| author | wenzelm | 
| Fri, 29 Oct 2010 11:49:56 +0200 | |
| changeset 40255 | 9ffbc25e1606 | 
| parent 40163 | a462d5207aa6 | 
| child 40513 | 1204d268464f | 
| permissions | -rw-r--r-- | 
| 35172 | 1 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2 | header {* Kurzweil-Henstock Gauge Integration in many dimensions. *}
 | 
| 35172 | 3 | (* Author: John Harrison | 
| 4 | Translation from HOL light: Robert Himmelmann, TU Muenchen *) | |
| 5 | ||
| 35292 
e4a431b6d9b7
Replaced Integration by Multivariate-Analysis/Real_Integration
 hoelzl parents: 
35291diff
changeset | 6 | theory Integration | 
| 37665 | 7 | imports Derivative "~~/src/HOL/Decision_Procs/Dense_Linear_Order" Indicator_Function | 
| 35172 | 8 | begin | 
| 9 | ||
| 36899 
bcd6fce5bf06
layered SMT setup, adapted SMT clients, added further tests, made Z3 proof abstraction configurable
 boehmes parents: 
36844diff
changeset | 10 | declare [[smt_certificates="~~/src/HOL/Multivariate_Analysis/Integration.certs"]] | 
| 40163 
a462d5207aa6
changed SMT configuration options; updated SMT certificates
 boehmes parents: 
39302diff
changeset | 11 | declare [[smt_fixed=true]] | 
| 
a462d5207aa6
changed SMT configuration options; updated SMT certificates
 boehmes parents: 
39302diff
changeset | 12 | declare [[smt_oracle=false]] | 
| 35172 | 13 | |
| 36899 
bcd6fce5bf06
layered SMT setup, adapted SMT clients, added further tests, made Z3 proof abstraction configurable
 boehmes parents: 
36844diff
changeset | 14 | setup {* Arith_Data.add_tactic "Ferrante-Rackoff" (K FerranteRackoff.dlo_tac) *}
 | 
| 
bcd6fce5bf06
layered SMT setup, adapted SMT clients, added further tests, made Z3 proof abstraction configurable
 boehmes parents: 
36844diff
changeset | 15 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 16 | (*declare not_less[simp] not_le[simp]*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 17 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 18 | lemmas scaleR_simps = scaleR_zero_left scaleR_minus_left scaleR_left_diff_distrib | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 19 | scaleR_zero_right scaleR_minus_right scaleR_right_diff_distrib scaleR_eq_0_iff | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 20 | scaleR_cancel_left scaleR_cancel_right scaleR.add_right scaleR.add_left real_vector_class.scaleR_one | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 21 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 22 | lemma real_arch_invD: | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 23 | "0 < (e::real) \<Longrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 24 | by(subst(asm) real_arch_inv) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 25 | subsection {* Sundries *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 26 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 27 | (*declare basis_component[simp]*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 28 | |
| 35172 | 29 | lemma conjunctD2: assumes "a \<and> b" shows a b using assms by auto | 
| 30 | lemma conjunctD3: assumes "a \<and> b \<and> c" shows a b c using assms by auto | |
| 31 | lemma conjunctD4: assumes "a \<and> b \<and> c \<and> d" shows a b c d using assms by auto | |
| 32 | lemma conjunctD5: assumes "a \<and> b \<and> c \<and> d \<and> e" shows a b c d e using assms by auto | |
| 33 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 34 | declare norm_triangle_ineq4[intro] | 
| 35172 | 35 | |
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 36 | lemma simple_image: "{f x |x . x \<in> s} = f ` s" by blast
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 37 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 38 | lemma linear_simps: assumes "bounded_linear f" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 39 | shows "f (a + b) = f a + f b" "f (a - b) = f a - f b" "f 0 = 0" "f (- a) = - f a" "f (s *\<^sub>R v) = s *\<^sub>R (f v)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 40 | apply(rule_tac[!] additive.add additive.minus additive.diff additive.zero bounded_linear.scaleR) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 41 | using assms unfolding bounded_linear_def additive_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 42 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 43 | lemma bounded_linearI:assumes "\<And>x y. f (x + y) = f x + f y" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 44 | "\<And>r x. f (r *\<^sub>R x) = r *\<^sub>R f x" "\<And>x. norm (f x) \<le> norm x * K" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 45 | shows "bounded_linear f" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 46 | unfolding bounded_linear_def additive_def bounded_linear_axioms_def using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 47 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 48 | lemma real_le_inf_subset: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 49 |   assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. b <=* s" shows "Inf s <= Inf (t::real set)"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 50 | apply(rule isGlb_le_isLb) apply(rule Inf[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 51 | using assms apply-apply(erule exE) apply(rule_tac x=b in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 52 | unfolding isLb_def setge_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 53 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 54 | lemma real_ge_sup_subset: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 55 |   assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. s *<= b" shows "Sup s >= Sup (t::real set)"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 56 | apply(rule isLub_le_isUb) apply(rule Sup[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 57 | using assms apply-apply(erule exE) apply(rule_tac x=b in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 58 | unfolding isUb_def setle_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 59 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 60 | lemma bounded_linear_component[intro]: "bounded_linear (\<lambda>x::'a::euclidean_space. x $$ k)" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 61 | apply(rule bounded_linearI[where K=1]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 62 | using component_le_norm[of _ k] unfolding real_norm_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 63 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 64 | lemma transitive_stepwise_lt_eq: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 65 | assumes "(\<And>x y z::nat. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 66 | shows "((\<forall>m. \<forall>n>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n)))" (is "?l = ?r") | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 67 | proof(safe) assume ?r fix n m::nat assume "m < n" thus "R m n" apply- | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 68 | proof(induct n arbitrary: m) case (Suc n) show ?case | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 69 | proof(cases "m < n") case True | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 70 | show ?thesis apply(rule assms[OF Suc(1)[OF True]]) using `?r` by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 71 | next case False hence "m = n" using Suc(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 72 | thus ?thesis using `?r` by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 73 | qed qed auto qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 74 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 75 | lemma transitive_stepwise_gt: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 76 | assumes "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) " | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 77 | shows "\<forall>n>m. R m n" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 78 | proof- have "\<forall>m. \<forall>n>m. R m n" apply(subst transitive_stepwise_lt_eq) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 79 | apply(rule assms) apply(assumption,assumption) using assms(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 80 | thus ?thesis by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 81 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 82 | lemma transitive_stepwise_le_eq: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 83 | assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 84 | shows "(\<forall>m. \<forall>n\<ge>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n))" (is "?l = ?r") | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 85 | proof safe assume ?r fix m n::nat assume "m\<le>n" thus "R m n" apply- | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 86 | proof(induct n arbitrary: m) case (Suc n) show ?case | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 87 | proof(cases "m \<le> n") case True show ?thesis apply(rule assms(2)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 88 | apply(rule Suc(1)[OF True]) using `?r` by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 89 | next case False hence "m = Suc n" using Suc(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 90 | thus ?thesis using assms(1) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 91 | qed qed(insert assms(1), auto) qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 92 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 93 | lemma transitive_stepwise_le: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 94 | assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) " | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 95 | shows "\<forall>n\<ge>m. R m n" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 96 | proof- have "\<forall>m. \<forall>n\<ge>m. R m n" apply(subst transitive_stepwise_le_eq) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 97 | apply(rule assms) apply(rule assms,assumption,assumption) using assms(3) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 98 | thus ?thesis by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 99 | |
| 35172 | 100 | subsection {* Some useful lemmas about intervals. *}
 | 
| 101 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 102 | abbreviation One where "One \<equiv> ((\<chi>\<chi> i. 1)::_::ordered_euclidean_space)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 103 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 104 | lemma empty_as_interval: "{} = {One..0}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 105 | apply(rule set_eqI,rule) defer unfolding mem_interval | 
| 35172 | 106 | using UNIV_witness[where 'a='n] apply(erule_tac exE,rule_tac x=x in allE) by auto | 
| 107 | ||
| 108 | lemma interior_subset_union_intervals: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 109 |   assumes "i = {a..b::'a::ordered_euclidean_space}" "j = {c..d}" "interior j \<noteq> {}" "i \<subseteq> j \<union> s" "interior(i) \<inter> interior(j) = {}"
 | 
| 35172 | 110 | shows "interior i \<subseteq> interior s" proof- | 
| 111 |   have "{a<..<b} \<inter> {c..d} = {}" using inter_interval_mixed_eq_empty[of c d a b] and assms(3,5)
 | |
| 112 | unfolding assms(1,2) interior_closed_interval by auto | |
| 113 |   moreover have "{a<..<b} \<subseteq> {c..d} \<union> s" apply(rule order_trans,rule interval_open_subset_closed)
 | |
| 114 | using assms(4) unfolding assms(1,2) by auto | |
| 115 | ultimately show ?thesis apply-apply(rule interior_maximal) defer apply(rule open_interior) | |
| 116 | unfolding assms(1,2) interior_closed_interval by auto qed | |
| 117 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 118 | lemma inter_interior_unions_intervals: fixes f::"('a::ordered_euclidean_space) set set"
 | 
| 35172 | 119 |   assumes "finite f" "open s" "\<forall>t\<in>f. \<exists>a b. t = {a..b}" "\<forall>t\<in>f. s \<inter> (interior t) = {}"
 | 
| 120 |   shows "s \<inter> interior(\<Union>f) = {}" proof(rule ccontr,unfold ex_in_conv[THEN sym]) case goal1
 | |
| 121 | have lem1:"\<And>x e s U. ball x e \<subseteq> s \<inter> interior U \<longleftrightarrow> ball x e \<subseteq> s \<inter> U" apply rule defer apply(rule_tac Int_greatest) | |
| 122 | unfolding open_subset_interior[OF open_ball] using interior_subset by auto | |
| 123 | have lem2:"\<And>x s P. \<exists>x\<in>s. P x \<Longrightarrow> \<exists>x\<in>insert x s. P x" by auto | |
| 124 |   have "\<And>f. finite f \<Longrightarrow> (\<forall>t\<in>f. \<exists>a b. t = {a..b}) \<Longrightarrow> (\<exists>x. x \<in> s \<inter> interior (\<Union>f)) \<Longrightarrow> (\<exists>t\<in>f. \<exists>x. \<exists>e>0. ball x e \<subseteq> s \<inter> t)" proof- case goal1
