author | paulson |
Fri, 11 Aug 2000 13:26:40 +0200 | |
changeset 9577 | 9e66e8ed8237 |
parent 9303 | f1ad1ed0d110 |
child 9907 | 473a6604da94 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/equalities |
0 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1992 University of Cambridge |
5 |
||
6 |
Set Theory examples: Union, Intersection, Inclusion, etc. |
|
7 |
(Thanks also to Philippe de Groote.) |
|
8 |
*) |
|
9 |
||
10 |
(** Finite Sets **) |
|
11 |
||
520 | 12 |
(* cons_def refers to Upair; reversing the equality LOOPS in rewriting!*) |
5321 | 13 |
Goal "{a} Un B = cons(a,B)"; |
2877 | 14 |
by (Blast_tac 1); |
760 | 15 |
qed "cons_eq"; |
520 | 16 |
|
5321 | 17 |
Goal "cons(a, cons(b, C)) = cons(b, cons(a, C))"; |
2877 | 18 |
by (Blast_tac 1); |
760 | 19 |
qed "cons_commute"; |
0 | 20 |
|
5321 | 21 |
Goal "a: B ==> cons(a,B) = B"; |
2877 | 22 |
by (Blast_tac 1); |
760 | 23 |
qed "cons_absorb"; |
0 | 24 |
|
5321 | 25 |
Goal "a: B ==> cons(a, B-{a}) = B"; |
2877 | 26 |
by (Blast_tac 1); |
760 | 27 |
qed "cons_Diff"; |
0 | 28 |
|
5321 | 29 |
Goal "[| a: C; ALL y:C. y=b |] ==> C = {b}"; |
2877 | 30 |
by (Blast_tac 1); |
760 | 31 |
qed "equal_singleton_lemma"; |
0 | 32 |
val equal_singleton = ballI RSN (2,equal_singleton_lemma); |
33 |
||
34 |
||
35 |
(** Binary Intersection **) |
|
36 |
||
37 |
(*NOT an equality, but it seems to belong here...*) |
|
5321 | 38 |
Goal "cons(a,B) Int C <= cons(a, B Int C)"; |
2877 | 39 |
by (Blast_tac 1); |
760 | 40 |
qed "Int_cons"; |
0 | 41 |
|
5321 | 42 |
Goal "A Int A = A"; |
2877 | 43 |
by (Blast_tac 1); |
760 | 44 |
qed "Int_absorb"; |
0 | 45 |
|
5321 | 46 |
Goal "A Int B = B Int A"; |
2877 | 47 |
by (Blast_tac 1); |
760 | 48 |
qed "Int_commute"; |
0 | 49 |
|
5321 | 50 |
Goal "(A Int B) Int C = A Int (B Int C)"; |
2877 | 51 |
by (Blast_tac 1); |
760 | 52 |
qed "Int_assoc"; |
0 | 53 |
|
5321 | 54 |
Goal "(A Un B) Int C = (A Int C) Un (B Int C)"; |
2877 | 55 |
by (Blast_tac 1); |
760 | 56 |
qed "Int_Un_distrib"; |
0 | 57 |
|
5321 | 58 |
Goal "A<=B <-> A Int B = A"; |
4091 | 59 |
by (blast_tac (claset() addSEs [equalityE]) 1); |
760 | 60 |
qed "subset_Int_iff"; |
0 | 61 |
|
5321 | 62 |
Goal "A<=B <-> B Int A = A"; |
4091 | 63 |
by (blast_tac (claset() addSEs [equalityE]) 1); |
760 | 64 |
qed "subset_Int_iff2"; |
435 | 65 |
|
5321 | 66 |
Goal "C<=A ==> (A-B) Int C = C-B"; |
2877 | 67 |
by (Blast_tac 1); |
1035 | 68 |
qed "Int_Diff_eq"; |
69 |
||
0 | 70 |
(** Binary Union **) |
71 |
||
5321 | 72 |
Goal "cons(a,B) Un C = cons(a, B Un C)"; |
2877 | 73 |
by (Blast_tac 1); |
760 | 74 |
qed "Un_cons"; |
0 | 75 |
|
5321 | 76 |
Goal "A Un A = A"; |
2877 | 77 |
by (Blast_tac 1); |
760 | 78 |
qed "Un_absorb"; |
0 | 79 |
|
5321 | 80 |
Goal "A Un B = B Un A"; |
2877 | 81 |
by (Blast_tac 1); |
760 | 82 |
qed "Un_commute"; |
0 | 83 |
|
5321 | 84 |
Goal "(A Un B) Un C = A Un (B Un C)"; |
2877 | 85 |
by (Blast_tac 1); |
760 | 86 |
qed "Un_assoc"; |
0 | 87 |
|
5321 | 88 |
Goal "(A Int B) Un C = (A Un C) Int (B Un C)"; |
