| author | haftmann | 
| Thu, 03 Aug 2017 12:49:58 +0200 | |
| changeset 66326 | 9eb8a2d07852 | 
| parent 65965 | 088c79b40156 | 
| child 66805 | 274b4edca859 | 
| permissions | -rw-r--r-- | 
| 65435 | 1 | (* Title: HOL/Computational_Algebra/Polynomial_Factorial.thy | 
| 63764 | 2 | Author: Brian Huffman | 
| 3 | Author: Clemens Ballarin | |
| 4 | Author: Amine Chaieb | |
| 5 | Author: Florian Haftmann | |
| 6 | Author: Manuel Eberl | |
| 7 | *) | |
| 8 | ||
| 63498 | 9 | theory Polynomial_Factorial | 
| 10 | imports | |
| 11 | Complex_Main | |
| 65366 | 12 | Polynomial | 
| 13 | Normalized_Fraction | |
| 14 | Field_as_Ring | |
| 63498 | 15 | begin | 
| 16 | ||
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 17 | subsection \<open>Various facts about polynomials\<close> | 
| 63498 | 18 | |
| 65389 | 19 | lemma prod_mset_const_poly: " (\<Prod>x\<in>#A. [:f x:]) = [:prod_mset (image_mset f A):]" | 
| 65486 | 20 | by (induct A) (simp_all add: ac_simps) | 
| 63498 | 21 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 22 | lemma irreducible_const_poly_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 23 |   fixes c :: "'a :: {comm_semiring_1,semiring_no_zero_divisors}"
 | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 24 | shows "irreducible [:c:] \<longleftrightarrow> irreducible c" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 25 | proof | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 26 | assume A: "irreducible c" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 27 | show "irreducible [:c:]" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 28 | proof (rule irreducibleI) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 29 | fix a b assume ab: "[:c:] = a * b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 30 | hence "degree [:c:] = degree (a * b)" by (simp only: ) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 31 | also from A ab have "a \<noteq> 0" "b \<noteq> 0" by auto | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 32 | hence "degree (a * b) = degree a + degree b" by (simp add: degree_mult_eq) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 33 | finally have "degree a = 0" "degree b = 0" by auto | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 34 | then obtain a' b' where ab': "a = [:a':]" "b = [:b':]" by (auto elim!: degree_eq_zeroE) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 35 | from ab have "coeff [:c:] 0 = coeff (a * b) 0" by (simp only: ) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 36 | hence "c = a' * b'" by (simp add: ab' mult_ac) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 37 | from A and this have "a' dvd 1 \<or> b' dvd 1" by (rule irreducibleD) | 
| 65486 | 38 | with ab' show "a dvd 1 \<or> b dvd 1" | 
| 39 | by (auto simp add: is_unit_const_poly_iff) | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 40 | qed (insert A, auto simp: irreducible_def is_unit_poly_iff) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 41 | next | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 42 | assume A: "irreducible [:c:]" | 
| 65486 | 43 | then have "c \<noteq> 0" and "\<not> c dvd 1" | 
| 44 | by (auto simp add: irreducible_def is_unit_const_poly_iff) | |
| 45 | then show "irreducible c" | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 46 | proof (rule irreducibleI) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 47 | fix a b assume ab: "c = a * b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 48 | hence "[:c:] = [:a:] * [:b:]" by (simp add: mult_ac) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 49 | from A and this have "[:a:] dvd 1 \<or> [:b:] dvd 1" by (rule irreducibleD) | 
| 65486 | 50 | then show "a dvd 1 \<or> b dvd 1" | 
| 51 | by (auto simp add: is_unit_const_poly_iff) | |
| 52 | qed | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 53 | qed | 
| 63498 | 54 | |
| 55 | ||
| 56 | subsection \<open>Lifting elements into the field of fractions\<close> | |
| 57 | ||
| 58 | definition to_fract :: "'a :: idom \<Rightarrow> 'a fract" where "to_fract x = Fract x 1" | |
| 64911 | 59 | \<comment> \<open>FIXME: name \<open>of_idom\<close>, abbreviation\<close> | 
| 63498 | 60 | |
| 61 | lemma to_fract_0 [simp]: "to_fract 0 = 0" | |
| 62 | by (simp add: to_fract_def eq_fract Zero_fract_def) | |
| 63 | ||
| 64 | lemma to_fract_1 [simp]: "to_fract 1 = 1" | |
| 65 | by (simp add: to_fract_def eq_fract One_fract_def) | |
| 66 | ||
| 67 | lemma to_fract_add [simp]: "to_fract (x + y) = to_fract x + to_fract y" | |
| 68 | by (simp add: to_fract_def) | |
| 69 | ||
| 70 | lemma to_fract_diff [simp]: "to_fract (x - y) = to_fract x - to_fract y" | |
| 71 | by (simp add: to_fract_def) | |
| 72 | ||
| 73 | lemma to_fract_uminus [simp]: "to_fract (-x) = -to_fract x" | |
| 74 | by (simp add: to_fract_def) | |
| 75 | ||
| 76 | lemma to_fract_mult [simp]: "to_fract (x * y) = to_fract x * to_fract y" | |
| 77 | by (simp add: to_fract_def) | |
| 78 | ||
| 79 | lemma to_fract_eq_iff [simp]: "to_fract x = to_fract y \<longleftrightarrow> x = y" | |
| 80 | by (simp add: to_fract_def eq_fract) | |
| 81 | ||
| 82 | lemma to_fract_eq_0_iff [simp]: "to_fract x = 0 \<longleftrightarrow> x = 0" | |
| 83 | by (simp add: to_fract_def Zero_fract_def eq_fract) | |
| 84 | ||
| 85 | lemma snd_quot_of_fract_nonzero [simp]: "snd (quot_of_fract x) \<noteq> 0" | |
| 86 | by transfer simp | |
| 87 | ||
| 88 | lemma Fract_quot_of_fract [simp]: "Fract (fst (quot_of_fract x)) (snd (quot_of_fract x)) = x" | |
| 89 | by transfer (simp del: fractrel_iff, subst fractrel_normalize_quot_left, simp) | |
| 90 | ||
| 91 | lemma to_fract_quot_of_fract: | |
| 92 | assumes "snd (quot_of_fract x) = 1" | |
| 93 | shows "to_fract (fst (quot_of_fract x)) = x" | |
| 94 | proof - | |
| 95 | have "x = Fract (fst (quot_of_fract x)) (snd (quot_of_fract x))" by simp | |
| 96 | also note assms | |
| 97 | finally show ?thesis by (simp add: to_fract_def) | |
| 98 | qed | |
| 99 | ||
| 100 | lemma snd_quot_of_fract_Fract_whole: | |
| 101 | assumes "y dvd x" | |
| 102 | shows "snd (quot_of_fract (Fract x y)) = 1" | |
| 103 | using assms by transfer (auto simp: normalize_quot_def Let_def gcd_proj2_if_dvd) | |
| 104 | ||
| 105 | lemma Fract_conv_to_fract: "Fract a b = to_fract a / to_fract b" | |
| 106 | by (simp add: to_fract_def) | |
| 107 | ||
| 108 | lemma quot_of_fract_to_fract [simp]: "quot_of_fract (to_fract x) = (x, 1)" | |
| 109 | unfolding to_fract_def by transfer (simp add: normalize_quot_def) | |
| 110 | ||
| 111 | lemma fst_quot_of_fract_eq_0_iff [simp]: "fst (quot_of_fract x) = 0 \<longleftrightarrow> x = 0" | |
| 112 | by transfer simp | |
| 113 | ||
| 114 | lemma snd_quot_of_fract_to_fract [simp]: "snd (quot_of_fract (to_fract x)) = 1" | |
| 115 | unfolding to_fract_def by (rule snd_quot_of_fract_Fract_whole) simp_all | |
| 116 | ||
| 117 | lemma coprime_quot_of_fract: | |
| 118 | "coprime (fst (quot_of_fract x)) (snd (quot_of_fract x))" | |
| 119 | by transfer (simp add: coprime_normalize_quot) | |
| 120 | ||
| 121 | lemma unit_factor_snd_quot_of_fract: "unit_factor (snd (quot_of_fract x)) = 1" | |