 | |
| 125 | thus ?case proof(induct rule:finite_induct) | |
| 126 | case empty from this(2) guess x .. hence False unfolding Union_empty interior_empty by auto thus ?case by auto next | |
| 127 | case (insert i f) guess x using insert(5) .. note x = this | |
| 128 | then guess e unfolding open_contains_ball_eq[OF open_Int[OF assms(2) open_interior],rule_format] .. note e=this | |
| 129 | guess a using insert(4)[rule_format,OF insertI1] .. then guess b .. note ab = this | |
| 130 |     show ?case proof(cases "x\<in>i") case False hence "x \<in> UNIV - {a..b}" unfolding ab by auto
 | |
| 131 | then guess d unfolding open_contains_ball_eq[OF open_Diff[OF open_UNIV closed_interval],rule_format] .. | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 132 | hence "0 < d" "ball x (min d e) \<subseteq> UNIV - i" unfolding ab ball_min_Int by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 133 | hence "ball x (min d e) \<subseteq> s \<inter> interior (\<Union>f)" using e unfolding lem1 unfolding ball_min_Int by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 134 | hence "x \<in> s \<inter> interior (\<Union>f)" using `d>0` e by auto | 
| 35172 | 135 | hence "\<exists>t\<in>f. \<exists>x e. 0 < e \<and> ball x e \<subseteq> s \<inter> t" apply-apply(rule insert(3)) using insert(4) by auto thus ?thesis by auto next | 
| 136 |     case True show ?thesis proof(cases "x\<in>{a<..<b}")
 | |
| 137 | case True then guess d unfolding open_contains_ball_eq[OF open_interval,rule_format] .. | |
| 138 | thus ?thesis apply(rule_tac x=i in bexI,rule_tac x=x in exI,rule_tac x="min d e" in exI) | |
| 139 | unfolding ab using interval_open_subset_closed[of a b] and e by fastsimp+ next | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 140 |     case False then obtain k where "x$$k \<le> a$$k \<or> x$$k \<ge> b$$k" and k:"k<DIM('a)" unfolding mem_interval by(auto simp add:not_less) 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 141 | hence "x$$k = a$$k \<or> x$$k = b$$k" using True unfolding ab and mem_interval apply(erule_tac x=k in allE) by auto | 
| 35172 | 142 | hence "\<exists>x. ball x (e/2) \<subseteq> s \<inter> (\<Union>f)" proof(erule_tac disjE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 143 |       let ?z = "x - (e/2) *\<^sub>R basis k" assume as:"x$$k = a$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
 | 
| 35172 | 144 | fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 145 | hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 146 | hence "y$$k < a$$k" using e[THEN conjunct1] k by(auto simp add:field_simps basis_component as) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 147 | hence "y \<notin> i" unfolding ab mem_interval not_all apply(rule_tac x=k in exI) using k by auto thus False using yi by auto qed | 
| 35172 | 148 | moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof | 
| 149 | fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y - (e / 2) *\<^sub>R basis k)" | |
| 150 | apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "(e/2) *\<^sub>R basis k"]) | |
| 151 | unfolding norm_scaleR norm_basis by auto | |
| 36587 | 152 | also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps) | 
| 153 | finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed | |
| 35172 | 154 | ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 155 |     next let ?z = "x + (e/2) *\<^sub>R basis k" assume as:"x$$k = b$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
 | 
| 35172 | 156 | fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 157 | hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 158 | hence "y$$k > b$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 159 | hence "y \<notin> i" unfolding ab mem_interval not_all using k by(rule_tac x=k in exI,auto) thus False using yi by auto qed | 
| 35172 | 160 | moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof | 
| 161 | fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y + (e / 2) *\<^sub>R basis k)" | |
| 162 | apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "- (e/2) *\<^sub>R basis k"]) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 163 | unfolding norm_scaleR by auto | 
| 36587 | 164 | also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps) | 
| 165 | finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed | |
| 35172 | 166 | ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto qed | 
| 167 | then guess x .. hence "x \<in> s \<inter> interior (\<Union>f)" unfolding lem1[where U="\<Union>f",THEN sym] using centre_in_ball e[THEN conjunct1] by auto | |
| 168 | thus ?thesis apply-apply(rule lem2,rule insert(3)) using insert(4) by auto qed qed qed qed note * = this | |
| 169 | guess t using *[OF assms(1,3) goal1] .. from this(2) guess x .. then guess e .. | |
| 170 | hence "x \<in> s" "x\<in>interior t" defer using open_subset_interior[OF open_ball, of x e t] by auto | |
| 171 | thus False using `t\<in>f` assms(4) by auto qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 172 | |
| 35172 | 173 | subsection {* Bounds on intervals where they exist. *}
 | 
| 174 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 175 | definition "interval_upperbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Sup {a. \<exists>x\<in>s. x$$i = a})::'a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 176 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 177 | definition "interval_lowerbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Inf {a. \<exists>x\<in>s. x$$i = a})::'a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 178 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 179 | lemma interval_upperbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_upperbound {a..b} = b"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 180 | using assms unfolding interval_upperbound_def apply(subst euclidean_eq[where 'a='a]) apply safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 181 | unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE) | 
| 35172 | 182 | apply(rule Sup_unique) unfolding setle_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 183 | apply(rule,rule) apply(rule_tac x="b$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=b in bexI) | 
| 35172 | 184 | unfolding mem_interval using assms by auto | 
| 185 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 186 | lemma interval_lowerbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_lowerbound {a..b} = a"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 187 | using assms unfolding interval_lowerbound_def apply(subst euclidean_eq[where 'a='a]) apply safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 188 | unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE) | 
| 35172 | 189 | apply(rule Inf_unique) unfolding setge_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 190 | apply(rule,rule) apply(rule_tac x="a$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=a in bexI) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 191 | unfolding mem_interval using assms by auto | 
| 35172 | 192 | |
| 193 | lemmas interval_bounds = interval_upperbound interval_lowerbound | |
| 194 | ||
| 195 | lemma interval_bounds'[simp]: assumes "{a..b}\<noteq>{}" shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
 | |
| 196 | using assms unfolding interval_ne_empty by auto | |
| 197 | ||
| 198 | subsection {* Content (length, area, volume...) of an interval. *}
 | |
| 199 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 200 | definition "content (s::('a::ordered_euclidean_space) set) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 201 |        (if s = {} then 0 else (\<Prod>i<DIM('a). (interval_upperbound s)$$i - (interval_lowerbound s)$$i))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 202 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 203 | lemma interval_not_empty:"\<forall>i<DIM('a). a$$i \<le> b$$i \<Longrightarrow> {a..b::'a::ordered_euclidean_space} \<noteq> {}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 204 | unfolding interval_eq_empty unfolding not_ex not_less by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 205 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 206 | lemma content_closed_interval: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i \<le> b$$i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 207 |   shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
 | 
| 35172 | 208 | using interval_not_empty[OF assms] unfolding content_def interval_upperbound[OF assms] interval_lowerbound[OF assms] by auto | 
| 209 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 210 | lemma content_closed_interval': fixes a::"'a::ordered_euclidean_space" assumes "{a..b}\<noteq>{}" shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
 | 
| 35172 | 211 | apply(rule content_closed_interval) using assms unfolding interval_ne_empty . | 
| 212 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 213 | lemma content_real:assumes "a\<le>b" shows "content {a..b} = b-a"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 214 | proof- have *:"{..<Suc 0} = {0}" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 215 | show ?thesis unfolding content_def using assms by(auto simp: *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 216 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 217 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 218 | lemma content_unit[intro]: "content{0..One::'a::ordered_euclidean_space} = 1" proof-
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 219 |   have *:"\<forall>i<DIM('a). (0::'a)$$i \<le> (One::'a)$$i" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 220 |   have "0 \<in> {0..One::'a}" unfolding mem_interval by auto
 | 
| 35172 | 221 | thus ?thesis unfolding content_def interval_bounds[OF *] using setprod_1 by auto qed | 
| 222 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 223 | lemma content_pos_le[intro]: fixes a::"'a::ordered_euclidean_space" shows "0 \<le> content {a..b}" proof(cases "{a..b}={}")
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 224 |   case False hence *:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by assumption
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 225 |   have "(\<Prod>i<DIM('a). interval_upperbound {a..b} $$ i - interval_lowerbound {a..b} $$ i) \<ge> 0"
 | 
| 35172 | 226 | apply(rule setprod_nonneg) unfolding interval_bounds[OF *] using * apply(erule_tac x=x in allE) by auto | 
| 227 | thus ?thesis unfolding content_def by(auto simp del:interval_bounds') qed(unfold content_def, auto) | |
| 228 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 229 | lemma content_pos_lt: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i < b$$i" shows "0 < content {a..b}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 230 | proof- have help_lemma1: "\<forall>i<DIM('a). a$$i < b$$i \<Longrightarrow> \<forall>i<DIM('a). a$$i \<le> ((b$$i)::real)" apply(rule,erule_tac x=i in allE) by auto
 | 
| 35172 | 231 | show ?thesis unfolding content_closed_interval[OF help_lemma1[OF assms]] apply(rule setprod_pos) | 
| 232 | using assms apply(erule_tac x=x in allE) by auto qed | |
| 233 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 234 | lemma content_eq_0: "content{a..b::'a::ordered_euclidean_space} = 0 \<longleftrightarrow> (\<exists>i<DIM('a). b$$i \<le> a$$i)" proof(cases "{a..b} = {}")
 | 
| 35172 | 235 | case True thus ?thesis unfolding content_def if_P[OF True] unfolding interval_eq_empty apply- | 
| 236 | apply(rule,erule exE) apply(rule_tac x=i in exI) by auto next | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 237 | case False note this[unfolded interval_eq_empty not_ex not_less] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 238 |   hence as:"\<forall>i<DIM('a). b $$ i \<ge> a $$ i" by fastsimp
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 239 | show ?thesis unfolding content_def if_not_P[OF False] setprod_zero_iff[OF finite_lessThan] | 
| 35172 | 240 | apply(rule) apply(erule_tac[!] exE bexE) unfolding interval_bounds[OF as] apply(rule_tac x=x in exI) defer | 
| 241 | apply(rule_tac x=i in bexI) using as apply(erule_tac x=i in allE) by auto qed | |
| 242 | ||
| 243 | lemma cond_cases:"(P \<Longrightarrow> Q x) \<Longrightarrow> (\<not> P \<Longrightarrow> Q y) \<Longrightarrow> Q (if P then x else y)" by auto | |
