finally have "(real j * 2 ^ m) * 2 ^ p < (2 ^ m + real i * 2 ^ n) * 2 ^ p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1072
                by (simp add: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1073
              then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1074
                by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1075
            qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1076
            have 3: "real j * 2 ^ p < 2 ^ p + real k * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1077
              if j: "real j * 2 ^ m \<le> real i * 2 ^ n" and i: "real i * 2 ^ p \<le> real k * 2 ^ m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1078
            proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1079
              have "real j * 2 ^ m * 2 ^ p \<le> real i * 2 ^ n * 2 ^ p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1080
                using j by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1081
              moreover have "real i * 2 ^ p * 2 ^ n \<le> real k * 2 ^ m * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1082
                using i by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1083
              ultimately have "real j * 2 ^ m * 2 ^ p \<le> real k * 2 ^ m * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1084
                by (simp only: mult_ac)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1085
              then have "real j * 2 ^ p \<le> real k * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1086
                by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1087
              also have "... < 2 ^ p + real k * 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1088
                by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1089
              finally show ?thesis by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1090
            qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1091
            show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1092
            proof
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1093
              have "2 ^ n * real i / 2 ^ m < 2 ^ n" "2 ^ n * real k / 2 ^ p < 2 ^ n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1094
                using i k by (auto simp: field_simps)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1095
              then have "max (2^n * i / 2^m) (2^n * k / 2^p) < 2^n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1096
                by simp
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1097
              with j_le have "real j < 2 ^ n" by linarith 
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1098
              then show "j < 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1099
                by auto
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1100
              have "\<bar>real i * 2 ^ n - real j * 2 ^ m\<bar> < 2 ^ m"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1101
                using clo less_j1 j_le
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1102
                 by (auto simp: le_max_iff_disj field_split_simps dist_norm abs_if split: if_split_asm dest: 1 2)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1103
              then show "\<bar>real i / 2 ^ m - real j / 2 ^ n\<bar> < 1/2 ^ n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1104
                by (auto simp: field_split_simps)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1105
              have "\<bar>real k * 2 ^ n - real j * 2 ^ p\<bar> < 2 ^ p"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1106
                using clo less_j1 j_le
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1107
                by (auto simp: le_max_iff_disj field_split_simps dist_norm abs_if split: if_split_asm dest: 3 2)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1108
              then show "\<bar>real k / 2 ^ p - real j / 2 ^ n\<bar> < 1/2 ^ n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1109
                by (auto simp: le_max_iff_disj field_split_simps dist_norm)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1110
            qed (use False in simp)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1111
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1112
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1113
        show "dist (f (c (real k / 2 ^ p))) (f (c (real i / 2 ^ m))) < e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1114
        proof (rule dist_triangle_half_l)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1115
          show "dist (f (c (real k / 2 ^ p))) (f(c(j / 2^n))) < e/2"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1116
            using \<open>0 < j\<close> \<open>j < 2 ^ n\<close> k clo_kj 
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1117
            by (intro dist_fc_close) auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1118
          show "dist (f (c (real i / 2 ^ m))) (f (c (real j / 2 ^ n))) < e/2"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1119
            using \<open>0 < j\<close> \<open>j < 2 ^ n\<close> i clo_ij 
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1120
            by (intro dist_fc_close) auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1121
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1122
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1123
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1124
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1125
  then obtain h where ucont_h: "uniformly_continuous_on {0..1} h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1126
    and fc_eq: "\<And>x. x \<in> D01 \<Longrightarrow> (f \<circ> c) x = h x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1127
  proof (rule uniformly_continuous_on_extension_on_closure [of D01 "f \<circ> c"])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1128
  qed (use closure_subset [of D01] in \<open>auto intro!: that\<close>)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1129
  then have cont_h: "continuous_on {0..1} h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1130
    using uniformly_continuous_imp_continuous by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1131
  have h_eq: "h (real k / 2 ^ m) = f (c (real k / 2 ^ m))" if "0 < k" "k < 2^m" for k m
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1132
    using fc_eq that by (force simp: D01_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1133
  have "h ` {0..1} = f ` {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1134
  proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1135
    have "h ` (closure D01) \<subseteq> f ` {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1136
    proof (rule image_closure_subset)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1137
      show "continuous_on (closure D01) h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1138
        using cont_h by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1139
      show "closed (f ` {0..1})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1140
        using compact_continuous_image [OF cont_f] compact_imp_closed by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1141
      show "h ` D01 \<subseteq> f ` {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1142
        by (force simp: dyadics_in_open_unit_interval D01_def h_eq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1143
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1144
    with cloD01 show "h ` {0..1} \<subseteq> f ` {0..1}" by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1145
    have a12 [simp]: "a (1/2) = u"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1146
      by (metis a_def leftrec_base numeral_One of_nat_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1147
    have b12 [simp]: "b (1/2) = v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1148
      by (metis b_def rightrec_base numeral_One of_nat_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1149
    have "f ` {0..1} \<subseteq> closure(h ` D01)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1150
    proof (clarsimp simp: closure_approachable dyadics_in_open_unit_interval D01_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1151
      fix x e::real
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1152
      assume "0 \<le> x" "x \<le> 1" "0 < e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1153
      have ucont_f: "uniformly_continuous_on {0..1} f"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1154
        using compact_uniformly_continuous cont_f by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1155
      then obtain \<delta> where "\<delta> > 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1156
        and \<delta>: "\<And>x x'. \<lbrakk>x \<in> {0..1}; x' \<in> {0..1}; dist x' x < \<delta>\<rbrakk> \<Longrightarrow> norm (f x' - f x) < e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1157
        using \<open>0 < e\<close> by (auto simp: uniformly_continuous_on_def dist_norm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1158
      have *: "\<exists>m::nat. \<exists>y. odd m \<and> 0 < m \<and> m < 2 ^ n \<and> y \<in> {a(m / 2^n) .. b(m / 2^n)} \<and> f y = f x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1159
        if "n \<noteq> 0" for n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1160
        using that
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1161
      proof (induction n)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1162
        case 0 then show ?case by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1163
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1164
        case (Suc n)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1165
        show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1166
        proof (cases "n=0")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1167
          case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1168
          consider "x \<in> {0..u}" | "x \<in> {u..v}" | "x \<in> {v..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1169
            using \<open>0 \<le> x\<close> \<open>x \<le> 1\<close> by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1170
          then have "\<exists>y\<ge>a (real 1/2). y \<le> b (real 1/2) \<and> f y = f x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1171
          proof cases
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1172
            case 1
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1173
            then show ?thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1174
              using uabv [of 1 1] f0u [of u] f0u [of x] by force
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1175
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1176
            case 2
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1177
            then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1178
              by (rule_tac x=x in exI) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1179
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1180
            case 3
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1181
            then show ?thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1182
              using uabv [of 1 1] fv1 [of v] fv1 [of x] by force
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1183
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1184
          with \<open>n=0\<close> show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1185
            by (rule_tac x=1 in exI) auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1186
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1187
          case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1188
          with Suc obtain m y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1189
            where "odd m" "0 < m" and mless: "m < 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1190
              and y: "y \<in> {a (real m / 2 ^ n)..b (real m / 2 ^ n)}" and feq: "f y = f x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1191
            by metis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1192
          then obtain j where j: "m = 2*j + 1" by (metis oddE)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1193
          have j4: "4 * j + 1 < 2 ^ Suc n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1194
            using mless j by (simp add: algebra_simps)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1195
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1196
          consider "y \<in> {a((2*j + 1) / 2^n) .. b((4*j + 1) / 2 ^ (Suc n))}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1197
            | "y \<in> {b((4*j + 1) / 2 ^ (Suc n)) .. a((4*j + 3) / 2 ^ (Suc n))}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1198
            | "y \<in> {a((4*j + 3) / 2 ^ (Suc n)) .. b((2*j + 1) / 2^n)}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1199
            using y j by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1200
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1201
          proof cases
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1202
            case 1
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1203
            show ?thesis
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1204
            proof (intro exI conjI)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1205
              show "y \<in> {a (real (4 * j + 1) / 2 ^ Suc n)..b (real (4 * j + 1) / 2 ^ Suc n)}"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1206
                using mless j \<open>n \<noteq> 0\<close> 1 by (simp add: a41 b41 add.commute [of 1] del: power_Suc)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1207
            qed (use feq j4 in auto)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1208
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1209
            case 2
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1210
            show ?thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1211
            proof (intro exI conjI)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1212
              show "b (real (4 * j + 1) / 2 ^ Suc n) \<in> {a (real (4 * j + 1) / 2 ^ Suc n)..b (real (4 * j + 1) / 2 ^ Suc n)}"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1213
                using \<open>n \<noteq> 0\<close> alec [of "2*j+1" n] cleb [of "2*j+1" n] a_ge_0 [of "2*j+1" n] b_le_1 [of "2*j+1" n]
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1214
                using left_right [of "c((2*j + 1) / 2^n)" "a((2*j + 1) / 2^n)" "b((2*j + 1) / 2^n)"]
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1215
                by (simp add: a41 b41 add.commute [of 1] del: power_Suc)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1216
              show "f (b (real (4 * j + 1) / 2 ^ Suc n)) = f x"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1217
                using \<open>n \<noteq> 0\<close> 2 
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1218
                using alec [of "2*j+1" n] cleb [of "2*j+1" n] a_ge_0 [of "2*j+1" n]  b_le_1 [of "2*j+1" n]
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1219
                by (force simp add: b41 a43 add.commute [of 1] feq [symmetric] simp del: power_Suc intro: f_eqI)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1220