| 122 | using quot_of_fract_in_normalized_fracts[of x] | |
| 123 | by (simp add: normalized_fracts_def case_prod_unfold) | |
| 124 | ||
| 125 | lemma unit_factor_1_imp_normalized: "unit_factor x = 1 \<Longrightarrow> normalize x = x" | |
| 126 | by (subst (2) normalize_mult_unit_factor [symmetric, of x]) | |
| 127 | (simp del: normalize_mult_unit_factor) | |
| 128 | ||
| 129 | lemma normalize_snd_quot_of_fract: "normalize (snd (quot_of_fract x)) = snd (quot_of_fract x)" | |
| 130 | by (intro unit_factor_1_imp_normalized unit_factor_snd_quot_of_fract) | |
| 131 | ||
| 132 | ||
| 133 | subsection \<open>Lifting polynomial coefficients to the field of fractions\<close> | |
| 134 | ||
| 135 | abbreviation (input) fract_poly | |
| 136 | where "fract_poly \<equiv> map_poly to_fract" | |
| 137 | ||
| 138 | abbreviation (input) unfract_poly | |
| 139 | where "unfract_poly \<equiv> map_poly (fst \<circ> quot_of_fract)" | |
| 140 | ||
| 141 | lemma fract_poly_smult [simp]: "fract_poly (smult c p) = smult (to_fract c) (fract_poly p)" | |
| 142 | by (simp add: smult_conv_map_poly map_poly_map_poly o_def) | |
| 143 | ||
| 144 | lemma fract_poly_0 [simp]: "fract_poly 0 = 0" | |
| 145 | by (simp add: poly_eqI coeff_map_poly) | |
| 146 | ||
| 147 | lemma fract_poly_1 [simp]: "fract_poly 1 = 1" | |
| 65486 | 148 | by (simp add: map_poly_pCons) | 
| 63498 | 149 | |
| 150 | lemma fract_poly_add [simp]: | |
| 151 | "fract_poly (p + q) = fract_poly p + fract_poly q" | |
| 152 | by (intro poly_eqI) (simp_all add: coeff_map_poly) | |
| 153 | ||
| 154 | lemma fract_poly_diff [simp]: | |
| 155 | "fract_poly (p - q) = fract_poly p - fract_poly q" | |
| 156 | by (intro poly_eqI) (simp_all add: coeff_map_poly) | |
| 157 | ||
| 64267 | 158 | lemma to_fract_sum [simp]: "to_fract (sum f A) = sum (\<lambda>x. to_fract (f x)) A" | 
| 63498 | 159 | by (cases "finite A", induction A rule: finite_induct) simp_all | 
| 160 | ||
| 161 | lemma fract_poly_mult [simp]: | |
| 162 | "fract_poly (p * q) = fract_poly p * fract_poly q" | |
| 163 | by (intro poly_eqI) (simp_all add: coeff_map_poly coeff_mult) | |
| 164 | ||
| 165 | lemma fract_poly_eq_iff [simp]: "fract_poly p = fract_poly q \<longleftrightarrow> p = q" | |
| 166 | by (auto simp: poly_eq_iff coeff_map_poly) | |
| 167 | ||
| 168 | lemma fract_poly_eq_0_iff [simp]: "fract_poly p = 0 \<longleftrightarrow> p = 0" | |
| 169 | using fract_poly_eq_iff[of p 0] by (simp del: fract_poly_eq_iff) | |
| 170 | ||
| 171 | lemma fract_poly_dvd: "p dvd q \<Longrightarrow> fract_poly p dvd fract_poly q" | |
| 172 | by (auto elim!: dvdE) | |
| 173 | ||
| 63830 | 174 | lemma prod_mset_fract_poly: | 
| 65390 | 175 | "(\<Prod>x\<in>#A. map_poly to_fract (f x)) = fract_poly (prod_mset (image_mset f A))" | 
| 176 | by (induct A) (simp_all add: ac_simps) | |
| 63498 | 177 | |
| 178 | lemma is_unit_fract_poly_iff: | |
| 179 | "p dvd 1 \<longleftrightarrow> fract_poly p dvd 1 \<and> content p = 1" | |
| 180 | proof safe | |
| 181 | assume A: "p dvd 1" | |
| 65389 | 182 | with fract_poly_dvd [of p 1] show "is_unit (fract_poly p)" | 
| 183 | by simp | |
| 63498 | 184 | from A show "content p = 1" | 
| 185 | by (auto simp: is_unit_poly_iff normalize_1_iff) | |
| 186 | next | |
| 187 | assume A: "fract_poly p dvd 1" and B: "content p = 1" | |
| 188 | from A obtain c where c: "fract_poly p = [:c:]" by (auto simp: is_unit_poly_iff) | |
| 189 |   {
 | |
| 190 | fix n :: nat assume "n > 0" | |
| 191 | have "to_fract (coeff p n) = coeff (fract_poly p) n" by (simp add: coeff_map_poly) | |
| 192 | also note c | |
| 193 | also from \<open>n > 0\<close> have "coeff [:c:] n = 0" by (simp add: coeff_pCons split: nat.splits) | |
| 194 | finally have "coeff p n = 0" by simp | |
| 195 | } | |
| 196 | hence "degree p \<le> 0" by (intro degree_le) simp_all | |
| 197 | with B show "p dvd 1" by (auto simp: is_unit_poly_iff normalize_1_iff elim!: degree_eq_zeroE) | |
| 198 | qed | |
| 199 | ||
| 200 | lemma fract_poly_is_unit: "p dvd 1 \<Longrightarrow> fract_poly p dvd 1" | |
| 201 | using fract_poly_dvd[of p 1] by simp | |
| 202 | ||
| 203 | lemma fract_poly_smult_eqE: | |
| 204 |   fixes c :: "'a :: {idom_divide,ring_gcd} fract"
 | |
| 205 | assumes "fract_poly p = smult c (fract_poly q)" | |
| 206 | obtains a b | |
| 207 | where "c = to_fract b / to_fract a" "smult a p = smult b q" "coprime a b" "normalize a = a" | |
| 208 | proof - | |
| 209 | define a b where "a = fst (quot_of_fract c)" and "b = snd (quot_of_fract c)" | |
| 210 | have "smult (to_fract a) (fract_poly q) = smult (to_fract b) (fract_poly p)" | |
| 211 | by (subst smult_eq_iff) (simp_all add: a_def b_def Fract_conv_to_fract [symmetric] assms) | |
| 212 | hence "fract_poly (smult a q) = fract_poly (smult b p)" by (simp del: fract_poly_eq_iff) | |
| 213 | hence "smult b p = smult a q" by (simp only: fract_poly_eq_iff) | |
| 214 | moreover have "c = to_fract a / to_fract b" "coprime b a" "normalize b = b" | |
| 215 | by (simp_all add: a_def b_def coprime_quot_of_fract gcd.commute | |
| 216 | normalize_snd_quot_of_fract Fract_conv_to_fract [symmetric]) | |
| 217 | ultimately show ?thesis by (intro that[of a b]) | |
| 218 | qed | |
| 219 | ||
| 220 | ||
| 221 | subsection \<open>Fractional content\<close> | |
| 222 | ||
| 223 | abbreviation (input) Lcm_coeff_denoms | |
| 224 |     :: "'a :: {semiring_Gcd,idom_divide,ring_gcd} fract poly \<Rightarrow> 'a"
 | |
| 225 | where "Lcm_coeff_denoms p \<equiv> Lcm (snd ` quot_of_fract ` set (coeffs p))" | |
| 226 | ||
| 227 | definition fract_content :: | |
| 228 |       "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a fract" where
 | |
| 229 | "fract_content p = | |
| 230 | (let d = Lcm_coeff_denoms p in Fract (content (unfract_poly (smult (to_fract d) p))) d)" | |
| 231 | ||
| 232 | definition primitive_part_fract :: | |
| 233 |       "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a poly" where
 | |
| 234 | "primitive_part_fract p = | |
| 235 | primitive_part (unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p))" | |
| 236 | ||
| 237 | lemma primitive_part_fract_0 [simp]: "primitive_part_fract 0 = 0" | |
| 238 | by (simp add: primitive_part_fract_def) | |
| 239 | ||
| 240 | lemma fract_content_eq_0_iff [simp]: | |
| 241 | "fract_content p = 0 \<longleftrightarrow> p = 0" | |
| 242 | unfolding fract_content_def Let_def Zero_fract_def | |
| 243 | by (subst eq_fract) (auto simp: Lcm_0_iff map_poly_eq_0_iff) | |
| 244 | ||
| 245 | lemma content_primitive_part_fract [simp]: "p \<noteq> 0 \<Longrightarrow> content (primitive_part_fract p) = 1" | |
| 246 | unfolding primitive_part_fract_def | |
| 247 | by (rule content_primitive_part) | |
| 248 | (auto simp: primitive_part_fract_def map_poly_eq_0_iff Lcm_0_iff) | |
| 249 | ||
| 250 | lemma content_times_primitive_part_fract: | |
| 251 | "smult (fract_content p) (fract_poly (primitive_part_fract p)) = p" | |
| 252 | proof - | |
| 253 | define p' where "p' = unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p)" | |
| 254 | have "fract_poly p' = | |
| 255 | map_poly (to_fract \<circ> fst \<circ> quot_of_fract) (smult (to_fract (Lcm_coeff_denoms p)) p)" | |