| 244 | ||
| 245 | lemma content_closed_interval_cases: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 246 |   "content {a..b::'a::ordered_euclidean_space} = (if \<forall>i<DIM('a). a$$i \<le> b$$i then setprod (\<lambda>i. b$$i - a$$i) {..<DIM('a)} else 0)" apply(rule cond_cases) 
 | 
| 35172 | 247 | apply(rule content_closed_interval) unfolding content_eq_0 not_all not_le defer apply(erule exE,rule_tac x=x in exI) by auto | 
| 248 | ||
| 249 | lemma content_eq_0_interior: "content {a..b} = 0 \<longleftrightarrow> interior({a..b}) = {}"
 | |
| 250 | unfolding content_eq_0 interior_closed_interval interval_eq_empty by auto | |
| 251 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 252 | (*lemma content_eq_0_1: "content {a..b::real^1} = 0 \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 253 | unfolding content_eq_0 by auto*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 254 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 255 | lemma content_pos_lt_eq: "0 < content {a..b::'a::ordered_euclidean_space} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i < b$$i)"
 | 
| 35172 | 256 |   apply(rule) defer apply(rule content_pos_lt,assumption) proof- assume "0 < content {a..b}"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 257 |   hence "content {a..b} \<noteq> 0" by auto thus "\<forall>i<DIM('a). a$$i < b$$i" unfolding content_eq_0 not_ex not_le by fastsimp qed
 | 
| 35172 | 258 | |
| 259 | lemma content_empty[simp]: "content {} = 0" unfolding content_def by auto
 | |
| 260 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 261 | lemma content_subset: assumes "{a..b} \<subseteq> {c..d}" shows "content {a..b::'a::ordered_euclidean_space} \<le> content {c..d}" proof(cases "{a..b}={}")
 | 
| 35172 | 262 | case True thus ?thesis using content_pos_le[of c d] by auto next | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 263 |   case False hence ab_ne:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by auto
 | 
| 35172 | 264 |   hence ab_ab:"a\<in>{a..b}" "b\<in>{a..b}" unfolding mem_interval by auto
 | 
| 265 |   have "{c..d} \<noteq> {}" using assms False by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 266 |   hence cd_ne:"\<forall>i<DIM('a). c $$ i \<le> d $$ i" using assms unfolding interval_ne_empty by auto
 | 
| 35172 | 267 | show ?thesis unfolding content_def unfolding interval_bounds[OF ab_ne] interval_bounds[OF cd_ne] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 268 |     unfolding if_not_P[OF False] if_not_P[OF `{c..d} \<noteq> {}`] apply(rule setprod_mono,rule) proof
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 269 |     fix i assume i:"i\<in>{..<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 270 | show "0 \<le> b $$ i - a $$ i" using ab_ne[THEN spec[where x=i]] i by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 271 | show "b $$ i - a $$ i \<le> d $$ i - c $$ i" | 
| 35172 | 272 | using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(2),of i] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 273 | using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(1),of i] using i by auto qed qed | 
| 35172 | 274 | |
| 275 | lemma content_lt_nz: "0 < content {a..b} \<longleftrightarrow> content {a..b} \<noteq> 0"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 276 | unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by fastsimp | 
| 35172 | 277 | |
| 278 | subsection {* The notion of a gauge --- simply an open set containing the point. *}
 | |
| 279 | ||
| 280 | definition gauge where "gauge d \<longleftrightarrow> (\<forall>x. x\<in>(d x) \<and> open(d x))" | |
| 281 | ||
| 282 | lemma gaugeI:assumes "\<And>x. x\<in>g x" "\<And>x. open (g x)" shows "gauge g" | |
| 283 | using assms unfolding gauge_def by auto | |
| 284 | ||
| 285 | lemma gaugeD[dest]: assumes "gauge d" shows "x\<in>d x" "open (d x)" using assms unfolding gauge_def by auto | |
| 286 | ||
| 287 | lemma gauge_ball_dependent: "\<forall>x. 0 < e x \<Longrightarrow> gauge (\<lambda>x. ball x (e x))" | |
| 288 | unfolding gauge_def by auto | |
| 289 | ||
| 35751 | 290 | lemma gauge_ball[intro]: "0 < e \<Longrightarrow> gauge (\<lambda>x. ball x e)" unfolding gauge_def by auto | 
| 35172 | 291 | |
| 292 | lemma gauge_trivial[intro]: "gauge (\<lambda>x. ball x 1)" apply(rule gauge_ball) by auto | |
| 293 | ||
| 35751 | 294 | lemma gauge_inter[intro]: "gauge d1 \<Longrightarrow> gauge d2 \<Longrightarrow> gauge (\<lambda>x. (d1 x) \<inter> (d2 x))" | 
| 35172 | 295 | unfolding gauge_def by auto | 
| 296 | ||
| 297 | lemma gauge_inters: assumes "finite s" "\<forall>d\<in>s. gauge (f d)" shows "gauge(\<lambda>x. \<Inter> {f d x | d. d \<in> s})" proof-
 | |
| 298 |   have *:"\<And>x. {f d x |d. d \<in> s} = (\<lambda>d. f d x) ` s" by auto show ?thesis
 | |
| 299 | unfolding gauge_def unfolding * | |
| 300 | using assms unfolding Ball_def Inter_iff mem_Collect_eq gauge_def by auto qed | |
| 301 | ||
| 302 | lemma gauge_existence_lemma: "(\<forall>x. \<exists>d::real. p x \<longrightarrow> 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. p x \<longrightarrow> q d x)" by(meson zero_less_one) | |
| 303 | ||
| 304 | subsection {* Divisions. *}
 | |
| 305 | ||
| 306 | definition division_of (infixl "division'_of" 40) where | |
| 307 | "s division_of i \<equiv> | |
| 308 | finite s \<and> | |
| 309 |         (\<forall>k\<in>s. k \<subseteq> i \<and> k \<noteq> {} \<and> (\<exists>a b. k = {a..b})) \<and>
 | |
| 310 |         (\<forall>k1\<in>s. \<forall>k2\<in>s. k1 \<noteq> k2 \<longrightarrow> interior(k1) \<inter> interior(k2) = {}) \<and>
 | |
| 311 | (\<Union>s = i)" | |
| 312 | ||
| 313 | lemma division_ofD[dest]: assumes "s division_of i" | |
| 314 |   shows"finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
 | |
| 315 |   "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i" using assms unfolding division_of_def by auto
 | |
| 316 | ||
| 317 | lemma division_ofI: | |
| 318 |   assumes "finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
 | |
| 319 |   "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i"
 | |
| 320 | shows "s division_of i" using assms unfolding division_of_def by auto | |
| 321 | ||
| 322 | lemma division_of_finite: "s division_of i \<Longrightarrow> finite s" | |
| 323 | unfolding division_of_def by auto | |
| 324 | ||
| 325 | lemma division_of_self[intro]: "{a..b} \<noteq> {} \<Longrightarrow> {{a..b}} division_of {a..b}"
 | |
| 326 | unfolding division_of_def by auto | |
| 327 | ||
| 328 | lemma division_of_trivial[simp]: "s division_of {} \<longleftrightarrow> s = {}" unfolding division_of_def by auto 
 | |
| 329 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 330 | lemma division_of_sing[simp]: "s division_of {a..a::'a::ordered_euclidean_space} \<longleftrightarrow> s = {{a..a}}" (is "?l = ?r") proof
 | 
| 35172 | 331 |   assume ?r moreover { assume "s = {{a}}" moreover fix k assume "k\<in>s" 
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 332 |     ultimately have"\<exists>x y. k = {x..y}" apply(rule_tac x=a in exI)+ unfolding interval_sing by auto }
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 333 | ultimately show ?l unfolding division_of_def interval_sing by auto next | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 334 | assume ?l note as=conjunctD4[OF this[unfolded division_of_def interval_sing]] | 
| 35172 | 335 |   { fix x assume x:"x\<in>s" have "x={a}" using as(2)[rule_format,OF x] by auto }
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 336 |   moreover have "s \<noteq> {}" using as(4) by auto ultimately show ?r unfolding interval_sing by auto qed
 | 
| 35172 | 337 | |
| 338 | lemma elementary_empty: obtains p where "p division_of {}"
 | |
| 339 | unfolding division_of_trivial by auto | |
| 340 | ||
| 341 | lemma elementary_interval: obtains p where  "p division_of {a..b}"
 | |
| 342 | by(metis division_of_trivial division_of_self) | |
| 343 | ||
| 344 | lemma division_contains: "s division_of i \<Longrightarrow> \<forall>x\<in>i. \<exists>k\<in>s. x \<in> k" | |
| 345 | unfolding division_of_def by auto | |
| 346 | ||
| 347 | lemma forall_in_division: | |
| 348 |  "d division_of i \<Longrightarrow> ((\<forall>x\<in>d. P x) \<longleftrightarrow> (\<forall>a b. {a..b} \<in> d \<longrightarrow> P {a..b}))"
 | |
| 349 | unfolding division_of_def by fastsimp | |
| 350 | ||
| 351 | lemma division_of_subset: assumes "p division_of (\<Union>p)" "q \<subseteq> p" shows "q division_of (\<Union>q)" | |
| 352 | apply(rule division_ofI) proof- note as=division_ofD[OF assms(1)] | |
| 353 | show "finite q" apply(rule finite_subset) using as(1) assms(2) by auto | |
| 354 |   { fix k assume "k \<in> q" hence kp:"k\<in>p" using assms(2) by auto show "k\<subseteq>\<Union>q" using `k \<in> q` by auto
 | |
| 355 |   show "\<exists>a b. k = {a..b}" using as(4)[OF kp] by auto show "k \<noteq> {}" using as(3)[OF kp] by auto }
 | |
| 356 | fix k1 k2 assume "k1 \<in> q" "k2 \<in> q" "k1 \<noteq> k2" hence *:"k1\<in>p" "k2\<in>p" "k1\<noteq>k2" using assms(2) by auto | |
| 357 |   show "interior k1 \<inter> interior k2 = {}" using as(5)[OF *] by auto qed auto
 | |
| 358 | ||
| 359 | lemma division_of_union_self[intro]: "p division_of s \<Longrightarrow> p division_of (\<Union>p)" unfolding division_of_def by auto | |
| 360 | ||
| 361 | lemma division_of_content_0: assumes "content {a..b} = 0" "d division_of {a..b}" shows "\<forall>k\<in>d. content k = 0"
 | |
| 362 | unfolding forall_in_division[OF assms(2)] apply(rule,rule,rule) apply(drule division_ofD(2)[OF assms(2)]) | |
| 363 | apply(drule content_subset) unfolding assms(1) proof- case goal1 thus ?case using content_pos_le[of a b] by auto qed | |
| 364 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 365 | lemma division_inter: assumes "p1 division_of s1" "p2 division_of (s2::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 366 |   shows "{k1 \<inter> k2 | k1 k2 .k1 \<in> p1 \<and> k2 \<in> p2 \<and> k1 \<inter> k2 \<noteq> {}} division_of (s1 \<inter> s2)" (is "?A' division_of _") proof-
 | 
| 367 | let ?A = "{s. s \<in>  (\<lambda>(k1,k2). k1 \<inter> k2) ` (p1 \<times> p2) \<and> s \<noteq> {}}" have *:"?A' = ?A" by auto
 | |
| 368 | show ?thesis unfolding * proof(rule division_ofI) have "?A \<subseteq> (\<lambda>(x, y). x \<inter> y) ` (p1 \<times> p2)" by auto | |
| 369 | moreover have "finite (p1 \<times> p2)" using assms unfolding division_of_def by auto ultimately show "finite ?A" by auto | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 370 |   have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_eqI) unfolding * and Union_image_eq UN_iff
 | 
| 35172 | 371 | using division_ofD(6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by auto | 
| 372 |   { fix k assume "k\<in>?A" then obtain k1 k2 where k:"k = k1 \<inter> k2" "k1\<in>p1" "k2\<in>p2" "k\<noteq>{}" by auto thus "k \<noteq> {}" by auto
 | |
| 373 | show "k \<subseteq> s1 \<inter> s2" using division_ofD(2)[OF assms(1) k(2)] and division_ofD(2)[OF assms(2) k(3)] unfolding k by auto | |
| 374 | guess a1 using division_ofD(4)[OF assms(1) k(2)] .. then guess b1 .. note ab1=this | |
| 375 | guess a2 using division_ofD(4)[OF assms(2) k(3)] .. then guess b2 .. note ab2=this | |
| 376 |   show "\<exists>a b. k = {a..b}" unfolding k ab1 ab2 unfolding inter_interval by auto } fix k1 k2
 | |
| 377 |   assume "k1\<in>?A" then obtain x1 y1 where k1:"k1 = x1 \<inter> y1" "x1\<in>p1" "y1\<in>p2" "k1\<noteq>{}" by auto
 | |
| 378 |   assume "k2\<in>?A" then obtain x2 y2 where k2:"k2 = x2 \<inter> y2" "x2\<in>p1" "y2\<in>p2" "k2\<noteq>{}" by auto
 | |
| 379 | assume "k1 \<noteq> k2" hence th:"x1\<noteq>x2 \<or> y1\<noteq>y2" unfolding k1 k2 by auto | |
| 380 |   have *:"(interior x1 \<inter> interior x2 = {} \<or> interior y1 \<inter> interior y2 = {}) \<Longrightarrow>
 | |
| 381 | interior(x1 \<inter> y1) \<subseteq> interior(x1) \<Longrightarrow> interior(x1 \<inter> y1) \<subseteq> interior(y1) \<Longrightarrow> | |
| 382 | interior(x2 \<inter> y2) \<subseteq> interior(x2) \<Longrightarrow> interior(x2 \<inter> y2) \<subseteq> interior(y2) | |
| 383 |       \<Longrightarrow> interior(x1 \<inter> y1) \<inter> interior(x2 \<inter> y2) = {}" by auto
 | |
| 384 |   show "interior k1 \<inter> interior k2 = {}" unfolding k1 k2 apply(rule *) defer apply(rule_tac[1-4] subset_interior)
 | |
| 385 | using division_ofD(5)[OF assms(1) k1(2) k2(2)] | |
