| author | haftmann | 
| Thu, 03 Aug 2017 12:49:58 +0200 | |
| changeset 66326 | 9eb8a2d07852 | 
| parent 64247 | f537616459e6 | 
| child 66630 | 034cabc4fda5 | 
| permissions | -rw-r--r-- | 
| 23465 | 1 | (* Title: HOL/Presburger.thy | 
| 2 | Author: Amine Chaieb, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 60758 | 5 | section \<open>Decision Procedure for Presburger Arithmetic\<close> | 
| 23472 | 6 | |
| 23465 | 7 | theory Presburger | 
| 63962 
83a625d06e91
use argo as additional SAT solver with models but no proofs, since the proof trace formats are not easily translatable
 boehmes parents: 
63961diff
changeset | 8 | imports Groebner_Basis Set_Interval | 
| 58925 | 9 | keywords "try0" :: diag | 
| 23465 | 10 | begin | 
| 11 | ||
| 48891 | 12 | ML_file "Tools/Qelim/qelim.ML" | 
| 13 | ML_file "Tools/Qelim/cooper_procedure.ML" | |
| 14 | ||
| 61799 | 15 | subsection\<open>The \<open>-\<infinity>\<close> and \<open>+\<infinity>\<close> Properties\<close> | 
| 23465 | 16 | |
| 17 | lemma minf: | |
| 18 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> | |
| 19 | \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)" | |
| 20 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> | |
| 21 | \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)" | |
| 22 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False"
 | |
| 23 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True"
 | |
| 24 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True"
 | |
| 25 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True"
 | |
| 26 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False"
 | |
| 27 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False"
 | |
| 45425 | 28 |   "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})<z. (d dvd x + s) = (d dvd x + s)"
 | 
| 29 |   "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
 | |
| 23465 | 30 | "\<exists>z.\<forall>x<z. F = F" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44766diff
changeset | 31 | by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastforce)+) simp_all | 
| 23465 | 32 | |
| 33 | lemma pinf: | |
| 34 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> | |
| 35 | \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)" | |
| 36 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> | |
| 37 | \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)" | |
| 38 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False"
 | |
| 39 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True"
 | |
| 40 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False"
 | |
| 41 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False"
 | |
| 42 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True"
 | |
| 43 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True"
 | |
| 45425 | 44 |   "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})>z. (d dvd x + s) = (d dvd x + s)"
 | 
| 45 |   "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
 | |
| 23465 | 46 | "\<exists>z.\<forall>x>z. F = F" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44766diff
changeset | 47 | by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastforce)+) simp_all | 
| 23465 | 48 | |
| 49 | lemma inf_period: | |
| 50 | "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> | |
| 51 | \<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))" | |
| 52 | "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> | |
| 53 | \<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))" | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
33318diff
changeset | 54 |   "(d::'a::{comm_ring,Rings.dvd}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)"
 | 
| 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
33318diff
changeset | 55 |   "(d::'a::{comm_ring,Rings.dvd}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)"
 | 
| 23465 | 56 | "\<forall>x k. F = F" | 
| 29667 | 57 | apply (auto elim!: dvdE simp add: algebra_simps) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56850diff
changeset | 58 | unfolding mult.assoc [symmetric] distrib_right [symmetric] left_diff_distrib [symmetric] | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56850diff
changeset | 59 | unfolding dvd_def mult.commute [of d] | 
| 27668 | 60 | by auto | 
| 23465 | 61 | |
| 60758 | 62 | subsection\<open>The A and B sets\<close> | 
| 23465 | 63 | lemma bset: | 
| 64 |   "\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
 | |
| 65 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
 | |
| 66 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))"
 | |
| 67 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
 | |
| 68 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
 | |
| 69 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))"
 | |
| 70 |   "\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
 | |
| 71 |   "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
 | |
| 72 |   "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))"
 | |
| 73 |   "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))"
 | |
| 74 |   "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))"
 | |