| 256 | unfolding primitive_part_fract_def p'_def | |
| 257 | by (subst map_poly_map_poly) (simp_all add: o_assoc) | |
| 258 | also have "\<dots> = smult (to_fract (Lcm_coeff_denoms p)) p" | |
| 259 | proof (intro map_poly_idI, unfold o_apply) | |
| 260 | fix c assume "c \<in> set (coeffs (smult (to_fract (Lcm_coeff_denoms p)) p))" | |
| 261 | then obtain c' where c: "c' \<in> set (coeffs p)" "c = to_fract (Lcm_coeff_denoms p) * c'" | |
| 262 | by (auto simp add: Lcm_0_iff coeffs_smult split: if_splits) | |
| 263 | note c(2) | |
| 264 | also have "c' = Fract (fst (quot_of_fract c')) (snd (quot_of_fract c'))" | |
| 265 | by simp | |
| 266 | also have "to_fract (Lcm_coeff_denoms p) * \<dots> = | |
| 267 | Fract (Lcm_coeff_denoms p * fst (quot_of_fract c')) (snd (quot_of_fract c'))" | |
| 268 | unfolding to_fract_def by (subst mult_fract) simp_all | |
| 269 | also have "snd (quot_of_fract \<dots>) = 1" | |
| 270 | by (intro snd_quot_of_fract_Fract_whole dvd_mult2 dvd_Lcm) (insert c(1), auto) | |
| 271 | finally show "to_fract (fst (quot_of_fract c)) = c" | |
| 272 | by (rule to_fract_quot_of_fract) | |
| 273 | qed | |
| 274 | also have "p' = smult (content p') (primitive_part p')" | |
| 275 | by (rule content_times_primitive_part [symmetric]) | |
| 276 | also have "primitive_part p' = primitive_part_fract p" | |
| 277 | by (simp add: primitive_part_fract_def p'_def) | |
| 278 | also have "fract_poly (smult (content p') (primitive_part_fract p)) = | |
| 279 | smult (to_fract (content p')) (fract_poly (primitive_part_fract p))" by simp | |
| 280 | finally have "smult (to_fract (content p')) (fract_poly (primitive_part_fract p)) = | |
| 281 | smult (to_fract (Lcm_coeff_denoms p)) p" . | |
| 282 | thus ?thesis | |
| 283 | by (subst (asm) smult_eq_iff) | |
| 284 | (auto simp add: Let_def p'_def Fract_conv_to_fract field_simps Lcm_0_iff fract_content_def) | |
| 285 | qed | |
| 286 | ||
| 287 | lemma fract_content_fract_poly [simp]: "fract_content (fract_poly p) = to_fract (content p)" | |
| 288 | proof - | |
| 289 | have "Lcm_coeff_denoms (fract_poly p) = 1" | |
| 63905 | 290 | by (auto simp: set_coeffs_map_poly) | 
| 63498 | 291 | hence "fract_content (fract_poly p) = | 
| 292 | to_fract (content (map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p))" | |
| 293 | by (simp add: fract_content_def to_fract_def fract_collapse map_poly_map_poly del: Lcm_1_iff) | |
| 294 | also have "map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p = p" | |
| 295 | by (intro map_poly_idI) simp_all | |
| 296 | finally show ?thesis . | |
| 297 | qed | |
| 298 | ||
| 299 | lemma content_decompose_fract: | |
| 300 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly"
 | |
| 301 | obtains c p' where "p = smult c (map_poly to_fract p')" "content p' = 1" | |
| 302 | proof (cases "p = 0") | |
| 303 | case True | |
| 304 | hence "p = smult 0 (map_poly to_fract 1)" "content 1 = 1" by simp_all | |
| 305 | thus ?thesis .. | |
| 306 | next | |
| 307 | case False | |
| 308 | thus ?thesis | |
| 309 | by (rule that[OF content_times_primitive_part_fract [symmetric] content_primitive_part_fract]) | |
| 310 | qed | |
| 311 | ||
| 312 | ||
| 313 | subsection \<open>More properties of content and primitive part\<close> | |
| 314 | ||
| 315 | lemma lift_prime_elem_poly: | |
| 63633 | 316 | assumes "prime_elem (c :: 'a :: semidom)" | 
| 317 | shows "prime_elem [:c:]" | |
| 318 | proof (rule prime_elemI) | |
| 63498 | 319 | fix a b assume *: "[:c:] dvd a * b" | 
| 320 | from * have dvd: "c dvd coeff (a * b) n" for n | |
| 321 | by (subst (asm) const_poly_dvd_iff) blast | |
| 322 |   {
 | |
| 323 | define m where "m = (GREATEST m. \<not>c dvd coeff b m)" | |
| 324 | assume "\<not>[:c:] dvd b" | |
| 325 | hence A: "\<exists>i. \<not>c dvd coeff b i" by (subst (asm) const_poly_dvd_iff) blast | |
| 65963 | 326 | have B: "\<forall>i. \<not>c dvd coeff b i \<longrightarrow> i \<le> degree b" | 
| 327 | by (auto intro: le_degree) | |
| 65965 | 328 | have coeff_m: "\<not>c dvd coeff b m" unfolding m_def by (rule GreatestI_ex_nat[OF A B]) | 
| 63498 | 329 | have "i \<le> m" if "\<not>c dvd coeff b i" for i | 
| 65965 | 330 | unfolding m_def by (rule Greatest_le_nat[OF that B]) | 
| 63498 | 331 | hence dvd_b: "c dvd coeff b i" if "i > m" for i using that by force | 
| 332 | ||
| 333 | have "c dvd coeff a i" for i | |
| 334 | proof (induction i rule: nat_descend_induct[of "degree a"]) | |
| 335 | case (base i) | |
| 336 | thus ?case by (simp add: coeff_eq_0) | |
| 337 | next | |
| 338 | case (descend i) | |
| 339 |       let ?A = "{..i+m} - {i}"
 | |
| 340 | have "c dvd coeff (a * b) (i + m)" by (rule dvd) | |
| 341 | also have "coeff (a * b) (i + m) = (\<Sum>k\<le>i + m. coeff a k * coeff b (i + m - k))" | |
| 342 | by (simp add: coeff_mult) | |
| 343 |       also have "{..i+m} = insert i ?A" by auto
 | |
| 344 | also have "(\<Sum>k\<in>\<dots>. coeff a k * coeff b (i + m - k)) = | |
| 345 | coeff a i * coeff b m + (\<Sum>k\<in>?A. coeff a k * coeff b (i + m - k))" | |
| 346 | (is "_ = _ + ?S") | |
| 64267 | 347 | by (subst sum.insert) simp_all | 
| 63498 | 348 | finally have eq: "c dvd coeff a i * coeff b m + ?S" . | 
| 349 | moreover have "c dvd ?S" | |
| 64267 | 350 | proof (rule dvd_sum) | 
| 63498 | 351 |         fix k assume k: "k \<in> {..i+m} - {i}"
 | 
| 352 | show "c dvd coeff a k * coeff b (i + m - k)" | |
| 353 | proof (cases "k < i") | |
| 354 | case False | |
| 355 | with k have "c dvd coeff a k" by (intro descend.IH) simp | |
| 356 | thus ?thesis by simp | |
| 357 | next | |
| 358 | case True | |
| 359 | hence "c dvd coeff b (i + m - k)" by (intro dvd_b) simp | |
| 360 | thus ?thesis by simp | |
| 361 | qed | |
| 362 | qed | |
| 363 | ultimately have "c dvd coeff a i * coeff b m" | |
| 364 | by (simp add: dvd_add_left_iff) | |
| 365 | with assms coeff_m show "c dvd coeff a i" | |
| 63633 | 366 | by (simp add: prime_elem_dvd_mult_iff) | 
| 63498 | 367 | qed | 
| 368 | hence "[:c:] dvd a" by (subst const_poly_dvd_iff) blast | |
| 369 | } | |
| 65486 | 370 | then show "[:c:] dvd a \<or> [:c:] dvd b" by blast | 
| 371 | next | |
| 372 | from assms show "[:c:] \<noteq> 0" and "\<not> [:c:] dvd 1" | |
| 373 | by (simp_all add: prime_elem_def is_unit_const_poly_iff) | |
| 374 | qed | |
| 63498 | 375 | |
| 376 | lemma prime_elem_const_poly_iff: | |
| 377 | fixes c :: "'a :: semidom" | |
| 63633 | 378 | shows "prime_elem [:c:] \<longleftrightarrow> prime_elem c" | 
| 63498 | 379 | proof | 
| 63633 | 380 | assume A: "prime_elem [:c:]" | 
| 381 | show "prime_elem c" | |
| 382 | proof (rule prime_elemI) | |
| 63498 | 383 | fix a b assume "c dvd a * b" | 
| 384 | hence "[:c:] dvd [:a:] * [:b:]" by (simp add: mult_ac) | |
| 63633 | 385 | from A and this have "[:c:] dvd [:a:] \<or> [:c:] dvd [:b:]" by (rule prime_elem_dvd_multD) | 
| 63498 | 386 | thus "c dvd a \<or> c dvd b" by simp | 
| 63633 | 387 | qed (insert A, auto simp: prime_elem_def is_unit_poly_iff) | 
| 63498 | 388 | qed (auto intro: lift_prime_elem_poly) | 
| 389 | ||
| 390 | context | |
| 391 | begin | |
| 392 | ||
| 393 | private lemma content_1_mult: | |
