author | wenzelm |
Thu, 08 Dec 2022 11:24:43 +0100 | |
changeset 76598 | 9f97eda3fcf1 |
parent 75624 | 22d1c5f2b9f4 |
permissions | -rw-r--r-- |
58128 | 1 |
(* Title: HOL/BNF_Composition.thy |
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
2 |
Author: Dmitriy Traytel, TU Muenchen |
57698 | 3 |
Author: Jasmin Blanchette, TU Muenchen |
75624 | 4 |
Author: Jan van Brügge, TU Muenchen |
5 |
Copyright 2012, 2013, 2014, 2022 |
|
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
6 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
7 |
Composition of bounded natural functors. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
8 |
*) |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
9 |
|
60758 | 10 |
section \<open>Composition of Bounded Natural Functors\<close> |
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
11 |
|
58128 | 12 |
theory BNF_Composition |
55936 | 13 |
imports BNF_Def |
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
14 |
begin |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
15 |
|
60918
4ceef1592e8c
new command for lifting BNF structure over typedefs
traytel
parents:
60758
diff
changeset
|
16 |
lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" |
4ceef1592e8c
new command for lifting BNF structure over typedefs
traytel
parents:
60758
diff
changeset
|
17 |
by simp |
4ceef1592e8c
new command for lifting BNF structure over typedefs
traytel
parents:
60758
diff
changeset
|
18 |
|
67091 | 19 |
lemma empty_natural: "(\<lambda>_. {}) \<circ> f = image g \<circ> (\<lambda>_. {})" |
58128 | 20 |
by (rule ext) simp |
49312 | 21 |
|
75624 | 22 |
lemma Cinfinite_gt_empty: "Cinfinite r \<Longrightarrow> |{}| <o r" |
23 |
by (simp add: cinfinite_def finite_ordLess_infinite card_of_ordIso_finite Field_card_of card_of_well_order_on emptyI card_order_on_well_order_on) |
|
24 |
||
67091 | 25 |
lemma Union_natural: "Union \<circ> image (image f) = image f \<circ> Union" |
58128 | 26 |
by (rule ext) (auto simp only: comp_apply) |
49312 | 27 |
|
67091 | 28 |
lemma in_Union_o_assoc: "x \<in> (Union \<circ> gset \<circ> gmap) A \<Longrightarrow> x \<in> (Union \<circ> (gset \<circ> gmap)) A" |
58128 | 29 |
by (unfold comp_assoc) |
49312 | 30 |
|
75624 | 31 |
lemma regularCard_UNION_bound: |
32 |
assumes "Cinfinite r" "regularCard r" and "|I| <o r" "\<And>i. i \<in> I \<Longrightarrow> |A i| <o r" |
|
33 |
shows "|\<Union>i\<in>I. A i| <o r" |
|
34 |
using assms cinfinite_def regularCard_stable stable_UNION by blast |
|
35 |
||
36 |
lemma comp_single_set_bd_strict: |
|
37 |
assumes fbd: "Cinfinite fbd" "regularCard fbd" and |
|
38 |
gbd: "Cinfinite gbd" "regularCard gbd" and |
|
39 |
fset_bd: "\<And>x. |fset x| <o fbd" and |
|
40 |
gset_bd: "\<And>x. |gset x| <o gbd" |
|
41 |
shows "|\<Union>(fset ` gset x)| <o gbd *c fbd" |
|
42 |
proof (cases "fbd <o gbd") |
|
43 |
case True |
|
44 |
then have "|fset x| <o gbd" for x using fset_bd ordLess_transitive by blast |
|
45 |
then have "|\<Union>(fset ` gset x)| <o gbd" using regularCard_UNION_bound[OF gbd gset_bd] by blast |
|
46 |
then have "|\<Union> (fset ` gset x)| <o fbd *c gbd" |
|
47 |
using ordLess_ordLeq_trans ordLeq_cprod2 gbd(1) fbd(1) cinfinite_not_czero by blast |
|
48 |
then show ?thesis using ordLess_ordIso_trans cprod_com by blast |
|
49 |
next |
|
50 |
case False |
|
51 |
have "Well_order fbd" "Well_order gbd" using fbd(1) gbd(1) card_order_on_well_order_on by auto |
|
52 |
then have "gbd \<le>o fbd" using not_ordLess_iff_ordLeq False by blast |
|
53 |
then have "|gset x| <o fbd" for x using gset_bd ordLess_ordLeq_trans by blast |
|
54 |
then have "|\<Union>(fset ` gset x)| <o fbd" using regularCard_UNION_bound[OF fbd] fset_bd by blast |
|
55 |
then show ?thesis using ordLess_ordLeq_trans ordLeq_cprod2 gbd(1) fbd(1) cinfinite_not_czero by blast |
|
56 |
qed |
|
57 |
||
49312 | 58 |
lemma comp_single_set_bd: |
59 |
assumes fbd_Card_order: "Card_order fbd" and |
|
60 |
fset_bd: "\<And>x. |fset x| \<le>o fbd" and |