            qed (use j4 in auto)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1221
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1222
            case 3
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1223
            show ?thesis
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1224
            proof (intro exI conjI)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1225
              show "4 * j + 3 < 2 ^ Suc n"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1226
                using mless j by simp
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1227
              show "f y = f x"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1228
                by fact
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1229
              show "y \<in> {a (real (4 * j + 3) / 2 ^ Suc n) .. b (real (4 * j + 3) / 2 ^ Suc n)}"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1230
                using 3 False b43 [of n j] by (simp add: add.commute)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1231
            qed (use 3 in auto)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1232
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1233
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1234
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1235
      obtain n where n: "1/2^n < min (\<delta> / 2) 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1236
        by (metis \<open>0 < \<delta>\<close> divide_less_eq_1 less_numeral_extra(1) min_less_iff_conj one_less_numeral_iff power_one_over real_arch_pow_inv semiring_norm(76) zero_less_divide_iff zero_less_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1237
      with gr0I have "n \<noteq> 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1238
        by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1239
      with * obtain m::nat and y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1240
        where "odd m" "0 < m" and mless: "m < 2 ^ n"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1241
          and y: "a(m / 2^n) \<le> y \<and> y \<le> b(m / 2^n)" and feq: "f x = f y"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1242
        by (metis atLeastAtMost_iff)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1243
      then have "0 \<le> y" "y \<le> 1"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1244
        by (meson a_ge_0 b_le_1 order.trans)+
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1245
      moreover have "y < \<delta> + c (real m / 2 ^ n)" "c (real m / 2 ^ n) < \<delta> + y"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1246
        using y alec [of m n] cleb [of m n] n field_sum_of_halves close_ab [OF \<open>odd m\<close>, of n]
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1247
        by linarith+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1248
      moreover note \<open>0 < m\<close> mless \<open>0 \<le> x\<close> \<open>x \<le> 1\<close>
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1249
      ultimately have "dist (h (real m / 2 ^ n)) (f x) < e"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1250
        by (auto simp: dist_norm h_eq feq \<delta>)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1251
      then show "\<exists>k. \<exists>m\<in>{0<..<2 ^ k}. dist (h (real m / 2 ^ k)) (f x) < e"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1252
        using \<open>0 < m\<close> greaterThanLessThan_iff mless by blast
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1253
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1254
    also have "... \<subseteq> h ` {0..1}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1255
    proof (rule closure_minimal)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1256
      show "h ` D01 \<subseteq> h ` {0..1}"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1257
        using cloD01 closure_subset by blast
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1258
      show "closed (h ` {0..1})"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1259
        using compact_continuous_image [OF cont_h] compact_imp_closed by auto
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1260
    qed
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1261
    finally show "f ` {0..1} \<subseteq> h ` {0..1}" .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1262
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1263
  moreover have "inj_on h {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1264
  proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1265
    have "u < v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1266
      by (metis atLeastAtMost_iff f0u f_1not0 fv1 order.not_eq_order_implies_strict u01(1) u01(2) v01(1))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1267
    have f_not_fu: "\<And>x. \<lbrakk>u < x; x \<le> v\<rbrakk> \<Longrightarrow> f x \<noteq> f u"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1268
      by (metis atLeastAtMost_iff f0u fu1 greaterThanAtMost_iff order_refl order_trans u01(1) v01(2))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1269
    have f_not_fv: "\<And>x. \<lbrakk>u \<le> x; x < v\<rbrakk> \<Longrightarrow> f x \<noteq> f v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1270
      by (metis atLeastAtMost_iff order_refl order_trans v01(2) atLeastLessThan_iff fuv fv1)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1271
    have a_less_b:
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1272
         "a(j / 2^n) < b(j / 2^n) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1273
          (\<forall>x. a(j / 2^n) < x \<longrightarrow> x \<le> b(j / 2^n) \<longrightarrow> f x \<noteq> f(a(j / 2^n))) \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1274
          (\<forall>x. a(j / 2^n) \<le> x \<longrightarrow> x < b(j / 2^n) \<longrightarrow> f x \<noteq> f(b(j / 2^n)))" for n and j::nat
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1275
    proof (induction n arbitrary: j)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1276
      case 0 then show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1277
        by (simp add: \<open>u < v\<close> f_not_fu f_not_fv)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1278
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1279
      case (Suc n j) show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1280
      proof (cases "n > 0")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1281
        case False then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1282
          by (auto simp: a_def b_def leftrec_base rightrec_base \<open>u < v\<close> f_not_fu f_not_fv)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1283
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1284
        case True show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1285
        proof (cases "even j")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1286
          case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1287
          with \<open>0 < n\<close> Suc.IH show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1288
            by (auto elim!: evenE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1289
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1290
          case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1291
          then obtain k where k: "j = 2*k + 1" by (metis oddE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1292
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1293
          proof (cases "even k")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1294
            case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1295
            then obtain m where m: "k = 2*m" by (metis evenE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1296
            have fleft: "f (leftcut (a ((2*m + 1) / 2^n)) (b ((2*m + 1) / 2^n)) (c ((2*m + 1) / 2^n))) =
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1297
                         f (c((2*m + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1298
              using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n]  b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1299
              using left_right_m [of "c((2*m + 1) / 2^n)" "a((2*m + 1) / 2^n)" "b((2*m + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1300
              by (auto intro: f_eqI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1301
            show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1302
            proof (intro conjI impI notI allI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1303
              have False if "b (real j / 2 ^ Suc n) \<le> a (real j / 2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1304
              proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1305
                have "f (c ((1 + real m * 2) / 2 ^ n)) = f (a ((1 + real m * 2) / 2 ^ n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1306
                  using k m \<open>0 < n\<close> fleft that a41 [of n m] b41 [of n m]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1307
                  using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n]  b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1308
                  using left_right [of "c((2*m + 1) / 2^n)" "a((2*m + 1) / 2^n)" "b((2*m + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1309
                  by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1310
                moreover have "a (real (1 + m * 2) / 2 ^ n) < c (real (1 + m * 2) / 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1311
                  using Suc.IH [of "1 + m * 2"] by (simp add: c_def midpoint_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1312
                moreover have "c (real (1 + m * 2) / 2 ^ n) \<le> b (real (1 + m * 2) / 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1313
                  using cleb by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1314
                ultimately show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1315
                  using Suc.IH [of "1 + m * 2"] by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1316
              qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1317
              then show "a (real j / 2 ^ Suc n) < b (real j / 2 ^ Suc n)" by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1318
            next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1319
              fix x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1320
              assume "a (real j / 2 ^ Suc n) < x" "x \<le> b (real j / 2 ^ Suc n)" "f x = f (a (real j / 2 ^ Suc n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1321
              then show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1322
                using Suc.IH [of "1 + m * 2", THEN conjunct2, THEN conjunct1]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1323
                using k m \<open>0 < n\<close> a41 [of n m] b41 [of n m]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1324
                using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n] b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1325
                using left_right_m [of "c((2*m + 1) / 2^n)" "a((2*m + 1) / 2^n)" "b((2*m + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1326
                by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1327
            next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1328
              fix x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1329
              assume "a (real j / 2 ^ Suc n) \<le> x" "x < b (real j / 2 ^ Suc n)" "f x = f (b (real j / 2 ^ Suc n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1330
              then show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1331
                using k m \<open>0 < n\<close> a41 [of n m] b41 [of n m] fleft left_neq
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1332
                using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n] b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1333
                by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1334
            qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1335
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1336
            case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1337
            with oddE obtain m where m: "k = Suc (2*m)" by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1338
            have fright: "f (rightcut (a ((2*m + 1) / 2^n)) (b ((2*m + 1) / 2^n)) (c ((2*m + 1) / 2^n))) = f (c((2*m + 1) / 2^n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1339
              using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n]  b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1340
              using left_right_m [of "c((2*m + 1) / 2^n)" "a((2*m + 1) / 2^n)" "b((2*m + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1341
              by (auto intro: f_eqI [OF _ order_refl])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1342
            show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1343
            proof (intro conjI impI notI allI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1344
              have False if "b (real j / 2 ^ Suc n) \<le> a (real j / 2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1345
              proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1346
                have "f (c ((1 + real m * 2) / 2 ^ n)) = f (b ((1 + real m * 2) / 2 ^ n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1347
                  using k m \<open>0 < n\<close> fright that a43 [of n m] b43 [of n m]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1348
                  using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n]  b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1349
                  using left_right [of "c((2*m + 1) / 2^n)" "a((2*m + 1) / 2^n)" "b((2*m + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1350
                  by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1351
                moreover have "a (real (1 + m * 2) / 2 ^ n) \<le> c (real (1 + m * 2) / 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1352
                  using alec by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1353
                moreover have "c (real (1 + m * 2) / 2 ^ n) < b (real (1 + m * 2) / 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1354
                  using Suc.IH [of "1 + m * 2"] by (simp add: c_def midpoint_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1355
                ultimately show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1356
                  using Suc.IH [of "1 + m * 2"] by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1357
              qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1358
              then show "a (real j / 2 ^ Suc n) < b (real j / 2 ^ Suc n)" by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1359
            next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1360
              fix x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1361
              assume "a (real j / 2 ^ Suc n) < x" "x \<le> b (real j / 2 ^ Suc n)" "f x = f (a (real j / 2 ^ Suc n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1362
              then show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1363