| 386 | using division_ofD(5)[OF assms(2) k1(3) k2(3)] using th by auto qed qed | |
| 387 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 388 | lemma division_inter_1: assumes "d division_of i" "{a..b::'a::ordered_euclidean_space} \<subseteq> i"
 | 
| 35172 | 389 |   shows "{ {a..b} \<inter> k |k. k \<in> d \<and> {a..b} \<inter> k \<noteq> {} } division_of {a..b}" proof(cases "{a..b} = {}")
 | 
| 390 | case True show ?thesis unfolding True and division_of_trivial by auto next | |
| 391 |   have *:"{a..b} \<inter> i = {a..b}" using assms(2) by auto 
 | |
| 392 | case False show ?thesis using division_inter[OF division_of_self[OF False] assms(1)] unfolding * by auto qed | |
| 393 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 394 | lemma elementary_inter: assumes "p1 division_of s" "p2 division_of (t::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 395 | shows "\<exists>p. p division_of (s \<inter> t)" | 
| 396 | by(rule,rule division_inter[OF assms]) | |
| 397 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 398 | lemma elementary_inters: assumes "finite f" "f\<noteq>{}" "\<forall>s\<in>f. \<exists>p. p division_of (s::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 399 | shows "\<exists>p. p division_of (\<Inter> f)" using assms apply-proof(induct f rule:finite_induct) | 
| 400 | case (insert x f) show ?case proof(cases "f={}")
 | |
| 401 | case True thus ?thesis unfolding True using insert by auto next | |
| 402 | case False guess p using insert(3)[OF False insert(5)[unfolded ball_simps,THEN conjunct2]] .. | |
| 403 | moreover guess px using insert(5)[rule_format,OF insertI1] .. ultimately | |
| 404 | show ?thesis unfolding Inter_insert apply(rule_tac elementary_inter) by assumption+ qed qed auto | |
| 405 | ||
| 406 | lemma division_disjoint_union: | |
| 407 |   assumes "p1 division_of s1" "p2 division_of s2" "interior s1 \<inter> interior s2 = {}"
 | |
| 408 | shows "(p1 \<union> p2) division_of (s1 \<union> s2)" proof(rule division_ofI) | |
| 409 | note d1 = division_ofD[OF assms(1)] and d2 = division_ofD[OF assms(2)] | |
| 410 | show "finite (p1 \<union> p2)" using d1(1) d2(1) by auto | |
| 411 | show "\<Union>(p1 \<union> p2) = s1 \<union> s2" using d1(6) d2(6) by auto | |
| 412 |   { fix k1 k2 assume as:"k1 \<in> p1 \<union> p2" "k2 \<in> p1 \<union> p2" "k1 \<noteq> k2" moreover let ?g="interior k1 \<inter> interior k2 = {}"
 | |
| 413 |   { assume as:"k1\<in>p1" "k2\<in>p2" have ?g using subset_interior[OF d1(2)[OF as(1)]] subset_interior[OF d2(2)[OF as(2)]]
 | |
| 414 | using assms(3) by blast } moreover | |
| 415 |   { assume as:"k1\<in>p2" "k2\<in>p1" have ?g using subset_interior[OF d1(2)[OF as(2)]] subset_interior[OF d2(2)[OF as(1)]]
 | |
| 416 | using assms(3) by blast} ultimately | |
| 417 | show ?g using d1(5)[OF _ _ as(3)] and d2(5)[OF _ _ as(3)] by auto } | |
| 418 | fix k assume k:"k \<in> p1 \<union> p2" show "k \<subseteq> s1 \<union> s2" using k d1(2) d2(2) by auto | |
| 419 |   show "k \<noteq> {}" using k d1(3) d2(3) by auto show "\<exists>a b. k = {a..b}" using k d1(4) d2(4) by auto qed
 | |
| 420 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 421 | (* move *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 422 | lemma Eucl_nth_inverse[simp]: fixes x::"'a::euclidean_space" shows "(\<chi>\<chi> i. x $$ i) = x" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 423 | apply(subst euclidean_eq) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 424 | |
| 35172 | 425 | lemma partial_division_extend_1: | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 426 |   assumes "{c..d} \<subseteq> {a..b::'a::ordered_euclidean_space}" "{c..d} \<noteq> {}"
 | 
| 35172 | 427 |   obtains p where "p division_of {a..b}" "{c..d} \<in> p"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 428 | proof- def n \<equiv> "DIM('a)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def using DIM_positive[where 'a='a] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 429 |   guess \<pi> using ex_bij_betw_nat_finite_1[OF finite_lessThan[of "DIM('a)"]] .. note \<pi>=this
 | 
| 35172 | 430 |   def \<pi>' \<equiv> "inv_into {1..n} \<pi>"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 431 |   have \<pi>':"bij_betw \<pi>' {..<DIM('a)} {1..n}" using bij_betw_inv_into[OF \<pi>] unfolding \<pi>'_def n_def by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 432 |   hence \<pi>'i:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i \<in> {1..n}" unfolding bij_betw_def by auto 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 433 |   have \<pi>i:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi> i <DIM('a)" using \<pi> unfolding bij_betw_def n_def by auto 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 434 |   have \<pi>\<pi>'[simp]:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi> (\<pi>' i) = i" unfolding \<pi>'_def
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 435 | apply(rule f_inv_into_f) unfolding n_def using \<pi> unfolding bij_betw_def by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 436 |   have \<pi>'\<pi>[simp]:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi>' (\<pi> i) = i" unfolding \<pi>'_def apply(rule inv_into_f_eq)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 437 | using \<pi> unfolding n_def bij_betw_def by auto | 
| 35172 | 438 |   have "{c..d} \<noteq> {}" using assms by auto
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 439 |   let ?p1 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else if \<pi>' i = l then c$$\<pi> l else b$$i)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 440 |   let ?p2 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else if \<pi>' i = l then d$$\<pi> l else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else b$$i)}"
 | 
| 35172 | 441 |   let ?p =  "{?p1 l |l. l \<in> {1..n+1}} \<union> {?p2 l |l. l \<in> {1..n+1}}"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 442 |   have abcd:"\<And>i. i<DIM('a) \<Longrightarrow> a $$ i \<le> c $$ i \<and> c$$i \<le> d$$i \<and> d $$ i \<le> b $$ i" using assms
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 443 | unfolding subset_interval interval_eq_empty by auto | 
| 35172 | 444 | show ?thesis apply(rule that[of ?p]) apply(rule division_ofI) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 445 |   proof- have "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < Suc n"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 446 |     proof(rule ccontr,unfold not_less) fix i assume i:"i<DIM('a)" and "Suc n \<le> \<pi>' i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 447 |       hence "\<pi>' i \<notin> {1..n}" by auto thus False using \<pi>' i unfolding bij_betw_def by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 448 | qed hence "c = (\<chi>\<chi> i. if \<pi>' i < Suc n then c $$ i else a $$ i)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 449 | "d = (\<chi>\<chi> i. if \<pi>' i < Suc n then d $$ i else if \<pi>' i = n + 1 then c $$ \<pi> (n + 1) else b $$ i)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 450 | unfolding euclidean_eq[where 'a='a] using \<pi>' unfolding bij_betw_def by auto | 
| 35172 | 451 |     thus cdp:"{c..d} \<in> ?p" apply-apply(rule UnI1) unfolding mem_Collect_eq apply(rule_tac x="n + 1" in exI) by auto
 | 
| 452 |     have "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p1 l \<subseteq> {a..b}"  "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p2 l \<subseteq> {a..b}"
 | |
| 453 | unfolding subset_eq apply(rule_tac[!] ballI,rule_tac[!] ccontr) | |
| 454 |     proof- fix l assume l:"l\<in>{1..n+1}" fix x assume "x\<notin>{a..b}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 455 | then guess i unfolding mem_interval not_all not_imp .. note i=conjunctD2[OF this] | 
| 35172 | 456 | show "x \<in> ?p1 l \<Longrightarrow> False" "x \<in> ?p2 l \<Longrightarrow> False" unfolding mem_interval apply(erule_tac[!] x=i in allE) | 
| 457 | apply(case_tac[!] "\<pi>' i < l", case_tac[!] "\<pi>' i = l") using abcd[of i] i by auto | |
| 458 |     qed moreover have "\<And>x. x \<in> {a..b} \<Longrightarrow> x \<in> \<Union>?p"
 | |
| 459 |     proof- fix x assume x:"x\<in>{a..b}"
 | |
| 460 |       { presume "x\<notin>{c..d} \<Longrightarrow> x \<in> \<Union>?p" thus "x \<in> \<Union>?p" using cdp by blast }
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 461 |       let ?M = "{i. i\<in>{1..n+1} \<and> \<not> (c $$ \<pi> i \<le> x $$ \<pi> i \<and> x $$ \<pi> i \<le> d $$ \<pi> i)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 462 |       assume "x\<notin>{c..d}" then guess i0 unfolding mem_interval not_all not_imp ..
 | 
| 35172 | 463 | hence "\<pi>' i0 \<in> ?M" using \<pi>' unfolding bij_betw_def by(auto intro!:le_SucI) | 
| 464 |       hence M:"finite ?M" "?M \<noteq> {}" by auto
 | |
| 465 | def l \<equiv> "Min ?M" note l = Min_less_iff[OF M,unfolded l_def[symmetric]] Min_in[OF M,unfolded mem_Collect_eq l_def[symmetric]] | |
| 466 | Min_gr_iff[OF M,unfolded l_def[symmetric]] | |
| 467 | have "x\<in>?p1 l \<or> x\<in>?p2 l" using l(2)[THEN conjunct2] unfolding de_Morgan_conj not_le | |
| 468 | apply- apply(erule disjE) apply(rule disjI1) defer apply(rule disjI2) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 469 | proof- assume as:"x $$ \<pi> l < c $$ \<pi> l" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 470 | show "x \<in> ?p1 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta' | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 471 |         proof- case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal1 by auto
 | 
| 35172 | 472 | thus ?case using as x[unfolded mem_interval,rule_format,of i] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 473 | apply auto using l(3)[of "\<pi>' i"] using goal1 by(auto elim!:ballE[where x="\<pi>' i"]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 474 |         next case goal2 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal2 by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 475 | thus ?case using as x[unfolded mem_interval,rule_format,of i] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 476 | apply auto using l(3)[of "\<pi>' i"] using goal2 by(auto elim!:ballE[where x="\<pi>' i"]) | 
| 35172 | 477 | qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 478 | next assume as:"x $$ \<pi> l > d $$ \<pi> l" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 479 | show "x \<in> ?p2 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta' | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 480 |         proof- fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 481 |           have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using i by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 482 | thus "(if \<pi>' i < l then c $$ i else if \<pi>' i = l then d $$ \<pi> l else a $$ i) \<le> x $$ i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 483 | "x $$ i \<le> (if \<pi>' i < l then d $$ i else b $$ i)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 484 | using as x[unfolded mem_interval,rule_format,of i] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 485 | apply auto using l(3)[of "\<pi>' i"] i by(auto elim!:ballE[where x="\<pi>' i"]) | 
| 35172 | 486 | qed qed | 
| 487 | thus "x \<in> \<Union>?p" using l(2) by blast | |
| 488 |     qed ultimately show "\<Union>?p = {a..b}" apply-apply(rule) defer apply(rule) by(assumption,blast)
 | |
| 489 | ||
| 490 | show "finite ?p" by auto | |
| 491 |     fix k assume k:"k\<in>?p" then obtain l where l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" by auto
 | |
| 492 |     show "k\<subseteq>{a..b}" apply(rule,unfold mem_interval,rule,rule) 
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 493 |     proof fix i x assume i:"i<DIM('a)" assume "x \<in> k" moreover have "\<pi>' i < l \<or> \<pi>' i = l \<or> \<pi>' i > l" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 494 | ultimately show "a$$i \<le> x$$i" "x$$i \<le> b$$i" using abcd[of i] using l using i | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 495 | by(auto elim:disjE elim!:allE[where x=i] simp add:eucl_le[where 'a='a]) | 
| 35172 | 496 |     qed have "\<And>l. ?p1 l \<noteq> {}" "\<And>l. ?p2 l \<noteq> {}" unfolding interval_eq_empty not_ex apply(rule_tac[!] allI)
 | 
| 497 | proof- case goal1 thus ?case using abcd[of x] by auto | |
| 498 | next case goal2 thus ?case using abcd[of x] by auto | |
| 499 |     qed thus "k \<noteq> {}" using k by auto
 | |