|
61 |
gset_bd: "\<And>x. |gset x| \<le>o gbd" |
|
52141
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
haftmann
parents:
51893
diff
changeset
|
62 |
shows "|\<Union>(fset ` gset x)| \<le>o gbd *c fbd" |
58128 | 63 |
apply simp |
64 |
apply (rule ordLeq_transitive) |
|
65 |
apply (rule card_of_UNION_Sigma) |
|
66 |
apply (subst SIGMA_CSUM) |
|
67 |
apply (rule ordLeq_transitive) |
|
68 |
apply (rule card_of_Csum_Times') |
|
69 |
apply (rule fbd_Card_order) |
|
70 |
apply (rule ballI) |
|
71 |
apply (rule fset_bd) |
|
72 |
apply (rule ordLeq_transitive) |
|
73 |
apply (rule cprod_mono1) |
|
74 |
apply (rule gset_bd) |
|
75 |
apply (rule ordIso_imp_ordLeq) |
|
76 |
apply (rule ordIso_refl) |
|
77 |
apply (rule Card_order_cprod) |
|
78 |
done |
|
49312 | 79 |
|
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
80 |
lemma csum_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p +c p' =o r +c r \<Longrightarrow> p +c p' =o r" |
58128 | 81 |
apply (erule ordIso_transitive) |
82 |
apply (frule csum_absorb2') |
|
83 |
apply (erule ordLeq_refl) |
|
84 |
by simp |
|
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
85 |
|
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
86 |
lemma cprod_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p *c p' =o r *c r \<Longrightarrow> p *c p' =o r" |
58128 | 87 |
apply (erule ordIso_transitive) |
88 |
apply (rule cprod_infinite) |
|
89 |
by simp |
|
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
90 |
|
52141
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
haftmann
parents:
51893
diff
changeset
|
91 |
lemma Union_image_insert: "\<Union>(f ` insert a B) = f a \<union> \<Union>(f ` B)" |
58128 | 92 |
by simp |
49312 | 93 |
|
52141
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
haftmann
parents:
51893
diff
changeset
|
94 |
lemma Union_image_empty: "A \<union> \<Union>(f ` {}) = A" |
58128 | 95 |
by simp |
49312 | 96 |
|
67091 | 97 |
lemma image_o_collect: "collect ((\<lambda>f. image g \<circ> f) ` F) = image g \<circ> collect F" |
58128 | 98 |
by (rule ext) (auto simp add: collect_def) |
49312 | 99 |
|
100 |
lemma conj_subset_def: "A \<subseteq> {x. P x \<and> Q x} = (A \<subseteq> {x. P x} \<and> A \<subseteq> {x. Q x})" |
|
58128 | 101 |
by blast |
49312 | 102 |
|
52141
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
haftmann
parents:
51893
diff
changeset
|
103 |
lemma UN_image_subset: "\<Union>(f ` g x) \<subseteq> X = (g x \<subseteq> {x. f x \<subseteq> X})" |
58128 | 104 |
by blast |
49312 | 105 |
|
69745 | 106 |
lemma comp_set_bd_Union_o_collect: "|\<Union>(\<Union>((\<lambda>f. f x) ` X))| \<le>o hbd \<Longrightarrow> |(Union \<circ> collect X) x| \<le>o hbd" |
58128 | 107 |
by (unfold comp_apply collect_def) simp |
49312 | 108 |
|
75624 | 109 |
lemma comp_set_bd_Union_o_collect_strict: "|\<Union>(\<Union>((\<lambda>f. f x) ` X))| <o hbd \<Longrightarrow> |(Union \<circ> collect X) x| <o hbd" |
110 |
by (unfold comp_apply collect_def) simp |
|
111 |
||
62324 | 112 |
lemma Collect_inj: "Collect P = Collect Q \<Longrightarrow> P = Q" |
113 |
by blast |
|
114 |
||
67613 | 115 |
lemma Grp_fst_snd: "(Grp (Collect (case_prod R)) fst)\<inverse>\<inverse> OO Grp (Collect (case_prod R)) snd = R" |
58128 | 116 |
unfolding Grp_def fun_eq_iff relcompp.simps by auto |
51893
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
traytel
parents:
49512
diff
changeset
|
117 |
|
67613 | 118 |
lemma OO_Grp_cong: "A = B \<Longrightarrow> (Grp A f)\<inverse>\<inverse> OO Grp A g = (Grp B f)\<inverse>\<inverse> OO Grp B g" |
58128 | 119 |
by (rule arg_cong) |
51893
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
traytel
parents:
49512
diff
changeset
|
120 |
|
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
121 |
lemma vimage2p_relcompp_mono: "R OO S \<le> T \<Longrightarrow> |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
122 |
vimage2p f g R OO vimage2p g h S \<le> vimage2p f h T" |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
