author | paulson |
Tue, 02 May 2000 18:56:39 +0200 | |
changeset 8783 | 9edcc005ebd9 |
parent 8161 | bde1391fd0a5 |
child 9169 | 85a47aa21f74 |
permissions | -rw-r--r-- |
2278 | 1 |
(* Title: HOLCF/Up1.ML |
2 |
ID: $Id$ |
|
3 |
Author: Franz Regensburger |
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
|
5 |
*) |
|
6 |
||
7 |
open Up1; |
|
8 |
||
2640 | 9 |
qed_goal "Abs_Up_inverse2" thy "Rep_Up (Abs_Up y) = y" |
10 |
(fn prems => |
|
11 |
[ |
|
4098 | 12 |
(simp_tac (simpset() addsimps [Up_def,Abs_Up_inverse]) 1) |
2640 | 13 |
]); |
14 |
||
15 |
qed_goalw "Exh_Up" thy [Iup_def ] |
|
16 |
"z = Abs_Up(Inl ()) | (? x. z = Iup x)" |
|
2278 | 17 |
(fn prems => |
18 |
[ |
|
19 |
(rtac (Rep_Up_inverse RS subst) 1), |
|
2640 | 20 |
(res_inst_tac [("s","Rep_Up z")] sumE 1), |
2278 | 21 |
(rtac disjI1 1), |
22 |
(res_inst_tac [("f","Abs_Up")] arg_cong 1), |
|
2640 | 23 |
(rtac (unit_eq RS subst) 1), |
2278 | 24 |
(atac 1), |
25 |
(rtac disjI2 1), |
|
26 |
(rtac exI 1), |
|
27 |
(res_inst_tac [("f","Abs_Up")] arg_cong 1), |
|
28 |
(atac 1) |
|
29 |
]); |
|
30 |
||
2640 | 31 |
qed_goal "inj_Abs_Up" thy "inj(Abs_Up)" |
2278 | 32 |
(fn prems => |
33 |
[ |
|
34 |
(rtac inj_inverseI 1), |
|
2640 | 35 |
(rtac Abs_Up_inverse2 1) |
2278 | 36 |
]); |
37 |
||
2640 | 38 |
qed_goal "inj_Rep_Up" thy "inj(Rep_Up)" |
2278 | 39 |
(fn prems => |
40 |
[ |
|
41 |
(rtac inj_inverseI 1), |
|
42 |
(rtac Rep_Up_inverse 1) |
|
43 |
]); |
|
44 |
||
2640 | 45 |
qed_goalw "inject_Iup" thy [Iup_def] "Iup x=Iup y ==> x=y" |
2278 | 46 |
(fn prems => |
47 |
[ |
|
48 |
(cut_facts_tac prems 1), |
|
49 |
(rtac (inj_Inr RS injD) 1), |
|
50 |
(rtac (inj_Abs_Up RS injD) 1), |
|
51 |
(atac 1) |
|
52 |
]); |
|
53 |
||
2640 | 54 |
qed_goalw "defined_Iup" thy [Iup_def] "Iup x~=Abs_Up(Inl ())" |
2278 | 55 |
(fn prems => |
56 |
[ |
|
57 |
(rtac notI 1), |
|
58 |
(rtac notE 1), |
|
59 |
(rtac Inl_not_Inr 1), |
|
60 |
(rtac sym 1), |
|
61 |
(etac (inj_Abs_Up RS injD) 1) |
|
62 |
]); |
|
63 |
||
64 |
||
2640 | 65 |
qed_goal "upE" thy |
66 |
"[| p=Abs_Up(Inl ()) ==> Q; !!x. p=Iup(x)==>Q|] ==>Q" |
|
2278 | 67 |
(fn prems => |
68 |
[ |
|
69 |
(rtac (Exh_Up RS disjE) 1), |
|
70 |
(eresolve_tac prems 1), |
|
71 |
(etac exE 1), |
|
72 |
(eresolve_tac prems 1) |
|
73 |
]); |
|
74 |
||
2640 | 75 |
qed_goalw "Ifup1" thy [Ifup_def] |
76 |
"Ifup(f)(Abs_Up(Inl ()))=UU" |
|
2278 | 77 |
(fn prems => |
78 |
[ |
|
2640 | 79 |
(stac Abs_Up_inverse2 1), |
2278 | 80 |
(stac sum_case_Inl 1), |
81 |
(rtac refl 1) |
|
82 |
]); |
|
83 |
||
2640 | 84 |
qed_goalw "Ifup2" thy [Ifup_def,Iup_def] |
2278 | 85 |
"Ifup(f)(Iup(x))=f`x" |
86 |
(fn prems => |
|
87 |
[ |
|
2640 | 88 |
(stac Abs_Up_inverse2 1), |
2278 | 89 |
(stac sum_case_Inr 1), |
90 |
(rtac refl 1) |
|
91 |
]); |
|
92 |
||
8161 | 93 |
val Up0_ss = (simpset_of Cfun3.thy) delsimps [range_composition] |
94 |
addsimps [Ifup1,Ifup2]; |
|
2278 | 95 |
|
2640 | 96 |
qed_goalw "less_up1a" thy [less_up_def] |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
97 |
"Abs_Up(Inl ())<< z" |
2278 | 98 |
(fn prems => |
99 |
[ |
|
2640 | 100 |
(stac Abs_Up_inverse2 1), |
2278 | 101 |
(stac sum_case_Inl 1), |
102 |
(rtac TrueI 1) |
|
103 |