                using k m \<open>0 < n\<close> a43 [of n m] b43 [of n m] fright right_neq
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1364
                using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n] b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1365
                by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1366
            next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1367
              fix x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1368
              assume "a (real j / 2 ^ Suc n) \<le> x" "x < b (real j / 2 ^ Suc n)" "f x = f (b (real j / 2 ^ Suc n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1369
              then show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1370
                using Suc.IH [of "1 + m * 2", THEN conjunct2, THEN conjunct2]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1371
                using k m \<open>0 < n\<close> a43 [of n m] b43 [of n m]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1372
                using alec [of "2*m+1" n] cleb [of "2*m+1" n] a_ge_0 [of "2*m+1" n] b_le_1 [of "2*m+1" n]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1373
                using left_right_m [of "c((2*m + 1) / 2^n)" "a((2*m + 1) / 2^n)" "b((2*m + 1) / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1374
                by (auto simp: algebra_simps fright simp del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1375
            qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1376
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1377
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1378
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1379
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1380
    have c_gt_0 [simp]: "0 < c(m / 2^n)" and c_less_1 [simp]: "c(m / 2^n) < 1" for m::nat and n
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1381
      using a_less_b [of m n] apply (simp_all add: c_def midpoint_def)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1382
      using a_ge_0 [of m n] b_le_1 [of m n] by linarith+
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1383
    have approx: "\<exists>j n. odd j \<and> n \<noteq> 0 \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1384
                        real i / 2^m \<le> real j / 2^n \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1385
                        real j / 2^n \<le> real k / 2^p \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1386
                        \<bar>real i / 2 ^ m - real j / 2 ^ n\<bar> < 1/2^n \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1387
                        \<bar>real k / 2 ^ p - real j / 2 ^ n\<bar> < 1/2^n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1388
      if "0 < i" "i < 2 ^ m" "0 < k" "k < 2 ^ p" "i / 2^m < k / 2^p" "m + p = N" for N m p i k
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1389
      using that
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1390
    proof (induction N arbitrary: m p i k rule: less_induct)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1391
      case (less N)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1392
      then consider "i / 2^m \<le> 1/2" "1/2 \<le> k / 2^p" | "k / 2^p < 1/2" | "k / 2^p \<ge> 1/2" "1/2 < i / 2^m"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1393
        by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1394
      then show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1395
      proof cases
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1396
        case 1
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1397
        with less.prems show ?thesis
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
  1398
          by (rule_tac x=1 in exI)+ (fastforce simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1399
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1400
        case 2 show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1401
        proof (cases m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1402
          case 0 with less.prems show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1403
            by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1404
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1405
          case (Suc m') show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1406
          proof (cases p)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1407
            case 0 with less.prems show ?thesis by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1408
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1409
            case (Suc p')
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1410
            have \<section>: False if "real i * 2 ^ p' < real k * 2 ^ m'" "k < 2 ^ p'" "2 ^ m' \<le> i"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1411
            proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1412
              have "real k * 2 ^ m' < 2 ^ p' * 2 ^ m'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1413
                using that by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1414
              then have "real i * 2 ^ p' < 2 ^ p' * 2 ^ m'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1415
                using that by linarith
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1416
              with that show ?thesis by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1417
            qed
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1418
            moreover have *: "real i / 2 ^ m' < real k / 2^p'"  "k < 2 ^ p'"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1419
              using less.prems \<open>m = Suc m'\<close> 2 Suc by (force simp: field_split_simps)+
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1420
            moreover have "i < 2 ^ m' "
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1421
              using \<section> * by (clarsimp simp: divide_simps linorder_not_le) (meson linorder_not_le)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1422
            ultimately show ?thesis
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1423
              using less.IH [of "m'+p'" i m' k p'] less.prems \<open>m = Suc m'\<close> 2 Suc
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1424
              by (force simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1425
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1426
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1427
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1428
        case 3 show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1429
        proof (cases m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1430
          case 0 with less.prems show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1431
            by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1432
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1433
          case (Suc m') show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1434
          proof (cases p)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1435
            case 0 with less.prems show ?thesis by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1436
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1437
            case (Suc p')
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1438
            have "real (i - 2 ^ m') / 2 ^ m' < real (k - 2 ^ p') / 2 ^ p'"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1439
              using less.prems \<open>m = Suc m'\<close> Suc 3  by (auto simp: field_simps of_nat_diff)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1440
            moreover have "k - 2 ^ p' < 2 ^ p'" "i - 2 ^ m' < 2 ^ m'"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1441
              using less.prems Suc \<open>m = Suc m'\<close> by auto
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1442
            moreover 
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1443
            have "2 ^ p' \<le> k" "2 ^ p' \<noteq> k"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1444
              using less.prems \<open>m = Suc m'\<close> Suc 3 by auto
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1445
            then have "2 ^ p' < k"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1446
              by linarith
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1447
            ultimately show ?thesis
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1448
              using less.IH [of "m'+p'" "i - 2^m'" m' "k - 2 ^ p'" p'] less.prems \<open>m = Suc m'\<close> Suc 3
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1449
              apply (clarsimp simp: field_simps of_nat_diff)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1450
              apply (rule_tac x="2 ^ n + j" in exI, simp)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1451
              apply (rule_tac x="Suc n" in exI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1452
              apply (auto simp: field_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1453
              done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1454
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1455
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1456
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1457
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1458
    have clec: "c(real i / 2^m) \<le> c(real j / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1459
      if i: "0 < i" "i < 2 ^ m" and j: "0 < j" "j < 2 ^ n" and ij: "i / 2^m < j / 2^n" for m i n j
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1460
    proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1461
      obtain j' n' where "odd j'" "n' \<noteq> 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1462
        and i_le_j: "real i / 2 ^ m \<le> real j' / 2 ^ n'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1463
        and j_le_j: "real j' / 2 ^ n' \<le> real j / 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1464
        and clo_ij: "\<bar>real i / 2 ^ m - real j' / 2 ^ n'\<bar> < 1/2 ^ n'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1465
        and clo_jj: "\<bar>real j / 2 ^ n - real j' / 2 ^ n'\<bar> < 1/2 ^ n'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1466
        using approx [of i m j n "m+n"] that i j ij by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1467
      with oddE obtain q where q: "j' = Suc (2*q)" by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1468
      have "c (real i / 2 ^ m) \<le> c((2*q + 1) / 2^n')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1469
      proof (cases "i / 2^m = (2*q + 1) / 2^n'")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1470
        case True then show ?thesis by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1471
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1472
        case False
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1473
        with i_le_j clo_ij q have "\<bar>real i / 2 ^ m - real (4 * q + 1) / 2 ^ Suc n'\<bar> < 1 / 2 ^ Suc n'"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1474
          by (auto simp: field_split_simps)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1475
        then have "c(i / 2^m) \<le> b(real(4 * q + 1) / 2 ^ (Suc n'))"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1476
          by (meson ci_le_bj even_mult_iff even_numeral even_plus_one_iff)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1477
        then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1478
          using alec [of "2*q+1" n'] cleb [of "2*q+1" n'] a_ge_0 [of "2*q+1" n'] b_le_1 [of "2*q+1" n'] b41 [of n' q] \<open>n' \<noteq> 0\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1479
          using left_right_m [of "c((2*q + 1) / 2^n')" "a((2*q + 1) / 2^n')" "b((2*q + 1) / 2^n')"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1480
          by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1481
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1482
      also have "... \<le> c(real j / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1483
      proof (cases "j / 2^n = (2*q + 1) / 2^n'")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1484
        case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1485
        then show ?thesis by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1486
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1487
        case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1488
        with j_le_j q have less: "(2*q + 1) / 2^n' < j / 2^n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1489
          by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1490
        have *: "\<lbrakk>q < i; abs(i - q) < s*2; r = q + s\<rbrakk> \<Longrightarrow> abs(i - r) < s" for i q s r::real
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1491
          by auto
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1492
        have "\<bar>real j / 2 ^ n - real (4 * q + 3) / 2 ^ Suc n'\<bar> < 1 / 2 ^ Suc n'"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1493
          by (rule * [OF less]) (use j_le_j clo_jj q  in \<open>auto simp: field_split_simps\<close>)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1494
        then have "a(real(4*q + 3) / 2 ^ (Suc n')) \<le> c(j / 2^n)"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1495
          by (metis Suc3_eq_add_3 add.commute aj_le_ci even_Suc even_mult_iff even_numeral)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1496
        then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1497
          using alec [of "2*q+1" n'] cleb [of "2*q+1" n'] a_ge_0 [of "2*q+1" n'] b_le_1 [of "2*q+1" n'] a43 [of n' q] \<open>n' \<noteq> 0\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1498
          using left_right_m [of "c((2*q + 1) / 2^n')" "a((2*q + 1) / 2^n')" "b((2*q + 1) / 2^n')"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1499
          by (auto simp: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1500
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1501
      finally show ?thesis .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1502
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1503
    have "x = y" if "0 \<le> x" "x \<le> 1" "0 \<le> y" "y \<le> 1" "h x = h y" for x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1504
      using that
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1505
    proof (induction x y rule: linorder_class.linorder_less_wlog)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1506
      case (less x1 x2)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1507
      obtain m n where m: "0 < m" "m < 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1508
        and x12: "x1 < m / 2^n" "m / 2^n < x2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1509
        and neq: "h x1 \<noteq> h (real m / 2^n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1510
      proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1511
        have "(x1 + x2) / 2 \<in> closure D01"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1512
          using cloD01 less.hyps less.prems by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1513
        with less obtain y where "y \<in> D01" and dist_y: "dist y ((x1 + x2) / 2) < (x2 - x1) / 64"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1514
