| 
27404
 | 
     1  | 
(*  Title:      HOLCF/Completion.thy
  | 
| 
 | 
     2  | 
    Author:     Brian Huffman
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
header {* Defining bifinite domains by ideal completion *}
 | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory Completion
  | 
| 
 | 
     8  | 
imports Bifinite
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
subsection {* Ideals over a preorder *}
 | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
locale preorder =
  | 
| 
 | 
    14  | 
  fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50)
  | 
| 
 | 
    15  | 
  assumes r_refl: "x \<preceq> x"
  | 
| 
 | 
    16  | 
  assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z"
  | 
| 
 | 
    17  | 
begin
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
definition
  | 
| 
 | 
    20  | 
  ideal :: "'a set \<Rightarrow> bool" where
  | 
| 
 | 
    21  | 
  "ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and>
  | 
| 
 | 
    22  | 
    (\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma idealI:
  | 
| 
 | 
    25  | 
  assumes "\<exists>x. x \<in> A"
  | 
| 
 | 
    26  | 
  assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
  | 
| 
 | 
    27  | 
  assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
  | 
| 
 | 
    28  | 
  shows "ideal A"
  | 
| 
 | 
    29  | 
unfolding ideal_def using prems by fast
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma idealD1:
  | 
| 
 | 
    32  | 
  "ideal A \<Longrightarrow> \<exists>x. x \<in> A"
  | 
| 
 | 
    33  | 
unfolding ideal_def by fast
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma idealD2:
  | 
| 
 | 
    36  | 
  "\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
  | 
| 
 | 
    37  | 
unfolding ideal_def by fast
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma idealD3:
  | 
| 
 | 
    40  | 
  "\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
  | 
| 
 | 
    41  | 
unfolding ideal_def by fast
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma ideal_directed_finite:
  | 
| 
 | 
    44  | 
  assumes A: "ideal A"
  | 
| 
 | 
    45  | 
  shows "\<lbrakk>finite U; U \<subseteq> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. \<forall>x\<in>U. x \<preceq> z"
  | 
| 
 | 
    46  | 
apply (induct U set: finite)
  | 
| 
 | 
    47  | 
apply (simp add: idealD1 [OF A])
  | 
| 
 | 
    48  | 
apply (simp, clarify, rename_tac y)
  | 
| 
 | 
    49  | 
apply (drule (1) idealD2 [OF A])
  | 
| 
 | 
    50  | 
apply (clarify, erule_tac x=z in rev_bexI)
  | 
| 
 | 
    51  | 
apply (fast intro: r_trans)
  | 
| 
 | 
    52  | 
done
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma ideal_principal: "ideal {x. x \<preceq> z}"
 | 
| 
 | 
    55  | 
apply (rule idealI)
  | 
| 
 | 
    56  | 
apply (rule_tac x=z in exI)
  | 
| 
 | 
    57  | 
apply (fast intro: r_refl)
  | 
| 
 | 
    58  | 
apply (rule_tac x=z in bexI, fast)
  | 
| 
 | 
    59  | 
apply (fast intro: r_refl)
  | 
| 
 | 
    60  | 
apply (fast intro: r_trans)
  | 
| 
 | 
    61  | 
done
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma ex_ideal: "\<exists>A. ideal A"
  | 
| 
 | 
    64  | 
by (rule exI, rule ideal_principal)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma directed_image_ideal:
  | 
| 
 | 
    67  | 
  assumes A: "ideal A"
  | 
| 
 | 
    68  | 
  assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y"
  | 
| 
 | 
    69  | 
  shows "directed (f ` A)"
  | 
| 
 | 
    70  | 
apply (rule directedI)