]); |
|
104 |
||
2640 | 105 |
qed_goalw "less_up1b" thy [Iup_def,less_up_def] |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
106 |
"~(Iup x) << (Abs_Up(Inl ()))" |
2278 | 107 |
(fn prems => |
108 |
[ |
|
109 |
(rtac notI 1), |
|
110 |
(rtac iffD1 1), |
|
111 |
(atac 2), |
|
2640 | 112 |
(stac Abs_Up_inverse2 1), |
113 |
(stac Abs_Up_inverse2 1), |
|
2278 | 114 |
(stac sum_case_Inr 1), |
115 |
(stac sum_case_Inl 1), |
|
116 |
(rtac refl 1) |
|
117 |
]); |
|
118 |
||
2640 | 119 |
qed_goalw "less_up1c" thy [Iup_def,less_up_def] |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
120 |
" (Iup x) << (Iup y)=(x<<y)" |
2278 | 121 |
(fn prems => |
122 |
[ |
|
2640 | 123 |
(stac Abs_Up_inverse2 1), |
124 |
(stac Abs_Up_inverse2 1), |
|
2278 | 125 |
(stac sum_case_Inr 1), |
126 |
(stac sum_case_Inr 1), |
|
127 |
(rtac refl 1) |
|
128 |
]); |
|
129 |
||
130 |
||
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
131 |
qed_goal "refl_less_up" thy "(p::'a u) << p" |
2278 | 132 |
(fn prems => |
133 |
[ |
|
134 |
(res_inst_tac [("p","p")] upE 1), |
|
135 |
(hyp_subst_tac 1), |
|
136 |
(rtac less_up1a 1), |
|
137 |
(hyp_subst_tac 1), |
|
138 |
(rtac (less_up1c RS iffD2) 1), |
|
139 |
(rtac refl_less 1) |
|
140 |
]); |
|
141 |
||
2640 | 142 |
qed_goal "antisym_less_up" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
143 |
"!!p1.[|(p1::'a u) << p2;p2 << p1|] ==> p1=p2" |
2278 | 144 |
(fn _ => |
145 |
[ |
|
146 |
(res_inst_tac [("p","p1")] upE 1), |
|
147 |
(hyp_subst_tac 1), |
|
148 |
(res_inst_tac [("p","p2")] upE 1), |
|
149 |
(etac sym 1), |
|
150 |
(hyp_subst_tac 1), |
|
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
151 |
(res_inst_tac [("P","(Iup x) << (Abs_Up(Inl ()))")] notE 1), |
2278 | 152 |
(rtac less_up1b 1), |
153 |
(atac 1), |
|
154 |
(hyp_subst_tac 1), |
|
155 |
(res_inst_tac [("p","p2")] upE 1), |
|
156 |
(hyp_subst_tac 1), |
|
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
157 |
(res_inst_tac [("P","(Iup x) << (Abs_Up(Inl ()))")] notE 1), |
2278 | 158 |
(rtac less_up1b 1), |
159 |
(atac 1), |
|
160 |
(hyp_subst_tac 1), |
|
161 |
(rtac arg_cong 1), |
|
162 |
(rtac antisym_less 1), |
|
163 |
(etac (less_up1c RS iffD1) 1), |
|
164 |
(etac (less_up1c RS iffD1) 1) |
|
165 |
]); |
|
166 |
||
2640 | 167 |
qed_goal "trans_less_up" thy |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2640
diff
changeset
|
168 |
"[|(p1::'a u) << p2;p2 << p3|] ==> p1 << p3" |
2278 | 169 |
(fn prems => |
170 |
[ |
|
171 |
(cut_facts_tac prems 1), |
|
172 |
(res_inst_tac [("p","p1")] upE 1), |
|
173 |
(hyp_subst_tac 1), |
|
174 |
(rtac less_up1a 1), |
|
175 |
(hyp_subst_tac 1), |
|
176 |
(res_inst_tac [("p","p2")] upE 1), |
|
177 |
(hyp_subst_tac 1), |
|
178 |
(rtac notE 1), |
|
179 |
(rtac less_up1b 1), |
|
180 |
(atac 1), |
|
181 |
(hyp_subst_tac 1), |
|
182 |
(res_inst_tac [("p","p3")] upE 1), |
|
183 |
(hyp_subst_tac 1), |
|
184 |
(rtac notE 1), |
|
185 |
(rtac less_up1b 1), |
|
186 |
(atac 1), |
|
187 |
(hyp_subst_tac 1), |
|
188 |
(rtac (less_up1c RS iffD2) 1), |
|
189 |
(rtac trans_less 1), |
|
190 |
(etac (less_up1c RS iffD1) 1), |
|
191 |
(etac (less_up1c RS iffD1) 1) |
|
192 |
]); |
|
193 |