| author | wenzelm | 
| Fri, 29 Oct 2010 11:49:56 +0200 | |
| changeset 40255 | 9ffbc25e1606 | 
| parent 39950 | f3c4849868b8 | 
| child 40702 | cf26dd7395e4 | 
| permissions | -rw-r--r-- | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1 | (* Title: HOL/Hilbert_Choice.thy | 
| 32988 | 2 | Author: Lawrence C Paulson, Tobias Nipkow | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 3 | Copyright 2001 University of Cambridge | 
| 12023 | 4 | *) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 5 | |
| 14760 | 6 | header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 7 | |
| 15131 | 8 | theory Hilbert_Choice | 
| 29655 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 haftmann parents: 
27760diff
changeset | 9 | imports Nat Wellfounded Plain | 
| 39943 | 10 | uses ("Tools/choice_specification.ML")
 | 
| 15131 | 11 | begin | 
| 12298 | 12 | |
| 13 | subsection {* Hilbert's epsilon *}
 | |
| 14 | ||
| 31454 | 15 | axiomatization Eps :: "('a => bool) => 'a" where
 | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 16 | someI: "P x ==> P (Eps P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 17 | |
| 14872 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 18 | syntax (epsilon) | 
| 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 19 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 20 | syntax (HOL) | 
| 12298 | 21 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 22 | syntax | 
| 12298 | 23 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 24 | translations | 
| 22690 
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
 wenzelm parents: 
21999diff
changeset | 25 | "SOME x. P" == "CONST Eps (%x. P)" | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 26 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 27 | print_translation {*
 | 
| 35115 | 28 |   [(@{const_syntax Eps}, fn [Abs abs] =>
 | 
| 29 | let val (x, t) = atomic_abs_tr' abs | |
| 30 |       in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
 | |
| 31 | *} -- {* to avoid eta-contraction of body *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 32 | |
| 33057 | 33 | definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
 | 
| 34 | "inv_into A f == %x. SOME y. y : A & f y = x" | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 35 | |
| 32988 | 36 | abbreviation inv :: "('a => 'b) => ('b => 'a)" where
 | 
| 33057 | 37 | "inv == inv_into UNIV" | 
| 14760 | 38 | |
| 39 | ||
| 40 | subsection {*Hilbert's Epsilon-operator*}
 | |
| 41 | ||
| 42 | text{*Easier to apply than @{text someI} if the witness comes from an
 | |
| 43 | existential formula*} | |
| 44 | lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)" | |
| 45 | apply (erule exE) | |
| 46 | apply (erule someI) | |
| 47 | done | |
| 48 | ||
| 49 | text{*Easier to apply than @{text someI} because the conclusion has only one
 | |
| 50 | occurrence of @{term P}.*}
 | |
| 51 | lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 52 | by (blast intro: someI) | |
| 53 | ||
| 54 | text{*Easier to apply than @{text someI2} if the witness comes from an
 | |
| 55 | existential formula*} | |
| 56 | lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 57 | by (blast intro: someI2) | |
| 58 | ||
| 59 | lemma some_equality [intro]: | |
| 60 | "[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a" | |
| 61 | by (blast intro: someI2) | |
| 62 | ||
| 63 | lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a" | |
| 35216 | 64 | by blast | 
| 14760 | 65 | |
| 66 | lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)" | |
| 67 | by (blast intro: someI) | |
| 68 | ||
| 69 | lemma some_eq_trivial [simp]: "(SOME y. y=x) = x" | |
| 70 | apply (rule some_equality) | |
| 71 | apply (rule refl, assumption) | |
| 72 | done | |
| 73 | ||
| 74 | lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x" | |
| 75 | apply (rule some_equality) | |
| 76 | apply (rule refl) | |
| 77 | apply (erule sym) | |
| 78 | done | |
| 79 | ||
| 80 | ||
| 81 | subsection{*Axiom of Choice, Proved Using the Description Operator*}
 | |
| 82 | ||
| 39950 | 83 | lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)" | 
| 14760 | 84 | by (fast elim: someI) | 
| 85 | ||
| 86 | lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)" | |
| 87 | by (fast elim: someI) | |
| 88 | ||
| 89 | ||
| 90 | subsection {*Function Inverse*}
 | |
| 91 | ||
| 33014 | 92 | lemma inv_def: "inv f = (%y. SOME x. f x = y)" | 