2877 | 89 |
by (Blast_tac 1); |
760 | 90 |
qed "Un_Int_distrib"; |
0 | 91 |
|
5321 | 92 |
Goal "A<=B <-> A Un B = B"; |
4091 | 93 |
by (blast_tac (claset() addSEs [equalityE]) 1); |
760 | 94 |
qed "subset_Un_iff"; |
0 | 95 |
|
5321 | 96 |
Goal "A<=B <-> B Un A = B"; |
4091 | 97 |
by (blast_tac (claset() addSEs [equalityE]) 1); |
760 | 98 |
qed "subset_Un_iff2"; |
435 | 99 |
|
0 | 100 |
(** Simple properties of Diff -- set difference **) |
101 |
||
5321 | 102 |
Goal "A-A = 0"; |
2877 | 103 |
by (Blast_tac 1); |
760 | 104 |
qed "Diff_cancel"; |
0 | 105 |
|
5321 | 106 |
Goal "0-A = 0"; |
2877 | 107 |
by (Blast_tac 1); |
760 | 108 |
qed "empty_Diff"; |
0 | 109 |
|
5321 | 110 |
Goal "A-0 = A"; |
2877 | 111 |
by (Blast_tac 1); |
760 | 112 |
qed "Diff_0"; |
0 | 113 |
|
5321 | 114 |
Goal "A-B=0 <-> A<=B"; |
4091 | 115 |
by (blast_tac (claset() addEs [equalityE]) 1); |
787 | 116 |
qed "Diff_eq_0_iff"; |
117 |
||
0 | 118 |
(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*) |
5321 | 119 |
Goal "A - cons(a,B) = A - B - {a}"; |
2877 | 120 |
by (Blast_tac 1); |
760 | 121 |
qed "Diff_cons"; |
0 | 122 |
|
123 |
(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*) |
|
5321 | 124 |
Goal "A - cons(a,B) = A - {a} - B"; |
2877 | 125 |
by (Blast_tac 1); |
760 | 126 |
qed "Diff_cons2"; |
0 | 127 |
|
5321 | 128 |
Goal "A Int (B-A) = 0"; |
2877 | 129 |
by (Blast_tac 1); |
760 | 130 |
qed "Diff_disjoint"; |
0 | 131 |
|
5321 | 132 |
Goal "A<=B ==> A Un (B-A) = B"; |
2877 | 133 |
by (Blast_tac 1); |
760 | 134 |
qed "Diff_partition"; |
0 | 135 |
|
5321 | 136 |
Goal "A <= B Un (A - B)"; |
2877 | 137 |
by (Blast_tac 1); |
1611 | 138 |
qed "subset_Un_Diff"; |
139 |
||
5321 | 140 |
Goal "[| A<=B; B<=C |] ==> B-(C-A) = A"; |
2877 | 141 |
by (Blast_tac 1); |
760 | 142 |
qed "double_complement"; |
0 | 143 |
|
5321 | 144 |
Goal "(A Un B) - (B-A) = A"; |
2877 | 145 |
by (Blast_tac 1); |
760 | 146 |
qed "double_complement_Un"; |
268 | 147 |
|
5321 | 148 |
Goal |
0 | 149 |
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"; |
2877 | 150 |
by (Blast_tac 1); |
760 | 151 |
qed "Un_Int_crazy"; |
0 | 152 |
|
5321 | 153 |
Goal "A - (B Un C) = (A-B) Int (A-C)"; |
2877 | 154 |
by (Blast_tac 1); |
760 | 155 |
qed "Diff_Un"; |
0 | 156 |
|
5321 | 157 |
Goal "A - (B Int C) = (A-B) Un (A-C)"; |
2877 | 158 |
by (Blast_tac 1); |
760 | 159 |
qed "Diff_Int"; |
0 | 160 |
|
161 |
(*Halmos, Naive Set Theory, page 16.*) |
|
5321 | 162 |
Goal "(A Int B) Un C = A Int (B Un C) <-> C<=A"; |
4091 | 163 |
by (blast_tac (claset() addSEs [equalityE]) 1); |
760 | 164 |
qed "Un_Int_assoc_iff"; |
0 | 165 |
|
166 |
||
167 |
(** Big Union and Intersection **) |
|
168 |
||
5321 | 169 |
Goal "Union(cons(a,B)) = a Un Union(B)"; |
2877 | 170 |
by (Blast_tac 1); |
760 | 171 |
qed "Union_cons"; |
0 | 172 |
|
5321 | 173 |
Goal "Union(A Un B) = Union(A) Un Union(B)"; |
2877 | 174 |
by (Blast_tac 1); |
760 | 175 |
qed "Union_Un_distrib"; |
0 | 176 |
|
5321 | 177 |