          unfolding closure_approachable
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1515
          by (metis diff_gt_0_iff_gt less_divide_eq_numeral1(1) mult_zero_left)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1516
        obtain m n where m: "0 < m" "m < 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1517
                     and clo: "\<bar>real m / 2 ^ n - (x1 + x2) / 2\<bar> < (x2 - x1) / 64"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1518
                     and n: "1/2^n < (x2 - x1) / 128"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1519
        proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1520
          have "min 1 ((x2 - x1) / 128) > 0" "1/2 < (1::real)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1521
            using less by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1522
          then obtain N where N: "1/2^N < min 1 ((x2 - x1) / 128)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1523
            by (metis power_one_over real_arch_pow_inv)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1524
          then have "N > 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1525
            using less_divide_eq_1 by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1526
          obtain p q where p: "p < 2 ^ q" "p \<noteq> 0" and yeq: "y = real p / 2 ^ q"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1527
            using \<open>y \<in> D01\<close> by (auto simp: zero_less_divide_iff D01_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1528
          show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1529
          proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1530
            show "0 < 2^N * p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1531
              using p by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1532
            show "2 ^ N * p < 2 ^ (N+q)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1533
              by (simp add: p power_add)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1534
            have "\<bar>real (2 ^ N * p) / 2 ^ (N + q) - (x1 + x2) / 2\<bar> = \<bar>real p / 2 ^ q - (x1 + x2) / 2\<bar>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1535
              by (simp add: power_add)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1536
            also have "... = \<bar>y - (x1 + x2) / 2\<bar>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1537
              by (simp add: yeq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1538
            also have "... < (x2 - x1) / 64"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1539
              using dist_y by (simp add: dist_norm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1540
            finally show "\<bar>real (2 ^ N * p) / 2 ^ (N + q) - (x1 + x2) / 2\<bar> < (x2 - x1) / 64" .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1541
            have "(1::real) / 2 ^ (N + q) \<le> 1/2^N"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1542
              by (simp add: field_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1543
            also have "... < (x2 - x1) / 128"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1544
              using N by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1545
            finally show "1/2 ^ (N + q) < (x2 - x1) / 128" .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1546
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1547
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1548
        obtain m' n' m'' n'' where "0 < m'" "m' < 2 ^ n'" "x1 < m' / 2^n'" "m' / 2^n' < x2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1549
          and "0 < m''" "m'' < 2 ^ n''" "x1 < m'' / 2^n''" "m'' / 2^n'' < x2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1550
          and neq: "h (real m'' / 2^n'') \<noteq> h (real m' / 2^n')"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1551
        proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1552
          show "0 < Suc (2*m)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1553
            by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1554
          show m21: "Suc (2*m) < 2 ^ Suc n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1555
            using m by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1556
          show "x1 < real (Suc (2 * m)) / 2 ^ Suc n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1557
            using clo by (simp add: field_simps abs_if split: if_split_asm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1558
          show "real (Suc (2 * m)) / 2 ^ Suc n < x2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1559
            using n clo by (simp add: field_simps abs_if split: if_split_asm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1560
          show "0 < 4*m + 3"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1561
            by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1562
          have "m+1 \<le> 2 ^ n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1563
            using m by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1564
          then have "4 * (m+1) \<le> 4 * (2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1565
            by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1566
          then show m43: "4*m + 3 < 2 ^ (n+2)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1567
            by (simp add: algebra_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1568
          show "x1 < real (4 * m + 3) / 2 ^ (n + 2)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1569
            using clo by (simp add: field_simps abs_if split: if_split_asm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1570
          show "real (4 * m + 3) / 2 ^ (n + 2) < x2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1571
            using n clo by (simp add: field_simps abs_if split: if_split_asm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1572
          have c_fold: "midpoint (a ((2 * real m + 1) / 2 ^ Suc n)) (b ((2 * real m + 1) / 2 ^ Suc n)) = c ((2 * real m + 1) / 2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1573
            by (simp add: c_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1574
          define R where "R \<equiv> rightcut (a ((2 * real m + 1) / 2 ^ Suc n)) (b ((2 * real m + 1) / 2 ^ Suc n))  (c ((2 * real m + 1) / 2 ^ Suc n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1575
          have "R < b ((2 * real m + 1) / 2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1576
            unfolding R_def  using a_less_b [of "4*m + 3" "n+2"] a43 [of "Suc n" m] b43 [of "Suc n" m]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1577
            by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1578
          then have Rless: "R < midpoint R (b ((2 * real m + 1) / 2 ^ Suc n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1579
            by (simp add: midpoint_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1580
          have midR_le: "midpoint R (b ((2 * real m + 1) / 2 ^ Suc n)) \<le> b ((2 * real m + 1) / (2 * 2 ^ n))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1581
            using \<open>R < b ((2 * real m + 1) / 2 ^ Suc n)\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1582
            by (simp add: midpoint_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1583
          have "(real (Suc (2 * m)) / 2 ^ Suc n) \<in> D01"  "real (4 * m + 3) / 2 ^ (n + 2) \<in> D01"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1584
            by (simp_all add: D01_def m21 m43 del: power_Suc of_nat_Suc of_nat_add add_2_eq_Suc') blast+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1585
          then show "h (real (4 * m + 3) / 2 ^ (n + 2)) \<noteq> h (real (Suc (2 * m)) / 2 ^ Suc n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1586
            using a_less_b [of "4*m + 3" "n+2", THEN conjunct1]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1587
            using a43 [of "Suc n" m] b43 [of "Suc n" m]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1588
            using alec [of "2*m+1" "Suc n"] cleb [of "2*m+1" "Suc n"] a_ge_0 [of "2*m+1" "Suc n"]  b_le_1 [of "2*m+1" "Suc n"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1589
            apply (simp add: fc_eq [symmetric] c_def del: power_Suc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1590
            apply (simp only: add.commute [of 1] c_fold R_def [symmetric])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1591
            apply (rule right_neq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1592
            using Rless apply (simp add: R_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1593
               apply (rule midR_le, auto)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1594
            done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1595
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1596
        then show ?thesis by (metis that)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1597
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1598
      have m_div: "0 < m / 2^n" "m / 2^n < 1"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
  1599
        using m  by (auto simp: field_split_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1600
      have closure0m: "{0..m / 2^n} = closure ({0<..< m / 2^n} \<inter> (\<Union>k m. {real m / 2 ^ k}))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1601
        by (subst closure_dyadic_rationals_in_convex_set_pos_1, simp_all add: not_le m)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1602
      have "2^n > m"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1603
        by (simp add: m(2) not_le)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1604
      then have closurem1: "{m / 2^n .. 1} = closure ({m / 2^n <..< 1} \<inter> (\<Union>k m. {real m / 2 ^ k}))"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1605
        using closure_dyadic_rationals_in_convex_set_pos_1 m_div(1) by fastforce
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1606
      have cont_h': "continuous_on (closure ({u<..<v} \<inter> (\<Union>k m. {real m / 2 ^ k}))) h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1607
        if "0 \<le> u" "v \<le> 1" for u v
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1608
        using that by (intro continuous_on_subset [OF cont_h] closure_minimal [OF subsetI]) auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1609
      have closed_f': "closed (f ` {u..v})" if "0 \<le> u" "v \<le> 1" for u v
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1610
        by (metis compact_continuous_image cont_f compact_interval atLeastatMost_subset_iff
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1611
            compact_imp_closed continuous_on_subset that)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1612
      have less_2I: "\<And>k i. real i / 2 ^ k < 1 \<Longrightarrow> i < 2 ^ k"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1613
        by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1614
      have "h ` ({0<..<m / 2 ^ n} \<inter> (\<Union>q p. {real p / 2 ^ q})) \<subseteq> f ` {0..c (m / 2 ^ n)}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1615
      proof clarsimp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1616
        fix p q
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1617
        assume p: "0 < real p / 2 ^ q" "real p / 2 ^ q < real m / 2 ^ n"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1618
        then have [simp]: "0 < p"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1619
          by (simp add: field_split_simps)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1620
        have [simp]: "p < 2 ^ q"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1621
          by (blast intro: p less_2I m_div less_trans)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1622
        have "f (c (real p / 2 ^ q)) \<in> f ` {0..c (real m / 2 ^ n)}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1623
          by (auto simp: clec p m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1624
        then show "h (real p / 2 ^ q) \<in> f ` {0..c (real m / 2 ^ n)}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1625
          by (simp add: h_eq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1626
      qed
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1627
      with m_div have "h ` {0 .. m / 2^n} \<subseteq> f ` {0 .. c(m / 2^n)}"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1628
        apply (subst closure0m)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1629
        by (rule image_closure_subset [OF cont_h' closed_f']) auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1630
      then have hx1: "h x1 \<in> f ` {0 .. c(m / 2^n)}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1631
        using x12 less.prems(1) by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1632
      then obtain t1 where t1: "h x1 = f t1" "0 \<le> t1" "t1 \<le> c (m / 2 ^ n)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1633
        by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1634
      have "h ` ({m / 2 ^ n<..<1} \<inter> (\<Union>q p. {real p / 2 ^ q})) \<subseteq> f ` {c (m / 2 ^ n)..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1635
      proof clarsimp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1636
        fix p q
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1637
        assume p: "real m / 2 ^ n < real p / 2 ^ q" and [simp]: "p < 2 ^ q"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1638
        then have [simp]: "0 < p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1639
          using gr_zeroI m_div by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1640
        have "f (c (real p / 2 ^ q)) \<in> f ` {c (m / 2 ^ n)..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1641
          by (auto simp: clec p m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1642
        then show "h (real p / 2 ^ q) \<in> f ` {c (real m / 2 ^ n)..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1643
          by (simp add: h_eq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1644
      qed
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1645
      with m have "h ` {m / 2^n .. 1} \<subseteq> f ` {c(m / 2^n) .. 1}"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1646
        apply (subst closurem1)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1647
        by (rule image_closure_subset [OF cont_h' closed_f']) auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1648
      then have hx2: "h x2 \<in> f ` {c(m / 2^n)..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1649
        using x12 less.prems by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1650
      then obtain t2 where t2: "h x2 = f t2" "c (m / 2 ^ n) \<le> t2" "t2 \<le> 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1651
        by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1652
      with t1 less neq have False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1653
        using conn [of "h x2", unfolded is_interval_connected_1 [symmetric] is_interval_1, rule_format, of t1 t2 "c(m / 2^n)"]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1654