  | 
| 
 | 
    71  | 
apply (cut_tac idealD1 [OF A], fast)
  | 
| 
 | 
    72  | 
apply (clarify, rename_tac a b)
  | 
| 
 | 
    73  | 
apply (drule (1) idealD2 [OF A])
  | 
| 
 | 
    74  | 
apply (clarify, rename_tac c)
  | 
| 
 | 
    75  | 
apply (rule_tac x="f c" in rev_bexI)
  | 
| 
 | 
    76  | 
apply (erule imageI)
  | 
| 
 | 
    77  | 
apply (simp add: f)
  | 
| 
 | 
    78  | 
done
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma lub_image_principal:
  | 
| 
 | 
    81  | 
  assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y"
  | 
| 
 | 
    82  | 
  shows "(\<Squnion>x\<in>{x. x \<preceq> y}. f x) = f y"
 | 
| 
 | 
    83  | 
apply (rule thelubI)
  | 
| 
 | 
    84  | 
apply (rule is_lub_maximal)
  | 
| 
 | 
    85  | 
apply (rule ub_imageI)
  | 
| 
 | 
    86  | 
apply (simp add: f)
  | 
| 
 | 
    87  | 
apply (rule imageI)
  | 
| 
 | 
    88  | 
apply (simp add: r_refl)
  | 
| 
 | 
    89  | 
done
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
text {* The set of ideals is a cpo *}
 | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
lemma ideal_UN:
  | 
| 
 | 
    94  | 
  fixes A :: "nat \<Rightarrow> 'a set"
  | 
| 
 | 
    95  | 
  assumes ideal_A: "\<And>i. ideal (A i)"
  | 
| 
 | 
    96  | 
  assumes chain_A: "\<And>i j. i \<le> j \<Longrightarrow> A i \<subseteq> A j"
  | 
| 
 | 
    97  | 
  shows "ideal (\<Union>i. A i)"
  | 
| 
 | 
    98  | 
 apply (rule idealI)
  | 
| 
 | 
    99  | 
   apply (cut_tac idealD1 [OF ideal_A], fast)
  | 
| 
 | 
   100  | 
  apply (clarify, rename_tac i j)
  | 
| 
 | 
   101  | 
  apply (drule subsetD [OF chain_A [OF le_maxI1]])
  | 
| 
 | 
   102  | 
  apply (drule subsetD [OF chain_A [OF le_maxI2]])
  | 
| 
 | 
   103  | 
  apply (drule (1) idealD2 [OF ideal_A])
  | 
| 
 | 
   104  | 
  apply blast
  | 
| 
 | 
   105  | 
 apply clarify
  | 
| 
 | 
   106  | 
 apply (drule (1) idealD3 [OF ideal_A])
  | 
| 
 | 
   107  | 
 apply fast
  | 
| 
 | 
   108  | 
done
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma typedef_ideal_po:
  | 
| 
 | 
   111  | 
  fixes Abs :: "'a set \<Rightarrow> 'b::sq_ord"
  | 
| 
 | 
   112  | 
  assumes type: "type_definition Rep Abs {S. ideal S}"
 | 
| 
 | 
   113  | 
  assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
  | 
| 
 | 
   114  | 
  shows "OFCLASS('b, po_class)"
 | 
| 
 | 
   115  | 
 apply (intro_classes, unfold less)
  | 
| 
 | 
   116  | 
   apply (rule subset_refl)
  | 
| 
 | 
   117  | 
  apply (erule (1) subset_trans)
  | 
| 
 | 
   118  | 
 apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
  | 
| 
 | 
   119  | 
 apply (erule (1) subset_antisym)
  | 
| 
 | 
   120  | 
done
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
lemma
  | 
| 
 | 
   123  | 
  fixes Abs :: "'a set \<Rightarrow> 'b::po"
  | 
| 
 | 
   124  | 
  assumes type: "type_definition Rep Abs {S. ideal S}"
 | 
| 
 | 
   125  | 
  assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
  | 
| 
 | 
   126  | 
  assumes S: "chain S"
  | 
| 
 | 
   127  | 
  shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))"
  | 
| 
 | 
   128  | 
    and typedef_ideal_rep_contlub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
  | 
| 
 | 
   129  | 
proof -
  | 
| 
 | 
   130  | 
  have 1: "ideal (\<Union>i. Rep (S i))"
  | 
| 
 | 
   131  | 
    apply (rule ideal_UN)
  | 
| 
 | 
   132  | 
     apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq])
  | 
| 
 | 
   133  | 
    apply (subst less [symmetric])
  | 
| 