123 |
unfolding vimage2p_def by auto |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
124 |
|
67091 | 125 |
lemma type_copy_map_cong0: "M (g x) = N (h x) \<Longrightarrow> (f \<circ> M \<circ> g) x = (f \<circ> N \<circ> h) x" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
126 |
by auto |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
127 |
|
75624 | 128 |
lemma type_copy_set_bd: "(\<And>y. |S y| <o bd) \<Longrightarrow> |(S \<circ> Rep) x| <o bd" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
129 |
by auto |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
130 |
|
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
131 |
lemma vimage2p_cong: "R = S \<Longrightarrow> vimage2p f g R = vimage2p f g S" |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
132 |
by simp |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
133 |
|
67091 | 134 |
lemma Ball_comp_iff: "(\<lambda>x. Ball (A x) f) \<circ> g = (\<lambda>x. Ball ((A \<circ> g) x) f)" |
62324 | 135 |
unfolding o_def by auto |
136 |
||
67091 | 137 |
lemma conj_comp_iff: "(\<lambda>x. P x \<and> Q x) \<circ> g = (\<lambda>x. (P \<circ> g) x \<and> (Q \<circ> g) x)" |
62324 | 138 |
unfolding o_def by auto |
139 |
||
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
140 |
context |
58128 | 141 |
fixes Rep Abs |
142 |
assumes type_copy: "type_definition Rep Abs UNIV" |
|
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
143 |
begin |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
144 |
|
67091 | 145 |
lemma type_copy_map_id0: "M = id \<Longrightarrow> Abs \<circ> M \<circ> Rep = id" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
146 |
using type_definition.Rep_inverse[OF type_copy] by auto |
55811 | 147 |
|
67091 | 148 |
lemma type_copy_map_comp0: "M = M1 \<circ> M2 \<Longrightarrow> f \<circ> M \<circ> g = (f \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> g)" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
149 |
using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto |
55811 | 150 |
|
67091 | 151 |
lemma type_copy_set_map0: "S \<circ> M = image f \<circ> S' \<Longrightarrow> (S \<circ> Rep) \<circ> (Abs \<circ> M \<circ> g) = image f \<circ> (S' \<circ> g)" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
152 |
using type_definition.Abs_inverse[OF type_copy UNIV_I] by (auto simp: o_def fun_eq_iff) |
55811 | 153 |
|
67091 | 154 |
lemma type_copy_wit: "x \<in> (S \<circ> Rep) (Abs y) \<Longrightarrow> x \<in> S y" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
155 |
using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto |
55811 | 156 |
|
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
157 |
lemma type_copy_vimage2p_Grp_Rep: "vimage2p f Rep (Grp (Collect P) h) = |
67091 | 158 |
Grp (Collect (\<lambda>x. P (f x))) (Abs \<circ> h \<circ> f)" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
159 |
unfolding vimage2p_def Grp_def fun_eq_iff |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
160 |
by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I] |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
161 |
type_definition.Rep_inverse[OF type_copy] dest: sym) |
55811 | 162 |
|
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
163 |
lemma type_copy_vimage2p_Grp_Abs: |
67091 | 164 |
"\<And>h. vimage2p g Abs (Grp (Collect P) h) = Grp (Collect (\<lambda>x. P (g x))) (Rep \<circ> h \<circ> g)" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
165 |
unfolding vimage2p_def Grp_def fun_eq_iff |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
166 |
by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I] |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
167 |
type_definition.Rep_inverse[OF type_copy] dest: sym) |
55811 | 168 |
|
169 |
lemma type_copy_ex_RepI: "(\<exists>b. F b) = (\<exists>b. F (Rep b))" |
|
170 |
proof safe |
|
171 |
fix b assume "F b" |
|
172 |
show "\<exists>b'. F (Rep b')" |