        by (simp add: h_eq m)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1655
      then show ?case by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1656
    qed auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1657
    then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1658
      by (auto simp: inj_on_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1659
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1660
  ultimately have "{0..1::real} homeomorphic f ` {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1661
    using homeomorphic_compact [OF _ cont_h] by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1662
  then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1663
    using homeomorphic_sym by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1664
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1665
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1666
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  1667
theorem path_contains_arc:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1668
  fixes p :: "real \<Rightarrow> 'a::{complete_space,real_normed_vector}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1669
  assumes "path p" and a: "pathstart p = a" and b: "pathfinish p = b" and "a \<noteq> b"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1670
  obtains q where "arc q" "path_image q \<subseteq> path_image p" "pathstart q = a" "pathfinish q = b"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  1671
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1672
  have ucont_p: "uniformly_continuous_on {0..1} p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1673
    using \<open>path p\<close> unfolding path_def
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1674
    by (metis compact_Icc compact_uniformly_continuous)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1675
  define \<phi> where "\<phi> \<equiv> \<lambda>S. S \<subseteq> {0..1} \<and> 0 \<in> S \<and> 1 \<in> S \<and>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1676
                           (\<forall>x \<in> S. \<forall>y \<in> S. open_segment x y \<inter> S = {} \<longrightarrow> p x = p y)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1677
  obtain T where "closed T" "\<phi> T" and T: "\<And>U. \<lbrakk>closed U; \<phi> U\<rbrakk> \<Longrightarrow> \<not> (U \<subset> T)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1678
  proof (rule Brouwer_reduction_theorem_gen [of "{0..1}" \<phi>])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1679
    have *: "{x<..<y} \<inter> {0..1} = {x<..<y}" if "0 \<le> x" "y \<le> 1" "x \<le> y" for x y::real
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1680
      using that by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1681
    show "\<phi> {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1682
      by (auto simp: \<phi>_def open_segment_eq_real_ivl *)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
  1683
    show "\<phi> (\<Inter>(F ` UNIV))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1684
      if "\<And>n. closed (F n)" and \<phi>: "\<And>n. \<phi> (F n)" and Fsub: "\<And>n. F (Suc n) \<subseteq> F n" for F
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1685
    proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1686
      have F01: "\<And>n. F n \<subseteq> {0..1} \<and> 0 \<in> F n \<and> 1 \<in> F n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1687
        and peq: "\<And>n x y. \<lbrakk>x \<in> F n; y \<in> F n; open_segment x y \<inter> F n = {}\<rbrakk> \<Longrightarrow> p x = p y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1688
        by (metis \<phi> \<phi>_def)+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1689
      have pqF: False if "\<forall>u. x \<in> F u" "\<forall>x. y \<in> F x" "open_segment x y \<inter> (\<Inter>x. F x) = {}" and neg: "p x \<noteq> p y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1690
        for x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1691
        using that
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1692
      proof (induction x y rule: linorder_class.linorder_less_wlog)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1693
        case (less x y)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1694
        have xy: "x \<in> {0..1}" "y \<in> {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1695
          by (metis less.prems subsetCE F01)+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1696
        have "norm(p x - p y) / 2 > 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1697
          using less by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1698
        then obtain e where "e > 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1699
          and e: "\<And>u v. \<lbrakk>u \<in> {0..1}; v \<in> {0..1}; dist v u < e\<rbrakk> \<Longrightarrow> dist (p v) (p u) < norm(p x - p y) / 2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1700
          by (metis uniformly_continuous_onE [OF ucont_p])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1701
        have minxy: "min e (y - x)  < (y - x) * (3 / 2)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1702
          by (subst min_less_iff_disj) (simp add: less)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1703
        define w where "w \<equiv> x + (min e (y - x) / 3)" 
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1704
        define z where "z \<equiv>y - (min e (y - x) / 3)"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1705
        have "w < z" and w: "w \<in> {x<..<y}" and z: "z \<in> {x<..<y}"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1706
          and wxe: "norm(w - x) < e" and zye: "norm(z - y) < e"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1707
          using minxy \<open>0 < e\<close> less unfolding w_def z_def by auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1708
        have Fclo: "\<And>T. T \<in> range F \<Longrightarrow> closed T"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1709
          by (metis \<open>\<And>n. closed (F n)\<close> image_iff)
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
  1710
        have eq: "{w..z} \<inter> \<Inter>(F ` UNIV) = {}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1711
          using less w z by (simp add: open_segment_eq_real_ivl disjoint_iff)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1712
        then obtain K where "finite K" and K: "{w..z} \<inter> (\<Inter> (F ` K)) = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1713
          by (metis finite_subset_image compact_imp_fip [OF compact_interval Fclo])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1714
        then have "K \<noteq> {}"
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 68833
diff changeset
  1715
          using \<open>w < z\<close> \<open>{w..z} \<inter> \<Inter>(F ` K) = {}\<close> by auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1716
        define n where "n \<equiv> Max K"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1717
        have "n \<in> K" unfolding n_def by (metis \<open>K \<noteq> {}\<close> \<open>finite K\<close> Max_in)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1718
        have "F n \<subseteq> \<Inter> (F ` K)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1719
          unfolding n_def by (metis Fsub Max_ge \<open>K \<noteq> {}\<close> \<open>finite K\<close> cINF_greatest lift_Suc_antimono_le)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1720
        with K have wzF_null: "{w..z} \<inter> F n = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1721
          by (metis disjoint_iff_not_equal subset_eq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1722
        obtain u where u: "u \<in> F n" "u \<in> {x..w}" "({u..w} - {u}) \<inter> F n = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1723
        proof (cases "w \<in> F n")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1724
          case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1725
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1726
            by (metis wzF_null \<open>w < z\<close> atLeastAtMost_iff disjoint_iff_not_equal less_eq_real_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1727
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1728
          case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1729
          obtain u where "u \<in> F n" "u \<in> {x..w}" "{u<..<w} \<inter> F n = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1730
          proof (rule segment_to_point_exists [of "F n \<inter> {x..w}" w])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1731
            show "closed (F n \<inter> {x..w})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1732
              by (metis \<open>\<And>n. closed (F n)\<close> closed_Int closed_real_atLeastAtMost)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1733
            show "F n \<inter> {x..w} \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1734
              by (metis atLeastAtMost_iff disjoint_iff_not_equal greaterThanLessThan_iff less.prems(1) less_eq_real_def w)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1735
          qed (auto simp: open_segment_eq_real_ivl intro!: that)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1736
          with False show thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1737
            by (auto simp add: disjoint_iff less_eq_real_def intro!: that)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1738
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1739
        obtain v where v: "v \<in> F n" "v \<in> {z..y}" "({z..v} - {v}) \<inter> F n = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1740
        proof (cases "z \<in> F n")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1741
          case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1742
          have "z \<in> {w..z}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1743
            using \<open>w < z\<close> by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1744
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1745
            by (metis wzF_null Int_iff True empty_iff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1746
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1747
          case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1748
          show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1749
          proof (rule segment_to_point_exists [of "F n \<inter> {z..y}" z])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1750
            show "closed (F n \<inter> {z..y})"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1751
              by (metis \<open>\<And>n. closed (F n)\<close> closed_Int closed_atLeastAtMost)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1752
            show "F n \<inter> {z..y} \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1753
              by (metis atLeastAtMost_iff disjoint_iff_not_equal greaterThanLessThan_iff less.prems(2) less_eq_real_def z)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1754
            show "\<And>b. \<lbrakk>b \<in> F n \<inter> {z..y}; open_segment z b \<inter> (F n \<inter> {z..y}) = {}\<rbrakk> \<Longrightarrow> thesis"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1755
            proof
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1756
              show "\<And>b. \<lbrakk>b \<in> F n \<inter> {z..y}; open_segment z b \<inter> (F n \<inter> {z..y}) = {}\<rbrakk> \<Longrightarrow> ({z..b} - {b}) \<inter> F n = {}"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1757
                using False by (auto simp: open_segment_eq_real_ivl less_eq_real_def)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1758
            qed auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1759
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1760
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1761
        obtain u v where "u \<in> {0..1}" "v \<in> {0..1}" "norm(u - x) < e" "norm(v - y) < e" "p u = p v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1762
        proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1763
          show "u \<in> {0..1}" "v \<in> {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1764
            by (metis F01 \<open>u \<in> F n\<close> \<open>v \<in> F n\<close> subsetD)+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1765
          show "norm(u - x) < e" "norm (v - y) < e"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1766
            using \<open>u \<in> {x..w}\<close> \<open>v \<in> {z..y}\<close> atLeastAtMost_iff real_norm_def wxe zye by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1767
          show "p u = p v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1768
          proof (rule peq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1769
            show "u \<in> F n" "v \<in> F n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1770
              by (auto simp: u v)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1771
            have "False" if "\<xi> \<in> F n" "u < \<xi>" "\<xi> < v" for \<xi>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1772
            proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1773
              have "\<xi> \<notin> {z..v}"
71633
07bec530f02e cleaned proofs
nipkow
parents: 71028
diff changeset
  1774
                by (metis DiffI disjoint_iff_not_equal less_irrefl singletonD that(1,3) v(3))
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1775
              moreover have "\<xi> \<notin> {w..z} \<inter> F n"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1776
                by (metis equals0D wzF_null)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1777
              ultimately have "\<xi> \<in> {u..w}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1778
                using that by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1779
              then show ?thesis
71633
07bec530f02e cleaned proofs
nipkow
parents: 71028
diff changeset
  1780
                by (metis DiffI disjoint_iff_not_equal less_eq_real_def not_le singletonD that(1,2) u(3))
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1781
            qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1782
            moreover
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1783
            have "\<lbrakk>\<xi> \<in> F n; v < \<xi>; \<xi> < u\<rbrakk> \<Longrightarrow> False" for \<xi>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1784
              using \<open>u \<in> {x..w}\<close> \<open>v \<in> {z..y}\<close> \<open>w < z\<close> by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1785
            ultimately
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1786
            show "open_segment u v \<inter> F n = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1787
              by (force simp: open_segment_eq_real_ivl)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1788
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1789
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1790
        then show ?case
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1791
          using e [of x u] e [of y v] xy
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1792