| 33057 | 93 | by(simp add: inv_into_def) | 
| 33014 | 94 | |
| 33057 | 95 | lemma inv_into_into: "x : f ` A ==> inv_into A f x : A" | 
| 96 | apply (simp add: inv_into_def) | |
| 32988 | 97 | apply (fast intro: someI2) | 
| 98 | done | |
| 14760 | 99 | |
| 32988 | 100 | lemma inv_id [simp]: "inv id = id" | 
| 33057 | 101 | by (simp add: inv_into_def id_def) | 
| 14760 | 102 | |
| 33057 | 103 | lemma inv_into_f_f [simp]: | 
| 104 | "[| inj_on f A; x : A |] ==> inv_into A f (f x) = x" | |
| 105 | apply (simp add: inv_into_def inj_on_def) | |
| 32988 | 106 | apply (blast intro: someI2) | 
| 14760 | 107 | done | 
| 108 | ||
| 32988 | 109 | lemma inv_f_f: "inj f ==> inv f (f x) = x" | 
| 35216 | 110 | by simp | 
| 32988 | 111 | |
| 33057 | 112 | lemma f_inv_into_f: "y : f`A ==> f (inv_into A f y) = y" | 
| 113 | apply (simp add: inv_into_def) | |
| 32988 | 114 | apply (fast intro: someI2) | 
| 115 | done | |
| 116 | ||
| 33057 | 117 | lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x" | 
| 32988 | 118 | apply (erule subst) | 
| 33057 | 119 | apply (fast intro: inv_into_f_f) | 
| 32988 | 120 | done | 
| 121 | ||
| 122 | lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x" | |
| 33057 | 123 | by (simp add:inv_into_f_eq) | 
| 32988 | 124 | |
| 125 | lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g" | |
| 33057 | 126 | by (blast intro: ext inv_into_f_eq) | 
| 14760 | 127 | |
| 128 | text{*But is it useful?*}
 | |
| 129 | lemma inj_transfer: | |
| 130 | assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)" | |
| 131 | shows "P x" | |
| 132 | proof - | |
| 133 | have "f x \<in> range f" by auto | |
| 134 | hence "P(inv f (f x))" by (rule minor) | |
| 33057 | 135 | thus "P x" by (simp add: inv_into_f_f [OF injf]) | 
| 14760 | 136 | qed | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 137 | |
| 14760 | 138 | lemma inj_iff: "(inj f) = (inv f o f = id)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 139 | apply (simp add: o_def fun_eq_iff) | 
| 33057 | 140 | apply (blast intro: inj_on_inverseI inv_into_f_f) | 
| 14760 | 141 | done | 
| 142 | ||
| 23433 | 143 | lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id" | 
| 144 | by (simp add: inj_iff) | |
| 145 | ||
| 146 | lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g" | |
| 147 | by (simp add: o_assoc[symmetric]) | |
| 148 | ||
| 33057 | 149 | lemma inv_into_image_cancel[simp]: | 
| 150 | "inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S" | |
| 32988 | 151 | by(fastsimp simp: image_def) | 
| 152 | ||
| 14760 | 153 | lemma inj_imp_surj_inv: "inj f ==> surj (inv f)" | 
| 33057 | 154 | by (blast intro: surjI inv_into_f_f) | 
| 14760 | 155 | |
| 156 | lemma surj_f_inv_f: "surj f ==> f(inv f y) = y" | |
| 33057 | 157 | by (simp add: f_inv_into_f surj_range) | 
| 14760 | 158 | |
| 33057 | 159 | lemma inv_into_injective: | 
| 160 | assumes eq: "inv_into A f x = inv_into A f y" | |
| 32988 | 161 | and x: "x: f`A" | 
| 162 | and y: "y: f`A" | |
| 14760 | 163 | shows "x=y" | 
| 164 | proof - | |
| 33057 | 165 | have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp | 
| 166 | thus ?thesis by (simp add: f_inv_into_f x y) | |
| 14760 | 167 | qed | 
| 168 | ||
| 33057 | 169 | lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B" | 
| 170 | by (blast intro: inj_onI dest: inv_into_injective injD) | |
| 32988 | 171 | |
| 33057 | 172 | lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A" | 
| 173 | by (auto simp add: bij_betw_def inj_on_inv_into) | |
| 14760 | 174 | |
| 175 | lemma surj_imp_inj_inv: "surj f ==> inj (inv f)" | |
| 33057 | 176 | by (simp add: inj_on_inv_into surj_range) | 
| 14760 | 177 | |
| 178 | lemma surj_iff: "(surj f) = (f o inv f = id)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 179 | apply (simp add: o_def fun_eq_iff) | 
| 14760 | 180 | apply (blast intro: surjI surj_f_inv_f) | 
| 181 | done | |
| 182 | ||
| 183 | lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g" | |
| 184 | apply (rule ext) | |
| 185 | apply (drule_tac x = "inv f x" in spec) | |
| 186 | apply (simp add: surj_f_inv_f) | |
| 187 | done | |
| 188 | ||
| 189 | lemma bij_imp_bij_inv: "bij f ==> bij (inv f)" | |
| 190 | by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) | |
| 12372 | 191 | |
| 14760 | 192 | lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g" | 
| 193 | apply (rule ext) | |
| 33057 | 194 | apply (auto simp add: inv_into_def) | 