| 75 |   "\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))"
 | |
| 76 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))"
 | |
| 77 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))"
 | |
| 78 |   "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F"
 | |
| 79 | proof (blast, blast) | |
| 80 | assume dp: "D > 0" and tB: "t - 1\<in> B" | |
| 81 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" 
 | |
| 27668 | 82 | apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"]) | 
| 83 | apply algebra using dp tB by simp_all | |
| 23465 | 84 | next | 
| 85 | assume dp: "D > 0" and tB: "t \<in> B" | |
| 86 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" 
 | |
| 87 | apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) | |
| 27668 | 88 | apply algebra | 
| 23465 | 89 | using dp tB by simp_all | 
| 90 | next | |
| 91 |   assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arith
 | |
| 92 | next | |
| 93 |   assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arith
 | |
| 94 | next | |
| 95 | assume dp: "D > 0" and tB:"t \<in> B" | |
| 96 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t"
 | |
| 97 | hence "x -t \<le> D" and "1 \<le> x - t" by simp+ | |
| 98 |       hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto
 | |
| 29667 | 99 |       hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: algebra_simps)
 | 
| 23465 | 100 | with nob tB have "False" by simp} | 
| 101 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blast
 | |
| 102 | next | |
| 103 | assume dp: "D > 0" and tB:"t - 1\<in> B" | |
| 104 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t"
 | |
| 105 | hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+ | |
| 106 |       hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto
 | |
| 29667 | 107 |       hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: algebra_simps)
 | 
| 23465 | 108 | with nob tB have "False" by simp} | 
| 109 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blast
 | |
| 110 | next | |
| 111 | assume d: "d dvd D" | |
| 27668 | 112 |   {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t" by algebra}
 | 
| 23465 | 113 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simp
 | 
| 114 | next | |
| 115 | assume d: "d dvd D" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 116 |   {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not> d dvd (x - D) + t"
 | 
| 29667 | 117 | by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: algebra_simps)} | 
| 23465 | 118 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by auto
 | 
| 119 | qed blast | |
| 120 | ||
| 121 | lemma aset: | |
| 122 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
 | |
| 123 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
 | |
| 124 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))"
 | |
| 125 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
 | |
| 126 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
 | |
| 127 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))"
 | |
| 128 |   "\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
 | |
| 129 |   "\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
 | |
| 130 |   "\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))"
 | |
| 131 |   "\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))"
 | |
| 132 |   "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))"
 | |
| 133 |   "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))"
 | |
| 134 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))"
 | |
| 135 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))"
 | |
| 136 |   "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F"
 | |
| 137 | proof (blast, blast) | |
| 138 | assume dp: "D > 0" and tA: "t + 1 \<in> A" | |
| 139 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" 
 | |
| 140 | apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"]) | |
| 141 | using dp tA by simp_all | |
| 142 | next | |
| 143 | assume dp: "D > 0" and tA: "t \<in> A" | |
| 144 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" 
 | |
| 145 | apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) | |
| 146 | using dp tA by simp_all | |
| 147 | next | |
| 148 |   assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arith
 | |
| 149 | next | |
| 150 |   assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arith
 | |
| 151 | next | |
| 152 | assume dp: "D > 0" and tA:"t \<in> A" | |
| 153 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t"
 | |
| 154 | hence "t - x \<le> D" and "1 \<le> t - x" by simp+ | |
| 155 |       hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto
 | |
| 29667 | 156 |       hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: algebra_simps) 
 | 
| 23465 | 157 | with nob tA have "False" by simp} | 
| 158 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blast
 | |
| 159 | next | |
| 160 | assume dp: "D > 0" and tA:"t + 1\<in> A" | |
| 161 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t"
 | |
| 29667 | 162 | hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: algebra_simps) | 
| 23465 | 163 |       hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto
 | 
| 29667 | 164 |       hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: algebra_simps)
 | 
| 23465 | 165 | with nob tA have "False" by simp} | 
| 166 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blast
 | |
| 167 | next | |
| 168 | assume d: "d dvd D" | |
| 169 |   {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t"
 | |
| 29667 | 170 | by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: algebra_simps)} | 
| 23465 | 171 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simp
 | 
| 172 | next | |
| 173 | assume d: "d dvd D" | |
| 174 |   {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t"
 | |
| 29667 | 175 | by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: algebra_simps)} | 
| 23465 | 176 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by auto
 | 
| 177 | qed blast | |
| 178 | ||
| 61799 | 179 | subsection\<open>Cooper's Theorem \<open>-\<infinity>\<close> and \<open>+\<infinity>\<close> Version\<close> | 
| 23465 | 180 | |
| 60758 | 181 | subsubsection\<open>First some trivial facts about periodic sets or predicates\<close> | 
| 23465 | 182 | lemma periodic_finite_ex: | 
| 183 | assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)" | |
| 184 |   shows "(EX x. P x) = (EX j : {1..d}. P j)"
 | |
| 185 | (is "?LHS = ?RHS") | |
| 186 | proof | |
| 187 | assume ?LHS | |
| 188 | then obtain x where P: "P x" .. | |
| 64246 | 189 | have "x mod d = x - (x div d)*d" by(simp add:mult_div_mod_eq [symmetric] ac_simps eq_diff_eq) | 
| 23465 | 190 | hence Pmod: "P x = P(x mod d)" using modd by simp | 
| 191 | show ?RHS | |
| 192 | proof (cases) | |
| 193 | assume "x mod d = 0" | |
| 194 | hence "P 0" using P Pmod by simp | |
| 195 | moreover have "P 0 = P(0 - (-1)*d)" using modd by blast | |
| 196 | ultimately have "P d" by simp | |
| 35216 | 197 |     moreover have "d : {1..d}" using dpos by simp
 | 
| 23465 | 198 | ultimately show ?RHS .. | 
| 199 | next | |
| 200 | assume not0: "x mod d \<noteq> 0" | |
| 35216 | 201 | have "P(x mod d)" using dpos P Pmod by simp | 
| 23465 | 202 |     moreover have "x mod d : {1..d}"
 | 
| 203 | proof - | |
| 204 | from dpos have "0 \<le> x mod d" by(rule pos_mod_sign) | |
| 205 | moreover from dpos have "x mod d < d" by(rule pos_mod_bound) | |
| 35216 | 206 | ultimately show ?thesis using not0 by simp | 
| 23465 | 207 | qed | 
| 208 | ultimately show ?RHS .. | |
| 209 | qed | |
| 210 | qed auto | |
| 211 | ||
| 61799 | 212 | subsubsection\<open>The \<open>-\<infinity>\<close> Version\<close> | 
| 23465 | 213 | |
| 61944 | 214 | lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (\<bar>x - z\<bar> + 1) * d < z" | 
| 215 | by (induct rule: int_gr_induct) (simp_all add: int_distrib) | |
| 23465 | 216 | |
| 61944 | 217 | lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (\<bar>x - z\<bar> + 1) * d" | 
| 218 | by (induct rule: int_gr_induct) (simp_all add: int_distrib) | |
| 23465 | 219 | |
| 220 | lemma decr_mult_lemma: | |
| 221 | assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k" | |
| 222 | shows "ALL x. P x \<longrightarrow> P(x - k*d)" | |
| 223 | using knneg | |
| 224 | proof (induct rule:int_ge_induct) | |
| 225 | case base thus ?case by simp | |
| 226 | next | |
| 227 | case (step i) | |
| 228 |   {fix x
 | |
| 229 | have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast | |
| 230 | also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"] | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
33318diff
changeset | 231 | by (simp add: algebra_simps) | 
| 23465 | 232 | ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast} | 
| 233 | thus ?case .. | |
| 234 | qed | |
| 235 | ||
| 236 | lemma minusinfinity: | |
| 237 | assumes dpos: "0 < d" and | |
| 238 | P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)" | |
| 239 | shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)" | |
| 240 | proof | |
| 241 | assume eP1: "EX x. P1 x" | |
| 242 | then obtain x where P1: "P1 x" .. | |
| 243 | from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" .. | |
| 61944 | 244 | let ?w = "x - (\<bar>x - z\<bar> + 1) * d" | 
| 23465 | 245 | from dpos have w: "?w < z" by(rule decr_lemma) | 
| 246 | have "P1 x = P1 ?w" using P1eqP1 by blast | |
| 247 | also have "\<dots> = P(?w)" using w P1eqP by blast | |
| 248 | finally have "P ?w" using P1 by blast | |
| 249 | thus "EX x. P x" .. | |
| 250 | qed | |
| 251 | ||
| 252 | lemma cpmi: | |
| 253 | assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x" | |
| 254 |   and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) --> P (x) --> P (x - D)"
 | |
| 255 | and pd: "\<forall> x k. P' x = P' (x-k*D)" | |
| 256 |   shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> B. P (b+j)))" 
 | |
| 257 | (is "?L = (?R1 \<or> ?R2)") | |
| 258 | proof- | |
| 259 |  {assume "?R2" hence "?L"  by blast}
 | |
| 260 | moreover | |
| 261 |  {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
 | |
| 262 | moreover | |
| 263 |  { fix x
 | |
| 264 | assume P: "P x" and H: "\<not> ?R2" | |
| 265 |    {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y"
 | |
