| author | wenzelm |
| Tue, 08 May 2007 17:40:18 +0200 | |
| changeset 22871 | 9ffb43b19ec6 |
| parent 22838 | 466599ecf610 |
| child 23199 | 42004f6d908b |
| permissions | -rw-r--r-- |
| 21163 | 1 |
(* Title: HOL/simpdata.ML |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Instantiation of the generic simplifier for HOL. |
|
7 |
*) |
|
8 |
||
9 |
(** tools setup **) |
|
10 |
||
11 |
structure Quantifier1 = Quantifier1Fun |
|
12 |
(struct |
|
13 |
(*abstract syntax*) |
|
14 |
fun dest_eq ((c as Const("op =",_)) $ s $ t) = SOME (c, s, t)
|
|
15 |
| dest_eq _ = NONE; |
|
16 |
fun dest_conj ((c as Const("op &",_)) $ s $ t) = SOME (c, s, t)
|
|
17 |
| dest_conj _ = NONE; |
|
18 |
fun dest_imp ((c as Const("op -->",_)) $ s $ t) = SOME (c, s, t)
|
|
19 |
| dest_imp _ = NONE; |
|
20 |
val conj = HOLogic.conj |
|
21 |
val imp = HOLogic.imp |
|
22 |
(*rules*) |
|
| 22147 | 23 |
val iff_reflection = @{thm eq_reflection}
|
24 |
val iffI = @{thm iffI}
|
|
25 |
val iff_trans = @{thm trans}
|
|
26 |
val conjI= @{thm conjI}
|
|
27 |
val conjE= @{thm conjE}
|
|
28 |
val impI = @{thm impI}
|
|
29 |
val mp = @{thm mp}
|
|
30 |
val uncurry = @{thm uncurry}
|
|
31 |
val exI = @{thm exI}
|
|
32 |
val exE = @{thm exE}
|
|
33 |
val iff_allI = @{thm iff_allI}
|
|
34 |
val iff_exI = @{thm iff_exI}
|
|
35 |
val all_comm = @{thm all_comm}
|
|
36 |
val ex_comm = @{thm ex_comm}
|
|
| 21163 | 37 |
end); |
38 |
||
| 21551 | 39 |
structure Simpdata = |
| 21163 | 40 |
struct |
41 |
||
| 22147 | 42 |
fun mk_meta_eq r = r RS @{thm eq_reflection};
|
| 21163 | 43 |
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r; |
44 |
||
| 22147 | 45 |
fun mk_eq th = case concl_of th |
| 21163 | 46 |
(*expects Trueprop if not == *) |
| 21551 | 47 |
of Const ("==",_) $ _ $ _ => th
|
48 |
| _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq th
|
|
| 22147 | 49 |
| _ $ (Const ("Not", _) $ _) => th RS @{thm Eq_FalseI}
|
50 |
| _ => th RS @{thm Eq_TrueI}
|
|
| 21163 | 51 |
|
| 22147 | 52 |
fun mk_eq_True r = |
53 |
SOME (r RS @{thm meta_eq_to_obj_eq} RS @{thm Eq_TrueI}) handle Thm.THM _ => NONE;
|
|
| 21163 | 54 |
|
55 |
(* Produce theorems of the form |
|
56 |
(P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y) |
|
57 |
*) |
|
| 22838 | 58 |
|
| 22147 | 59 |
fun lift_meta_eq_to_obj_eq i st = |
| 21163 | 60 |
let |
61 |
fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
|
|
62 |
| count_imp _ = 0; |
|
63 |
val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1))) |
|
| 22147 | 64 |
in if j = 0 then @{thm meta_eq_to_obj_eq}
|
| 21163 | 65 |
else |
66 |
let |
|
67 |
val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
|
|
68 |
fun mk_simp_implies Q = foldr (fn (R, S) => |
|
69 |
Const ("HOL.simp_implies", propT --> propT --> propT) $ R $ S) Q Ps
|
|
70 |
val aT = TFree ("'a", HOLogic.typeS);
|
|
71 |
val x = Free ("x", aT);
|
|
72 |
val y = Free ("y", aT)
|
|
73 |
in Goal.prove_global (Thm.theory_of_thm st) [] |
|
74 |
[mk_simp_implies (Logic.mk_equals (x, y))] |
|
75 |
(mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y)))) |
|
76 |
(fn prems => EVERY |
|
| 22147 | 77 |
[rewrite_goals_tac @{thms simp_implies_def},
|
78 |
REPEAT (ares_tac (@{thm meta_eq_to_obj_eq} ::
|
|
79 |
map (rewrite_rule @{thms simp_implies_def}) prems) 1)])
|
|
| 21163 | 80 |
end |
81 |
end; |
|
82 |
||
83 |
(*Congruence rules for = (instead of ==)*) |
|
84 |
fun mk_meta_cong rl = zero_var_indexes |
|
85 |
(let val rl' = Seq.hd (TRYALL (fn i => fn st => |
|
86 |
rtac (lift_meta_eq_to_obj_eq i st) i st) rl) |
|
87 |
in mk_meta_eq rl' handle THM _ => |
|
88 |
if can Logic.dest_equals (concl_of rl') then rl' |
|
89 |
else error "Conclusion of congruence rules must be =-equality" |