| 500 |     show "\<exists>a b. k = {a..b}" using k by auto
 | |
| 501 |     fix k' assume k':"k' \<in> ?p" "k \<noteq> k'" then obtain l' where l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" by auto
 | |
| 502 |     { fix k k' l l'
 | |
| 503 |       assume k:"k\<in>?p" and l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" 
 | |
| 504 |       assume k':"k' \<in> ?p" "k \<noteq> k'" and  l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" 
 | |
| 505 | assume "l \<le> l'" fix x | |
| 506 | have "x \<notin> interior k \<inter> interior k'" | |
| 507 | proof(rule,cases "l' = n+1") assume x:"x \<in> interior k \<inter> interior k'" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 508 |         case True hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l'" using \<pi>'i using l' by(auto simp add:less_Suc_eq_le)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 509 | hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l' then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 510 |         hence k':"k' = {c..d}" using l'(1) unfolding * by auto
 | 
| 35172 | 511 | have ln:"l < n + 1" | 
| 512 | proof(rule ccontr) case goal1 hence l2:"l = n+1" using l by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 513 |           hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l" using \<pi>'i by(auto simp add:less_Suc_eq_le)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 514 | hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 515 |           hence "k = {c..d}" using l(1) \<pi>'i unfolding * by(auto)
 | 
| 35172 | 516 | thus False using `k\<noteq>k'` k' by auto | 
| 517 | qed have **:"\<pi>' (\<pi> l) = l" using \<pi>'\<pi>[of l] using l ln by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 518 | have "x $$ \<pi> l < c $$ \<pi> l \<or> d $$ \<pi> l < x $$ \<pi> l" using l(1) apply- | 
| 35172 | 519 | proof(erule disjE) | 
| 520 | assume as:"k = ?p1 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 521 | show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] by(auto simp add:** not_less) | 
| 35172 | 522 | next assume as:"k = ?p2 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 523 | show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] unfolding ** by auto | 
| 35172 | 524 | qed thus False using x unfolding k' unfolding Int_iff interior_closed_interval mem_interval | 
| 525 | by(auto elim!:allE[where x="\<pi> l"]) | |
| 526 | next case False hence "l < n + 1" using l'(2) using `l\<le>l'` by auto | |
| 527 |         hence ln:"l \<in> {1..n}" "l' \<in> {1..n}" using l l' False by auto
 | |
| 528 | note \<pi>l = \<pi>'\<pi>[OF ln(1)] \<pi>'\<pi>[OF ln(2)] | |
| 529 | assume x:"x \<in> interior k \<inter> interior k'" | |
| 530 | show False using l(1) l'(1) apply- | |
| 531 | proof(erule_tac[!] disjE)+ | |
| 532 | assume as:"k = ?p1 l" "k' = ?p1 l'" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 533 | note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | 
| 35172 | 534 | have "l \<noteq> l'" using k'(2)[unfolded as] by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 535 | thus False using *[of "\<pi> l'"] *[of "\<pi> l"] ln using \<pi>i[OF ln(1)] \<pi>i[OF ln(2)] apply(cases "l<l'") | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 536 | by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def) | 
| 35172 | 537 | next assume as:"k = ?p2 l" "k' = ?p2 l'" | 
| 538 | note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 539 | have "l \<noteq> l'" apply(rule) using k'(2)[unfolded as] by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 540 | thus False using *[of "\<pi> l"] *[of "\<pi> l'"] `l \<le> l'` ln by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def) | 
| 35172 | 541 | next assume as:"k = ?p1 l" "k' = ?p2 l'" | 
| 542 | note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 543 | show False using abcd[of "\<pi> l'"] using *[of "\<pi> l"] *[of "\<pi> l'"] `l \<le> l'` ln apply(cases "l=l'") | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 544 | by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def) | 
| 35172 | 545 | next assume as:"k = ?p2 l" "k' = ?p1 l'" | 
| 546 | note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 547 | show False using *[of "\<pi> l"] *[of "\<pi> l'"] ln `l \<le> l'` apply(cases "l=l'") using abcd[of "\<pi> l'"] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 548 | by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def) | 
| 35172 | 549 | qed qed } | 
| 550 | from this[OF k l k' l'] this[OF k'(1) l' k _ l] have "\<And>x. x \<notin> interior k \<inter> interior k'" | |
| 551 | apply - apply(cases "l' \<le> l") using k'(2) by auto | |
| 552 |     thus "interior k \<inter> interior k' = {}" by auto        
 | |
| 553 | qed qed | |
| 554 | ||
| 555 | lemma partial_division_extend_interval: assumes "p division_of (\<Union>p)" "(\<Union>p) \<subseteq> {a..b}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 556 |   obtains q where "p \<subseteq> q" "q division_of {a..b::'a::ordered_euclidean_space}" proof(cases "p = {}")
 | 
| 35172 | 557 | case True guess q apply(rule elementary_interval[of a b]) . | 
| 558 | thus ?thesis apply- apply(rule that[of q]) unfolding True by auto next | |
| 559 | case False note p = division_ofD[OF assms(1)] | |
| 560 |   have *:"\<forall>k\<in>p. \<exists>q. q division_of {a..b} \<and> k\<in>q" proof case goal1
 | |
| 561 | guess c using p(4)[OF goal1] .. then guess d .. note cd_ = this | |
| 562 |     have *:"{c..d} \<subseteq> {a..b}" "{c..d} \<noteq> {}" using p(2,3)[OF goal1, unfolded cd_] using assms(2) by auto
 | |
| 563 | guess q apply(rule partial_division_extend_1[OF *]) . thus ?case unfolding cd_ by auto qed | |
| 564 | guess q using bchoice[OF *] .. note q = conjunctD2[OF this[rule_format]] | |
| 565 |   have "\<And>x. x\<in>p \<Longrightarrow> \<exists>d. d division_of \<Union>(q x - {x})" apply(rule,rule_tac p="q x" in division_of_subset) proof-
 | |
| 566 | fix x assume x:"x\<in>p" show "q x division_of \<Union>q x" apply-apply(rule division_ofI) | |
| 567 |       using division_ofD[OF q(1)[OF x]] by auto show "q x - {x} \<subseteq> q x" by auto qed
 | |
| 568 |   hence "\<exists>d. d division_of \<Inter> ((\<lambda>i. \<Union>(q i - {i})) ` p)" apply- apply(rule elementary_inters)
 | |
| 569 | apply(rule finite_imageI[OF p(1)]) unfolding image_is_empty apply(rule False) by auto | |
| 570 | then guess d .. note d = this | |
| 571 | show ?thesis apply(rule that[of "d \<union> p"]) proof- | |
| 572 |     have *:"\<And>s f t. s \<noteq> {} \<Longrightarrow> (\<forall>i\<in>s. f i \<union> i = t) \<Longrightarrow> t = \<Inter> (f ` s) \<union> (\<Union>s)" by auto
 | |
| 573 |     have *:"{a..b} = \<Inter> (\<lambda>i. \<Union>(q i - {i})) ` p \<union> \<Union>p" apply(rule *[OF False]) proof fix i assume i:"i\<in>p"
 | |
| 574 |       show "\<Union>(q i - {i}) \<union> i = {a..b}" using division_ofD(6)[OF q(1)[OF i]] using q(2)[OF i] by auto qed
 | |
| 575 |     show "d \<union> p division_of {a..b}" unfolding * apply(rule division_disjoint_union[OF d assms(1)])
 | |
| 576 | apply(rule inter_interior_unions_intervals) apply(rule p open_interior ballI)+ proof(assumption,rule) | |
| 577 |       fix k assume k:"k\<in>p" have *:"\<And>u t s. u \<subseteq> s \<Longrightarrow> s \<inter> t = {} \<Longrightarrow> u \<inter> t = {}" by auto
 | |
| 578 |       show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<inter> interior k = {}" apply(rule *[of _ "interior (\<Union>(q k - {k}))"])
 | |
| 579 | defer apply(subst Int_commute) apply(rule inter_interior_unions_intervals) proof- note qk=division_ofD[OF q(1)[OF k]] | |
| 580 | 	show "finite (q k - {k})" "open (interior k)"  "\<forall>t\<in>q k - {k}. \<exists>a b. t = {a..b}" using qk by auto
 | |
| 581 | 	show "\<forall>t\<in>q k - {k}. interior k \<inter> interior t = {}" using qk(5) using q(2)[OF k] by auto
 | |
| 582 | 	have *:"\<And>x s. x \<in> s \<Longrightarrow> \<Inter>s \<subseteq> x" by auto show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<subseteq> interior (\<Union>(q k - {k}))"
 | |
| 583 | apply(rule subset_interior *)+ using k by auto qed qed qed auto qed | |
| 584 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 585 | lemma elementary_bounded[dest]: "p division_of s \<Longrightarrow> bounded (s::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 586 | unfolding division_of_def by(metis bounded_Union bounded_interval) | 
| 587 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 588 | lemma elementary_subset_interval: "p division_of s \<Longrightarrow> \<exists>a b. s \<subseteq> {a..b::'a::ordered_euclidean_space}"
 | 
| 35172 | 589 | by(meson elementary_bounded bounded_subset_closed_interval) | 
| 590 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 591 | lemma division_union_intervals_exists: assumes "{a..b::'a::ordered_euclidean_space} \<noteq> {}"
 | 
| 35172 | 592 |   obtains p where "(insert {a..b} p) division_of ({a..b} \<union> {c..d})" proof(cases "{c..d} = {}")
 | 
| 593 |   case True show ?thesis apply(rule that[of "{}"]) unfolding True using assms by auto next
 | |
| 594 |   case False note false=this show ?thesis proof(cases "{a..b} \<inter> {c..d} = {}")
 | |
| 595 |   have *:"\<And>a b. {a,b} = {a} \<union> {b}" by auto
 | |
| 596 |   case True show ?thesis apply(rule that[of "{{c..d}}"]) unfolding * apply(rule division_disjoint_union)
 | |
| 597 | using false True assms using interior_subset by auto next | |
| 598 |   case False obtain u v where uv:"{a..b} \<inter> {c..d} = {u..v}" unfolding inter_interval by auto
 | |
| 599 |   have *:"{u..v} \<subseteq> {c..d}" using uv by auto
 | |
| 600 | guess p apply(rule partial_division_extend_1[OF * False[unfolded uv]]) . note p=this division_ofD[OF this(1)] | |
| 601 |   have *:"{a..b} \<union> {c..d} = {a..b} \<union> \<Union>(p - {{u..v}})" "\<And>x s. insert x s = {x} \<union> s" using p(8) unfolding uv[THEN sym] by auto
 | |
| 602 |   show thesis apply(rule that[of "p - {{u..v}}"]) unfolding *(1) apply(subst *(2)) apply(rule division_disjoint_union)
 | |
| 603 | apply(rule,rule assms) apply(rule division_of_subset[of p]) apply(rule division_of_union_self[OF p(1)]) defer | |
| 604 | unfolding interior_inter[THEN sym] proof- | |
| 605 | have *:"\<And>cd p uv ab. p \<subseteq> cd \<Longrightarrow> ab \<inter> cd = uv \<Longrightarrow> ab \<inter> p = uv \<inter> p" by auto | |
| 606 |     have "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = interior({u..v} \<inter> \<Union>(p - {{u..v}}))" 
 | |
| 607 | apply(rule arg_cong[of _ _ interior]) apply(rule *[OF _ uv]) using p(8) by auto | |
| 608 |     also have "\<dots> = {}" unfolding interior_inter apply(rule inter_interior_unions_intervals) using p(6) p(7)[OF p(2)] p(3) by auto
 | |
| 609 |     finally show "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = {}" by assumption qed auto qed qed
 | |
| 610 | ||
| 611 | lemma division_of_unions: assumes "finite f" "\<And>p. p\<in>f \<Longrightarrow> p division_of (\<Union>p)" | |
| 612 |   "\<And>k1 k2. \<lbrakk>k1 \<in> \<Union>f; k2 \<in> \<Union>f; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior k1 \<inter> interior k2 = {}"
 | |
| 613 | shows "\<Union>f division_of \<Union>\<Union>f" apply(rule division_ofI) prefer 5 apply(rule assms(3)|assumption)+ | |
| 614 | apply(rule finite_Union assms(1))+ prefer 3 apply(erule UnionE) apply(rule_tac s=X in division_ofD(3)[OF assms(2)]) | |
| 615 | using division_ofD[OF assms(2)] by auto | |
| 616 | ||
| 617 | lemma elementary_union_interval: assumes "p division_of \<Union>p" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 618 |   obtains q where "q division_of ({a..b::'a::ordered_euclidean_space} \<union> \<Union>p)" proof-
 | 
| 35172 | 619 | note assm=division_ofD[OF assms] | 
| 620 | have lem1:"\<And>f s. \<Union>\<Union> (f ` s) = \<Union>(\<lambda>x.\<Union>(f x)) ` s" by auto | |
| 621 |   have lem2:"\<And>f s. f \<noteq> {} \<Longrightarrow> \<Union>{s \<union> t |t. t \<in> f} = s \<union> \<Union>f" by auto
 | |
| 622 | { presume "p={} \<Longrightarrow> thesis" "{a..b} = {} \<Longrightarrow> thesis" "{a..b} \<noteq> {} \<Longrightarrow> interior {a..b} = {} \<Longrightarrow> thesis"
 | |
| 623 |     "p\<noteq>{} \<Longrightarrow> interior {a..b}\<noteq>{} \<Longrightarrow> {a..b} \<noteq> {} \<Longrightarrow> thesis"
 | |
| 624 | thus thesis by auto | |
| 625 | next assume as:"p={}" guess p apply(rule elementary_interval[of a b]) .
