3162
|
1 |
%process by latex ind-defs-slides; dvips -Plime ind-defs-slides
|
|
2 |
% ghostview -magstep -2 -landscape ind-defs-slides.ps
|
|
3 |
\documentclass[a4,slidesonly,semlayer]{seminar}
|
|
4 |
|
|
5 |
\usepackage{fancybox}
|
|
6 |
\usepackage{semhelv}
|
|
7 |
\usepackage{epsf}
|
|
8 |
\def\printlandscape{\special{landscape}} % Works with dvips.
|
|
9 |
|
|
10 |
\slidesmag{5}\articlemag{2} %the difference is 3 instead of 4!
|
|
11 |
\extraslideheight{30pt}
|
|
12 |
|
|
13 |
\renewcommand\slidefuzz{6pt}
|
|
14 |
\sloppy\hfuzz2pt %sloppy defines \hfuzz0.5pt but it's mainly for text
|
|
15 |
|
|
16 |
\newcommand\sbs{\subseteq}
|
|
17 |
\newcommand\Pow{{\cal P}}
|
|
18 |
\newcommand\lfp{\hbox{\tt lfp}}
|
|
19 |
\newcommand\gfp{\hbox{\tt gfp}}
|
|
20 |
\newcommand\lst{\hbox{\tt list}}
|
|
21 |
\newcommand\term{\hbox{\tt term}}
|
|
22 |
|
|
23 |
\newcommand\heading[1]{%
|
|
24 |
\begin{center}\large\bf\shadowbox{#1}\end{center}
|
|
25 |
\vspace{1ex minus 1ex}}
|
|
26 |
|
|
27 |
\newpagestyle{mine}%
|
|
28 |
{L. Paulson\hfil A Fixedpoint Approach to (Co)Inductive Definitions\hfil
|
|
29 |
\thepage}%
|
|
30 |
{\hfil\special{psfile=cuarms.eps hscale=20 vscale=20 voffset=-6
|
|
31 |
hoffset=-14}\hfil}
|
|
32 |
\pagestyle{mine}
|
|
33 |
|
|
34 |
|
|
35 |
\begin{document}
|
|
36 |
\slidefonts
|
|
37 |
|
|
38 |
\begin{slide}\centering
|
|
39 |
\shadowbox{%
|
|
40 |
\begin{Bcenter}
|
|
41 |
{\Large\bf A Fixedpoint Approach to}\\[2ex]
|
|
42 |
{\Large\bf (Co)Inductive Definitions}
|
|
43 |
\end{Bcenter}}
|
|
44 |
\bigskip
|
|
45 |
|
|
46 |
\begin{Bcenter}
|
|
47 |
Lawrence C. Paulson\\
|
|
48 |
Computer Laboratory\\
|
|
49 |
University of Cambridge\\
|
|
50 |
England\\[1ex]
|
|
51 |
\verb|lcp@cl.cam.ac.uk|
|
|
52 |
\end{Bcenter}
|
|
53 |
\bigskip
|
|
54 |
|
|
55 |
{\footnotesize Thanks: SERC grants GR/G53279, GR/H40570; ESPRIT Project 6453
|
|
56 |
`Types'}
|
|
57 |
\end{slide}
|
|
58 |
|
|
59 |
|
|
60 |
\begin{slide}
|
|
61 |
\heading{Inductive Definitions}
|
|
62 |
\begin{itemize}
|
|
63 |
\item {\bf datatypes}
|
|
64 |
\begin{itemize}
|
|
65 |
\item finite lists, trees
|
|
66 |
\item syntax of expressions, \ldots
|
|
67 |
\end{itemize}
|
|
68 |
\item {\bf inference systems}
|
|
69 |
\begin{itemize}
|
|
70 |
\item transitive closure of a relation
|
|
71 |
\item transition systems
|
|
72 |
\item structural operational semantics
|
|
73 |
\end{itemize}
|
|
74 |
\end{itemize}
|
|
75 |
|
|
76 |
Supported by Boyer/Moore, HOL, Coq, \ldots, Isabelle/ZF
|
|
77 |
\end{slide}
|
|
78 |
|
|
79 |
|
|
80 |
\begin{slide}
|
|
81 |
\heading{Coinductive Definitions}
|
|
82 |
\begin{itemize}
|
|
83 |
\item {\bf codatatypes}
|
|
84 |
\begin{itemize}
|
|
85 |
\item {\it infinite\/} lists, trees
|
|
86 |
\item syntax of {\it infinite\/} expressions, \ldots
|
|
87 |
\end{itemize}
|
|
88 |
\item {\bf bisimulation relations}
|
|
89 |
\begin{itemize}
|
|
90 |
\item process equivalence
|
|
91 |
\item uses in functional programming (Abramksy, Howe)
|
|
92 |
\end{itemize}
|
|
93 |
\end{itemize}
|
|
94 |
|
|
95 |
Supported by \ldots ?, \ldots, Isabelle/ZF
|
|
96 |
\end{slide}
|
|
97 |
|
|
98 |
|
|
99 |
\begin{slide}
|
|
100 |
\heading{The Knaster-Tarksi Fixedpoint Theorem}