|
90 |
end); |
|
91 |
||
92 |
fun mk_atomize pairs = |
|
93 |
let |
|
|
21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
94 |
fun atoms thm = |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
95 |
let |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
96 |
fun res th = map (fn rl => th RS rl); (*exception THM*) |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
97 |
fun res_fixed rls = |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
98 |
if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
99 |
else Variable.trade (K (fn [thm'] => res thm' rls)) (Variable.thm_context thm) [thm]; |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
100 |
in |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
101 |
case concl_of thm |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
102 |
of Const ("Trueprop", _) $ p => (case head_of p
|
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
103 |
of Const (a, _) => (case AList.lookup (op =) pairs a |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
104 |
of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm]) |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
105 |
| NONE => [thm]) |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
106 |
| _ => [thm]) |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
107 |
| _ => [thm] |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
108 |
end; |
| 21163 | 109 |
in atoms end; |
110 |
||
111 |
fun mksimps pairs = |
|
|
21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
112 |
map_filter (try mk_eq) o mk_atomize pairs o gen_all; |
| 21163 | 113 |
|
| 22147 | 114 |
fun unsafe_solver_tac prems = |
115 |
(fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
|
|
116 |
FIRST' [resolve_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems), atac,
|
|
117 |
etac @{thm FalseE}];
|
|
118 |
||
| 21163 | 119 |
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac; |
120 |
||
| 22838 | 121 |
|
| 21163 | 122 |
(*No premature instantiation of variables during simplification*) |
| 22147 | 123 |
fun safe_solver_tac prems = |
124 |
(fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
|
|
125 |
FIRST' [match_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems),
|
|
126 |
eq_assume_tac, ematch_tac @{thms FalseE}];
|
|
127 |
||
| 21163 | 128 |
val safe_solver = mk_solver "HOL safe" safe_solver_tac; |
129 |
||
130 |
structure SplitterData = |
|
131 |
struct |
|
132 |
structure Simplifier = Simplifier |
|
| 21551 | 133 |
val mk_eq = mk_eq |
| 22147 | 134 |
val meta_eq_to_iff = @{thm meta_eq_to_obj_eq}
|
135 |
val iffD = @{thm iffD2}
|
|
136 |
val disjE = @{thm disjE}
|
|
137 |
val conjE = @{thm conjE}
|
|
138 |
val exE = @{thm exE}
|
|
139 |
val contrapos = @{thm contrapos_nn}
|
|
140 |
val contrapos2 = @{thm contrapos_pp}
|
|
141 |
val notnotD = @{thm notnotD}
|
|
| 21163 | 142 |
end; |
143 |
||
144 |
structure Splitter = SplitterFun(SplitterData); |
|
145 |
||
| 21674 | 146 |
val split_tac = Splitter.split_tac; |
147 |
val split_inside_tac = Splitter.split_inside_tac; |
|
148 |
||
149 |
val op addsplits = Splitter.addsplits; |
|
150 |
val op delsplits = Splitter.delsplits; |
|
151 |
val Addsplits = Splitter.Addsplits; |
|
152 |
val Delsplits = Splitter.Delsplits; |
|
153 |
||
154 |
||
| 21163 | 155 |
(* integration of simplifier with classical reasoner *) |
156 |
||
157 |
structure Clasimp = ClasimpFun |
|
158 |
(structure Simplifier = Simplifier and Splitter = Splitter |
|
159 |
and Classical = Classical and Blast = Blast |
|
| 22147 | 160 |
val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE});
|
| 21674 | 161 |
open Clasimp; |
| 21163 | 162 |