| 14760 | 195 | done | 
| 196 | ||
| 197 | lemma inv_inv_eq: "bij f ==> inv (inv f) = f" | |
| 198 | apply (rule inv_equality) | |
| 199 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 200 | done | |
| 201 | ||
| 202 | (** bij(inv f) implies little about f. Consider f::bool=>bool such that | |
| 203 | f(True)=f(False)=True. Then it's consistent with axiom someI that | |
| 204 | inv f could be any function at all, including the identity function. | |
| 205 | If inv f=id then inv f is a bijection, but inj f, surj(f) and | |
| 206 | inv(inv f)=f all fail. | |
| 207 | **) | |
| 208 | ||
| 33057 | 209 | lemma inv_into_comp: | 
| 32988 | 210 | "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==> | 
| 33057 | 211 | inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x" | 
| 212 | apply (rule inv_into_f_eq) | |
| 32988 | 213 | apply (fast intro: comp_inj_on) | 
| 33057 | 214 | apply (simp add: inv_into_into) | 
| 215 | apply (simp add: f_inv_into_f inv_into_into) | |
| 32988 | 216 | done | 
| 217 | ||
| 14760 | 218 | lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f" | 
| 219 | apply (rule inv_equality) | |
| 220 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 221 | done | |
| 222 | ||
| 223 | lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A" | |
| 224 | by (simp add: image_eq_UN surj_f_inv_f) | |
| 225 | ||
| 226 | lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A" | |
| 227 | by (simp add: image_eq_UN) | |
| 228 | ||
| 229 | lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X" | |
| 230 | by (auto simp add: image_def) | |
| 231 | ||
| 232 | lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
 | |
| 233 | apply auto | |
| 234 | apply (force simp add: bij_is_inj) | |
| 235 | apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) | |
| 236 | done | |
| 237 | ||
| 238 | lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" | |
| 239 | apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) | |
| 33057 | 240 | apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric]) | 
| 14760 | 241 | done | 
| 242 | ||
| 31380 | 243 | lemma finite_fun_UNIVD1: | 
| 244 |   assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | |
| 245 | and card: "card (UNIV :: 'b set) \<noteq> Suc 0" | |
| 246 | shows "finite (UNIV :: 'a set)" | |
| 247 | proof - | |
| 248 | from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2) | |
| 249 | with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)" | |
| 250 | by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff) | |
| 251 | then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto | |
| 252 | then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq) | |
| 253 | from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI) | |
| 254 | moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" | |
| 255 | proof (rule UNIV_eq_I) | |
| 256 | fix x :: 'a | |
| 33057 | 257 | from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def) | 
| 31380 | 258 | thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast | 
| 259 | qed | |
| 260 | ultimately show "finite (UNIV :: 'a set)" by simp | |
| 261 | qed | |
| 14760 | 262 | |
| 263 | ||
| 264 | subsection {*Other Consequences of Hilbert's Epsilon*}
 | |
| 265 | ||
| 266 | text {*Hilbert's Epsilon and the @{term split} Operator*}
 | |
| 267 | ||
| 268 | text{*Looping simprule*}
 | |
| 269 | lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))" | |
| 26347 | 270 | by simp | 
| 14760 | 271 | |
| 272 | lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))" | |
| 26347 | 273 | by (simp add: split_def) | 
| 14760 | 274 | |
| 275 | lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)" | |
| 26347 | 276 | by blast | 
| 14760 | 277 | |
| 278 | ||
| 279 | text{*A relation is wellfounded iff it has no infinite descending chain*}
 | |
| 280 | lemma wf_iff_no_infinite_down_chain: | |
| 281 | "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))" | |
| 282 | apply (simp only: wf_eq_minimal) | |
| 283 | apply (rule iffI) | |
| 284 | apply (rule notI) | |
| 285 | apply (erule exE) | |
| 286 |  apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
 | |
| 287 | apply (erule contrapos_np, simp, clarify) | |
| 288 | apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q") | |
| 289 | apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI) | |
| 290 | apply (rule allI, simp) | |
| 291 | apply (rule someI2_ex, blast, blast) | |