| 266 |      hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto
 | |
| 267 | with nb P have "P (y - D)" by auto } | |
| 268 |    hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast
 | |
| 269 | with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto | |
| 270 | from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast | |
| 271 | let ?y = "x - (\<bar>x - z\<bar> + 1)*D" | |
| 272 | have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith | |
| 273 | from dp have yz: "?y < z" using decr_lemma[OF dp] by simp | |
| 274 | from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto | |
| 275 | with periodic_finite_ex[OF dp pd] | |
| 276 | have "?R1" by blast} | |
| 277 | ultimately show ?thesis by blast | |
| 278 | qed | |
| 279 | ||
| 61799 | 280 | subsubsection \<open>The \<open>+\<infinity>\<close> Version\<close> | 
| 23465 | 281 | |
| 282 | lemma plusinfinity: | |
| 283 | assumes dpos: "(0::int) < d" and | |
| 284 | P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x" | |
| 285 | shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)" | |
| 286 | proof | |
| 287 | assume eP1: "EX x. P' x" | |
| 288 | then obtain x where P1: "P' x" .. | |
| 289 | from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" .. | |
| 61944 | 290 | let ?w' = "x + (\<bar>x - z\<bar> + 1) * d" | 
| 291 | let ?w = "x - (- (\<bar>x - z\<bar> + 1)) * d" | |
| 29667 | 292 | have ww'[simp]: "?w = ?w'" by (simp add: algebra_simps) | 
| 23465 | 293 | from dpos have w: "?w > z" by(simp only: ww' incr_lemma) | 
| 294 | hence "P' x = P' ?w" using P1eqP1 by blast | |
| 295 | also have "\<dots> = P(?w)" using w P1eqP by blast | |
| 296 | finally have "P ?w" using P1 by blast | |
| 297 | thus "EX x. P x" .. | |
| 298 | qed | |
| 299 | ||
| 300 | lemma incr_mult_lemma: | |
| 301 | assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k" | |
| 302 | shows "ALL x. P x \<longrightarrow> P(x + k*d)" | |
| 303 | using knneg | |
| 304 | proof (induct rule:int_ge_induct) | |
| 305 | case base thus ?case by simp | |
| 306 | next | |
| 307 | case (step i) | |
| 308 |   {fix x
 | |
| 309 | have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast | |
| 310 | also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"] | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 311 | by (simp add:int_distrib ac_simps) | 
| 23465 | 312 | ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast} | 
| 313 | thus ?case .. | |
| 314 | qed | |
| 315 | ||
| 316 | lemma cppi: | |
| 317 | assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x" | |
| 318 |   and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) --> P (x) --> P (x + D)"
 | |
| 319 | and pd: "\<forall> x k. P' x= P' (x-k*D)" | |
| 320 |   shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)")
 | |
| 321 | proof- | |
| 322 |  {assume "?R2" hence "?L"  by blast}
 | |
| 323 | moreover | |
| 324 |  {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
 | |
| 325 | moreover | |
| 326 |  { fix x
 | |
| 327 | assume P: "P x" and H: "\<not> ?R2" | |
| 328 |    {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y"
 | |
| 329 |      hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto
 | |
| 330 | with nb P have "P (y + D)" by auto } | |
| 331 |    hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast
 | |
| 332 | with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto | |
| 333 | from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast | |
| 334 | let ?y = "x + (\<bar>x - z\<bar> + 1)*D" | |
| 335 | have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith | |
| 336 | from dp have yz: "?y > z" using incr_lemma[OF dp] by simp | |
| 337 | from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto | |
| 338 | with periodic_finite_ex[OF dp pd] | |
| 339 | have "?R1" by blast} | |
| 340 | ultimately show ?thesis by blast | |
| 341 | qed | |
| 342 | ||
| 343 | lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
 | |
| 344 | apply(simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44766diff
changeset | 345 | apply(fastforce) | 
| 23465 | 346 | done | 
| 347 | ||
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
33318diff
changeset | 348 | theorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0,Rings.dvd}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)"
 | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 349 | apply (rule eq_reflection [symmetric]) | 
| 23465 | 350 | apply (rule iffI) | 
| 351 | defer | |
| 352 | apply (erule exE) | |
| 353 | apply (rule_tac x = "l * x" in exI) | |
| 354 | apply (simp add: dvd_def) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 355 | apply (rule_tac x = x in exI, simp) | 
| 23465 | 356 | apply (erule exE) | 
| 357 | apply (erule conjE) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 358 | apply simp | 
| 23465 | 359 | apply (erule dvdE) | 
| 360 | apply (rule_tac x = k in exI) | |
| 361 | apply simp | |
| 362 | done | |
| 363 | ||
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 364 | lemma zdvd_mono: | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 365 | fixes k m t :: int | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 366 | assumes "k \<noteq> 0" | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 367 | shows "m dvd t \<equiv> k * m dvd k * t" | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 368 | using assms by simp | 