| 394 |   fixes f g :: "'a :: {semiring_Gcd,factorial_semiring} poly"
 | |
| 395 | assumes "content f = 1" "content g = 1" | |
| 396 | shows "content (f * g) = 1" | |
| 397 | proof (cases "f * g = 0") | |
| 398 | case False | |
| 399 | from assms have "f \<noteq> 0" "g \<noteq> 0" by auto | |
| 400 | ||
| 401 | hence "f * g \<noteq> 0" by auto | |
| 402 |   {
 | |
| 403 | assume "\<not>is_unit (content (f * g))" | |
| 63633 | 404 | with False have "\<exists>p. p dvd content (f * g) \<and> prime p" | 
| 63498 | 405 | by (intro prime_divisor_exists) simp_all | 
| 63633 | 406 | then obtain p where "p dvd content (f * g)" "prime p" by blast | 
| 63498 | 407 | from \<open>p dvd content (f * g)\<close> have "[:p:] dvd f * g" | 
| 408 | by (simp add: const_poly_dvd_iff_dvd_content) | |
| 63633 | 409 | moreover from \<open>prime p\<close> have "prime_elem [:p:]" by (simp add: lift_prime_elem_poly) | 
| 63498 | 410 | ultimately have "[:p:] dvd f \<or> [:p:] dvd g" | 
| 63633 | 411 | by (simp add: prime_elem_dvd_mult_iff) | 
| 63498 | 412 | with assms have "is_unit p" by (simp add: const_poly_dvd_iff_dvd_content) | 
| 63633 | 413 | with \<open>prime p\<close> have False by simp | 
| 63498 | 414 | } | 
| 415 | hence "is_unit (content (f * g))" by blast | |
| 416 | hence "normalize (content (f * g)) = 1" by (simp add: is_unit_normalize del: normalize_content) | |
| 417 | thus ?thesis by simp | |
| 418 | qed (insert assms, auto) | |
| 419 | ||
| 420 | lemma content_mult: | |
| 421 |   fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
 | |
| 422 | shows "content (p * q) = content p * content q" | |
| 423 | proof - | |
| 424 | from content_decompose[of p] guess p' . note p = this | |
| 425 | from content_decompose[of q] guess q' . note q = this | |
| 426 | have "content (p * q) = content p * content q * content (p' * q')" | |
| 427 | by (subst p, subst q) (simp add: mult_ac normalize_mult) | |
| 428 | also from p q have "content (p' * q') = 1" by (intro content_1_mult) | |
| 429 | finally show ?thesis by simp | |
| 430 | qed | |
| 431 | ||
| 432 | lemma primitive_part_mult: | |
| 433 |   fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
 | |
| 434 | shows "primitive_part (p * q) = primitive_part p * primitive_part q" | |
| 435 | proof - | |
| 436 | have "primitive_part (p * q) = p * q div [:content (p * q):]" | |
| 437 | by (simp add: primitive_part_def div_const_poly_conv_map_poly) | |
| 438 | also have "\<dots> = (p div [:content p:]) * (q div [:content q:])" | |
| 439 | by (subst div_mult_div_if_dvd) (simp_all add: content_mult mult_ac) | |
| 440 | also have "\<dots> = primitive_part p * primitive_part q" | |
| 441 | by (simp add: primitive_part_def div_const_poly_conv_map_poly) | |
| 442 | finally show ?thesis . | |
| 443 | qed | |
| 444 | ||
| 445 | lemma primitive_part_smult: | |
| 446 |   fixes p :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
 | |
| 447 | shows "primitive_part (smult a p) = smult (unit_factor a) (primitive_part p)" | |
| 448 | proof - | |
| 449 | have "smult a p = [:a:] * p" by simp | |
| 450 | also have "primitive_part \<dots> = smult (unit_factor a) (primitive_part p)" | |
| 451 | by (subst primitive_part_mult) simp_all | |
| 452 | finally show ?thesis . | |
| 453 | qed | |
| 454 | ||
| 455 | lemma primitive_part_dvd_primitive_partI [intro]: | |
| 456 |   fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
 | |
| 457 | shows "p dvd q \<Longrightarrow> primitive_part p dvd primitive_part q" | |
| 458 | by (auto elim!: dvdE simp: primitive_part_mult) | |
| 459 | ||
| 63830 | 460 | lemma content_prod_mset: | 
| 63498 | 461 |   fixes A :: "'a :: {factorial_semiring, semiring_Gcd} poly multiset"
 | 
| 63830 | 462 | shows "content (prod_mset A) = prod_mset (image_mset content A)" | 
| 63498 | 463 | by (induction A) (simp_all add: content_mult mult_ac) | 
| 464 | ||
| 465 | lemma fract_poly_dvdD: | |
| 466 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
 | |
| 467 | assumes "fract_poly p dvd fract_poly q" "content p = 1" | |
| 468 | shows "p dvd q" | |
| 469 | proof - | |
| 470 | from assms(1) obtain r where r: "fract_poly q = fract_poly p * r" by (erule dvdE) | |
| 471 | from content_decompose_fract[of r] guess c r' . note r' = this | |
| 472 | from r r' have eq: "fract_poly q = smult c (fract_poly (p * r'))" by simp | |
| 473 | from fract_poly_smult_eqE[OF this] guess a b . note ab = this | |
| 474 | have "content (smult a q) = content (smult b (p * r'))" by (simp only: ab(2)) | |
| 475 | hence eq': "normalize b = a * content q" by (simp add: assms content_mult r' ab(4)) | |
| 476 | have "1 = gcd a (normalize b)" by (simp add: ab) | |
| 477 | also note eq' | |
| 478 | also have "gcd a (a * content q) = a" by (simp add: gcd_proj1_if_dvd ab(4)) | |
| 479 | finally have [simp]: "a = 1" by simp | |
| 480 | from eq ab have "q = p * ([:b:] * r')" by simp | |
| 481 | thus ?thesis by (rule dvdI) | |
| 482 | qed | |
| 483 | ||
| 484 | lemma content_prod_eq_1_iff: | |
| 485 |   fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
 | |
| 486 | shows "content (p * q) = 1 \<longleftrightarrow> content p = 1 \<and> content q = 1" | |
| 487 | proof safe | |
| 488 | assume A: "content (p * q) = 1" | |
| 489 |   {
 | |
| 490 | fix p q :: "'a poly" assume "content p * content q = 1" | |
| 491 | hence "1 = content p * content q" by simp | |
| 492 | hence "content p dvd 1" by (rule dvdI) | |
| 493 | hence "content p = 1" by simp | |
| 494 | } note B = this | |
| 495 | from A B[of p q] B [of q p] show "content p = 1" "content q = 1" | |
| 496 | by (simp_all add: content_mult mult_ac) | |
| 497 | qed (auto simp: content_mult) | |
| 498 | ||
| 499 | end | |
| 500 | ||
| 501 | ||
| 502 | subsection \<open>Polynomials over a field are a Euclidean ring\<close> | |
| 503 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 504 | definition unit_factor_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where | 
| 63498 | 505 | "unit_factor_field_poly p = [:lead_coeff p:]" | 
| 506 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 507 | definition normalize_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where | 
| 63498 | 508 | "normalize_field_poly p = smult (inverse (lead_coeff p)) p" | 
| 509 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 510 | definition euclidean_size_field_poly :: "'a :: field poly \<Rightarrow> nat" where | 
| 63498 | 511 | "euclidean_size_field_poly p = (if p = 0 then 0 else 2 ^ degree p)" | 
| 512 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 513 | lemma dvd_field_poly: "dvd.dvd (op * :: 'a :: field poly \<Rightarrow> _) = op dvd" | 
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 514 | by (intro ext) (simp_all add: dvd.dvd_def dvd_def) | 
| 63498 | 515 | |
| 516 | interpretation field_poly: | |
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 517 | unique_euclidean_ring where zero = "0 :: 'a :: field poly" | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 518 | and one = 1 and plus = plus and uminus = uminus and minus = minus | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 519 | and times = times | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 520 | and normalize = normalize_field_poly and unit_factor = unit_factor_field_poly | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 521 | and euclidean_size = euclidean_size_field_poly | 