Goal "Union(A Int B) <= Union(A) Int Union(B)"; |
2877 | 178 |
by (Blast_tac 1); |
760 | 179 |
qed "Union_Int_subset"; |
435 | 180 |
|
5321 | 181 |
Goal "Union(C) Int A = 0 <-> (ALL B:C. B Int A = 0)"; |
4091 | 182 |
by (blast_tac (claset() addSEs [equalityE]) 1); |
760 | 183 |
qed "Union_disjoint"; |
0 | 184 |
|
5325
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5321
diff
changeset
|
185 |
Goal "Union(A) = 0 <-> (ALL B:A. B=0)"; |
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5321
diff
changeset
|
186 |
by (Blast_tac 1); |
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5321
diff
changeset
|
187 |
qed "Union_empty_iff"; |
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5321
diff
changeset
|
188 |
|
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5321
diff
changeset
|
189 |
Goalw [Inter_def] "Inter(0) = 0"; |
2877 | 190 |
by (Blast_tac 1); |
1652 | 191 |
qed "Inter_0"; |
192 |
||
5321 | 193 |
Goal "[| z:A; z:B |] ==> Inter(A) Un Inter(B) <= Inter(A Int B)"; |
2877 | 194 |
by (Blast_tac 1); |
1568 | 195 |
qed "Inter_Un_subset"; |
196 |
||
0 | 197 |
(* A good challenge: Inter is ill-behaved on the empty set *) |
5321 | 198 |
Goal "[| a:A; b:B |] ==> Inter(A Un B) = Inter(A) Int Inter(B)"; |
2877 | 199 |
by (Blast_tac 1); |
760 | 200 |
qed "Inter_Un_distrib"; |
0 | 201 |
|
5321 | 202 |
Goal "Union({b}) = b"; |
2877 | 203 |
by (Blast_tac 1); |
760 | 204 |
qed "Union_singleton"; |
0 | 205 |
|
5321 | 206 |
Goal "Inter({b}) = b"; |
2877 | 207 |
by (Blast_tac 1); |
760 | 208 |
qed "Inter_singleton"; |
0 | 209 |
|
210 |
(** Unions and Intersections of Families **) |
|
211 |
||
5321 | 212 |
Goal "Union(A) = (UN x:A. x)"; |
2877 | 213 |
by (Blast_tac 1); |
760 | 214 |
qed "Union_eq_UN"; |
0 | 215 |
|
5325
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5321
diff
changeset
|
216 |
Goalw [Inter_def] "Inter(A) = (INT x:A. x)"; |
2877 | 217 |
by (Blast_tac 1); |
760 | 218 |
qed "Inter_eq_INT"; |
0 | 219 |
|
5321 | 220 |
Goal "(UN i:0. A(i)) = 0"; |
2877 | 221 |
by (Blast_tac 1); |
760 | 222 |
qed "UN_0"; |
517 | 223 |
|
0 | 224 |
(*Halmos, Naive Set Theory, page 35.*) |
5321 | 225 |
Goal "B Int (UN i:I. A(i)) = (UN i:I. B Int A(i))"; |
2877 | 226 |
by (Blast_tac 1); |
760 | 227 |
qed "Int_UN_distrib"; |
0 | 228 |
|
5321 | 229 |
Goal "i:I ==> B Un (INT i:I. A(i)) = (INT i:I. B Un A(i))"; |
2877 | 230 |
by (Blast_tac 1); |
760 | 231 |
qed "Un_INT_distrib"; |
0 | 232 |
|
5321 | 233 |
Goal "(UN i:I. A(i)) Int (UN j:J. B(j)) = (UN i:I. UN j:J. A(i) Int B(j))"; |
2877 | 234 |
by (Blast_tac 1); |
760 | 235 |
qed "Int_UN_distrib2"; |
0 | 236 |
|
5321 | 237 |
Goal "[| i:I; j:J |] ==> \ |
238 |
\ (INT i:I. A(i)) Un (INT j:J. B(j)) = (INT i:I. INT j:J. A(i) Un B(j))"; |
|
2877 | 239 |
by (Blast_tac 1); |
760 | 240 |
qed "Un_INT_distrib2"; |
0 | 241 |
|
5321 | 242 |
Goal "a: A ==> (UN y:A. c) = c"; |
2877 | 243 |
by (Blast_tac 1); |
760 | 244 |
qed "UN_constant"; |
0 | 245 |
|
5321 | 246 |
Goal "a: A ==> (INT y:A. c) = c"; |