| 292 | apply (rule allI) | |
| 293 | apply (induct_tac "n", simp_all) | |
| 294 | apply (rule someI2_ex, blast+) | |
| 295 | done | |
| 296 | ||
| 27760 | 297 | lemma wf_no_infinite_down_chainE: | 
| 298 | assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r" | |
| 299 | using `wf r` wf_iff_no_infinite_down_chain[of r] by blast | |
| 300 | ||
| 301 | ||
| 14760 | 302 | text{*A dynamically-scoped fact for TFL *}
 | 
| 12298 | 303 | lemma tfl_some: "\<forall>P x. P x --> P (Eps P)" | 
| 304 | by (blast intro: someI) | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 305 | |
| 12298 | 306 | |
| 307 | subsection {* Least value operator *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 308 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 309 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 310 | LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where | 
| 14760 | 311 | "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 312 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 313 | syntax | 
| 12298 | 314 |   "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 315 | translations | 
| 35115 | 316 | "LEAST x WRT m. P" == "CONST LeastM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 317 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 318 | lemma LeastMI2: | 
| 12298 | 319 | "P x ==> (!!y. P y ==> m x <= m y) | 
| 320 | ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x) | |
| 321 | ==> Q (LeastM m P)" | |
| 14760 | 322 | apply (simp add: LeastM_def) | 
| 14208 | 323 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 324 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 325 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 326 | lemma LeastM_equality: | 
| 12298 | 327 | "P k ==> (!!x. P x ==> m k <= m x) | 
| 328 | ==> m (LEAST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 329 | apply (rule LeastMI2, assumption, blast) | 
| 12298 | 330 | apply (blast intro!: order_antisym) | 
| 331 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 332 | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 333 | lemma wf_linord_ex_has_least: | 
| 14760 | 334 | "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k | 
| 335 | ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)" | |
| 12298 | 336 | apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]]) | 
| 14208 | 337 | apply (drule_tac x = "m`Collect P" in spec, force) | 
| 12298 | 338 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 339 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 340 | lemma ex_has_least_nat: | 
| 14760 | 341 | "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))" | 
| 12298 | 342 | apply (simp only: pred_nat_trancl_eq_le [symmetric]) | 
| 343 | apply (rule wf_pred_nat [THEN wf_linord_ex_has_least]) | |
| 16796 | 344 | apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption) | 
| 12298 | 345 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 346 | |
| 12298 | 347 | lemma LeastM_nat_lemma: | 
| 14760 | 348 | "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))" | 
| 349 | apply (simp add: LeastM_def) | |
| 12298 | 350 | apply (rule someI_ex) | 
| 351 | apply (erule ex_has_least_nat) | |
| 352 | done | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 353 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 354 | lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard] | 
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 355 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 356 | lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)" | 
| 14208 | 357 | by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption) | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 358 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 359 | |
| 12298 | 360 | subsection {* Greatest value operator *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 361 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 362 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 363 | GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where | 
| 14760 | 364 | "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)" | 
| 12298 | 365 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 366 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 367 |   Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where
 | 
| 12298 | 368 | "Greatest == GreatestM (%x. x)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 369 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 370 | syntax | 