 | 
   134  | 
    apply (erule chain_mono [OF S])
  | 
| 
 | 
   135  | 
    done
  | 
| 
 | 
   136  | 
  hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))"
  | 
| 
 | 
   137  | 
    by (simp add: type_definition.Abs_inverse [OF type])
  | 
| 
 | 
   138  | 
  show 3: "range S <<| Abs (\<Union>i. Rep (S i))"
  | 
| 
 | 
   139  | 
    apply (rule is_lubI)
  | 
| 
 | 
   140  | 
     apply (rule is_ubI)
  | 
| 
 | 
   141  | 
     apply (simp add: less 2, fast)
  | 
| 
 | 
   142  | 
    apply (simp add: less 2 is_ub_def, fast)
  | 
| 
 | 
   143  | 
    done
  | 
| 
 | 
   144  | 
  hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))"
  | 
| 
 | 
   145  | 
    by (rule thelubI)
  | 
| 
 | 
   146  | 
  show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
  | 
| 
 | 
   147  | 
    by (simp add: 4 2)
  | 
| 
 | 
   148  | 
qed
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
lemma typedef_ideal_cpo:
  | 
| 
 | 
   151  | 
  fixes Abs :: "'a set \<Rightarrow> 'b::po"
  | 
| 
 | 
   152  | 
  assumes type: "type_definition Rep Abs {S. ideal S}"
 | 
| 
 | 
   153  | 
  assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
  | 
| 
 | 
   154  | 
  shows "OFCLASS('b, cpo_class)"
 | 
| 
 | 
   155  | 
by (default, rule exI, erule typedef_ideal_lub [OF type less])
  | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
end
  | 
| 
 | 
   158  | 
  | 
| 
29237
 | 
   159  | 
interpretation sq_le!: preorder "sq_le :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool"
  | 
| 
27404
 | 
   160  | 
apply unfold_locales
  | 
| 
 | 
   161  | 
apply (rule refl_less)
  | 
| 
 | 
   162  | 
apply (erule (1) trans_less)
  | 
| 
 | 
   163  | 
done
  | 
| 
 | 
   164  | 
  | 
| 
28133
 | 
   165  | 
subsection {* Lemmas about least upper bounds *}
 | 
| 
27404
 | 
   166  | 
  | 
| 
 | 
   167  | 
lemma finite_directed_contains_lub:
  | 
| 
 | 
   168  | 
  "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u\<in>S. S <<| u"
  | 
| 
 | 
   169  | 
apply (drule (1) directed_finiteD, rule subset_refl)
  | 
| 
 | 
   170  | 
apply (erule bexE)
  | 
| 
 | 
   171  | 
apply (rule rev_bexI, assumption)
  | 
| 
 | 
   172  | 
apply (erule (1) is_lub_maximal)
  | 
| 
 | 
   173  | 
done
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
lemma lub_finite_directed_in_self:
  | 
| 
 | 
   176  | 
  "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> lub S \<in> S"
  | 
| 
 | 
   177  | 
apply (drule (1) finite_directed_contains_lub, clarify)
  | 
| 
 | 
   178  | 
apply (drule thelubI, simp)
  | 
| 
 | 
   179  | 
done
  | 
| 
 | 
   180  | 
  | 
| 
 | 
   181  | 
lemma finite_directed_has_lub: "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u. S <<| u"
  | 
| 
 | 
   182  | 
by (drule (1) finite_directed_contains_lub, fast)
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
lemma is_ub_thelub0: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S"
  | 
| 
 | 
   185  | 
apply (erule exE, drule lubI)
  | 
| 
 | 
   186  | 
apply (drule is_lubD1)
  | 
| 
 | 
   187  | 
apply (erule (1) is_ubD)
  | 
| 
 | 
   188  | 
done
  | 
| 
 | 
   189  | 
  | 
| 
 | 
   190  | 
lemma is_lub_thelub0: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x"
  | 
| 
 | 
   191  | 
by (erule exE, drule lubI, erule is_lub_lub)
  | 
| 
 | 
   192  | 
  | 
| 
28133
 | 
   193  | 
subsection {* Locale for ideal completion *}
 | 
| 
 | 
   194  | 
  | 
| 
27404
 | 
   195  | 
locale basis_take = preorder +
  | 
| 
 | 
   196  | 