          by (metis dist_norm dist_triangle_half_r order_less_irrefl)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1793
      qed (auto simp: open_segment_commute)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1794
      show ?thesis
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72531
diff changeset
  1795
        unfolding \<phi>_def by (metis (no_types, opaque_lifting) INT_I Inf_lower2 rangeI that(3) F01 subsetCE pqF)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1796
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1797
    show "closed {0..1::real}" by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1798
  qed (meson \<phi>_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1799
  then have "T \<subseteq> {0..1}" "0 \<in> T" "1 \<in> T"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1800
    and peq: "\<And>x y. \<lbrakk>x \<in> T; y \<in> T; open_segment x y \<inter> T = {}\<rbrakk> \<Longrightarrow> p x = p y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1801
    unfolding \<phi>_def by metis+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1802
  then have "T \<noteq> {}" by auto
67613
ce654b0e6d69 more symbols;
wenzelm
parents: 66912
diff changeset
  1803
  define h where "h \<equiv> \<lambda>x. p(SOME y. y \<in> T \<and> open_segment x y \<inter> T = {})"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1804
  have "p y = p z" if "y \<in> T" "z \<in> T" and xyT: "open_segment x y \<inter> T = {}" and xzT: "open_segment x z \<inter> T = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1805
    for x y z
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1806
  proof (cases "x \<in> T")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1807
    case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1808
    with that show ?thesis by (metis \<open>\<phi> T\<close> \<phi>_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1809
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1810
    case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1811
    have "insert x (open_segment x y \<union> open_segment x z) \<inter> T = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1812
      by (metis False Int_Un_distrib2 Int_insert_left Un_empty_right xyT xzT)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1813
    moreover have "open_segment y z \<inter> T \<subseteq> insert x (open_segment x y \<union> open_segment x z) \<inter> T"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1814
      by (auto simp: open_segment_eq_real_ivl)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1815
    ultimately have "open_segment y z \<inter> T = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1816
      by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1817
    with that peq show ?thesis by metis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1818
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1819
  then have h_eq_p_gen: "h x = p y" if "y \<in> T" "open_segment x y \<inter> T = {}" for x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1820
    using that unfolding h_def
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1821
    by (metis (mono_tags, lifting) some_eq_ex)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1822
  then have h_eq_p: "\<And>x. x \<in> T \<Longrightarrow> h x = p x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1823
    by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1824
  have disjoint: "\<And>x. \<exists>y. y \<in> T \<and> open_segment x y \<inter> T = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1825
    by (meson \<open>T \<noteq> {}\<close> \<open>closed T\<close> segment_to_point_exists)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1826
  have heq: "h x = h x'" if "open_segment x x' \<inter> T = {}" for x x'
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1827
  proof (cases "x \<in> T \<or> x' \<in> T")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1828
    case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1829
    then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1830
      by (metis h_eq_p h_eq_p_gen open_segment_commute that)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1831
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1832
    case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1833
    obtain y y' where "y \<in> T" "open_segment x y \<inter> T = {}" "h x = p y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1834
      "y' \<in> T" "open_segment x' y' \<inter> T = {}" "h x' = p y'"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1835
      by (meson disjoint h_eq_p_gen)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1836
    moreover have "open_segment y y' \<subseteq> (insert x (insert x' (open_segment x y \<union> open_segment x' y' \<union> open_segment x x')))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1837
      by (auto simp: open_segment_eq_real_ivl)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1838
    ultimately show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1839
      using False that by (fastforce simp add: h_eq_p intro!: peq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1840
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1841
  have "h ` {0..1} homeomorphic {0..1::real}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1842
  proof (rule homeomorphic_monotone_image_interval)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1843
    show "continuous_on {0..1} h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1844
    proof (clarsimp simp add: continuous_on_iff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1845
      fix u \<epsilon>::real
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1846
      assume "0 < \<epsilon>" "0 \<le> u" "u \<le> 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1847
      then obtain \<delta> where "\<delta> > 0" and \<delta>: "\<And>v. v \<in> {0..1} \<Longrightarrow> dist v u < \<delta> \<longrightarrow> dist (p v) (p u) < \<epsilon> / 2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1848
        using ucont_p [unfolded uniformly_continuous_on_def]
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1849
        by (metis atLeastAtMost_iff half_gt_zero_iff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1850
      then have "dist (h v) (h u) < \<epsilon>" if "v \<in> {0..1}" "dist v u < \<delta>" for v
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1851
      proof (cases "open_segment u v \<inter> T = {}")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1852
        case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1853
        then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1854
          using \<open>0 < \<epsilon>\<close> heq by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1855
      next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1856
        case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1857
        have uvT: "closed (closed_segment u v \<inter> T)" "closed_segment u v \<inter> T \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1858
          using False open_closed_segment by (auto simp: \<open>closed T\<close> closed_Int)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1859
        obtain w where "w \<in> T" and w: "w \<in> closed_segment u v" "open_segment u w \<inter> T = {}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1860
        proof (rule segment_to_point_exists [OF uvT])
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1861
          fix b
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1862
          assume "b \<in> closed_segment u v \<inter> T" "open_segment u b \<inter> (closed_segment u v \<inter> T) = {}"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1863
          then show thesis
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1864
            by (metis IntD1 IntD2 ends_in_segment(1) inf.orderE inf_assoc subset_oc_segment that)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1865
        qed
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1866
        then have puw: "dist (p u) (p w) < \<epsilon> / 2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1867
          by (metis (no_types) \<open>T \<subseteq> {0..1}\<close> \<open>dist v u < \<delta>\<close> \<delta> dist_commute dist_in_closed_segment le_less_trans subsetCE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1868
        obtain z where "z \<in> T" and z: "z \<in> closed_segment u v" "open_segment v z \<inter> T = {}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1869
        proof (rule segment_to_point_exists [OF uvT])
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1870
          fix b
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1871
          assume "b \<in> closed_segment u v \<inter> T" "open_segment v b \<inter> (closed_segment u v \<inter> T) = {}"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1872
          then show thesis
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1873
            by (metis IntD1 IntD2 ends_in_segment(2) inf.orderE inf_assoc subset_oc_segment that)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1874
        qed
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1875
        then have "dist (p u) (p z) < \<epsilon> / 2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1876
          by (metis \<open>T \<subseteq> {0..1}\<close> \<open>dist v u < \<delta>\<close> \<delta> dist_commute dist_in_closed_segment le_less_trans subsetCE)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1877
        then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1878
          using puw by (metis (no_types) \<open>w \<in> T\<close> \<open>z \<in> T\<close> dist_commute dist_triangle_half_l h_eq_p_gen w(2) z(2))
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1879
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1880
      with \<open>0 < \<delta>\<close> show "\<exists>\<delta>>0. \<forall>v\<in>{0..1}. dist v u < \<delta> \<longrightarrow> dist (h v) (h u) < \<epsilon>" by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1881
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1882
    show "connected ({0..1} \<inter> h -` {z})" for z
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1883
    proof (clarsimp simp add: connected_iff_connected_component)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1884
      fix u v
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1885
      assume huv_eq: "h v = h u" and uv: "0 \<le> u" "u \<le> 1" "0 \<le> v" "v \<le> 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1886
      have "\<exists>T. connected T \<and> T \<subseteq> {0..1} \<and> T \<subseteq> h -` {h u} \<and> u \<in> T \<and> v \<in> T"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1887
      proof (intro exI conjI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1888
        show "connected (closed_segment u v)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1889
          by simp
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1890
        show "closed_segment u v \<subseteq> {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1891
          by (simp add: uv closed_segment_eq_real_ivl)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1892
        have pxy: "p x = p y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1893
          if "T \<subseteq> {0..1}" "0 \<in> T" "1 \<in> T" "x \<in> T" "y \<in> T"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1894
          and disjT: "open_segment x y \<inter> (T - open_segment u v) = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1895
          and xynot: "x \<notin> open_segment u v" "y \<notin> open_segment u v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1896
          for x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1897
        proof (cases "open_segment x y \<inter> open_segment u v = {}")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1898
          case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1899
          then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1900
            by (metis Diff_Int_distrib Diff_empty peq disjT \<open>x \<in> T\<close> \<open>y \<in> T\<close>)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1901
        next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1902
          case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1903
          then have "open_segment x u \<union> open_segment y v \<subseteq> open_segment x y - open_segment u v \<or>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1904
                     open_segment y u \<union> open_segment x v \<subseteq> open_segment x y - open_segment u v" (is "?xuyv \<or> ?yuxv")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1905
            using xynot by (fastforce simp add: open_segment_eq_real_ivl not_le not_less split: if_split_asm)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1906
          then show "p x = p y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1907
          proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1908
            assume "?xuyv"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1909
            then have "open_segment x u \<inter> T = {}" "open_segment y v \<inter> T = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1910
              using disjT by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1911
            then have "h x = h y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1912
              using heq huv_eq by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1913
            then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1914
              using h_eq_p \<open>x \<in> T\<close> \<open>y \<in> T\<close> by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1915
          next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1916
            assume "?yuxv"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1917
            then have "open_segment y u \<inter> T = {}" "open_segment x v \<inter> T = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1918
              using disjT by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1919
            then have "h x = h y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1920
              using heq [of y u]  heq [of x v] huv_eq by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1921
            then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1922
              using h_eq_p \<open>x \<in> T\<close> \<open>y \<in> T\<close> by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1923
          qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1924
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1925
        have "\<not> T - open_segment u v \<subset> T"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1926
        proof (rule T)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1927
          show "closed (T - open_segment u v)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1928
            by (simp add: closed_Diff [OF \<open>closed T\<close>] open_segment_eq_real_ivl)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1929
          have "0 \<notin> open_segment u v" "1 \<notin> open_segment u v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1930
            using open_segment_eq_real_ivl uv by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1931