| 23465 | 369 | |
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 370 | lemma uminus_dvd_conv: | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 371 | fixes d t :: int | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 372 | shows "d dvd t \<equiv> - d dvd t" and "d dvd t \<equiv> d dvd - t" | 
| 23465 | 373 | by simp_all | 
| 32553 | 374 | |
| 61799 | 375 | text \<open>\bigskip Theorems for transforming predicates on nat to predicates on \<open>int\<close>\<close> | 
| 32553 | 376 | |
| 23465 | 377 | lemma zdiff_int_split: "P (int (x - y)) = | 
| 378 | ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))" | |
| 62348 | 379 | by (cases "y \<le> x") (simp_all add: of_nat_diff) | 
| 23465 | 380 | |
| 60758 | 381 | text \<open> | 
| 23465 | 382 | \medskip Specific instances of congruence rules, to prevent | 
| 60758 | 383 | simplifier from looping.\<close> | 
| 23465 | 384 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45425diff
changeset | 385 | theorem imp_le_cong: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45425diff
changeset | 386 | "\<lbrakk>x = x'; 0 \<le> x' \<Longrightarrow> P = P'\<rbrakk> \<Longrightarrow> (0 \<le> (x::int) \<longrightarrow> P) = (0 \<le> x' \<longrightarrow> P')" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45425diff
changeset | 387 | by simp | 
| 23465 | 388 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45425diff
changeset | 389 | theorem conj_le_cong: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45425diff
changeset | 390 | "\<lbrakk>x = x'; 0 \<le> x' \<Longrightarrow> P = P'\<rbrakk> \<Longrightarrow> (0 \<le> (x::int) \<and> P) = (0 \<le> x' \<and> P')" | 
| 23465 | 391 | by (simp cong: conj_cong) | 
| 36799 | 392 | |
| 48891 | 393 | ML_file "Tools/Qelim/cooper.ML" | 
| 23465 | 394 | |
| 60758 | 395 | method_setup presburger = \<open> | 
| 47432 | 396 | let | 
| 397 | fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () | |
| 398 | fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () | |
| 399 | val addN = "add" | |
| 400 | val delN = "del" | |
| 401 | val elimN = "elim" | |
| 402 | val any_keyword = keyword addN || keyword delN || simple_keyword elimN | |
| 61476 | 403 | val thms = Scan.repeats (Scan.unless any_keyword Attrib.multi_thm) | 
| 47432 | 404 | in | 
| 405 | Scan.optional (simple_keyword elimN >> K false) true -- | |
| 406 | Scan.optional (keyword addN |-- thms) [] -- | |
| 407 | Scan.optional (keyword delN |-- thms) [] >> | |
| 408 | (fn ((elim, add_ths), del_ths) => fn ctxt => | |
| 409 | SIMPLE_METHOD' (Cooper.tac elim add_ths del_ths ctxt)) | |
| 410 | end | |
| 60758 | 411 | \<close> "Cooper's algorithm for Presburger arithmetic" | 
| 23465 | 412 | |
| 64247 | 413 | declare mod_eq_0_iff_dvd [presburger] | 
| 64244 | 414 | declare mod_by_Suc_0 [presburger] | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 415 | declare mod_0 [presburger] | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 416 | declare mod_by_1 [presburger] | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 417 | declare mod_self [presburger] | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 418 | declare div_by_0 [presburger] | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 419 | declare mod_by_0 [presburger] | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 420 | declare mod_div_trivial [presburger] | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
63962diff
changeset | 421 | declare mult_div_mod_eq [presburger] | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
63962diff
changeset | 422 | declare div_mult_mod_eq [presburger] | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 423 | declare mod_mult_self1 [presburger] | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 424 | declare mod_mult_self2 [presburger] | 
| 64247 | 425 | declare mod2_Suc_Suc [presburger] | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 426 | declare not_mod_2_eq_0_eq_1 [presburger] | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
49962diff
changeset | 427 | declare nat_zero_less_power_iff [presburger] | 
| 36798 | 428 | |
| 27668 | 429 | lemma [presburger, algebra]: "m mod 2 = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger | 
| 430 | lemma [presburger, algebra]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 431 | lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 432 | lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 433 | lemma [presburger, algebra]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 23465 | 434 | |