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 522 | and uniqueness_constraint = top | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 523 | and divide = divide and modulo = modulo | 
| 63498 | 524 | proof (standard, unfold dvd_field_poly) | 
| 525 | fix p :: "'a poly" | |
| 526 | show "unit_factor_field_poly p * normalize_field_poly p = p" | |
| 527 | by (cases "p = 0") | |
| 64794 | 528 | (simp_all add: unit_factor_field_poly_def normalize_field_poly_def) | 
| 63498 | 529 | next | 
| 530 | fix p :: "'a poly" assume "is_unit p" | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64795diff
changeset | 531 | then show "unit_factor_field_poly p = p" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64795diff
changeset | 532 | by (elim is_unit_polyE) (auto simp: unit_factor_field_poly_def monom_0 one_poly_def field_simps) | 
| 63498 | 533 | next | 
| 534 | fix p :: "'a poly" assume "p \<noteq> 0" | |
| 535 | thus "is_unit (unit_factor_field_poly p)" | |
| 64794 | 536 | by (simp add: unit_factor_field_poly_def is_unit_pCons_iff) | 
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 537 | next | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 538 | fix p q s :: "'a poly" assume "s \<noteq> 0" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 539 | moreover assume "euclidean_size_field_poly p < euclidean_size_field_poly q" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 540 | ultimately show "euclidean_size_field_poly (p * s) < euclidean_size_field_poly (q * s)" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 541 | by (auto simp add: euclidean_size_field_poly_def degree_mult_eq) | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 542 | next | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 543 | fix p q r :: "'a poly" assume "p \<noteq> 0" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 544 | moreover assume "euclidean_size_field_poly r < euclidean_size_field_poly p" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 545 | ultimately show "(q * p + r) div p = q" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 546 | by (cases "r = 0") | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 547 | (auto simp add: unit_factor_field_poly_def euclidean_size_field_poly_def div_poly_less) | 
| 63498 | 548 | qed (auto simp: unit_factor_field_poly_def normalize_field_poly_def lead_coeff_mult | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 549 | euclidean_size_field_poly_def Rings.div_mult_mod_eq intro!: degree_mod_less' degree_mult_right_le) | 
| 63498 | 550 | |
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 551 | lemma field_poly_irreducible_imp_prime: | 
| 63498 | 552 | assumes "irreducible (p :: 'a :: field poly)" | 
| 63633 | 553 | shows "prime_elem p" | 
| 63498 | 554 | proof - | 
| 555 | have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" .. | |
| 63633 | 556 | from field_poly.irreducible_imp_prime_elem[of p] assms | 
| 557 | show ?thesis unfolding irreducible_def prime_elem_def dvd_field_poly | |
| 558 | comm_semiring_1.irreducible_def[OF A] comm_semiring_1.prime_elem_def[OF A] by blast | |
| 63498 | 559 | qed | 
| 560 | ||
| 63830 | 561 | lemma field_poly_prod_mset_prime_factorization: | 
| 63498 | 562 | assumes "(x :: 'a :: field poly) \<noteq> 0" | 
| 63830 | 563 | shows "prod_mset (field_poly.prime_factorization x) = normalize_field_poly x" | 
| 63498 | 564 | proof - | 
| 565 | have A: "class.comm_monoid_mult op * (1 :: 'a poly)" .. | |
| 63830 | 566 | have "comm_monoid_mult.prod_mset op * (1 :: 'a poly) = prod_mset" | 
| 567 | by (intro ext) (simp add: comm_monoid_mult.prod_mset_def[OF A] prod_mset_def) | |
| 568 | with field_poly.prod_mset_prime_factorization[OF assms] show ?thesis by simp | |
| 63498 | 569 | qed | 
| 570 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 571 | lemma field_poly_in_prime_factorization_imp_prime: | 
| 63498 | 572 | assumes "(p :: 'a :: field poly) \<in># field_poly.prime_factorization x" | 
| 63633 | 573 | shows "prime_elem p" | 
| 63498 | 574 | proof - | 
| 575 | have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" .. | |
| 576 | have B: "class.normalization_semidom op div op + op - (0 :: 'a poly) op * 1 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64795diff
changeset | 577 | unit_factor_field_poly normalize_field_poly" .. | 
| 63905 | 578 | from field_poly.in_prime_factors_imp_prime [of p x] assms | 
| 63633 | 579 | show ?thesis unfolding prime_elem_def dvd_field_poly | 
| 580 | comm_semiring_1.prime_elem_def[OF A] normalization_semidom.prime_def[OF B] by blast | |
| 63498 | 581 | qed | 
| 582 | ||
| 583 | ||
| 584 | subsection \<open>Primality and irreducibility in polynomial rings\<close> | |
| 585 | ||
| 586 | lemma nonconst_poly_irreducible_iff: | |
| 587 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
 | |
| 588 | assumes "degree p \<noteq> 0" | |
| 589 | shows "irreducible p \<longleftrightarrow> irreducible (fract_poly p) \<and> content p = 1" | |
| 590 | proof safe | |
| 591 | assume p: "irreducible p" | |
| 592 | ||
| 593 | from content_decompose[of p] guess p' . note p' = this | |
| 594 | hence "p = [:content p:] * p'" by simp | |
| 595 | from p this have "[:content p:] dvd 1 \<or> p' dvd 1" by (rule irreducibleD) | |
| 596 | moreover have "\<not>p' dvd 1" | |
| 597 | proof | |
| 598 | assume "p' dvd 1" | |
| 599 | hence "degree p = 0" by (subst p') (auto simp: is_unit_poly_iff) | |
| 600 | with assms show False by contradiction | |
| 601 | qed | |
| 602 | ultimately show [simp]: "content p = 1" by (simp add: is_unit_const_poly_iff) | |
| 603 | ||
| 604 | show "irreducible (map_poly to_fract p)" | |
| 605 | proof (rule irreducibleI) | |
| 606 | have "fract_poly p = 0 \<longleftrightarrow> p = 0" by (intro map_poly_eq_0_iff) auto | |
| 607 | with assms show "map_poly to_fract p \<noteq> 0" by auto | |
| 608 | next | |
| 609 | show "\<not>is_unit (fract_poly p)" | |
| 610 | proof | |
| 611 | assume "is_unit (map_poly to_fract p)" | |
| 612 | hence "degree (map_poly to_fract p) = 0" | |
| 613 | by (auto simp: is_unit_poly_iff) | |
| 614 | hence "degree p = 0" by (simp add: degree_map_poly) | |
| 615 | with assms show False by contradiction | |
| 616 | qed | |
| 617 | next | |
| 618 | fix q r assume qr: "fract_poly p = q * r" | |
| 619 | from content_decompose_fract[of q] guess cg q' . note q = this | |
| 620 | from content_decompose_fract[of r] guess cr r' . note r = this | |
| 621 | from qr q r p have nz: "cg \<noteq> 0" "cr \<noteq> 0" by auto | |
| 622 | from qr have eq: "fract_poly p = smult (cr * cg) (fract_poly (q' * r'))" | |
| 623 | by (simp add: q r) | |
| 624 | from fract_poly_smult_eqE[OF this] guess a b . note ab = this | |
| 625 | hence "content (smult a p) = content (smult b (q' * r'))" by (simp only:) | |
| 626 | with ab(4) have a: "a = normalize b" by (simp add: content_mult q r) | |
| 627 | hence "normalize b = gcd a b" by simp | |