          then show "\<phi> (T - open_segment u v)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1932
            using \<open>T \<subseteq> {0..1}\<close> \<open>0 \<in> T\<close> \<open>1 \<in> T\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1933
            by (auto simp: \<phi>_def) (meson peq pxy)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1934
        qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1935
        then have "open_segment u v \<inter> T = {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1936
          by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1937
        then show "closed_segment u v \<subseteq> h -` {h u}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1938
          by (force intro: heq simp: open_segment_eq_real_ivl closed_segment_eq_real_ivl split: if_split_asm)+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1939
      qed auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1940
      then show "connected_component ({0..1} \<inter> h -` {h u}) u v"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1941
        by (simp add: connected_component_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1942
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1943
    show "h 1 \<noteq> h 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1944
      by (metis \<open>\<phi> T\<close> \<phi>_def a \<open>a \<noteq> b\<close> b h_eq_p pathfinish_def pathstart_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1945
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1946
  then obtain f and g :: "real \<Rightarrow> 'a"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1947
    where gfeq: "(\<forall>x\<in>h ` {0..1}. (g(f x) = x))" and fhim: "f ` h ` {0..1} = {0..1}" and contf: "continuous_on (h ` {0..1}) f"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1948
      and fgeq: "(\<forall>y\<in>{0..1}. (f(g y) = y))" and pag: "path_image g = h ` {0..1}" and contg: "continuous_on {0..1} g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1949
    by (auto simp: homeomorphic_def homeomorphism_def path_image_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1950
  then have "arc g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1951
    by (metis arc_def path_def inj_on_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1952
  obtain u v where "u \<in> {0..1}" "a = g u" "v \<in> {0..1}" "b = g v"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72531
diff changeset
  1953
    by (metis (mono_tags, opaque_lifting) \<open>\<phi> T\<close> \<phi>_def a b fhim gfeq h_eq_p imageI path_image_def pathfinish_def pathfinish_in_path_image pathstart_def pathstart_in_path_image)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1954
  then have "a \<in> path_image g" "b \<in> path_image g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1955
    using path_image_def by blast+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1956
  have ph: "path_image h \<subseteq> path_image p"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1957
    by (metis image_mono image_subset_iff path_image_def disjoint h_eq_p_gen \<open>T \<subseteq> {0..1}\<close>)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1958
  show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1959
  proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1960
    show "pathstart (subpath u v g) = a" "pathfinish (subpath u v g) = b"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1961
      by (simp_all add: \<open>a = g u\<close> \<open>b = g v\<close>)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1962
    show "path_image (subpath u v g) \<subseteq> path_image p"
71633
07bec530f02e cleaned proofs
nipkow
parents: 71028
diff changeset
  1963
      by (metis \<open>u \<in> {0..1}\<close> \<open>v \<in> {0..1}\<close> order_trans pag path_image_def path_image_subpath_subset ph)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1964
    show "arc (subpath u v g)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1965
      using \<open>arc g\<close> \<open>a = g u\<close> \<open>b = g v\<close> \<open>u \<in> {0..1}\<close> \<open>v \<in> {0..1}\<close> arc_subpath_arc \<open>a \<noteq> b\<close> by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1966
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1967
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1968
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1969
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  1970
corollary path_connected_arcwise:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1971
  fixes S :: "'a::{complete_space,real_normed_vector} set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1972
  shows "path_connected S \<longleftrightarrow>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1973
         (\<forall>x \<in> S. \<forall>y \<in> S. x \<noteq> y \<longrightarrow> (\<exists>g. arc g \<and> path_image g \<subseteq> S \<and> pathstart g = x \<and> pathfinish g = y))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1974
        (is "?lhs = ?rhs")
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  1975
proof (intro iffI impI ballI)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1976
  fix x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1977
  assume "path_connected S" "x \<in> S" "y \<in> S" "x \<noteq> y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1978
  then obtain p where p: "path p" "path_image p \<subseteq> S" "pathstart p = x" "pathfinish p = y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1979
    by (force simp: path_connected_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1980
  then show "\<exists>g. arc g \<and> path_image g \<subseteq> S \<and> pathstart g = x \<and> pathfinish g = y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1981
    by (metis \<open>x \<noteq> y\<close> order_trans path_contains_arc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1982
next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1983
  assume R [rule_format]: ?rhs
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1984
  show ?lhs
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1985
    unfolding path_connected_def
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1986
  proof (intro ballI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1987
    fix x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1988
    assume "x \<in> S" "y \<in> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1989
    show "\<exists>g. path g \<and> path_image g \<subseteq> S \<and> pathstart g = x \<and> pathfinish g = y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1990
    proof (cases "x = y")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1991
      case True with \<open>x \<in> S\<close> path_component_def path_component_refl show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1992
        by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1993
    next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1994
      case False with R [OF \<open>x \<in> S\<close> \<open>y \<in> S\<close>] show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1995
        by (auto intro: arc_imp_path)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1996
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1997
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1998
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1999
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2000
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2001
corollary arc_connected_trans:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2002
  fixes g :: "real \<Rightarrow> 'a::{complete_space,real_normed_vector}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2003
  assumes "arc g" "arc h" "pathfinish g = pathstart h" "pathstart g \<noteq> pathfinish h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2004
  obtains i where "arc i" "path_image i \<subseteq> path_image g \<union> path_image h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2005
                  "pathstart i = pathstart g" "pathfinish i = pathfinish h"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72531
diff changeset
  2006
  by (metis (no_types, opaque_lifting) arc_imp_path assms path_contains_arc path_image_join path_join pathfinish_join pathstart_join)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2007
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2008
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2009
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2010
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
  2011
subsection\<open>Accessibility of frontier points\<close>
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2012
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2013
lemma dense_accessible_frontier_points:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2014
  fixes S :: "'a::{complete_space,real_normed_vector} set"
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69745
diff changeset
  2015
  assumes "open S" and opeSV: "openin (top_of_set (frontier S)) V" and "V \<noteq> {}"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2016
  obtains g where "arc g" "g ` {0..<1} \<subseteq> S" "pathstart g \<in> S" "pathfinish g \<in> V"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2017
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2018
  obtain z where "z \<in> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2019
    using \<open>V \<noteq> {}\<close> by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2020
  then obtain r where "r > 0" and r: "ball z r \<inter> frontier S \<subseteq> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2021
    by (metis openin_contains_ball opeSV)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2022
  then have "z \<in> frontier S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2023
    using \<open>z \<in> V\<close> opeSV openin_contains_ball by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2024
  then have "z \<in> closure S" "z \<notin> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2025
    by (simp_all add: frontier_def assms interior_open)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2026
  with \<open>r > 0\<close> have "infinite (S \<inter> ball z r)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2027
    by (auto simp: closure_def islimpt_eq_infinite_ball)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2028
  then obtain y where "y \<in> S" and y: "y \<in> ball z r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2029
    using infinite_imp_nonempty by force
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2030
  then have "y \<notin> frontier S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2031
    by (meson \<open>open S\<close> disjoint_iff_not_equal frontier_disjoint_eq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2032
  have "y \<noteq> z"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2033
    using \<open>y \<in> S\<close> \<open>z \<notin> S\<close> by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2034
  have "path_connected(ball z r)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2035
    by (simp add: convex_imp_path_connected)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2036
  with y \<open>r > 0\<close>  obtain g where "arc g" and pig: "path_image g \<subseteq> ball z r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2037
                                 and g: "pathstart g = y" "pathfinish g = z"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2038
    using \<open>y \<noteq> z\<close> by (force simp: path_connected_arcwise)
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2039
  have "continuous_on {0..1} g"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2040
    using \<open>arc g\<close> arc_imp_path path_def by blast
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2041
  then have "compact (g -` frontier S \<inter> {0..1})"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2042
    by (simp add: bounded_Int closed_Diff closed_vimage_Int compact_eq_bounded_closed)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2043
  moreover have "g -` frontier S \<inter> {0..1} \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2044
  proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2045
    have "\<exists>r. r \<in> g -` frontier S \<and> r \<in> {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2046
      by (metis \<open>z \<in> frontier S\<close> g(2) imageE path_image_def pathfinish_in_path_image vimageI2)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2047
    then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2048
      by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2049
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2050
  ultimately obtain t where gt: "g t \<in> frontier S" and "0 \<le> t" "t \<le> 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2051
                and t: "\<And>u. \<lbrakk>g u \<in> frontier S; 0 \<le> u; u \<le> 1\<rbrakk> \<Longrightarrow> t \<le> u"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2052
    by (force simp: dest!: compact_attains_inf)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2053
  moreover have "t \<noteq> 0"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2054
    by (metis \<open>y \<notin> frontier S\<close> g(1) gt pathstart_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2055
  ultimately have  t01: "0 < t" "t \<le> 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2056
    by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2057
  have "V \<subseteq> frontier S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2058
    using opeSV openin_contains_ball by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2059
  show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2060
  proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2061
    show "arc (subpath 0 t g)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2062
      by (simp add: \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> \<open>arc g\<close> \<open>t \<noteq> 0\<close> arc_subpath_arc)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2063
    have "g 0 \<in> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2064
      by (metis \<open>y \<in> S\<close> g(1) pathstart_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2065
    then show "pathstart (subpath 0 t g) \<in> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2066
      by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2067
    have "g t \<in> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2068
      by (metis IntI atLeastAtMost_iff gt image_eqI path_image_def pig r subsetCE \<open>0 \<le> t\<close> \<open>t \<le> 1\<close>)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2069
    then show "pathfinish (subpath 0 t g) \<in> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2070
      by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2071
    then have "inj_on (subpath 0 t g) {0..1}"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2072
      using t01 \<open>arc (subpath 0 t g)\<close> arc_imp_inj_on by blast
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2073
    then have "subpath 0 t g ` {0..<1} \<subseteq> subpath 0 t g ` {0..1} - {subpath 0 t g 1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2074