2877 | 247 |
by (Blast_tac 1); |
760 | 248 |
qed "INT_constant"; |
0 | 249 |
|
5321 | 250 |
Goal "(UN y: RepFun(A,f). B(y)) = (UN x:A. B(f(x)))"; |
4242 | 251 |
by (Blast_tac 1); |
252 |
qed "UN_RepFun"; |
|
253 |
||
5321 | 254 |
Goal "x:A ==> (INT y: RepFun(A,f). B(y)) = (INT x:A. B(f(x)))"; |
4242 | 255 |
by (Blast_tac 1); |
256 |
qed "INT_RepFun"; |
|
257 |
||
258 |
Addsimps [UN_RepFun, INT_RepFun]; |
|
259 |
||
260 |
||
0 | 261 |
(** Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: |
262 |
Union of a family of unions **) |
|
263 |
||
5321 | 264 |
Goal "(UN i:I. A(i) Un B(i)) = (UN i:I. A(i)) Un (UN i:I. B(i))"; |
2877 | 265 |
by (Blast_tac 1); |
760 | 266 |
qed "UN_Un_distrib"; |
0 | 267 |
|
5321 | 268 |
Goal "i:I ==> (INT i:I. A(i) Int B(i)) = (INT i:I. A(i)) Int (INT i:I. B(i))"; |
2877 | 269 |
by (Blast_tac 1); |
760 | 270 |
qed "INT_Int_distrib"; |
0 | 271 |
|
5321 | 272 |
Goal "(UN z:I Int J. A(z)) <= (UN z:I. A(z)) Int (UN z:J. A(z))"; |
2877 | 273 |
by (Blast_tac 1); |
1784 | 274 |
qed "UN_Int_subset"; |
275 |
||
0 | 276 |
(** Devlin, page 12, exercise 5: Complements **) |
277 |
||
5321 | 278 |
Goal "i:I ==> B - (UN i:I. A(i)) = (INT i:I. B - A(i))"; |
2877 | 279 |
by (Blast_tac 1); |
760 | 280 |
qed "Diff_UN"; |
0 | 281 |
|
5321 | 282 |
Goal "i:I ==> B - (INT i:I. A(i)) = (UN i:I. B - A(i))"; |
2877 | 283 |
by (Blast_tac 1); |
760 | 284 |
qed "Diff_INT"; |
0 | 285 |
|
286 |
(** Unions and Intersections with General Sum **) |
|
287 |
||
1611 | 288 |
(*Not suitable for rewriting: LOOPS!*) |
5321 | 289 |
Goal "Sigma(cons(a,B), C) = ({a}*C(a)) Un Sigma(B,C)"; |
2877 | 290 |
by (Blast_tac 1); |
1611 | 291 |
qed "Sigma_cons1"; |
292 |
||
293 |
(*Not suitable for rewriting: LOOPS!*) |
|
5321 | 294 |
Goal "A * cons(b,B) = A*{b} Un A*B"; |
2877 | 295 |
by (Blast_tac 1); |
1611 | 296 |
qed "Sigma_cons2"; |
297 |
||
5321 | 298 |
Goal "Sigma(succ(A), B) = ({A}*B(A)) Un Sigma(A,B)"; |
2877 | 299 |
by (Blast_tac 1); |
1611 | 300 |
qed "Sigma_succ1"; |
301 |
||
5321 | 302 |
Goal "A * succ(B) = A*{B} Un A*B"; |
2877 | 303 |
by (Blast_tac 1); |
1611 | 304 |
qed "Sigma_succ2"; |
520 | 305 |
|
5321 | 306 |
Goal "(SUM x:(UN y:A. C(y)). B(x)) = (UN y:A. SUM x:C(y). B(x))"; |
2877 | 307 |
by (Blast_tac 1); |
760 | 308 |
qed "SUM_UN_distrib1"; |
182 | 309 |
|
5321 | 310 |
Goal "(SUM i:I. UN j:J. C(i,j)) = (UN j:J. SUM i:I. C(i,j))"; |
2877 | 311 |
by (Blast_tac 1); |
760 | 312 |
qed "SUM_UN_distrib2"; |
182 | 313 |
|
5321 | 314 |
Goal "(SUM i:I Un J. C(i)) = (SUM i:I. C(i)) Un (SUM j:J. C(j))"; |
2877 | 315 |
by (Blast_tac 1); |
760 | 316 |
qed "SUM_Un_distrib1"; |
0 | 317 |
|
5321 | 318 |
Goal "(SUM i:I. A(i) Un B(i)) = (SUM i:I. A(i)) Un (SUM i:I. B(i))"; |
2877 | 319 |
by (Blast_tac 1); |
760 | 320 |
qed "SUM_Un_distrib2"; |
0 | 321 |
|
685 | 322 |
(*First-order version of the above, for rewriting*) |
5321 | 323 |
Goal "I * (A Un B) = I*A Un I*B"; |
1461 | 324 |
by (rtac SUM_Un_distrib2 1); |
760 | 325 |
qed "prod_Un_distrib2"; |