| 628 | also from ab(3) have "\<dots> = 1" . | |
| 629 | finally have "a = 1" "is_unit b" by (simp_all add: a normalize_1_iff) | |
| 630 | ||
| 631 | note eq | |
| 632 | also from ab(1) \<open>a = 1\<close> have "cr * cg = to_fract b" by simp | |
| 633 | also have "smult \<dots> (fract_poly (q' * r')) = fract_poly (smult b (q' * r'))" by simp | |
| 634 | finally have "p = ([:b:] * q') * r'" by (simp del: fract_poly_smult) | |
| 635 | from p and this have "([:b:] * q') dvd 1 \<or> r' dvd 1" by (rule irreducibleD) | |
| 636 | hence "q' dvd 1 \<or> r' dvd 1" by (auto dest: dvd_mult_right simp del: mult_pCons_left) | |
| 637 | hence "fract_poly q' dvd 1 \<or> fract_poly r' dvd 1" by (auto simp: fract_poly_is_unit) | |
| 638 | with q r show "is_unit q \<or> is_unit r" | |
| 639 | by (auto simp add: is_unit_smult_iff dvd_field_iff nz) | |
| 640 | qed | |
| 641 | ||
| 642 | next | |
| 643 | ||
| 644 | assume irred: "irreducible (fract_poly p)" and primitive: "content p = 1" | |
| 645 | show "irreducible p" | |
| 646 | proof (rule irreducibleI) | |
| 647 | from irred show "p \<noteq> 0" by auto | |
| 648 | next | |
| 649 | from irred show "\<not>p dvd 1" | |
| 650 | by (auto simp: irreducible_def dest: fract_poly_is_unit) | |
| 651 | next | |
| 652 | fix q r assume qr: "p = q * r" | |
| 653 | hence "fract_poly p = fract_poly q * fract_poly r" by simp | |
| 654 | from irred and this have "fract_poly q dvd 1 \<or> fract_poly r dvd 1" | |
| 655 | by (rule irreducibleD) | |
| 656 | with primitive qr show "q dvd 1 \<or> r dvd 1" | |
| 657 | by (auto simp: content_prod_eq_1_iff is_unit_fract_poly_iff) | |
| 658 | qed | |
| 659 | qed | |
| 660 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 661 | context | 
| 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 662 | begin | 
| 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 663 | |
| 63498 | 664 | private lemma irreducible_imp_prime_poly: | 
| 665 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
 | |
| 666 | assumes "irreducible p" | |
| 63633 | 667 | shows "prime_elem p" | 
| 63498 | 668 | proof (cases "degree p = 0") | 
| 669 | case True | |
| 670 | with assms show ?thesis | |
| 671 | by (auto simp: prime_elem_const_poly_iff irreducible_const_poly_iff | |
| 63633 | 672 | intro!: irreducible_imp_prime_elem elim!: degree_eq_zeroE) | 
| 63498 | 673 | next | 
| 674 | case False | |
| 675 | from assms False have irred: "irreducible (fract_poly p)" and primitive: "content p = 1" | |
| 676 | by (simp_all add: nonconst_poly_irreducible_iff) | |
| 63633 | 677 | from irred have prime: "prime_elem (fract_poly p)" by (rule field_poly_irreducible_imp_prime) | 
| 63498 | 678 | show ?thesis | 
| 63633 | 679 | proof (rule prime_elemI) | 
| 63498 | 680 | fix q r assume "p dvd q * r" | 
| 681 | hence "fract_poly p dvd fract_poly (q * r)" by (rule fract_poly_dvd) | |
| 682 | hence "fract_poly p dvd fract_poly q * fract_poly r" by simp | |
| 683 | from prime and this have "fract_poly p dvd fract_poly q \<or> fract_poly p dvd fract_poly r" | |
| 63633 | 684 | by (rule prime_elem_dvd_multD) | 
| 63498 | 685 | with primitive show "p dvd q \<or> p dvd r" by (auto dest: fract_poly_dvdD) | 
| 686 | qed (insert assms, auto simp: irreducible_def) | |
| 687 | qed | |
| 688 | ||
| 689 | ||
| 690 | lemma degree_primitive_part_fract [simp]: | |
| 691 | "degree (primitive_part_fract p) = degree p" | |
| 692 | proof - | |
| 693 | have "p = smult (fract_content p) (fract_poly (primitive_part_fract p))" | |
| 694 | by (simp add: content_times_primitive_part_fract) | |
| 695 | also have "degree \<dots> = degree (primitive_part_fract p)" | |
| 696 | by (auto simp: degree_map_poly) | |
| 697 | finally show ?thesis .. | |
| 698 | qed | |
| 699 | ||
| 700 | lemma irreducible_primitive_part_fract: | |
| 701 |   fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
 | |
| 702 | assumes "irreducible p" | |
| 703 | shows "irreducible (primitive_part_fract p)" | |
| 704 | proof - | |
| 705 | from assms have deg: "degree (primitive_part_fract p) \<noteq> 0" | |
| 706 | by (intro notI) | |
| 707 | (auto elim!: degree_eq_zeroE simp: irreducible_def is_unit_poly_iff dvd_field_iff) | |
| 708 | hence [simp]: "p \<noteq> 0" by auto | |
| 709 | ||
| 710 | note \<open>irreducible p\<close> | |
| 711 | also have "p = [:fract_content p:] * fract_poly (primitive_part_fract p)" | |
| 712 | by (simp add: content_times_primitive_part_fract) | |
| 713 | also have "irreducible \<dots> \<longleftrightarrow> irreducible (fract_poly (primitive_part_fract p))" | |
| 714 | by (intro irreducible_mult_unit_left) (simp_all add: is_unit_poly_iff dvd_field_iff) | |
| 715 | finally show ?thesis using deg | |
| 716 | by (simp add: nonconst_poly_irreducible_iff) | |
| 717 | qed | |
| 718 | ||
| 63633 | 719 | lemma prime_elem_primitive_part_fract: | 
| 63498 | 720 |   fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
 | 
| 63633 | 721 | shows "irreducible p \<Longrightarrow> prime_elem (primitive_part_fract p)" | 
| 63498 | 722 | by (intro irreducible_imp_prime_poly irreducible_primitive_part_fract) | 
| 723 | ||
| 724 | lemma irreducible_linear_field_poly: | |
| 725 | fixes a b :: "'a::field" | |
| 726 | assumes "b \<noteq> 0" | |
| 727 | shows "irreducible [:a,b:]" | |
| 728 | proof (rule irreducibleI) | |
| 729 | fix p q assume pq: "[:a,b:] = p * q" | |
| 63539 | 730 | also from pq assms have "degree \<dots> = degree p + degree q" | 
| 63498 | 731 | by (intro degree_mult_eq) auto | 
| 732 | finally have "degree p = 0 \<or> degree q = 0" using assms by auto | |
| 733 | with assms pq show "is_unit p \<or> is_unit q" | |
| 734 | by (auto simp: is_unit_const_poly_iff dvd_field_iff elim!: degree_eq_zeroE) | |
| 735 | qed (insert assms, auto simp: is_unit_poly_iff) | |
| 736 | ||
| 63633 | 737 | lemma prime_elem_linear_field_poly: | 
| 738 | "(b :: 'a :: field) \<noteq> 0 \<Longrightarrow> prime_elem [:a,b:]" | |
| 63498 | 739 | by (rule field_poly_irreducible_imp_prime, rule irreducible_linear_field_poly) | 
| 740 | ||
| 741 | lemma irreducible_linear_poly: | |
| 742 |   fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
 | |
| 743 | shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> irreducible [:a,b:]" | |
| 744 | by (auto intro!: irreducible_linear_field_poly | |
| 745 | simp: nonconst_poly_irreducible_iff content_def map_poly_pCons) | |
| 746 | ||
| 63633 | 747 | lemma prime_elem_linear_poly: | 
| 63498 | 748 |   fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
 | 
| 63633 | 749 | shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> prime_elem [:a,b:]" | 
| 63498 | 750 | by (rule irreducible_imp_prime_poly, rule irreducible_linear_poly) | 
| 751 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 752 | end | 
| 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 753 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 754 | |
| 63498 | 755 | subsection \<open>Prime factorisation of polynomials\<close> | 
| 756 | ||
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 757 | context | 
| 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 758 | begin | 