  fixes take :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'a"
  | 
| 
 | 
   197  | 
  assumes take_less: "take n a \<preceq> a"
  | 
| 
 | 
   198  | 
  assumes take_take: "take n (take n a) = take n a"
  | 
| 
 | 
   199  | 
  assumes take_mono: "a \<preceq> b \<Longrightarrow> take n a \<preceq> take n b"
  | 
| 
 | 
   200  | 
  assumes take_chain: "take n a \<preceq> take (Suc n) a"
  | 
| 
 | 
   201  | 
  assumes finite_range_take: "finite (range (take n))"
  | 
| 
 | 
   202  | 
  assumes take_covers: "\<exists>n. take n a = a"
  | 
| 
 | 
   203  | 
begin
  | 
| 
 | 
   204  | 
  | 
| 
 | 
   205  | 
lemma take_chain_less: "m < n \<Longrightarrow> take m a \<preceq> take n a"
  | 
| 
 | 
   206  | 
by (erule less_Suc_induct, rule take_chain, erule (1) r_trans)
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
lemma take_chain_le: "m \<le> n \<Longrightarrow> take m a \<preceq> take n a"
  | 
| 
 | 
   209  | 
by (cases "m = n", simp add: r_refl, simp add: take_chain_less)
  | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
end
  | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
locale ideal_completion = basis_take +
  | 
| 
 | 
   214  | 
  fixes principal :: "'a::type \<Rightarrow> 'b::cpo"
  | 
| 
 | 
   215  | 
  fixes rep :: "'b::cpo \<Rightarrow> 'a::type set"
  | 
| 
 | 
   216  | 
  assumes ideal_rep: "\<And>x. preorder.ideal r (rep x)"
  | 
| 
 | 
   217  | 
  assumes rep_contlub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))"
  | 
| 
 | 
   218  | 
  assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}"
 | 
| 
 | 
   219  | 
  assumes subset_repD: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y"
  | 
| 
 | 
   220  | 
begin
  | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
lemma finite_take_rep: "finite (take n ` rep x)"
  | 
| 
 | 
   223  | 
by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range_take])
  | 
| 
 | 
   224  | 
  | 
| 
28133
 | 
   225  | 
lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y"
  | 
| 
 | 
   226  | 
apply (frule bin_chain)
  | 
| 
 | 
   227  | 
apply (drule rep_contlub)
  | 
| 
 | 
   228  | 
apply (simp only: thelubI [OF lub_bin_chain])
  | 
| 
 | 
   229  | 
apply (rule subsetI, rule UN_I [where a=0], simp_all)
  | 
| 
 | 
   230  | 
done
  | 
| 
 | 
   231  | 
  | 
| 
 | 
   232  | 
lemma less_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y"
  | 
| 
 | 
   233  | 
by (rule iffI [OF rep_mono subset_repD])
  | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}"
 | 
| 
 | 
   236  | 
unfolding less_def rep_principal
  | 
| 
 | 
   237  | 
apply safe
  | 
| 
 | 
   238  | 
apply (erule (1) idealD3 [OF ideal_rep])
  | 
| 
 | 
   239  | 
apply (erule subsetD, simp add: r_refl)
  | 
| 
 | 
   240  | 
done
  | 
| 
 | 
   241  | 
  | 
| 
 | 
   242  | 
lemma mem_rep_iff_principal_less: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x"
  | 
| 
 | 
   243  | 
by (simp add: rep_eq)
  | 
| 
 | 
   244  | 
  | 
| 
 | 
   245  | 
lemma principal_less_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x"
  | 
| 
 | 
   246  | 
by (simp add: rep_eq)
  | 
| 
 | 
   247  | 
  | 
| 
 | 
   248  | 
lemma principal_less_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b"
  | 
| 
 | 
   249  | 
by (simp add: principal_less_iff_mem_rep rep_principal)
  | 
| 
 | 
   250  | 
  | 
| 
 | 
   251  | 
lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a"
  | 
| 
 | 
   252  | 
unfolding po_eq_conv [where 'a='b] principal_less_iff ..