| 58777 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 435 | context semiring_parity | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 436 | begin | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 437 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 438 | declare even_times_iff [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 439 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 440 | declare even_power [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 441 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 442 | lemma [presburger]: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 443 | "even (a + b) \<longleftrightarrow> even a \<and> even b \<or> odd a \<and> odd b" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 444 | by auto | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 445 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 446 | end | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 447 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 448 | context ring_parity | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 449 | begin | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 450 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 451 | declare even_minus [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 452 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 453 | end | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 454 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 455 | context linordered_idom | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 456 | begin | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 457 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 458 | declare zero_le_power_eq [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 459 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 460 | declare zero_less_power_eq [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 461 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 462 | declare power_less_zero_eq [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 463 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 464 | declare power_le_zero_eq [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 465 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 466 | end | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 467 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 468 | declare even_Suc [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 469 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 470 | lemma [presburger]: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 471 | "Suc n div Suc (Suc 0) = n div Suc (Suc 0) \<longleftrightarrow> even n" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 472 | by presburger | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 473 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 474 | declare even_diff_nat [presburger] | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 475 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 476 | lemma [presburger]: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 477 | fixes k :: int | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 478 | shows "(k + 1) div 2 = k div 2 \<longleftrightarrow> even k" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 479 | by presburger | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 480 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 481 | lemma [presburger]: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 482 | fixes k :: int | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 483 | shows "(k + 1) div 2 = k div 2 + 1 \<longleftrightarrow> odd k" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 484 | by presburger | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 485 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 486 | lemma [presburger]: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 487 | "even n \<longleftrightarrow> even (int n)" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 488 | using even_int_iff [of n] by simp | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 489 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 490 | |
| 60758 | 491 | subsection \<open>Nice facts about division by @{term 4}\<close>  
 | 
| 58777 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 492 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 493 | lemma even_even_mod_4_iff: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 494 | "even (n::nat) \<longleftrightarrow> even (n mod 4)" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 495 | by presburger | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 496 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 497 | lemma odd_mod_4_div_2: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 498 | "n mod 4 = (3::nat) \<Longrightarrow> odd ((n - 1) div 2)" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 499 | by presburger | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 500 | |
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 501 | lemma even_mod_4_div_2: | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 502 | "n mod 4 = (1::nat) \<Longrightarrow> even ((n - 1) div 2)" | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 503 | by presburger | 
| 
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
 haftmann parents: 
57514diff
changeset | 504 | |
| 56850 | 505 | |
| 60758 | 506 | subsection \<open>Try0\<close> | 
| 56850 | 507 | |
| 508 | ML_file "Tools/try0.ML" | |
| 509 | ||
| 23465 | 510 | end |