| 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 759 | |
| 63498 | 760 | private lemma poly_prime_factorization_exists_content_1: | 
| 761 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
 | |
| 762 | assumes "p \<noteq> 0" "content p = 1" | |
| 63830 | 763 | shows "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize p" | 
| 63498 | 764 | proof - | 
| 765 | let ?P = "field_poly.prime_factorization (fract_poly p)" | |
| 63830 | 766 | define c where "c = prod_mset (image_mset fract_content ?P)" | 
| 63498 | 767 | define c' where "c' = c * to_fract (lead_coeff p)" | 
| 63830 | 768 | define e where "e = prod_mset (image_mset primitive_part_fract ?P)" | 
| 63498 | 769 | define A where "A = image_mset (normalize \<circ> primitive_part_fract) ?P" | 
| 770 | have "content e = (\<Prod>x\<in>#field_poly.prime_factorization (map_poly to_fract p). | |
| 771 | content (primitive_part_fract x))" | |
| 63830 | 772 | by (simp add: e_def content_prod_mset multiset.map_comp o_def) | 
| 63498 | 773 | also have "image_mset (\<lambda>x. content (primitive_part_fract x)) ?P = image_mset (\<lambda>_. 1) ?P" | 
| 774 | by (intro image_mset_cong content_primitive_part_fract) auto | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 775 | finally have content_e: "content e = 1" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 776 | by simp | 
| 63498 | 777 | |
| 778 | have "fract_poly p = unit_factor_field_poly (fract_poly p) * | |
| 779 | normalize_field_poly (fract_poly p)" by simp | |
| 780 | also have "unit_factor_field_poly (fract_poly p) = [:to_fract (lead_coeff p):]" | |
| 64794 | 781 | by (simp add: unit_factor_field_poly_def monom_0 degree_map_poly coeff_map_poly) | 
| 63830 | 782 | also from assms have "normalize_field_poly (fract_poly p) = prod_mset ?P" | 
| 783 | by (subst field_poly_prod_mset_prime_factorization) simp_all | |
| 784 | also have "\<dots> = prod_mset (image_mset id ?P)" by simp | |
| 63498 | 785 | also have "image_mset id ?P = | 
| 786 | image_mset (\<lambda>x. [:fract_content x:] * fract_poly (primitive_part_fract x)) ?P" | |
| 787 | by (intro image_mset_cong) (auto simp: content_times_primitive_part_fract) | |
| 63830 | 788 | also have "prod_mset \<dots> = smult c (fract_poly e)" | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 789 | by (subst prod_mset.distrib) (simp_all add: prod_mset_fract_poly prod_mset_const_poly c_def e_def) | 
| 63498 | 790 | also have "[:to_fract (lead_coeff p):] * \<dots> = smult c' (fract_poly e)" | 
| 791 | by (simp add: c'_def) | |
| 792 | finally have eq: "fract_poly p = smult c' (fract_poly e)" . | |
| 793 | also obtain b where b: "c' = to_fract b" "is_unit b" | |
| 794 | proof - | |
| 795 | from fract_poly_smult_eqE[OF eq] guess a b . note ab = this | |
| 796 | from ab(2) have "content (smult a p) = content (smult b e)" by (simp only: ) | |
| 797 | with assms content_e have "a = normalize b" by (simp add: ab(4)) | |
| 798 | with ab have ab': "a = 1" "is_unit b" by (simp_all add: normalize_1_iff) | |
| 799 | with ab ab' have "c' = to_fract b" by auto | |
| 800 | from this and \<open>is_unit b\<close> show ?thesis by (rule that) | |
| 801 | qed | |
| 802 | hence "smult c' (fract_poly e) = fract_poly (smult b e)" by simp | |
| 803 | finally have "p = smult b e" by (simp only: fract_poly_eq_iff) | |
| 804 | hence "p = [:b:] * e" by simp | |
| 805 | with b have "normalize p = normalize e" | |
| 806 | by (simp only: normalize_mult) (simp add: is_unit_normalize is_unit_poly_iff) | |
| 63830 | 807 | also have "normalize e = prod_mset A" | 
| 808 | by (simp add: multiset.map_comp e_def A_def normalize_prod_mset) | |
| 809 | finally have "prod_mset A = normalize p" .. | |
| 63498 | 810 | |
| 63633 | 811 | have "prime_elem p" if "p \<in># A" for p | 
| 812 | using that by (auto simp: A_def prime_elem_primitive_part_fract prime_elem_imp_irreducible | |
| 63498 | 813 | dest!: field_poly_in_prime_factorization_imp_prime ) | 
| 63830 | 814 | from this and \<open>prod_mset A = normalize p\<close> show ?thesis | 
| 63498 | 815 | by (intro exI[of _ A]) blast | 
| 816 | qed | |
| 817 | ||
| 818 | lemma poly_prime_factorization_exists: | |
| 819 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
 | |
| 820 | assumes "p \<noteq> 0" | |
| 63830 | 821 | shows "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize p" | 
| 63498 | 822 | proof - | 
| 823 | define B where "B = image_mset (\<lambda>x. [:x:]) (prime_factorization (content p))" | |
| 63830 | 824 | have "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize (primitive_part p)" | 
| 63498 | 825 | by (rule poly_prime_factorization_exists_content_1) (insert assms, simp_all) | 
| 826 | then guess A by (elim exE conjE) note A = this | |
| 63830 | 827 | moreover from assms have "prod_mset B = [:content p:]" | 
| 828 | by (simp add: B_def prod_mset_const_poly prod_mset_prime_factorization) | |
| 63633 | 829 | moreover have "\<forall>p. p \<in># B \<longrightarrow> prime_elem p" | 
| 63905 | 830 | by (auto simp: B_def intro!: lift_prime_elem_poly dest: in_prime_factors_imp_prime) | 
| 63498 | 831 | ultimately show ?thesis by (intro exI[of _ "B + A"]) auto | 
| 832 | qed | |
| 833 | ||
| 834 | end | |
| 835 | ||
| 836 | ||
| 837 | subsection \<open>Typeclass instances\<close> | |
| 838 | ||
| 839 | instance poly :: (factorial_ring_gcd) factorial_semiring | |
| 840 | by standard (rule poly_prime_factorization_exists) | |
| 841 | ||
| 842 | instantiation poly :: (factorial_ring_gcd) factorial_ring_gcd | |
| 843 | begin | |
| 844 | ||
| 845 | definition gcd_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where | |
| 846 | [code del]: "gcd_poly = gcd_factorial" | |
| 847 | ||
| 848 | definition lcm_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where | |
| 849 | [code del]: "lcm_poly = lcm_factorial" | |
| 850 | ||
| 851 | definition Gcd_poly :: "'a poly set \<Rightarrow> 'a poly" where | |
| 852 | [code del]: "Gcd_poly = Gcd_factorial" | |
| 853 | ||
| 854 | definition Lcm_poly :: "'a poly set \<Rightarrow> 'a poly" where | |
| 855 | [code del]: "Lcm_poly = Lcm_factorial" | |
| 856 | ||
| 857 | instance by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def) | |
| 858 | ||
| 859 | end | |
| 860 | ||
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 861 | instantiation poly :: ("{field,factorial_ring_gcd}") unique_euclidean_ring
 | 
| 63498 | 862 | begin | 
| 863 | ||
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 864 | definition euclidean_size_poly :: "'a poly \<Rightarrow> nat" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 865 | where "euclidean_size_poly p = (if p = 0 then 0 else 2 ^ degree p)" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 866 | |
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 867 | definition uniqueness_constraint_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> bool" | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 868 | where [simp]: "uniqueness_constraint_poly = top" | 
| 63498 | 869 | |
| 870 | instance | |