|
| 22128 | 163 |
val _ = ML_Context.value_antiq "clasimpset" |
164 |
(Scan.succeed ("clasimpset", "Clasimp.local_clasimpset_of (ML_Context.the_local_context ())"));
|
|
165 |
||
| 21163 | 166 |
val mksimps_pairs = |
| 22147 | 167 |
[("op -->", [@{thm mp}]), ("op &", [@{thm conjunct1}, @{thm conjunct2}]),
|
168 |
("All", [@{thm spec}]), ("True", []), ("False", []),
|
|
169 |
("HOL.If", [@{thm if_bool_eq_conj} RS @{thm iffD1}])];
|
|
| 21163 | 170 |
|
| 21674 | 171 |
val HOL_basic_ss = |
| 22147 | 172 |
Simplifier.theory_context @{theory} empty_ss
|
| 21163 | 173 |
setsubgoaler asm_simp_tac |
174 |
setSSolver safe_solver |
|
175 |
setSolver unsafe_solver |
|
176 |
setmksimps (mksimps mksimps_pairs) |
|
177 |
setmkeqTrue mk_eq_True |
|
178 |
setmkcong mk_meta_cong; |
|
179 |
||
| 21674 | 180 |
fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews); |
| 21163 | 181 |
|
182 |
fun unfold_tac ths = |
|
| 21674 | 183 |
let val ss0 = Simplifier.clear_ss HOL_basic_ss addsimps ths |
| 21163 | 184 |
in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end; |
185 |
||
|
21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
186 |
|
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
187 |
|
| 21163 | 188 |
(** simprocs **) |
189 |
||
190 |
(* simproc for proving "(y = x) == False" from premise "~(x = y)" *) |
|
191 |
||
192 |
val use_neq_simproc = ref true; |
|
193 |
||
194 |
local |
|
| 22147 | 195 |
val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
|
| 21163 | 196 |
fun neq_prover sg ss (eq $ lhs $ rhs) = |
197 |
let |
|
198 |
fun test thm = (case #prop (rep_thm thm) of |
|
199 |
_ $ (Not $ (eq' $ l' $ r')) => |
|
200 |
Not = HOLogic.Not andalso eq' = eq andalso |
|
201 |
r' aconv lhs andalso l' aconv rhs |
|
202 |
| _ => false) |
|
203 |
in if !use_neq_simproc then case find_first test (prems_of_ss ss) |
|
204 |
of NONE => NONE |
|
205 |
| SOME thm => SOME (thm RS neq_to_EQ_False) |
|
206 |
else NONE |
|
207 |
end |
|
208 |
in |
|
209 |
||
| 22147 | 210 |
val neq_simproc = Simplifier.simproc @{theory} "neq_simproc" ["x = y"] neq_prover;
|
| 21163 | 211 |
|
|
21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
212 |
end; |
| 21163 | 213 |
|
214 |
||
215 |
(* simproc for Let *) |
|
216 |
||
217 |
val use_let_simproc = ref true; |
|
218 |
||
219 |
local |
|
220 |
val (f_Let_unfold, x_Let_unfold) = |
|
| 22147 | 221 |
let val [(_$(f$x)$_)] = prems_of @{thm Let_unfold}
|
222 |
in (cterm_of @{theory} f, cterm_of @{theory} x) end
|
|
| 21163 | 223 |
val (f_Let_folded, x_Let_folded) = |
| 22147 | 224 |
let val [(_$(f$x)$_)] = prems_of @{thm Let_folded}
|
225 |
in (cterm_of @{theory} f, cterm_of @{theory} x) end;
|
|
| 21163 | 226 |
val g_Let_folded = |
| 22147 | 227 |
let val [(_$_$(g$_))] = prems_of @{thm Let_folded} in cterm_of @{theory} g end;
|
| 21163 | 228 |
in |
229 |
||
230 |
val let_simproc = |
|
| 22147 | 231 |
Simplifier.simproc @{theory} "let_simp" ["Let x f"]
|
| 22838 | 232 |
(fn thy => fn ss => fn t => |
| 21163 | 233 |
let val ctxt = Simplifier.the_context ss; |
234 |
val ([t'], ctxt') = Variable.import_terms false [t] ctxt; |
|
235 |
in Option.map (hd o Variable.export ctxt' ctxt o single) |
|
236 |
(case t' of (Const ("Let",_)$x$f) => (* x and f are already in normal form *)
|
|
237 |
if not (!use_let_simproc) then NONE |
|
238 |
else if is_Free x orelse is_Bound x orelse is_Const x |
|
| 22147 | 239 |
then SOME @{thm Let_def}
|
| 21163 | 240 |
else |
241 |
let |
|
242 |
val n = case f of (Abs (x,_,_)) => x | _ => "x"; |
|
| 22838 | 243 |
val cx = cterm_of thy x; |
| 21163 | 244 |
val {T=xT,...} = rep_cterm cx;
|
| 22838 | 245 |
val cf = cterm_of thy f; |
| 21163 | 246 |