 | |
| 626 | thus thesis apply(rule_tac that[of p]) unfolding as by auto | |
| 627 | next assume as:"{a..b}={}" show thesis apply(rule that) unfolding as using assms by auto
 | |
| 628 | next assume as:"interior {a..b} = {}" "{a..b} \<noteq> {}"
 | |
| 629 |   show thesis apply(rule that[of "insert {a..b} p"],rule division_ofI)
 | |
| 630 | unfolding finite_insert apply(rule assm(1)) unfolding Union_insert | |
| 631 | using assm(2-4) as apply- by(fastsimp dest: assm(5))+ | |
| 632 | next assume as:"p \<noteq> {}" "interior {a..b} \<noteq> {}" "{a..b}\<noteq>{}"
 | |
| 633 |   have "\<forall>k\<in>p. \<exists>q. (insert {a..b} q) division_of ({a..b} \<union> k)" proof case goal1
 | |
| 634 | from assm(4)[OF this] guess c .. then guess d .. | |
| 635 | thus ?case apply-apply(rule division_union_intervals_exists[OF as(3),of c d]) by auto | |
| 636 | qed from bchoice[OF this] guess q .. note q=division_ofD[OF this[rule_format]] | |
| 637 |   let ?D = "\<Union>{insert {a..b} (q k) | k. k \<in> p}"
 | |
| 638 | show thesis apply(rule that[of "?D"]) proof(rule division_ofI) | |
| 639 |     have *:"{insert {a..b} (q k) |k. k \<in> p} = (\<lambda>k. insert {a..b} (q k)) ` p" by auto
 | |
| 640 | show "finite ?D" apply(rule finite_Union) unfolding * apply(rule finite_imageI) using assm(1) q(1) by auto | |
| 641 |     show "\<Union>?D = {a..b} \<union> \<Union>p" unfolding * lem1 unfolding lem2[OF as(1), of "{a..b}",THEN sym]
 | |
| 642 | using q(6) by auto | |
| 643 |     fix k assume k:"k\<in>?D" thus " k \<subseteq> {a..b} \<union> \<Union>p" using q(2) by auto
 | |
| 644 |     show "k \<noteq> {}" using q(3) k by auto show "\<exists>a b. k = {a..b}" using q(4) k by auto
 | |
| 645 | fix k' assume k':"k'\<in>?D" "k\<noteq>k'" | |
| 646 |     obtain x  where x: "k \<in>insert {a..b} (q x)"  "x\<in>p"  using k  by auto
 | |
| 647 |     obtain x' where x':"k'\<in>insert {a..b} (q x')" "x'\<in>p" using k' by auto
 | |
| 648 |     show "interior k \<inter> interior k' = {}" proof(cases "x=x'")
 | |
| 649 | case True show ?thesis apply(rule q(5)) using x x' k' unfolding True by auto | |
| 650 | next case False | |
| 651 |       { presume "k = {a..b} \<Longrightarrow> ?thesis" "k' = {a..b} \<Longrightarrow> ?thesis" 
 | |
| 652 |         "k \<noteq> {a..b} \<Longrightarrow> k' \<noteq> {a..b} \<Longrightarrow> ?thesis"
 | |
| 653 | thus ?thesis by auto } | |
| 654 |       { assume as':"k  = {a..b}" show ?thesis apply(rule q(5)) using x' k'(2) unfolding as' by auto }
 | |
| 655 |       { assume as':"k' = {a..b}" show ?thesis apply(rule q(5)) using x  k'(2) unfolding as' by auto }
 | |
| 656 |       assume as':"k \<noteq> {a..b}" "k' \<noteq> {a..b}"
 | |
| 657 | guess c using q(4)[OF x(2,1)] .. then guess d .. note c_d=this | |
| 658 |       have "interior k  \<inter> interior {a..b} = {}" apply(rule q(5)) using x  k'(2) using as' by auto
 | |
| 659 | hence "interior k \<subseteq> interior x" apply- | |
| 660 | apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x(2,1)]]) by auto moreover | |
| 661 | guess c using q(4)[OF x'(2,1)] .. then guess d .. note c_d=this | |
| 662 |       have "interior k' \<inter> interior {a..b} = {}" apply(rule q(5)) using x' k'(2) using as' by auto
 | |
| 663 | hence "interior k' \<subseteq> interior x'" apply- | |
| 664 | apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x'(2,1)]]) by auto | |
| 665 | ultimately show ?thesis using assm(5)[OF x(2) x'(2) False] by auto | |
| 666 | qed qed } qed | |
| 667 | ||
| 668 | lemma elementary_unions_intervals: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 669 |   assumes "finite f" "\<And>s. s \<in> f \<Longrightarrow> \<exists>a b. s = {a..b::'a::ordered_euclidean_space}"
 | 
| 35172 | 670 | obtains p where "p division_of (\<Union>f)" proof- | 
| 671 | have "\<exists>p. p division_of (\<Union>f)" proof(induct_tac f rule:finite_subset_induct) | |
| 672 |     show "\<exists>p. p division_of \<Union>{}" using elementary_empty by auto
 | |
| 673 | fix x F assume as:"finite F" "x \<notin> F" "\<exists>p. p division_of \<Union>F" "x\<in>f" | |
| 674 | from this(3) guess p .. note p=this | |
| 675 | from assms(2)[OF as(4)] guess a .. then guess b .. note ab=this | |
| 676 | have *:"\<Union>F = \<Union>p" using division_ofD[OF p] by auto | |
| 677 | show "\<exists>p. p division_of \<Union>insert x F" using elementary_union_interval[OF p[unfolded *], of a b] | |
| 678 | unfolding Union_insert ab * by auto | |
| 679 | qed(insert assms,auto) thus ?thesis apply-apply(erule exE,rule that) by auto qed | |
| 680 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 681 | lemma elementary_union: assumes "ps division_of s" "pt division_of (t::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 682 | obtains p where "p division_of (s \<union> t)" | 
| 683 | proof- have "s \<union> t = \<Union>ps \<union> \<Union>pt" using assms unfolding division_of_def by auto | |
| 684 | hence *:"\<Union>(ps \<union> pt) = s \<union> t" by auto | |
| 685 | show ?thesis apply-apply(rule elementary_unions_intervals[of "ps\<union>pt"]) | |
| 686 | unfolding * prefer 3 apply(rule_tac p=p in that) | |
| 687 | using assms[unfolded division_of_def] by auto qed | |
| 688 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 689 | lemma partial_division_extend: fixes t::"('a::ordered_euclidean_space) set"
 | 
| 35172 | 690 | assumes "p division_of s" "q division_of t" "s \<subseteq> t" | 
| 691 | obtains r where "p \<subseteq> r" "r division_of t" proof- | |
| 692 | note divp = division_ofD[OF assms(1)] and divq = division_ofD[OF assms(2)] | |
| 693 |   obtain a b where ab:"t\<subseteq>{a..b}" using elementary_subset_interval[OF assms(2)] by auto
 | |
| 694 | guess r1 apply(rule partial_division_extend_interval) apply(rule assms(1)[unfolded divp(6)[THEN sym]]) | |
| 695 | apply(rule subset_trans) by(rule ab assms[unfolded divp(6)[THEN sym]])+ note r1 = this division_ofD[OF this(2)] | |
| 696 | guess p' apply(rule elementary_unions_intervals[of "r1 - p"]) using r1(3,6) by auto | |
| 697 | then obtain r2 where r2:"r2 division_of (\<Union>(r1 - p)) \<inter> (\<Union>q)" | |
| 698 | apply- apply(drule elementary_inter[OF _ assms(2)[unfolded divq(6)[THEN sym]]]) by auto | |
| 699 |   { fix x assume x:"x\<in>t" "x\<notin>s"
 | |
| 700 | hence "x\<in>\<Union>r1" unfolding r1 using ab by auto | |
| 701 | then guess r unfolding Union_iff .. note r=this moreover | |
| 702 | have "r \<notin> p" proof assume "r\<in>p" hence "x\<in>s" using divp(2) r by auto | |
| 703 | thus False using x by auto qed | |
| 704 | ultimately have "x\<in>\<Union>(r1 - p)" by auto } | |
| 705 | hence *:"t = \<Union>p \<union> (\<Union>(r1 - p) \<inter> \<Union>q)" unfolding divp divq using assms(3) by auto | |
| 706 | show ?thesis apply(rule that[of "p \<union> r2"]) unfolding * defer apply(rule division_disjoint_union) | |
| 707 | unfolding divp(6) apply(rule assms r2)+ | |
| 708 |   proof- have "interior s \<inter> interior (\<Union>(r1-p)) = {}"
 | |
| 709 | proof(rule inter_interior_unions_intervals) | |
| 710 |       show "finite (r1 - p)" "open (interior s)" "\<forall>t\<in>r1-p. \<exists>a b. t = {a..b}" using r1 by auto
 | |
| 711 |       have *:"\<And>s. (\<And>x. x \<in> s \<Longrightarrow> False) \<Longrightarrow> s = {}" by auto
 | |
| 712 |       show "\<forall>t\<in>r1-p. interior s \<inter> interior t = {}" proof(rule)
 | |
| 713 | fix m x assume as:"m\<in>r1-p" | |
| 714 |         have "interior m \<inter> interior (\<Union>p) = {}" proof(rule inter_interior_unions_intervals)
 | |
| 715 |           show "finite p" "open (interior m)" "\<forall>t\<in>p. \<exists>a b. t = {a..b}" using divp by auto
 | |
| 716 |           show "\<forall>t\<in>p. interior m \<inter> interior t = {}" apply(rule, rule r1(7)) using as using r1 by auto
 | |
| 717 |         qed thus "interior s \<inter> interior m = {}" unfolding divp by auto
 | |
| 718 | qed qed | |
| 719 |     thus "interior s \<inter> interior (\<Union>(r1-p) \<inter> (\<Union>q)) = {}" using interior_subset by auto
 | |
| 720 | qed auto qed | |
| 721 | ||
| 722 | subsection {* Tagged (partial) divisions. *}
 | |
| 723 | ||
| 724 | definition tagged_partial_division_of (infixr "tagged'_partial'_division'_of" 40) where | |
| 725 | "(s tagged_partial_division_of i) \<equiv> | |
| 726 | finite s \<and> | |
| 727 |         (\<forall>x k. (x,k) \<in> s \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
 | |
| 728 | (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ((x1,k1) \<noteq> (x2,k2)) | |
| 729 |                        \<longrightarrow> (interior(k1) \<inter> interior(k2) = {}))"
 | |
| 730 | ||
| 731 | lemma tagged_partial_division_ofD[dest]: assumes "s tagged_partial_division_of i" | |
| 732 | shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i" | |
| 733 |   "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | |
| 734 |   "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> (x1,k1) \<noteq> (x2,k2) \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}"
 | |
| 735 | using assms unfolding tagged_partial_division_of_def apply- by blast+ | |
| 736 | ||
| 737 | definition tagged_division_of (infixr "tagged'_division'_of" 40) where | |
| 738 | "(s tagged_division_of i) \<equiv> | |
| 739 |         (s tagged_partial_division_of i) \<and> (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | |
| 740 | ||
| 741 | lemma tagged_division_of_finite[dest]: "s tagged_division_of i \<Longrightarrow> finite s" | |
| 742 | unfolding tagged_division_of_def tagged_partial_division_of_def by auto | |
| 743 | ||
| 744 | lemma tagged_division_of: | |
| 745 | "(s tagged_division_of i) \<longleftrightarrow> | |
| 746 | finite s \<and> | |
| 747 | (\<forall>x k. (x,k) \<in> s | |
| 748 |                \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
 | |
| 749 | (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ~((x1,k1) = (x2,k2)) | |
| 750 |                        \<longrightarrow> (interior(k1) \<inter> interior(k2) = {})) \<and>
 | |
| 751 |         (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | |
| 752 | unfolding tagged_division_of_def tagged_partial_division_of_def by auto | |
| 753 | ||
| 754 | lemma tagged_division_ofI: assumes | |
| 755 |   "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | |
| 756 |   "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
 | |
| 757 |   "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | |
| 758 | shows "s tagged_division_of i" | |
| 759 | unfolding tagged_division_of apply(rule) defer apply rule | |
| 760 | apply(rule allI impI conjI assms)+ apply assumption | |
| 761 | apply(rule, rule assms, assumption) apply(rule assms, assumption) | |
| 762 | using assms(1,5-) apply- by blast+ | |
| 763 | ||
| 764 | lemma tagged_division_ofD[dest]: assumes "s tagged_division_of i" | |
| 765 |   shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | |
| 766 |   "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
 | |
| 767 |   "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)" using assms unfolding tagged_division_of apply- by blast+
 | |
| 768 | ||
| 769 | lemma division_of_tagged_division: assumes"s tagged_division_of i" shows "(snd ` s) division_of i" | |
| 770 | proof(rule division_ofI) note assm=tagged_division_ofD[OF assms] | |
| 771 | show "\<Union>snd ` s = i" "finite (snd ` s)" using assm by auto | |
| 772 | fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto | |
| 773 |   thus  "k \<subseteq> i" "k \<noteq> {}" "\<exists>a b. k = {a..b}" using assm apply- by fastsimp+
 | |
| 774 | fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto | |
| 775 |   thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
 | |
| 776 | qed | |
| 777 | ||
| 778 | lemma partial_division_of_tagged_division: assumes "s tagged_partial_division_of i" | |
| 779 | shows "(snd ` s) division_of \<Union>(snd ` s)" | |
| 780 | proof(rule division_ofI) note assm=tagged_partial_division_ofD[OF assms] | |
| 781 | show "finite (snd ` s)" "\<Union>snd ` s = \<Union>snd ` s" using assm by auto | |
| 782 | fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto | |
| 783 |   thus "k\<noteq>{}" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>snd ` s" using assm by auto
 | |
| 784 | fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto | |
| 785 |   thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
 | |
| 786 | qed | |
| 787 | ||
| 788 | lemma tagged_partial_division_subset: assumes "s tagged_partial_division_of i" "t \<subseteq> s" | |
| 789 | shows "t tagged_partial_division_of i" | |
| 790 | using assms unfolding tagged_partial_division_of_def using finite_subset[OF assms(2)] by blast | |
| 791 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 792 | lemma setsum_over_tagged_division_lemma: fixes d::"('m::ordered_euclidean_space) set \<Rightarrow> 'a::real_normed_vector"
 | 
| 35172 | 793 |   assumes "p tagged_division_of i" "\<And>u v. {u..v} \<noteq> {} \<Longrightarrow> content {u..v} = 0 \<Longrightarrow> d {u..v} = 0"
 | 
| 794 | shows "setsum (\<lambda>(x,k). d k) p = setsum d (snd ` p)" | |
| 795 | proof- note assm=tagged_division_ofD[OF assms(1)] | |
| 796 | have *:"(\<lambda>(x,k). d k) = d \<circ> snd" unfolding o_def apply(rule ext) by auto | |
| 797 | show ?thesis unfolding * apply(subst eq_commute) proof(rule setsum_reindex_nonzero) | |
| 798 | show "finite p" using assm by auto | |
| 799 | fix x y assume as:"x\<in>p" "y\<in>p" "x\<noteq>y" "snd x = snd y" | |
| 800 |     obtain a b where ab:"snd x = {a..b}" using assm(4)[of "fst x" "snd x"] as(1) by auto
 | |
| 801 | have "(fst x, snd y) \<in> p" "(fst x, snd y) \<noteq> y" unfolding as(4)[THEN sym] using as(1-3) by auto | |
| 802 |     hence "interior (snd x) \<inter> interior (snd y) = {}" apply-apply(rule assm(5)[of "fst x" _ "fst y"]) using as by auto 
 | |
| 803 |     hence "content {a..b} = 0" unfolding as(4)[THEN sym] ab content_eq_0_interior by auto