685 | 326 |
|
5321 | 327 |
Goal "(SUM i:I Int J. C(i)) = (SUM i:I. C(i)) Int (SUM j:J. C(j))"; |
2877 | 328 |
by (Blast_tac 1); |
760 | 329 |
qed "SUM_Int_distrib1"; |
0 | 330 |
|
5321 | 331 |
Goal "(SUM i:I. A(i) Int B(i)) = (SUM i:I. A(i)) Int (SUM i:I. B(i))"; |
2877 | 332 |
by (Blast_tac 1); |
760 | 333 |
qed "SUM_Int_distrib2"; |
0 | 334 |
|
685 | 335 |
(*First-order version of the above, for rewriting*) |
5321 | 336 |
Goal "I * (A Int B) = I*A Int I*B"; |
1461 | 337 |
by (rtac SUM_Int_distrib2 1); |
760 | 338 |
qed "prod_Int_distrib2"; |
685 | 339 |
|
192 | 340 |
(*Cf Aczel, Non-Well-Founded Sets, page 115*) |
5321 | 341 |
Goal "(SUM i:I. A(i)) = (UN i:I. {i} * A(i))"; |
2877 | 342 |
by (Blast_tac 1); |
760 | 343 |
qed "SUM_eq_UN"; |
192 | 344 |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
345 |
(** Domain **) |
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
346 |
|
5321 | 347 |
Goal "b:B ==> domain(A*B) = A"; |
348 |
by (Blast_tac 1); |
|
349 |
qed "domain_of_prod"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
350 |
|
9180 | 351 |
Goal "domain(0) = 0"; |
352 |
by (Blast_tac 1); |
|
353 |
qed "domain_0"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
354 |
|
9180 | 355 |
Goal "domain(cons(<a,b>,r)) = cons(a, domain(r))"; |
356 |
by (Blast_tac 1); |
|
357 |
qed "domain_cons"; |
|
0 | 358 |
|
5321 | 359 |
Goal "domain(A Un B) = domain(A) Un domain(B)"; |
2877 | 360 |
by (Blast_tac 1); |
760 | 361 |
qed "domain_Un_eq"; |
0 | 362 |
|
5321 | 363 |
Goal "domain(A Int B) <= domain(A) Int domain(B)"; |
2877 | 364 |
by (Blast_tac 1); |
760 | 365 |
qed "domain_Int_subset"; |
0 | 366 |
|
5321 | 367 |
Goal "domain(A) - domain(B) <= domain(A - B)"; |
2877 | 368 |
by (Blast_tac 1); |
1056 | 369 |
qed "domain_Diff_subset"; |
0 | 370 |
|
5321 | 371 |
Goal "domain(converse(r)) = range(r)"; |
2877 | 372 |
by (Blast_tac 1); |
760 | 373 |
qed "domain_converse"; |
685 | 374 |
|
2469 | 375 |
Addsimps [domain_0, domain_cons, domain_Un_eq, domain_converse]; |
685 | 376 |
|
377 |
||
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
378 |
(** Range **) |
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
379 |
|
5321 | 380 |
Goal "a:A ==> range(A*B) = B"; |
381 |
by (Blast_tac 1); |
|
382 |
qed "range_of_prod"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
383 |
|
9180 | 384 |
Goal "range(0) = 0"; |
385 |
by (Blast_tac 1); |
|
386 |
qed "range_0"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
387 |
|
9180 | 388 |
Goal "range(cons(<a,b>,r)) = cons(b, range(r))"; |
389 |
by (Blast_tac 1); |
|
390 |
qed "range_cons"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
391 |
|
5321 | 392 |
Goal "range(A Un B) = range(A) Un range(B)"; |
2877 | 393 |
by (Blast_tac 1); |
760 | 394 |
qed "range_Un_eq"; |
0 | 395 |
|
5321 | 396 |
Goal "range(A Int B) <= range(A) Int range(B)"; |
2877 | 397 |
by (Blast_tac 1); |
760 | 398 |
qed "range_Int_subset"; |
0 | 399 |
|
5321 | 400 |
Goal "range(A) - range(B) <= range(A - B)"; |