  | 
| 
 | 
   253  | 
  | 
| 
 | 
   254  | 
lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x"
  | 
| 
 | 
   255  | 
by (simp add: rep_eq)
  | 
| 
 | 
   256  | 
  | 
| 
 | 
   257  | 
lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b"
  | 
| 
 | 
   258  | 
by (simp only: principal_less_iff)
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
lemma lessI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u"
  | 
| 
 | 
   261  | 
unfolding principal_less_iff_mem_rep
  | 
| 
 | 
   262  | 
by (simp add: less_def subset_eq)
  | 
| 
 | 
   263  | 
  | 
| 
 | 
   264  | 
lemma lub_principal_rep: "principal ` rep x <<| x"
  | 
| 
 | 
   265  | 
apply (rule is_lubI)
  | 
| 
 | 
   266  | 
apply (rule ub_imageI)
  | 
| 
 | 
   267  | 
apply (erule repD)
  | 
| 
 | 
   268  | 
apply (subst less_def)
  | 
| 
 | 
   269  | 
apply (rule subsetI)
  | 
| 
 | 
   270  | 
apply (drule (1) ub_imageD)
  | 
| 
 | 
   271  | 
apply (simp add: rep_eq)
  | 
| 
 | 
   272  | 
done
  | 
| 
 | 
   273  | 
  | 
| 
 | 
   274  | 
subsection {* Defining functions in terms of basis elements *}
 | 
| 
 | 
   275  | 
  | 
| 
 | 
   276  | 
definition
  | 
| 
 | 
   277  | 
  basis_fun :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where
 | 
| 
 | 
   278  | 
  "basis_fun = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))"
  | 
| 
 | 
   279  | 
  | 
| 
27404
 | 
   280  | 
lemma basis_fun_lemma0:
  | 
| 
 | 
   281  | 
  fixes f :: "'a::type \<Rightarrow> 'c::cpo"
  | 
| 
 | 
   282  | 
  assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
  | 
| 
 | 
   283  | 
  shows "\<exists>u. f ` take i ` rep x <<| u"
  | 
| 
 | 
   284  | 
apply (rule finite_directed_has_lub)
  | 
| 
 | 
   285  | 
apply (rule finite_imageI)
  | 
| 
 | 
   286  | 
apply (rule finite_take_rep)
  | 
| 
 | 
   287  | 
apply (subst image_image)
  | 
| 
 | 
   288  | 
apply (rule directed_image_ideal)
  | 
| 
 | 
   289  | 
apply (rule ideal_rep)
  | 
| 
 | 
   290  | 
apply (rule f_mono)
  | 
| 
 | 
   291  | 
apply (erule take_mono)
  | 
| 
 | 
   292  | 
done
  | 
| 
 | 
   293  | 
  | 
| 
 | 
   294  | 
lemma basis_fun_lemma1:
  | 
| 
 | 
   295  | 
  fixes f :: "'a::type \<Rightarrow> 'c::cpo"
  | 
| 
 | 
   296  | 
  assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
  | 
| 
 | 
   297  | 
  shows "chain (\<lambda>i. lub (f ` take i ` rep x))"
  | 
| 
 | 
   298  | 
 apply (rule chainI)
  | 
| 
 | 
   299  | 
 apply (rule is_lub_thelub0)
  | 
| 
 | 
   300  | 
  apply (rule basis_fun_lemma0, erule f_mono)
  | 
| 
 | 
   301  | 
 apply (rule is_ubI, clarsimp, rename_tac a)
  | 
| 
28053
 | 
   302  | 
 apply (rule trans_less [OF f_mono [OF take_chain]])
  | 
| 
27404
 | 
   303  | 
 apply (rule is_ub_thelub0)
  | 
| 
 | 
   304  | 
  apply (rule basis_fun_lemma0, erule f_mono)
  | 
| 
 | 
   305  | 
 apply simp
  | 
| 
 | 
   306  | 
done
  | 
| 
 | 
   307  | 
  | 
| 
 | 
   308  | 
lemma basis_fun_lemma2:
  | 
| 
 | 
   309  | 
  fixes f :: "'a::type \<Rightarrow> 'c::cpo"
  | 
| 
 | 
   310  | 
  assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
  | 
| 
 | 
   311  | 
  shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))"
  | 
| 
 | 
   312  | 
 apply (rule is_lubI)
  | 
| 
 | 
   313  | 
 apply (rule ub_imageI, rename_tac a)
  | 
| 
 | 
   314  | 