 | |
| 804 |     hence "d {a..b} = 0" apply-apply(rule assms(2)) using assm(2)[of "fst x" "snd x"] as(1) unfolding ab[THEN sym] by auto
 | |
| 805 | thus "d (snd x) = 0" unfolding ab by auto qed qed | |
| 806 | ||
| 807 | lemma tag_in_interval: "p tagged_division_of i \<Longrightarrow> (x,k) \<in> p \<Longrightarrow> x \<in> i" by auto | |
| 808 | ||
| 809 | lemma tagged_division_of_empty: "{} tagged_division_of {}"
 | |
| 810 | unfolding tagged_division_of by auto | |
| 811 | ||
| 812 | lemma tagged_partial_division_of_trivial[simp]: | |
| 813 |  "p tagged_partial_division_of {} \<longleftrightarrow> p = {}"
 | |
| 814 | unfolding tagged_partial_division_of_def by auto | |
| 815 | ||
| 816 | lemma tagged_division_of_trivial[simp]: | |
| 817 |  "p tagged_division_of {} \<longleftrightarrow> p = {}"
 | |
| 818 | unfolding tagged_division_of by auto | |
| 819 | ||
| 820 | lemma tagged_division_of_self: | |
| 821 |  "x \<in> {a..b} \<Longrightarrow> {(x,{a..b})} tagged_division_of {a..b}"
 | |
| 822 | apply(rule tagged_division_ofI) by auto | |
| 823 | ||
| 824 | lemma tagged_division_union: | |
| 825 |   assumes "p1 tagged_division_of s1"  "p2 tagged_division_of s2" "interior s1 \<inter> interior s2 = {}"
 | |
| 826 | shows "(p1 \<union> p2) tagged_division_of (s1 \<union> s2)" | |
| 827 | proof(rule tagged_division_ofI) note p1=tagged_division_ofD[OF assms(1)] and p2=tagged_division_ofD[OF assms(2)] | |
| 828 | show "finite (p1 \<union> p2)" using p1(1) p2(1) by auto | |
| 829 |   show "\<Union>{k. \<exists>x. (x, k) \<in> p1 \<union> p2} = s1 \<union> s2" using p1(6) p2(6) by blast
 | |
| 830 |   fix x k assume xk:"(x,k)\<in>p1\<union>p2" show "x\<in>k" "\<exists>a b. k = {a..b}" using xk p1(2,4) p2(2,4) by auto
 | |
| 831 | show "k\<subseteq>s1\<union>s2" using xk p1(3) p2(3) by blast | |
| 832 | fix x' k' assume xk':"(x',k')\<in>p1\<union>p2" "(x,k) \<noteq> (x',k')" | |
| 833 |   have *:"\<And>a b. a\<subseteq> s1 \<Longrightarrow> b\<subseteq> s2 \<Longrightarrow> interior a \<inter> interior b = {}" using assms(3) subset_interior by blast
 | |
| 834 |   show "interior k \<inter> interior k' = {}" apply(cases "(x,k)\<in>p1", case_tac[!] "(x',k')\<in>p1")
 | |
| 835 | apply(rule p1(5)) prefer 4 apply(rule *) prefer 6 apply(subst Int_commute,rule *) prefer 8 apply(rule p2(5)) | |
| 836 | using p1(3) p2(3) using xk xk' by auto qed | |
| 837 | ||
| 838 | lemma tagged_division_unions: | |
| 839 | assumes "finite iset" "\<forall>i\<in>iset. (pfn(i) tagged_division_of i)" | |
| 840 |   "\<forall>i1 \<in> iset. \<forall>i2 \<in> iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})"
 | |
| 841 | shows "\<Union>(pfn ` iset) tagged_division_of (\<Union>iset)" | |
| 842 | proof(rule tagged_division_ofI) | |
| 843 | note assm = tagged_division_ofD[OF assms(2)[rule_format]] | |
| 844 | show "finite (\<Union>pfn ` iset)" apply(rule finite_Union) using assms by auto | |
| 845 |   have "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>(\<lambda>i. \<Union>{k. \<exists>x. (x, k) \<in> pfn i}) ` iset" by blast 
 | |
| 846 | also have "\<dots> = \<Union>iset" using assm(6) by auto | |
| 847 |   finally show "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>iset" . 
 | |
| 848 | fix x k assume xk:"(x,k)\<in>\<Union>pfn ` iset" then obtain i where i:"i \<in> iset" "(x, k) \<in> pfn i" by auto | |
| 849 |   show "x\<in>k" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>iset" using assm(2-4)[OF i] using i(1) by auto
 | |
| 850 | fix x' k' assume xk':"(x',k')\<in>\<Union>pfn ` iset" "(x, k) \<noteq> (x', k')" then obtain i' where i':"i' \<in> iset" "(x', k') \<in> pfn i'" by auto | |
| 851 |   have *:"\<And>a b. i\<noteq>i' \<Longrightarrow> a\<subseteq> i \<Longrightarrow> b\<subseteq> i' \<Longrightarrow> interior a \<inter> interior b = {}" using i(1) i'(1)
 | |
| 852 | using assms(3)[rule_format] subset_interior by blast | |
| 853 |   show "interior k \<inter> interior k' = {}" apply(cases "i=i'")
 | |
| 854 | using assm(5)[OF i _ xk'(2)] i'(2) using assm(3)[OF i] assm(3)[OF i'] defer apply-apply(rule *) by auto | |
| 855 | qed | |
| 856 | ||
| 857 | lemma tagged_partial_division_of_union_self: | |
| 858 | assumes "p tagged_partial_division_of s" shows "p tagged_division_of (\<Union>(snd ` p))" | |
| 859 | apply(rule tagged_division_ofI) using tagged_partial_division_ofD[OF assms] by auto | |
| 860 | ||
| 861 | lemma tagged_division_of_union_self: assumes "p tagged_division_of s" | |
| 862 | shows "p tagged_division_of (\<Union>(snd ` p))" | |
| 863 | apply(rule tagged_division_ofI) using tagged_division_ofD[OF assms] by auto | |
| 864 | ||
| 865 | subsection {* Fine-ness of a partition w.r.t. a gauge. *}
 | |
| 866 | ||
| 867 | definition fine (infixr "fine" 46) where | |
| 868 | "d fine s \<longleftrightarrow> (\<forall>(x,k) \<in> s. k \<subseteq> d(x))" | |
| 869 | ||
| 870 | lemma fineI: assumes "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" | |
| 871 | shows "d fine s" using assms unfolding fine_def by auto | |
| 872 | ||
| 873 | lemma fineD[dest]: assumes "d fine s" | |
| 874 | shows "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" using assms unfolding fine_def by auto | |
| 875 | ||
| 876 | lemma fine_inter: "(\<lambda>x. d1 x \<inter> d2 x) fine p \<longleftrightarrow> d1 fine p \<and> d2 fine p" | |
| 877 | unfolding fine_def by auto | |
| 878 | ||
| 879 | lemma fine_inters: | |
| 880 |  "(\<lambda>x. \<Inter> {f d x | d.  d \<in> s}) fine p \<longleftrightarrow> (\<forall>d\<in>s. (f d) fine p)"
 | |
| 881 | unfolding fine_def by blast | |
| 882 | ||
| 883 | lemma fine_union: | |
| 884 | "d fine p1 \<Longrightarrow> d fine p2 \<Longrightarrow> d fine (p1 \<union> p2)" | |
| 885 | unfolding fine_def by blast | |
| 886 | ||
| 887 | lemma fine_unions:"(\<And>p. p \<in> ps \<Longrightarrow> d fine p) \<Longrightarrow> d fine (\<Union>ps)" | |
| 888 | unfolding fine_def by auto | |
| 889 | ||
| 890 | lemma fine_subset: "p \<subseteq> q \<Longrightarrow> d fine q \<Longrightarrow> d fine p" | |
| 891 | unfolding fine_def by blast | |
| 892 | ||
| 893 | subsection {* Gauge integral. Define on compact intervals first, then use a limit. *}
 | |
| 894 | ||
| 895 | definition has_integral_compact_interval (infixr "has'_integral'_compact'_interval" 46) where | |
| 896 | "(f has_integral_compact_interval y) i \<equiv> | |
| 897 | (\<forall>e>0. \<exists>d. gauge d \<and> | |
| 898 | (\<forall>p. p tagged_division_of i \<and> d fine p | |
| 899 | \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - y) < e))" | |
| 900 | ||
| 901 | definition has_integral (infixr "has'_integral" 46) where | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 902 | "((f::('n::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector)) has_integral y) i \<equiv>
 | 
| 35172 | 903 |         if (\<exists>a b. i = {a..b}) then (f has_integral_compact_interval y) i
 | 
| 904 |         else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | |
| 905 |               \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f x else 0) has_integral_compact_interval z) {a..b} \<and>
 | |
| 906 | norm(z - y) < e))" | |
| 907 | ||
| 908 | lemma has_integral: | |
| 909 |  "(f has_integral y) ({a..b}) \<longleftrightarrow>
 | |
| 910 |         (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
 | |
| 911 | \<longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f x) p - y) < e))" | |
| 912 | unfolding has_integral_def has_integral_compact_interval_def by auto | |
| 913 | ||
| 914 | lemma has_integralD[dest]: assumes | |
| 915 |  "(f has_integral y) ({a..b})" "e>0"
 | |
| 916 |   obtains d where "gauge d" "\<And>p. p tagged_division_of {a..b} \<Longrightarrow> d fine p
 | |
| 917 | \<Longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f(x)) p - y) < e" | |
| 918 | using assms unfolding has_integral by auto | |
| 919 | ||
| 920 | lemma has_integral_alt: | |
| 921 | "(f has_integral y) i \<longleftrightarrow> | |
| 922 |       (if (\<exists>a b. i = {a..b}) then (f has_integral y) i
 | |
| 923 |        else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | |
| 924 | \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) | |
| 925 |                                         has_integral z) ({a..b}) \<and>
 | |
| 926 | norm(z - y) < e)))" | |
| 927 | unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto | |
| 928 | ||
| 929 | lemma has_integral_altD: | |
| 930 |   assumes "(f has_integral y) i" "\<not> (\<exists>a b. i = {a..b})" "e>0"
 | |
| 931 |   obtains B where "B>0" "\<forall>a b. ball 0 B \<subseteq> {a..b}\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) has_integral z) ({a..b}) \<and> norm(z - y) < e)"
 | |
| 932 | using assms unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto | |
| 933 | ||
| 934 | definition integrable_on (infixr "integrable'_on" 46) where | |
| 935 | "(f integrable_on i) \<equiv> \<exists>y. (f has_integral y) i" | |
| 936 | ||
| 937 | definition "integral i f \<equiv> SOME y. (f has_integral y) i" | |
| 938 | ||
| 939 | lemma integrable_integral[dest]: | |
| 940 | "f integrable_on i \<Longrightarrow> (f has_integral (integral i f)) i" | |
| 941 | unfolding integrable_on_def integral_def by(rule someI_ex) | |
| 942 | ||
| 943 | lemma has_integral_integrable[intro]: "(f has_integral i) s \<Longrightarrow> f integrable_on s" | |
| 944 | unfolding integrable_on_def by auto | |
| 945 | ||
| 946 | lemma has_integral_integral:"f integrable_on s \<longleftrightarrow> (f has_integral (integral s f)) s" | |
| 947 | by auto | |
| 948 | ||
| 949 | lemma setsum_content_null: | |
| 950 |   assumes "content({a..b}) = 0" "p tagged_division_of {a..b}"
 | |
| 951 | shows "setsum (\<lambda>(x,k). content k *\<^sub>R f x) p = (0::'a::real_normed_vector)" | |
| 952 | proof(rule setsum_0',rule) fix y assume y:"y\<in>p" | |
| 953 | obtain x k where xk:"y = (x,k)" using surj_pair[of y] by blast | |
| 954 | note assm = tagged_division_ofD(3-4)[OF assms(2) y[unfolded xk]] | |
| 955 | from this(2) guess c .. then guess d .. note c_d=this | |
| 956 | have "(\<lambda>(x, k). content k *\<^sub>R f x) y = content k *\<^sub>R f x" unfolding xk by auto | |
| 957 | also have "\<dots> = 0" using content_subset[OF assm(1)[unfolded c_d]] content_pos_le[of c d] | |
| 958 | unfolding assms(1) c_d by auto | |
| 959 | finally show "(\<lambda>(x, k). content k *\<^sub>R f x) y = 0" . | |
| 960 | qed | |
| 961 | ||
| 962 | subsection {* Some basic combining lemmas. *}
 | |
| 963 | ||
| 964 | lemma tagged_division_unions_exists: | |
| 965 | assumes "finite iset" "\<forall>i \<in> iset. \<exists>p. p tagged_division_of i \<and> d fine p" | |
| 966 |   "\<forall>i1\<in>iset. \<forall>i2\<in>iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})" "(\<Union>iset = i)"
 | |
| 967 | obtains p where "p tagged_division_of i" "d fine p" | |
| 968 | proof- guess pfn using bchoice[OF assms(2)] .. note pfn = conjunctD2[OF this[rule_format]] | |
| 969 | show thesis apply(rule_tac p="\<Union>(pfn ` iset)" in that) unfolding assms(4)[THEN sym] | |
| 970 | apply(rule tagged_division_unions[OF assms(1) _ assms(3)]) defer | |
| 971 | apply(rule fine_unions) using pfn by auto | |
| 972 | qed | |
| 973 | ||
| 974 | subsection {* The set we're concerned with must be closed. *}
 | |
| 975 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 976 | lemma division_of_closed: "s division_of i \<Longrightarrow> closed (i::('n::ordered_euclidean_space) set)"
 | 
| 35172 | 977 | unfolding division_of_def by(fastsimp intro!: closed_Union closed_interval) | 
| 978 | ||
| 979 | subsection {* General bisection principle for intervals; might be useful elsewhere. *}
 | |
| 980 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 981 | lemma interval_bisection_step: fixes type::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 982 |   assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "~(P {a..b::'a})"
 | 
| 35172 | 983 |   obtains c d where "~(P{c..d})"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 984 |   "\<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
 | 
| 35172 | 985 | proof- have "{a..b} \<noteq> {}" using assms(1,3) by auto
 | 
| 986 | note ab=this[unfolded interval_eq_empty not_ex not_less] | |
| 987 |   { fix f have "finite f \<Longrightarrow>
 | |
| 988 | (\<forall>s\<in>f. P s) \<Longrightarrow> | |
| 989 |         (\<forall>s\<in>f. \<exists>a b. s = {a..b}) \<Longrightarrow>
 | |
| 990 |         (\<forall>s\<in>f.\<forall>t\<in>f. ~(s = t) \<longrightarrow> interior(s) \<inter> interior(t) = {}) \<Longrightarrow> P(\<Union>f)"
 | |
| 991 | proof(induct f rule:finite_induct) | |
| 992 | case empty show ?case using assms(1) by auto | |
| 993 | next case (insert x f) show ?case unfolding Union_insert apply(rule assms(2)[rule_format]) | |
| 994 | apply rule defer apply rule defer apply(rule inter_interior_unions_intervals) | |
| 995 | using insert by auto | |
| 996 | qed } note * = this | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 997 |   let ?A = "{{c..d} | c d::'a. \<forall>i<DIM('a). (c$$i = a$$i) \<and> (d$$i = (a$$i + b$$i) / 2) \<or> (c$$i = (a$$i + b$$i) / 2) \<and> (d$$i = b$$i)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 998 |   let ?PP = "\<lambda>c d. \<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
 | 
| 35172 | 999 |   { presume "\<forall>c d. ?PP c d \<longrightarrow> P {c..d} \<Longrightarrow> False"
 | 
| 1000 | thus thesis unfolding atomize_not not_all apply-apply(erule exE)+ apply(rule_tac c=x and d=xa in that) by auto } | |
| 1001 |   assume as:"\<forall>c d. ?PP c d \<longrightarrow> P {c..d}"
 | |
| 1002 | have "P (\<Union> ?A)" proof(rule *, rule_tac[2-] ballI, rule_tac[4] ballI, rule_tac[4] impI) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1003 |     let ?B = "(\<lambda>s.{(\<chi>\<chi> i. if i \<in> s then a$$i else (a$$i + b$$i) / 2)::'a ..