2877 | 401 |
by (Blast_tac 1); |
1056 | 402 |
qed "range_Diff_subset"; |
0 | 403 |
|
5321 | 404 |
Goal "range(converse(r)) = domain(r)"; |
2877 | 405 |
by (Blast_tac 1); |
760 | 406 |
qed "range_converse"; |
685 | 407 |
|
2469 | 408 |
Addsimps [range_0, range_cons, range_Un_eq, range_converse]; |
409 |
||
410 |
||
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
411 |
(** Field **) |
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
412 |
|
9180 | 413 |
Goal "field(A*A) = A"; |
414 |
by (Blast_tac 1); |
|
415 |
qed "field_of_prod"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
416 |
|
9180 | 417 |
Goal "field(0) = 0"; |
418 |
by (Blast_tac 1); |
|
419 |
qed "field_0"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
420 |
|
9180 | 421 |
Goal "field(cons(<a,b>,r)) = cons(a, cons(b, field(r)))"; |
422 |
by (rtac equalityI 1); |
|
423 |
by (ALLGOALS Blast_tac) ; |
|
424 |
qed "field_cons"; |
|
536
5fbfa997f1b0
ZF/domrange/domain_of_prod, domain_empty, etc: moved to equalities.ML where
lcp
parents:
520
diff
changeset
|
425 |
|
5321 | 426 |
Goal "field(A Un B) = field(A) Un field(B)"; |
2877 | 427 |
by (Blast_tac 1); |
760 | 428 |
qed "field_Un_eq"; |
0 | 429 |
|
5321 | 430 |
Goal "field(A Int B) <= field(A) Int field(B)"; |
2877 | 431 |
by (Blast_tac 1); |
760 | 432 |
qed "field_Int_subset"; |
0 | 433 |
|
5321 | 434 |
Goal "field(A) - field(B) <= field(A - B)"; |
2877 | 435 |
by (Blast_tac 1); |
1056 | 436 |
qed "field_Diff_subset"; |
0 | 437 |
|
5321 | 438 |
Goal "field(converse(r)) = field(r)"; |
2877 | 439 |
by (Blast_tac 1); |
2469 | 440 |
qed "field_converse"; |
441 |
||
442 |
Addsimps [field_0, field_cons, field_Un_eq, field_converse]; |
|
443 |
||
0 | 444 |
|
435 | 445 |
(** Image **) |
446 |
||
5321 | 447 |
Goal "r``0 = 0"; |
2877 | 448 |
by (Blast_tac 1); |
760 | 449 |
qed "image_0"; |
435 | 450 |
|
5321 | 451 |
Goal "r``(A Un B) = (r``A) Un (r``B)"; |
2877 | 452 |
by (Blast_tac 1); |
760 | 453 |
qed "image_Un"; |
435 | 454 |
|
5321 | 455 |
Goal "r``(A Int B) <= (r``A) Int (r``B)"; |
2877 | 456 |
by (Blast_tac 1); |
760 | 457 |
qed "image_Int_subset"; |
435 | 458 |
|
5321 | 459 |
Goal "(r Int A*A)``B <= (r``B) Int A"; |
2877 | 460 |
by (Blast_tac 1); |
760 | 461 |
qed "image_Int_square_subset"; |
435 | 462 |
|
5321 | 463 |
Goal "B<=A ==> (r Int A*A)``B = (r``B) Int A"; |
2877 | 464 |
by (Blast_tac 1); |
760 | 465 |
qed "image_Int_square"; |
435 | 466 |
|
2469 | 467 |
Addsimps [image_0, image_Un]; |
468 |
||
4840 | 469 |
(*Image laws for special relations*) |
5321 | 470 |
Goal "0``A = 0"; |
4840 | 471 |
by (Blast_tac 1); |
472 |
qed "image_0_left"; |
|
473 |
Addsimps [image_0_left]; |
|
474 |
||
5321 | 475 |
Goal "(r Un s)``A = (r``A) Un (s``A)"; |
4840 | 476 |
by (Blast_tac 1); |
477 |
qed "image_Un_left"; |
|
478 |
||
5321 | 479 |
Goal "(r Int s)``A <= (r``A) Int (s``A)"; |
4840 | 480 |
by (Blast_tac 1); |
481 |
qed "image_Int_subset_left"; |
|
482 |
||
435 | 483 |
|
484 |
(** Inverse Image **) |