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 871 | by standard | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 872 | (auto simp: euclidean_size_poly_def Rings.div_mult_mod_eq div_poly_less degree_mult_eq intro!: degree_mod_less' degree_mult_right_le | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 873 | split: if_splits) | 
| 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64591diff
changeset | 874 | |
| 63498 | 875 | end | 
| 876 | ||
| 877 | instance poly :: ("{field,factorial_ring_gcd}") euclidean_ring_gcd
 | |
| 64786 
340db65fd2c1
reworked to provide auxiliary operations Euclidean_Algorithm.* to instantiate gcd etc. for euclidean rings
 haftmann parents: 
64784diff
changeset | 878 | by (rule euclidean_ring_gcd_class.intro, rule factorial_euclidean_semiring_gcdI) | 
| 
340db65fd2c1
reworked to provide auxiliary operations Euclidean_Algorithm.* to instantiate gcd etc. for euclidean rings
 haftmann parents: 
64784diff
changeset | 879 | standard | 
| 63498 | 880 | |
| 881 | ||
| 882 | subsection \<open>Polynomial GCD\<close> | |
| 883 | ||
| 884 | lemma gcd_poly_decompose: | |
| 885 | fixes p q :: "'a :: factorial_ring_gcd poly" | |
| 886 | shows "gcd p q = | |
| 887 | smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))" | |
| 888 | proof (rule sym, rule gcdI) | |
| 889 | have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd | |
| 890 | [:content p:] * primitive_part p" by (intro mult_dvd_mono) simp_all | |
| 891 | thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd p" | |
| 892 | by simp | |
| 893 | next | |
| 894 | have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd | |
| 895 | [:content q:] * primitive_part q" by (intro mult_dvd_mono) simp_all | |
| 896 | thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd q" | |
| 897 | by simp | |
| 898 | next | |
| 899 | fix d assume "d dvd p" "d dvd q" | |
| 900 | hence "[:content d:] * primitive_part d dvd | |
| 901 | [:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q)" | |
| 902 | by (intro mult_dvd_mono) auto | |
| 903 | thus "d dvd smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))" | |
| 904 | by simp | |
| 905 | qed (auto simp: normalize_smult) | |
| 906 | ||
| 907 | ||
| 908 | lemma gcd_poly_pseudo_mod: | |
| 909 | fixes p q :: "'a :: factorial_ring_gcd poly" | |
| 910 | assumes nz: "q \<noteq> 0" and prim: "content p = 1" "content q = 1" | |
| 911 | shows "gcd p q = gcd q (primitive_part (pseudo_mod p q))" | |
| 912 | proof - | |
| 913 | define r s where "r = fst (pseudo_divmod p q)" and "s = snd (pseudo_divmod p q)" | |
| 914 | define a where "a = [:coeff q (degree q) ^ (Suc (degree p) - degree q):]" | |
| 915 | have [simp]: "primitive_part a = unit_factor a" | |
| 916 | by (simp add: a_def unit_factor_poly_def unit_factor_power monom_0) | |
| 917 | from nz have [simp]: "a \<noteq> 0" by (auto simp: a_def) | |
| 918 | ||
| 919 | have rs: "pseudo_divmod p q = (r, s)" by (simp add: r_def s_def) | |
| 920 | have "gcd (q * r + s) q = gcd q s" | |
| 921 | using gcd_add_mult[of q r s] by (simp add: gcd.commute add_ac mult_ac) | |
| 922 | with pseudo_divmod(1)[OF nz rs] | |
| 923 | have "gcd (p * a) q = gcd q s" by (simp add: a_def) | |
| 924 | also from prim have "gcd (p * a) q = gcd p q" | |
| 925 | by (subst gcd_poly_decompose) | |
| 926 | (auto simp: primitive_part_mult gcd_mult_unit1 primitive_part_prim | |
| 927 | simp del: mult_pCons_right ) | |
| 928 | also from prim have "gcd q s = gcd q (primitive_part s)" | |
| 929 | by (subst gcd_poly_decompose) (simp_all add: primitive_part_prim) | |
| 930 | also have "s = pseudo_mod p q" by (simp add: s_def pseudo_mod_def) | |
| 931 | finally show ?thesis . | |
| 932 | qed | |
| 933 | ||
| 934 | lemma degree_pseudo_mod_less: | |
| 935 | assumes "q \<noteq> 0" "pseudo_mod p q \<noteq> 0" | |
| 936 | shows "degree (pseudo_mod p q) < degree q" | |
| 937 | using pseudo_mod(2)[of q p] assms by auto | |
| 938 | ||
| 939 | function gcd_poly_code_aux :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where | |
| 940 | "gcd_poly_code_aux p q = | |
| 941 | (if q = 0 then normalize p else gcd_poly_code_aux q (primitive_part (pseudo_mod p q)))" | |
| 942 | by auto | |
| 943 | termination | |
| 944 | by (relation "measure ((\<lambda>p. if p = 0 then 0 else Suc (degree p)) \<circ> snd)") | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 945 | (auto simp: degree_pseudo_mod_less) | 
| 63498 | 946 | |
| 947 | declare gcd_poly_code_aux.simps [simp del] | |
| 948 | ||
| 949 | lemma gcd_poly_code_aux_correct: | |
| 950 | assumes "content p = 1" "q = 0 \<or> content q = 1" | |
| 951 | shows "gcd_poly_code_aux p q = gcd p q" | |
| 952 | using assms | |
| 953 | proof (induction p q rule: gcd_poly_code_aux.induct) | |
| 954 | case (1 p q) | |
| 955 | show ?case | |
| 956 | proof (cases "q = 0") | |
| 957 | case True | |
| 958 | thus ?thesis by (subst gcd_poly_code_aux.simps) auto | |
| 959 | next | |
| 960 | case False | |
| 961 | hence "gcd_poly_code_aux p q = gcd_poly_code_aux q (primitive_part (pseudo_mod p q))" | |
| 962 | by (subst gcd_poly_code_aux.simps) simp_all | |
| 963 | also from "1.prems" False | |
| 964 | have "primitive_part (pseudo_mod p q) = 0 \<or> | |
| 965 | content (primitive_part (pseudo_mod p q)) = 1" | |
| 966 | by (cases "pseudo_mod p q = 0") auto | |
| 967 | with "1.prems" False | |
| 968 | have "gcd_poly_code_aux q (primitive_part (pseudo_mod p q)) = | |
| 969 | gcd q (primitive_part (pseudo_mod p q))" | |
| 970 | by (intro 1) simp_all | |
| 971 | also from "1.prems" False | |
| 972 | have "\<dots> = gcd p q" by (intro gcd_poly_pseudo_mod [symmetric]) auto | |
| 973 | finally show ?thesis . | |
| 974 | qed | |
| 975 | qed | |
| 976 | ||
| 977 | definition gcd_poly_code | |
| 978 | :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | |
| 979 | where "gcd_poly_code p q = | |
| 980 | (if p = 0 then normalize q else if q = 0 then normalize p else | |
| 981 | smult (gcd (content p) (content q)) | |
| 982 | (gcd_poly_code_aux (primitive_part p) (primitive_part q)))" | |
| 983 | ||
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 984 | lemma gcd_poly_code [code]: "gcd p q = gcd_poly_code p q" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 985 | by (simp add: gcd_poly_code_def gcd_poly_code_aux_correct gcd_poly_decompose [symmetric]) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 986 | |
| 63498 | 987 | lemma lcm_poly_code [code]: | 
| 988 | fixes p q :: "'a :: factorial_ring_gcd poly" | |
| 989 | shows "lcm p q = normalize (p * q) div gcd p q" | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 990 | by (fact lcm_gcd) | 
| 63498 | 991 | |
| 64850 | 992 | lemmas Gcd_poly_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = "'a :: factorial_ring_gcd poly"] | 
| 993 | lemmas Lcm_poly_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = "'a :: factorial_ring_gcd poly"] | |
| 64860 | 994 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 995 | text \<open>Example: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 996 |   @{lemma "Lcm {[:1, 2, 3:], [:2, 3, 4:]} = [:[:2:], [:7:], [:16:], [:17:], [:12 :: int:]:]" by eval}
 | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 997 | \<close> | 
| 63498 | 998 | |
| 63764 | 999 | end |