      by (force simp: dest: inj_onD)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2075
    moreover have False if "subpath 0 t g ` ({0..<1}) - S \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2076
    proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2077
      have contg: "continuous_on {0..1} g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2078
        using \<open>arc g\<close> by (auto simp: arc_def path_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2079
      have "subpath 0 t g ` {0..<1} \<inter> frontier S \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2080
      proof (rule connected_Int_frontier [OF _ _ that])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2081
        show "connected (subpath 0 t g ` {0..<1})"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2082
        proof (rule connected_continuous_image)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2083
          show "continuous_on {0..<1} (subpath 0 t g)"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2084
            by (meson \<open>arc (subpath 0 t g)\<close> arc_def atLeastLessThan_subseteq_atLeastAtMost_iff continuous_on_subset order_refl path_def)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2085
        qed auto
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2086
        show "subpath 0 t g ` {0..<1} \<inter> S \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2087
          using \<open>y \<in> S\<close> g(1) by (force simp: subpath_def image_def pathstart_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2088
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2089
      then obtain x where "x \<in> subpath 0 t g ` {0..<1}" "x \<in> frontier S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2090
        by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2091
      with t01 \<open>0 \<le> t\<close> mult_le_one t show False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2092
        by (fastforce simp: subpath_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2093
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2094
    then have "subpath 0 t g ` {0..1} - {subpath 0 t g 1} \<subseteq> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2095
      using subsetD by fastforce
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2096
    ultimately  show "subpath 0 t g ` {0..<1} \<subseteq> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2097
      by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2098
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2099
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2100
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2101
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2102
lemma dense_accessible_frontier_points_connected:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2103
  fixes S :: "'a::{complete_space,real_normed_vector} set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2104
  assumes "open S" "connected S" "x \<in> S" "V \<noteq> {}"
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69745
diff changeset
  2105
      and ope: "openin (top_of_set (frontier S)) V"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2106
  obtains g where "arc g" "g ` {0..<1} \<subseteq> S" "pathstart g = x" "pathfinish g \<in> V"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2107
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2108
  have "V \<subseteq> frontier S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2109
    using ope openin_imp_subset by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2110
  with \<open>open S\<close> \<open>x \<in> S\<close> have "x \<notin> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2111
    using interior_open by (auto simp: frontier_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2112
  obtain g where "arc g" and g: "g ` {0..<1} \<subseteq> S" "pathstart g \<in> S" "pathfinish g \<in> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2113
    by (metis dense_accessible_frontier_points [OF \<open>open S\<close> ope \<open>V \<noteq> {}\<close>])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2114
  then have "path_connected S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2115
    by (simp add: assms connected_open_path_connected)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2116
  with \<open>pathstart g \<in> S\<close> \<open>x \<in> S\<close> have "path_component S x (pathstart g)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2117
    by (simp add: path_connected_component)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2118
  then obtain f where "path f" and f: "path_image f \<subseteq> S" "pathstart f = x" "pathfinish f = pathstart g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2119
    by (auto simp: path_component_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2120
  then have "path (f +++ g)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2121
    by (simp add: \<open>arc g\<close> arc_imp_path)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2122
  then obtain h where "arc h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2123
                  and h: "path_image h \<subseteq> path_image (f +++ g)" "pathstart h = x" "pathfinish h = pathfinish g"
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2124
    using path_contains_arc [of "f +++ g" x "pathfinish g"] \<open>x \<notin> V\<close> \<open>pathfinish g \<in> V\<close> f
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2125
    by (metis pathfinish_join pathstart_join)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2126
  have "path_image h \<subseteq> path_image f \<union> path_image g"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2127
    using h(1) path_image_join_subset by auto
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2128
  then have "h ` {0..1} - {h 1} \<subseteq> S"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2129
    using f g h
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2130
    apply (simp add: path_image_def pathfinish_def subset_iff image_def Bex_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2131
    by (metis le_less)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2132
  then have "h ` {0..<1} \<subseteq> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2133
    using \<open>arc h\<close> by (force simp: arc_def dest: inj_onD)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2134
  then show thesis
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2135
    using \<open>arc h\<close> g(3) h that by presburger
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2136
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2137
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2138
lemma dense_access_fp_aux:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2139
  fixes S :: "'a::{complete_space,real_normed_vector} set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2140
  assumes S: "open S" "connected S"
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69745
diff changeset
  2141
      and opeSU: "openin (top_of_set (frontier S)) U"
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69745
diff changeset
  2142
      and opeSV: "openin (top_of_set (frontier S)) V"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2143
      and "V \<noteq> {}" "\<not> U \<subseteq> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2144
  obtains g where "arc g" "pathstart g \<in> U" "pathfinish g \<in> V" "g ` {0<..<1} \<subseteq> S"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2145
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2146
  have "S \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2147
    using opeSV \<open>V \<noteq> {}\<close> by (metis frontier_empty openin_subtopology_empty)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2148
  then obtain x where "x \<in> S" by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2149
  obtain g where "arc g" and g: "g ` {0..<1} \<subseteq> S" "pathstart g = x" "pathfinish g \<in> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2150
    using dense_accessible_frontier_points_connected [OF S \<open>x \<in> S\<close> \<open>V \<noteq> {}\<close> opeSV] by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2151
  obtain h where "arc h" and h: "h ` {0..<1} \<subseteq> S" "pathstart h = x" "pathfinish h \<in> U - {pathfinish g}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2152
  proof (rule dense_accessible_frontier_points_connected [OF S \<open>x \<in> S\<close>])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2153
    show "U - {pathfinish g} \<noteq> {}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2154
      using \<open>pathfinish g \<in> V\<close> \<open>\<not> U \<subseteq> V\<close> by blast
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69745
diff changeset
  2155
    show "openin (top_of_set (frontier S)) (U - {pathfinish g})"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2156
      by (simp add: opeSU openin_delete)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2157
  qed auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2158
  obtain \<gamma> where "arc \<gamma>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2159
             and \<gamma>: "path_image \<gamma> \<subseteq> path_image (reversepath h +++ g)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2160
                    "pathstart \<gamma> = pathfinish h" "pathfinish \<gamma> = pathfinish g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2161
  proof (rule path_contains_arc [of "(reversepath h +++ g)" "pathfinish h" "pathfinish g"])
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2162
    show "path (reversepath h +++ g)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2163
      by (simp add: \<open>arc g\<close> \<open>arc h\<close> \<open>pathstart g = x\<close> \<open>pathstart h = x\<close> arc_imp_path)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2164
    show "pathstart (reversepath h +++ g) = pathfinish h"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2165
         "pathfinish (reversepath h +++ g) = pathfinish g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2166
      by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2167
    show "pathfinish h \<noteq> pathfinish g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2168
      using \<open>pathfinish h \<in> U - {pathfinish g}\<close> by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2169
  qed auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2170
  show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2171
  proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2172
    show "arc \<gamma>" "pathstart \<gamma> \<in> U" "pathfinish \<gamma> \<in> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2173
      using \<gamma> \<open>arc \<gamma>\<close> \<open>pathfinish h \<in> U - {pathfinish g}\<close>  \<open>pathfinish g \<in> V\<close> by auto
72531
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2174
    have "path_image \<gamma> \<subseteq> path_image h \<union> path_image g"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2175
      by (metis \<gamma>(1) g(2) h(2) path_image_join path_image_reversepath pathfinish_reversepath)
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2176
    then have "\<gamma> ` {0..1} - {\<gamma> 0, \<gamma> 1} \<subseteq> S"
ee2ba879afb5 more de-applying
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  2177
      using \<gamma> g h 
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2178
      apply (simp add: path_image_def pathstart_def pathfinish_def subset_iff image_def Bex_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2179
      by (metis linorder_neqE_linordered_idom not_less)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2180
    then show "\<gamma> ` {0<..<1} \<subseteq> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2181
      using \<open>arc h\<close> \<open>arc \<gamma>\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2182
      by (metis arc_imp_simple_path path_image_def pathfinish_def pathstart_def simple_path_endless)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2183
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2184
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2185
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2186
lemma dense_accessible_frontier_point_pairs:
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2187
  fixes S :: "'a::{complete_space,real_normed_vector} set"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2188
  assumes S: "open S" "connected S"
69922
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69745
diff changeset
  2189
      and opeSU: "openin (top_of_set (frontier S)) U"
4a9167f377b0 new material about topology, etc.; also fixes for yesterday's
paulson <lp15@cam.ac.uk>
parents: 69745
diff changeset
  2190
      and opeSV: "openin (top_of_set (frontier S)) V"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2191
      and "U \<noteq> {}" "V \<noteq> {}" "U \<noteq> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2192
    obtains g where "arc g" "pathstart g \<in> U" "pathfinish g \<in> V" "g ` {0<..<1} \<subseteq> S"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69517
diff changeset
  2193
proof -
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2194
  consider "\<not> U \<subseteq> V" | "\<not> V \<subseteq> U"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2195
    using \<open>U \<noteq> V\<close> by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2196
  then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2197
  proof cases
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2198
    case 1 then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2199
      using assms dense_access_fp_aux [OF S opeSU opeSV] that by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2200
  next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2201
    case 2
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2202
    obtain g where "arc g" and g: "pathstart g \<in> V" "pathfinish g \<in> U" "g ` {0<..<1} \<subseteq> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2203
      using assms dense_access_fp_aux [OF S opeSV opeSU] "2" by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2204
    show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2205
    proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2206
      show "arc (reversepath g)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2207
        by (simp add: \<open>arc g\<close> arc_reversepath)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2208
      show "pathstart (reversepath g) \<in> U" "pathfinish (reversepath g) \<in> V"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2209
        using g by auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2210
      show "reversepath g ` {0<..<1} \<subseteq> S"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2211
        using g by (auto simp: reversepath_def)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2212
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2213
  qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2214
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2215
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  2216
end