|
485 |
||
5321 | 486 |
Goal "r-``0 = 0"; |
2877 | 487 |
by (Blast_tac 1); |
760 | 488 |
qed "vimage_0"; |
435 | 489 |
|
5321 | 490 |
Goal "r-``(A Un B) = (r-``A) Un (r-``B)"; |
2877 | 491 |
by (Blast_tac 1); |
760 | 492 |
qed "vimage_Un"; |
435 | 493 |
|
5321 | 494 |
Goal "r-``(A Int B) <= (r-``A) Int (r-``B)"; |
2877 | 495 |
by (Blast_tac 1); |
760 | 496 |
qed "vimage_Int_subset"; |
435 | 497 |
|
5321 | 498 |
Goalw [function_def] "function(f) ==> f-``(A Int B) = (f-``A) Int (f-``B)"; |
4660 | 499 |
by (Blast_tac 1); |
500 |
qed "function_vimage_Int"; |
|
501 |
||
5321 | 502 |
Goalw [function_def] "function(f) ==> f-``(A-B) = (f-``A) - (f-``B)"; |
4660 | 503 |
by (Blast_tac 1); |
504 |
qed "function_vimage_Diff"; |
|
505 |
||
5321 | 506 |
Goalw [function_def] "function(f) ==> f `` (f-`` A) <= A"; |
507 |
by (Blast_tac 1); |
|
508 |
qed "function_image_vimage"; |
|
509 |
||
510 |
Goal "(r Int A*A)-``B <= (r-``B) Int A"; |
|
2877 | 511 |
by (Blast_tac 1); |
760 | 512 |
qed "vimage_Int_square_subset"; |
435 | 513 |
|
5321 | 514 |
Goal "B<=A ==> (r Int A*A)-``B = (r-``B) Int A"; |
2877 | 515 |
by (Blast_tac 1); |
760 | 516 |
qed "vimage_Int_square"; |
435 | 517 |
|
2469 | 518 |
Addsimps [vimage_0, vimage_Un]; |
519 |
||
435 | 520 |
|
4840 | 521 |
(*Invese image laws for special relations*) |
5321 | 522 |
Goal "0-``A = 0"; |
4840 | 523 |
by (Blast_tac 1); |
524 |
qed "vimage_0_left"; |
|
525 |
Addsimps [vimage_0_left]; |
|
526 |
||
5321 | 527 |
Goal "(r Un s)-``A = (r-``A) Un (s-``A)"; |
4840 | 528 |
by (Blast_tac 1); |
529 |
qed "vimage_Un_left"; |
|
530 |
||
5321 | 531 |
Goal "(r Int s)-``A <= (r-``A) Int (s-``A)"; |
4840 | 532 |
by (Blast_tac 1); |
533 |
qed "vimage_Int_subset_left"; |
|
534 |
||
535 |
||
0 | 536 |
(** Converse **) |
537 |
||
5321 | 538 |
Goal "converse(A Un B) = converse(A) Un converse(B)"; |
2877 | 539 |
by (Blast_tac 1); |
760 | 540 |
qed "converse_Un"; |
0 | 541 |
|
5321 | 542 |
Goal "converse(A Int B) = converse(A) Int converse(B)"; |
2877 | 543 |
by (Blast_tac 1); |
760 | 544 |
qed "converse_Int"; |
0 | 545 |
|
5321 | 546 |
Goal "converse(A - B) = converse(A) - converse(B)"; |
2877 | 547 |
by (Blast_tac 1); |
1056 | 548 |
qed "converse_Diff"; |
0 | 549 |
|
5321 | 550 |
Goal "converse(UN x:A. B(x)) = (UN x:A. converse(B(x)))"; |
2877 | 551 |
by (Blast_tac 1); |
787 | 552 |
qed "converse_UN"; |
553 |
||
1652 | 554 |
(*Unfolding Inter avoids using excluded middle on A=0*) |
5325
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5321
diff
changeset
|
555 |
Goalw [Inter_def] "converse(INT x:A. B(x)) = (INT x:A. converse(B(x)))"; |
2877 | 556 |
by (Blast_tac 1); |
1652 | 557 |
qed "converse_INT"; |
558 |
||
2469 | 559 |
Addsimps [converse_Un, converse_Int, converse_Diff, converse_UN, converse_INT]; |
560 |
||
198 | 561 |
(** Pow **) |
562 |
||
6288
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
563 |
Goal "Pow(0) = {0}"; |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
564 |