val fx_g = Simplifier.rewrite ss (Thm.capply cf cx); |
247 |
val (_$_$g) = prop_of fx_g; |
|
248 |
val g' = abstract_over (x,g); |
|
249 |
in (if (g aconv g') |
|
250 |
then |
|
251 |
let |
|
| 22147 | 252 |
val rl = |
253 |
cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] @{thm Let_unfold};
|
|
| 21163 | 254 |
in SOME (rl OF [fx_g]) end |
255 |
else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*) |
|
256 |
else let |
|
257 |
val abs_g'= Abs (n,xT,g'); |
|
258 |
val g'x = abs_g'$x; |
|
| 22838 | 259 |
val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x)); |
| 21163 | 260 |
val rl = cterm_instantiate |
| 22838 | 261 |
[(f_Let_folded,cterm_of thy f),(x_Let_folded,cx), |
262 |
(g_Let_folded,cterm_of thy abs_g')] |
|
| 22147 | 263 |
@{thm Let_folded};
|
| 21163 | 264 |
in SOME (rl OF [transitive fx_g g_g'x]) |
265 |
end) |
|
266 |
end |
|
267 |
| _ => NONE) |
|
268 |
end) |
|
269 |
||
|
21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
270 |
end; |
|
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
271 |
|
| 21163 | 272 |
|
273 |
(* generic refutation procedure *) |
|
274 |
||
275 |
(* parameters: |
|
276 |
||
277 |
test: term -> bool |
|
278 |
tests if a term is at all relevant to the refutation proof; |
|
279 |
if not, then it can be discarded. Can improve performance, |
|
280 |
esp. if disjunctions can be discarded (no case distinction needed!). |
|
281 |
||
282 |
prep_tac: int -> tactic |
|
283 |
A preparation tactic to be applied to the goal once all relevant premises |
|
284 |
have been moved to the conclusion. |
|
285 |
||
286 |
ref_tac: int -> tactic |
|
287 |
the actual refutation tactic. Should be able to deal with goals |
|
288 |
[| A1; ...; An |] ==> False |
|
289 |
where the Ai are atomic, i.e. no top-level &, | or EX |
|
290 |
*) |
|
291 |
||
292 |
local |
|
293 |
val nnf_simpset = |
|
294 |
empty_ss setmkeqTrue mk_eq_True |
|
295 |
setmksimps (mksimps mksimps_pairs) |
|
| 22147 | 296 |
addsimps [@{thm imp_conv_disj}, @{thm iff_conv_conj_imp}, @{thm de_Morgan_disj},
|
297 |
@{thm de_Morgan_conj}, @{thm not_all}, @{thm not_ex}, @{thm not_not}];
|
|
| 21163 | 298 |
fun prem_nnf_tac i st = |
299 |
full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st; |
|
300 |
in |
|
301 |
fun refute_tac test prep_tac ref_tac = |
|
302 |
let val refute_prems_tac = |
|
303 |
REPEAT_DETERM |
|
| 22147 | 304 |
(eresolve_tac [@{thm conjE}, @{thm exE}] 1 ORELSE
|
| 21163 | 305 |
filter_prems_tac test 1 ORELSE |
| 22147 | 306 |
etac @{thm disjE} 1) THEN
|
307 |
((etac @{thm notE} 1 THEN eq_assume_tac 1) ORELSE
|
|
| 21163 | 308 |
ref_tac 1); |
309 |
in EVERY'[TRY o filter_prems_tac test, |
|
| 22147 | 310 |
REPEAT_DETERM o etac @{thm rev_mp}, prep_tac, rtac @{thm ccontr}, prem_nnf_tac,
|
| 21163 | 311 |
SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)] |
312 |
end; |
|
|
21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
313 |
end; |
| 21163 | 314 |
|
315 |
val defALL_regroup = |
|
| 22147 | 316 |
Simplifier.simproc @{theory}
|
| 21163 | 317 |
"defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all; |
318 |
||
319 |
val defEX_regroup = |
|
| 22147 | 320 |
Simplifier.simproc @{theory}
|
| 21163 | 321 |
"defined EX" ["EX x. P x"] Quantifier1.rearrange_ex; |
322 |
||
323 |
||
| 21674 | 324 |
val simpset_simprocs = HOL_basic_ss |
| 21163 | 325 |
addsimprocs [defALL_regroup, defEX_regroup, neq_simproc, let_simproc] |
326 |
||
|
21313
26fc3a45547c
mk_atomize: careful matching against rules admits overloading;
wenzelm
parents:
21163
diff
changeset
|
327 |
end; |
| 21551 | 328 |
|
329 |
structure Splitter = Simpdata.Splitter; |
|
330 |
structure Clasimp = Simpdata.Clasimp; |