  apply (cut_tac a=a in take_covers, erule exE, rename_tac i)
  | 
| 
 | 
   315  | 
  apply (erule subst)
  | 
| 
 | 
   316  | 
  apply (rule rev_trans_less)
  | 
| 
 | 
   317  | 
   apply (rule_tac x=i in is_ub_thelub)
  | 
| 
 | 
   318  | 
   apply (rule basis_fun_lemma1, erule f_mono)
  | 
| 
 | 
   319  | 
  apply (rule is_ub_thelub0)
  | 
| 
 | 
   320  | 
   apply (rule basis_fun_lemma0, erule f_mono)
  | 
| 
 | 
   321  | 
  apply simp
  | 
| 
 | 
   322  | 
 apply (rule is_lub_thelub [OF _ ub_rangeI])
  | 
| 
 | 
   323  | 
  apply (rule basis_fun_lemma1, erule f_mono)
  | 
| 
 | 
   324  | 
 apply (rule is_lub_thelub0)
  | 
| 
 | 
   325  | 
  apply (rule basis_fun_lemma0, erule f_mono)
  | 
| 
 | 
   326  | 
 apply (rule is_ubI, clarsimp, rename_tac a)
  | 
| 
28053
 | 
   327  | 
 apply (rule trans_less [OF f_mono [OF take_less]])
  | 
| 
27404
 | 
   328  | 
 apply (erule (1) ub_imageD)
  | 
| 
 | 
   329  | 
done
  | 
| 
 | 
   330  | 
  | 
| 
 | 
   331  | 
lemma basis_fun_lemma:
  | 
| 
 | 
   332  | 
  fixes f :: "'a::type \<Rightarrow> 'c::cpo"
  | 
| 
 | 
   333  | 
  assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
  | 
| 
 | 
   334  | 
  shows "\<exists>u. f ` rep x <<| u"
  | 
| 
 | 
   335  | 
by (rule exI, rule basis_fun_lemma2, erule f_mono)
  | 
| 
 | 
   336  | 
  | 
| 
 | 
   337  | 
lemma basis_fun_beta:
  | 
| 
 | 
   338  | 
  fixes f :: "'a::type \<Rightarrow> 'c::cpo"
  | 
| 
 | 
   339  | 
  assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
  | 
| 
 | 
   340  | 
  shows "basis_fun f\<cdot>x = lub (f ` rep x)"
  | 
| 
 | 
   341  | 
unfolding basis_fun_def
  | 
| 
 | 
   342  | 
proof (rule beta_cfun)
  | 
| 
 | 
   343  | 
  have lub: "\<And>x. \<exists>u. f ` rep x <<| u"
  | 
| 
 | 
   344  | 
    using f_mono by (rule basis_fun_lemma)
  | 
| 
 | 
   345  | 
  show cont: "cont (\<lambda>x. lub (f ` rep x))"
  | 
| 
 | 
   346  | 
    apply (rule contI2)
  | 
| 
 | 
   347  | 
     apply (rule monofunI)
  | 
| 
 | 
   348  | 
     apply (rule is_lub_thelub0 [OF lub ub_imageI])
  | 
| 
 | 
   349  | 
     apply (rule is_ub_thelub0 [OF lub imageI])
  | 
| 
 | 
   350  | 
     apply (erule (1) subsetD [OF rep_mono])
  | 
| 
 | 
   351  | 
    apply (rule is_lub_thelub0 [OF lub ub_imageI])
  | 
| 
 | 
   352  | 
    apply (simp add: rep_contlub, clarify)
  | 
| 
 | 
   353  | 
    apply (erule rev_trans_less [OF is_ub_thelub])
  | 
| 
 | 
   354  | 
    apply (erule is_ub_thelub0 [OF lub imageI])
  | 
| 
 | 
   355  | 
    done
  | 
| 
 | 
   356  | 
qed
  | 
| 
 | 
   357  | 
  | 
| 
 | 
   358  | 
lemma basis_fun_principal:
  | 
| 
 | 
   359  | 
  fixes f :: "'a::type \<Rightarrow> 'c::cpo"
  | 
| 
 | 
   360  | 
  assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
  | 
| 
 | 
   361  | 
  shows "basis_fun f\<cdot>(principal a) = f a"
  | 
| 
 | 
   362  | 
apply (subst basis_fun_beta, erule f_mono)
  | 
| 
 | 
   363  | 
apply (subst rep_principal)
  | 
| 
 | 
   364  | 
apply (rule lub_image_principal, erule f_mono)
  | 
| 
 | 
   365  | 
done
  | 
| 
 | 
   366  | 
  | 
| 
 | 
   367  | 
lemma basis_fun_mono:
  | 
| 
 | 
   368  | 
  assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
  | 
| 
 | 
   369  | 
  assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b"
  | 
| 
 | 
   370  | 