by (Blast_tac 1); |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
565 |
qed "Pow_0"; |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
566 |
|
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
567 |
Goal "Pow (cons(a,A)) = Pow(A) Un {cons(a,X) . X: Pow(A)}"; |
6298 | 568 |
by (rtac equalityI 1); |
6288
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
569 |
by Safe_tac; |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
570 |
by (etac swap 1); |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
571 |
by (res_inst_tac [("a", "x-{a}")] RepFun_eqI 1); |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
572 |
by (ALLGOALS Blast_tac); |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
573 |
qed "Pow_insert"; |
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
574 |
|
5321 | 575 |
Goal "Pow(A) Un Pow(B) <= Pow(A Un B)"; |
2877 | 576 |
by (Blast_tac 1); |
760 | 577 |
qed "Un_Pow_subset"; |
198 | 578 |
|
5321 | 579 |
Goal "(UN x:A. Pow(B(x))) <= Pow(UN x:A. B(x))"; |
2877 | 580 |
by (Blast_tac 1); |
760 | 581 |
qed "UN_Pow_subset"; |
198 | 582 |
|
5321 | 583 |
Goal "A <= Pow(Union(A))"; |
2877 | 584 |
by (Blast_tac 1); |
760 | 585 |
qed "subset_Pow_Union"; |
198 | 586 |
|
5321 | 587 |
Goal "Union(Pow(A)) = A"; |
2877 | 588 |
by (Blast_tac 1); |
760 | 589 |
qed "Union_Pow_eq"; |
198 | 590 |
|
5321 | 591 |
Goal "Pow(A Int B) = Pow(A) Int Pow(B)"; |
2877 | 592 |
by (Blast_tac 1); |
6288
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
593 |
qed "Pow_Int_eq"; |
198 | 594 |
|
6288
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
595 |
Goal "x:A ==> Pow(INT x:A. B(x)) = (INT x:A. Pow(B(x)))"; |
2877 | 596 |
by (Blast_tac 1); |
6288
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
597 |
qed "Pow_INT_eq"; |
435 | 598 |
|
6288
694c9c1910e8
new theorems Pow_0 and Pow_insert; renamed other Pow theorems
paulson
parents:
6068
diff
changeset
|
599 |
Addsimps [Pow_0, Union_Pow_eq, Pow_Int_eq]; |
2469 | 600 |
|
839 | 601 |
(** RepFun **) |
602 |
||
5321 | 603 |
Goal "{f(x).x:A}=0 <-> A=0"; |
9303 | 604 |
by (Blast_tac 1); |
839 | 605 |
qed "RepFun_eq_0_iff"; |
606 |
||
1611 | 607 |
(** Collect **) |
608 |
||
5321 | 609 |
Goal "Collect(A Un B, P) = Collect(A,P) Un Collect(B,P)"; |
2877 | 610 |
by (Blast_tac 1); |
1611 | 611 |
qed "Collect_Un"; |
612 |
||
5321 | 613 |
Goal "Collect(A Int B, P) = Collect(A,P) Int Collect(B,P)"; |
2877 | 614 |
by (Blast_tac 1); |
1611 | 615 |
qed "Collect_Int"; |
616 |
||
5321 | 617 |
Goal "Collect(A - B, P) = Collect(A,P) - Collect(B,P)"; |
2877 | 618 |
by (Blast_tac 1); |
1611 | 619 |
qed "Collect_Diff"; |
620 |
||
6068 | 621 |
Goal "{x:cons(a,B). P(x)} = \ |
622 |
\ (if P(a) then cons(a, {x:B. P(x)}) else {x:B. P(x)})"; |
|
5116
8eb343ab5748
Renamed expand_if to split_if and setloop split_tac to addsplits,
paulson
parents:
5067
diff
changeset
|
623 |
by (simp_tac (simpset() addsplits [split_if]) 1); |
2877 | 624 |
by (Blast_tac 1); |
1611 | 625 |
qed "Collect_cons"; |
626 |