| 35115 | 371 | "_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a" | 
| 12298 | 372 |       ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 373 | translations | 
| 35115 | 374 | "GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 375 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 376 | lemma GreatestMI2: | 
| 12298 | 377 | "P x ==> (!!y. P y ==> m y <= m x) | 
| 378 | ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x) | |
| 379 | ==> Q (GreatestM m P)" | |
| 14760 | 380 | apply (simp add: GreatestM_def) | 
| 14208 | 381 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 382 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 383 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 384 | lemma GreatestM_equality: | 
| 12298 | 385 | "P k ==> (!!x. P x ==> m x <= m k) | 
| 386 | ==> m (GREATEST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 387 | apply (rule_tac m = m in GreatestMI2, assumption, blast) | 
| 12298 | 388 | apply (blast intro!: order_antisym) | 
| 389 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 390 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 391 | lemma Greatest_equality: | 
| 12298 | 392 | "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k" | 
| 14760 | 393 | apply (simp add: Greatest_def) | 
| 14208 | 394 | apply (erule GreatestM_equality, blast) | 
| 12298 | 395 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 396 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 397 | lemma ex_has_greatest_nat_lemma: | 
| 14760 | 398 | "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x)) | 
| 399 | ==> \<exists>y. P y & ~ (m y < m k + n)" | |
| 15251 | 400 | apply (induct n, force) | 
| 12298 | 401 | apply (force simp add: le_Suc_eq) | 
| 402 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 403 | |
| 12298 | 404 | lemma ex_has_greatest_nat: | 
| 14760 | 405 | "P k ==> \<forall>y. P y --> m y < b | 
| 406 | ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)" | |
| 12298 | 407 | apply (rule ccontr) | 
| 408 | apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma) | |
| 14208 | 409 | apply (subgoal_tac [3] "m k <= b", auto) | 
| 12298 | 410 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 411 | |
| 12298 | 412 | lemma GreatestM_nat_lemma: | 
| 14760 | 413 | "P k ==> \<forall>y. P y --> m y < b | 
| 414 | ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))" | |
| 415 | apply (simp add: GreatestM_def) | |
| 12298 | 416 | apply (rule someI_ex) | 
| 14208 | 417 | apply (erule ex_has_greatest_nat, assumption) | 
| 12298 | 418 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 419 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 420 | lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard] | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 421 | |
| 12298 | 422 | lemma GreatestM_nat_le: | 
| 14760 | 423 | "P x ==> \<forall>y. P y --> m y < b | 
| 12298 | 424 | ==> (m x::nat) <= m (GreatestM m P)" | 
| 21020 | 425 | apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P]) | 
| 12298 | 426 | done | 
| 427 | ||
| 428 | ||
| 429 | text {* \medskip Specialization to @{text GREATEST}. *}
 | |
| 430 | ||
| 14760 | 431 | lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)" | 
| 432 | apply (simp add: Greatest_def) | |
| 14208 | 433 | apply (rule GreatestM_natI, auto) | 
| 12298 | 434 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 435 | |
| 12298 | 436 | lemma Greatest_le: | 
| 14760 | 437 | "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)" | 
| 438 | apply (simp add: Greatest_def) | |
| 14208 | 439 | apply (rule GreatestM_nat_le, auto) | 
| 12298 | 440 | done | 
| 441 | ||
| 442 | ||
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 443 | subsection {* Specification package -- Hilbertized version *}
 | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 444 | |
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 445 | lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c" | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 446 | by (simp only: someI_ex) | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 447 | |
| 31723 
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
 haftmann parents: 
31454diff
changeset | 448 | use "Tools/choice_specification.ML" | 
| 14115 | 449 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 450 | end |