|
|
101 |
$h$ a monotone function
|
|
102 |
|
|
103 |
$D$ a set such that $h(D)\sbs D$
|
|
104 |
|
|
105 |
The {\bf least} fixedpoint $\lfp(D,h)$ yields {\bf inductive} definitions
|
|
106 |
|
|
107 |
The {\bf greatest} fixedpoint $\gfp(D,h)$ yields {\bf coinductive} definitions
|
|
108 |
|
|
109 |
{\it A general approach\/}:
|
|
110 |
\begin{itemize}
|
|
111 |
\item handles all provably monotone definitions
|
|
112 |
\item works for set theory, higher-order logic, \ldots
|
|
113 |
\end{itemize}
|
|
114 |
\end{slide}
|
|
115 |
|
|
116 |
|
|
117 |
\begin{slide}
|
|
118 |
\heading{An Implementation in Isabelle/ZF}\centering
|
|
119 |
\begin{itemize}
|
|
120 |
\item {\bf Input}
|
|
121 |
\begin{itemize}
|
|
122 |
\item description of {\it introduction rules\/} \& tree's {\it
|
|
123 |
constructors\/}
|
|
124 |
\item {\it theorems\/} implying that the definition is {\it monotonic\/}
|
|
125 |
\end{itemize}
|
|
126 |
\item {\bf Output}
|
|
127 |
\begin{itemize}
|
|
128 |
\item (co)induction rules
|
|
129 |
\item case analysis rule and {\it rule inversion\/} tools, \ldots
|
|
130 |
\end{itemize}
|
|
131 |
\end{itemize}
|
|
132 |
|
|
133 |
\vfill
|
|
134 |
{\it flexible, secure, \ldots but fast\/}
|
|
135 |
\end{slide}
|
|
136 |
|
|
137 |
|
|
138 |
\begin{slide}
|
|
139 |
\heading{Working Examples}
|
|
140 |
\begin{itemize}
|
|
141 |
\item lists
|
|
142 |
\item terms recursive over lists: $\term(A) = A\times\lst(\term(A))$
|
|
143 |
\item primitive recursive functions
|
|
144 |
\item lazy lists
|
|
145 |
\item bisimulations for lazy lists
|
|
146 |
\item combinator reductions; Church-Rosser Theorem
|
|
147 |
\item mutually recursive trees \& forests
|
|
148 |
\end{itemize}
|
|
149 |
\end{slide}
|
|
150 |
|
|
151 |
|
|
152 |
\begin{slide}
|
|
153 |
\heading{Other Work Using Fixedpoints}
|
|
154 |
{\bf The HOL system}:
|
|
155 |
\begin{itemize}
|
|
156 |
\item Melham's induction package: special case of Fixedpoint Theorem
|
|
157 |
\item Andersen \& Petersen's induction package
|
|
158 |
\item (no HOL datatype package uses fixedpoints)
|
|
159 |
\end{itemize}
|
|
160 |
|
|
161 |
{\bf Coq and LEGO}:
|
|
162 |
\begin{itemize}
|
|
163 |
\item (Co)induction {\it almost\/} expressible in base logic (CoC)
|
|
164 |
\item \ldots{} inductive definitions are built-in
|
|
165 |
\end{itemize}
|
|
166 |
\end{slide}
|
|
167 |
|
|
168 |
|
|
169 |
\begin{slide}
|
|
170 |
\heading{Limitations \& Future Developments}\centering
|
|
171 |
\begin{itemize}
|
|
172 |
\item {\bf infinite-branching trees}
|
|
173 |
\begin{itemize}
|
|
174 |
\item justification requires proof
|
|
175 |
\item would be easier to {\it build them in\/}!
|
|
176 |
\end{itemize}
|
|
177 |
\item {\bf recursive function definitions}
|
|
178 |
\begin{itemize}
|
|
179 |
\item use {\it well-founded\/} recursion
|
|
180 |
\item distinct from datatype definitions
|
|
181 |
\end{itemize}
|
|
182 |
\item {\bf port to Isabelle/HOL}
|
|
183 |
\end{itemize}
|
|
184 |
\end{slide}
|
|
185 |
|
|
186 |
\end{document}
|
|
187 |
|
|
188 |
|
|
189 |
{\it flat\/} ordered pairs used to define infinite lists, \ldots
|
|
190 |
|
|
191 |
\begin{slide}
|
|
192 |
\heading{}\centering
|
|
193 |
\end{slide}
|
|
194 |
|