  assumes less: "\<And>a. f a \<sqsubseteq> g a"
  | 
| 
 | 
   371  | 
  shows "basis_fun f \<sqsubseteq> basis_fun g"
  | 
| 
 | 
   372  | 
 apply (rule less_cfun_ext)
  | 
| 
 | 
   373  | 
 apply (simp only: basis_fun_beta f_mono g_mono)
  | 
| 
 | 
   374  | 
 apply (rule is_lub_thelub0)
  | 
| 
 | 
   375  | 
  apply (rule basis_fun_lemma, erule f_mono)
  | 
| 
 | 
   376  | 
 apply (rule ub_imageI, rename_tac a)
  | 
| 
28053
 | 
   377  | 
 apply (rule trans_less [OF less])
  | 
| 
27404
 | 
   378  | 
 apply (rule is_ub_thelub0)
  | 
| 
 | 
   379  | 
  apply (rule basis_fun_lemma, erule g_mono)
  | 
| 
 | 
   380  | 
 apply (erule imageI)
  | 
| 
 | 
   381  | 
done
  | 
| 
 | 
   382  | 
  | 
| 
 | 
   383  | 
lemma compact_principal [simp]: "compact (principal a)"
  | 
| 
 | 
   384  | 
by (rule compactI2, simp add: principal_less_iff_mem_rep rep_contlub)
  | 
| 
 | 
   385  | 
  | 
| 
28133
 | 
   386  | 
subsection {* Bifiniteness of ideal completions *}
 | 
| 
 | 
   387  | 
  | 
| 
27404
 | 
   388  | 
definition
  | 
| 
 | 
   389  | 
  completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where
  | 
| 
 | 
   390  | 
  "completion_approx = (\<lambda>i. basis_fun (\<lambda>a. principal (take i a)))"
  | 
| 
 | 
   391  | 
  | 
| 
 | 
   392  | 
lemma completion_approx_beta:
  | 
| 
 | 
   393  | 
  "completion_approx i\<cdot>x = (\<Squnion>a\<in>rep x. principal (take i a))"
  | 
| 
 | 
   394  | 
unfolding completion_approx_def
  | 
| 
 | 
   395  | 
by (simp add: basis_fun_beta principal_mono take_mono)
  | 
| 
 | 
   396  | 
  | 
| 
 | 
   397  | 
lemma completion_approx_principal:
  | 
| 
 | 
   398  | 
  "completion_approx i\<cdot>(principal a) = principal (take i a)"
  | 
| 
 | 
   399  | 
unfolding completion_approx_def
  | 
| 
 | 
   400  | 
by (simp add: basis_fun_principal principal_mono take_mono)
  | 
| 
 | 
   401  | 
  | 
| 
 | 
   402  | 
lemma chain_completion_approx: "chain completion_approx"
  | 
| 
 | 
   403  | 
unfolding completion_approx_def
  | 
| 
 | 
   404  | 
apply (rule chainI)
  | 
| 
 | 
   405  | 
apply (rule basis_fun_mono)
  | 
| 
 | 
   406  | 
apply (erule principal_mono [OF take_mono])
  | 
| 
 | 
   407  | 
apply (erule principal_mono [OF take_mono])
  | 
| 
 | 
   408  | 
apply (rule principal_mono [OF take_chain])
  | 
| 
 | 
   409  | 
done
  | 
| 
 | 
   410  | 
  | 
| 
 | 
   411  | 
lemma lub_completion_approx: "(\<Squnion>i. completion_approx i\<cdot>x) = x"
  | 
| 
 | 
   412  | 
unfolding completion_approx_beta
  | 
| 
 | 
   413  | 
 apply (subst image_image [where f=principal, symmetric])
  | 
| 
 | 
   414  | 
 apply (rule unique_lub [OF _ lub_principal_rep])
  | 
| 
 | 
   415  | 
 apply (rule basis_fun_lemma2, erule principal_mono)
  | 
| 
 | 
   416  | 
done
  | 
| 
 | 
   417  | 
  | 
| 
 | 
   418  | 
lemma completion_approx_eq_principal:
  | 
| 
 | 
   419  | 
  "\<exists>a\<in>rep x. completion_approx i\<cdot>x = principal (take i a)"
  | 
| 
 | 
   420  | 
unfolding completion_approx_beta
  | 
| 
 | 
   421  | 
 apply (subst image_image [where f=principal, symmetric])
  | 
| 
 | 
   422  | 
 apply (subgoal_tac "finite (principal ` take i ` rep x)")
  | 
| 
 | 
   423  | 
  apply (subgoal_tac "directed (principal ` take i ` rep x)")
  | 
| 
 | 
   424  | 