|
173 |
proof (rule exI) |
|
60758 | 174 |
from \<open>F b\<close> show "F (Rep (Abs b))" using type_definition.Abs_inverse[OF type_copy] by auto |
55811 | 175 |
qed |
176 |
qed blast |
|
177 |
||
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
178 |
lemma vimage2p_relcompp_converse: |
67613 | 179 |
"vimage2p f g (R\<inverse>\<inverse> OO S) = (vimage2p Rep f R)\<inverse>\<inverse> OO vimage2p Rep g S" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
180 |
unfolding vimage2p_def relcompp.simps conversep.simps fun_eq_iff image_def |
55811 | 181 |
by (auto simp: type_copy_ex_RepI) |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
182 |
|
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
183 |
end |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55705
diff
changeset
|
184 |
|
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
185 |
bnf DEADID: 'a |
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
186 |
map: "id :: 'a \<Rightarrow> 'a" |
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
187 |
bd: natLeq |
67399 | 188 |
rel: "(=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool" |
75624 | 189 |
by (auto simp add: natLeq_card_order natLeq_cinfinite regularCard_natLeq) |
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
190 |
|
58353 | 191 |
definition id_bnf :: "'a \<Rightarrow> 'a" where |
192 |
"id_bnf \<equiv> (\<lambda>x. x)" |
|
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
193 |
|
58181 | 194 |
lemma id_bnf_apply: "id_bnf x = x" |
195 |
unfolding id_bnf_def by simp |
|
56016
8875cdcfc85b
unfold intermediate definitions after sealing the bnf
traytel
parents:
55936
diff
changeset
|
196 |
|
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
197 |
bnf ID: 'a |
58181 | 198 |
map: "id_bnf :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" |
55935
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
199 |
sets: "\<lambda>x. {x}" |
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
traytel
parents:
55930
diff
changeset
|
200 |
bd: natLeq |
58181 | 201 |
rel: "id_bnf :: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" |
62324 | 202 |
pred: "id_bnf :: ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" |
58181 | 203 |
unfolding id_bnf_def |
75624 | 204 |
apply (auto simp: Grp_def fun_eq_iff relcompp.simps natLeq_card_order natLeq_cinfinite regularCard_natLeq) |
205 |
apply (rule finite_ordLess_infinite[OF _ natLeq_Well_order]) |
|
58128 | 206 |
apply (auto simp add: Field_card_of Field_natLeq card_of_well_order_on)[3] |
207 |
done |
|
55854
ee270328a781
make 'typedef' optional, depending on size of original type
blanchet
parents:
55851
diff
changeset
|
208 |
|
58181 | 209 |
lemma type_definition_id_bnf_UNIV: "type_definition id_bnf id_bnf UNIV" |
210 |
unfolding id_bnf_def by unfold_locales auto |
|
55854
ee270328a781
make 'typedef' optional, depending on size of original type
blanchet
parents:
55851
diff
changeset
|
211 |
|
69605 | 212 |
ML_file \<open>Tools/BNF/bnf_comp_tactics.ML\<close> |
213 |
ML_file \<open>Tools/BNF/bnf_comp.ML\<close> |
|
49309
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
blanchet
parents:
49308
diff
changeset
|
214 |
|
58282 | 215 |
hide_fact |
216 |
DEADID.inj_map DEADID.inj_map_strong DEADID.map_comp DEADID.map_cong DEADID.map_cong0 |
|
217 |
DEADID.map_cong_simp DEADID.map_id DEADID.map_id0 DEADID.map_ident DEADID.map_transfer |
|
218 |
DEADID.rel_Grp DEADID.rel_compp DEADID.rel_compp_Grp DEADID.rel_conversep DEADID.rel_eq |
|
219 |
DEADID.rel_flip DEADID.rel_map DEADID.rel_mono DEADID.rel_transfer |
|
220 |
ID.inj_map ID.inj_map_strong ID.map_comp ID.map_cong ID.map_cong0 ID.map_cong_simp ID.map_id |
|
221 |
ID.map_id0 ID.map_ident ID.map_transfer ID.rel_Grp ID.rel_compp ID.rel_compp_Grp ID.rel_conversep |
|
222 |
ID.rel_eq ID.rel_flip ID.rel_map ID.rel_mono ID.rel_transfer ID.set_map ID.set_transfer |
|
223 |
||
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
224 |
end |