   apply (drule (1) lub_finite_directed_in_self, fast)
  | 
| 
 | 
   425  | 
  apply (subst image_image)
  | 
| 
 | 
   426  | 
  apply (rule directed_image_ideal)
  | 
| 
 | 
   427  | 
   apply (rule ideal_rep)
  | 
| 
 | 
   428  | 
  apply (erule principal_mono [OF take_mono])
  | 
| 
 | 
   429  | 
 apply (rule finite_imageI)
  | 
| 
 | 
   430  | 
 apply (rule finite_take_rep)
  | 
| 
 | 
   431  | 
done
  | 
| 
 | 
   432  | 
  | 
| 
 | 
   433  | 
lemma completion_approx_idem:
  | 
| 
 | 
   434  | 
  "completion_approx i\<cdot>(completion_approx i\<cdot>x) = completion_approx i\<cdot>x"
  | 
| 
 | 
   435  | 
using completion_approx_eq_principal [where i=i and x=x]
  | 
| 
 | 
   436  | 
by (auto simp add: completion_approx_principal take_take)
  | 
| 
 | 
   437  | 
  | 
| 
 | 
   438  | 
lemma finite_fixes_completion_approx:
  | 
| 
 | 
   439  | 
  "finite {x. completion_approx i\<cdot>x = x}" (is "finite ?S")
 | 
| 
 | 
   440  | 
apply (subgoal_tac "?S \<subseteq> principal ` range (take i)")
  | 
| 
 | 
   441  | 
apply (erule finite_subset)
  | 
| 
 | 
   442  | 
apply (rule finite_imageI)
  | 
| 
 | 
   443  | 
apply (rule finite_range_take)
  | 
| 
 | 
   444  | 
apply (clarify, erule subst)
  | 
| 
 | 
   445  | 
apply (cut_tac x=x and i=i in completion_approx_eq_principal)
  | 
| 
 | 
   446  | 
apply fast
  | 
| 
 | 
   447  | 
done
  | 
| 
 | 
   448  | 
  | 
| 
 | 
   449  | 
lemma principal_induct:
  | 
| 
 | 
   450  | 
  assumes adm: "adm P"
  | 
| 
 | 
   451  | 
  assumes P: "\<And>a. P (principal a)"
  | 
| 
 | 
   452  | 
  shows "P x"
  | 
| 
 | 
   453  | 
 apply (subgoal_tac "P (\<Squnion>i. completion_approx i\<cdot>x)")
  | 
| 
 | 
   454  | 
 apply (simp add: lub_completion_approx)
  | 
| 
 | 
   455  | 
 apply (rule admD [OF adm])
  | 
| 
 | 
   456  | 
  apply (simp add: chain_completion_approx)
  | 
| 
 | 
   457  | 
 apply (cut_tac x=x and i=i in completion_approx_eq_principal)
  | 
| 
 | 
   458  | 
 apply (clarify, simp add: P)
  | 
| 
 | 
   459  | 
done
  | 
| 
 | 
   460  | 
  | 
| 
 | 
   461  | 
lemma principal_induct2:
  | 
| 
 | 
   462  | 
  "\<lbrakk>\<And>y. adm (\<lambda>x. P x y); \<And>x. adm (\<lambda>y. P x y);
  | 
| 
 | 
   463  | 
    \<And>a b. P (principal a) (principal b)\<rbrakk> \<Longrightarrow> P x y"
  | 
| 
 | 
   464  | 
apply (rule_tac x=y in spec)
  | 
| 
 | 
   465  | 
apply (rule_tac x=x in principal_induct, simp)
  | 
| 
 | 
   466  | 
apply (rule allI, rename_tac y)
  | 
| 
 | 
   467  | 
apply (rule_tac x=y in principal_induct, simp)
  | 
| 
 | 
   468  | 
apply simp
  | 
| 
 | 
   469  | 
done
  | 
| 
 | 
   470  | 
  | 
| 
 | 
   471  | 
lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a"
  | 
| 
 | 
   472  | 
apply (drule adm_compact_neq [OF _ cont_id])
  | 
| 
 | 
   473  | 
apply (drule admD2 [where Y="\<lambda>n. completion_approx n\<cdot>x"])
  | 
| 
 | 
   474  | 
apply (simp add: chain_completion_approx)
  | 
| 
 | 
   475  | 
apply (simp add: lub_completion_approx)
  | 
| 
 | 
   476  | 
apply (erule exE, erule ssubst)
  | 
| 
 | 
   477  | 
apply (cut_tac i=i and x=x in completion_approx_eq_principal)
  | 
| 
 | 
   478  | 
apply (clarify, erule exI)
  | 
| 
 | 
   479  | 
done
  | 
| 
 | 
   480  | 
  | 
| 
 | 
   481  | 
end
  | 
| 
 | 
   482  | 
  | 
| 
 | 
   483  | 
end
  |