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1004 |       (\<chi>\<chi> i. if i \<in> s then (a$$i + b$$i) / 2 else b$$i)}) ` {s. s \<subseteq> {..<DIM('a)}}"
 | 
| 35172 | 1005 | have "?A \<subseteq> ?B" proof case goal1 | 
| 1006 | then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) note c_d=this[rule_format] | |
| 1007 |       have *:"\<And>a b c d. a = c \<Longrightarrow> b = d \<Longrightarrow> {a..b} = {c..d}" by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1008 |       show "x\<in>?B" unfolding image_iff apply(rule_tac x="{i. i<DIM('a) \<and> c$$i = a$$i}" in bexI)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1009 | unfolding c_d apply(rule * ) unfolding euclidean_eq[where 'a='a] apply safe unfolding euclidean_lambda_beta' mem_Collect_eq | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1010 |       proof- fix i assume "i<DIM('a)" thus " c $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then a $$ i else (a $$ i + b $$ i) / 2)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1011 |           "d $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then (a $$ i + b $$ i) / 2 else b $$ i)"
 | 
| 35172 | 1012 | using c_d(2)[of i] ab[THEN spec[where x=i]] by(auto simp add:field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1013 | qed qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1014 | thus "finite ?A" apply(rule finite_subset) by auto | 
| 35172 | 1015 | fix s assume "s\<in>?A" then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) | 
| 1016 | note c_d=this[rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1017 | show "P s" unfolding c_d apply(rule as[rule_format]) proof- case goal1 thus ?case | 
| 35172 | 1018 | using c_d(2)[of i] using ab[THEN spec[where x=i]] by auto qed | 
| 1019 |     show "\<exists>a b. s = {a..b}" unfolding c_d by auto
 | |
| 1020 | fix t assume "t\<in>?A" then guess e unfolding mem_Collect_eq .. then guess f apply- by(erule exE,(erule conjE)+) | |
| 1021 | note e_f=this[rule_format] | |
| 1022 | assume "s \<noteq> t" hence "\<not> (c = e \<and> d = f)" unfolding c_d e_f by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1023 |     then obtain i where "c$$i \<noteq> e$$i \<or> d$$i \<noteq> f$$i" and i':"i<DIM('a)" unfolding de_Morgan_conj euclidean_eq[where 'a='a] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1024 | hence i:"c$$i \<noteq> e$$i" "d$$i \<noteq> f$$i" apply- apply(erule_tac[!] disjE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1025 | proof- assume "c$$i \<noteq> e$$i" thus "d$$i \<noteq> f$$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1026 | next assume "d$$i \<noteq> f$$i" thus "c$$i \<noteq> e$$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp | 
| 35172 | 1027 |     qed have *:"\<And>s t. (\<And>a. a\<in>s \<Longrightarrow> a\<in>t \<Longrightarrow> False) \<Longrightarrow> s \<inter> t = {}" by auto
 | 
| 1028 |     show "interior s \<inter> interior t = {}" unfolding e_f c_d interior_closed_interval proof(rule *)
 | |
| 1029 |       fix x assume "x\<in>{c<..<d}" "x\<in>{e<..<f}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1030 | hence x:"c$$i < d$$i" "e$$i < f$$i" "c$$i < f$$i" "e$$i < d$$i" unfolding mem_interval using i' | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1031 | apply-apply(erule_tac[!] x=i in allE)+ by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1032 | show False using c_d(2)[OF i'] apply- apply(erule_tac disjE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1033 | proof(erule_tac[!] conjE) assume as:"c $$ i = a $$ i" "d $$ i = (a $$ i + b $$ i) / 2" | 
| 35172 | 1034 | show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1035 | next assume as:"c $$ i = (a $$ i + b $$ i) / 2" "d $$ i = b $$ i" | 
| 35172 | 1036 | show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps) | 
| 1037 | qed qed qed | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 1038 |   also have "\<Union> ?A = {a..b}" proof(rule set_eqI,rule)
 | 
| 35172 | 1039 | fix x assume "x\<in>\<Union>?A" then guess Y unfolding Union_iff .. | 
| 1040 | from this(1) guess c unfolding mem_Collect_eq .. then guess d .. | |
| 1041 | note c_d = this[THEN conjunct2,rule_format] `x\<in>Y`[unfolded this[THEN conjunct1]] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1042 |     show "x\<in>{a..b}" unfolding mem_interval proof safe
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1043 |       fix i assume "i<DIM('a)" thus "a $$ i \<le> x $$ i" "x $$ i \<le> b $$ i"
 | 
| 35172 | 1044 | using c_d(1)[of i] c_d(2)[unfolded mem_interval,THEN spec[where x=i]] by auto qed | 
| 1045 |   next fix x assume x:"x\<in>{a..b}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1046 |     have "\<forall>i<DIM('a). \<exists>c d. (c = a$$i \<and> d = (a$$i + b$$i) / 2 \<or> c = (a$$i + b$$i) / 2 \<and> d = b$$i) \<and> c\<le>x$$i \<and> x$$i \<le> d"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1047 |       (is "\<forall>i<DIM('a). \<exists>c d. ?P i c d") unfolding mem_interval proof(rule,rule) fix i
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1048 | have "?P i (a$$i) ((a $$ i + b $$ i) / 2) \<or> ?P i ((a $$ i + b $$ i) / 2) (b$$i)" | 
| 35172 | 1049 | using x[unfolded mem_interval,THEN spec[where x=i]] by auto thus "\<exists>c d. ?P i c d" by blast | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1050 | qed thus "x\<in>\<Union>?A" unfolding Union_iff unfolding lambda_skolem' unfolding Bex_def mem_Collect_eq | 
| 35172 | 1051 |       apply-apply(erule exE)+ apply(rule_tac x="{xa..xaa}" in exI) unfolding mem_interval by auto
 | 
| 1052 | qed finally show False using assms by auto qed | |
| 1053 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1054 | lemma interval_bisection: fixes type::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1055 |   assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "\<not> P {a..b::'a}"
 | 
| 35172 | 1056 |   obtains x where "x \<in> {a..b}" "\<forall>e>0. \<exists>c d. x \<in> {c..d} \<and> {c..d} \<subseteq> ball x e \<and> {c..d} \<subseteq> {a..b} \<and> ~P({c..d})"
 | 
| 1057 | proof- | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1058 |   have "\<forall>x. \<exists>y. \<not> P {fst x..snd x} \<longrightarrow> (\<not> P {fst y..snd y} \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1059 |     (\<forall>i<DIM('a). fst x$$i \<le> fst y$$i \<and> fst y$$i \<le> snd y$$i \<and> snd y$$i \<le> snd x$$i \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1060 | 2 * (snd y$$i - fst y$$i) \<le> snd x$$i - fst x$$i))" proof case goal1 thus ?case proof- | 
| 35172 | 1061 |       presume "\<not> P {fst x..snd x} \<Longrightarrow> ?thesis"
 | 
| 1062 |       thus ?thesis apply(cases "P {fst x..snd x}") by auto
 | |
| 1063 |     next assume as:"\<not> P {fst x..snd x}" from interval_bisection_step[of P, OF assms(1-2) as] guess c d . 
 | |
| 1064 | thus ?thesis apply- apply(rule_tac x="(c,d)" in exI) by auto | |
| 1065 | qed qed then guess f apply-apply(drule choice) by(erule exE) note f=this | |
| 1066 | def AB \<equiv> "\<lambda>n. (f ^^ n) (a,b)" def A \<equiv> "\<lambda>n. fst(AB n)" and B \<equiv> "\<lambda>n. snd(AB n)" note ab_def = this AB_def | |
| 1067 |   have "A 0 = a" "B 0 = b" "\<And>n. \<not> P {A(Suc n)..B(Suc n)} \<and>
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1068 |     (\<forall>i<DIM('a). A(n)$$i \<le> A(Suc n)$$i \<and> A(Suc n)$$i \<le> B(Suc n)$$i \<and> B(Suc n)$$i \<le> B(n)$$i \<and> 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1069 | 2 * (B(Suc n)$$i - A(Suc n)$$i) \<le> B(n)$$i - A(n)$$i)" (is "\<And>n. ?P n") | 
| 35172 | 1070 | proof- show "A 0 = a" "B 0 = b" unfolding ab_def by auto | 
| 1071 | case goal3 note S = ab_def funpow.simps o_def id_apply show ?case | |
| 1072 | proof(induct n) case 0 thus ?case unfolding S apply(rule f[rule_format]) using assms(3) by auto | |
| 1073 | next case (Suc n) show ?case unfolding S apply(rule f[rule_format]) using Suc unfolding S by auto | |
| 1074 | qed qed note AB = this(1-2) conjunctD2[OF this(3),rule_format] | |
| 1075 | ||
| 1076 |   have interv:"\<And>e. 0 < e \<Longrightarrow> \<exists>n. \<forall>x\<in>{A n..B n}. \<forall>y\<in>{A n..B n}. dist x y < e"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1077 |   proof- case goal1 guess n using real_arch_pow2[of "(setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)}) / e"] .. note n=this
 | 
| 35172 | 1078 | show ?case apply(rule_tac x=n in exI) proof(rule,rule) | 
| 1079 |       fix x y assume xy:"x\<in>{A n..B n}" "y\<in>{A n..B n}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1080 |       have "dist x y \<le> setsum (\<lambda>i. abs((x - y)$$i)) {..<DIM('a)}" unfolding dist_norm by(rule norm_le_l1)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1081 |       also have "\<dots> \<le> setsum (\<lambda>i. B n$$i - A n$$i) {..<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1082 | proof(rule setsum_mono) fix i show "\<bar>(x - y) $$ i\<bar> \<le> B n $$ i - A n $$ i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1083 | using xy[unfolded mem_interval,THEN spec[where x=i]] by auto qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1084 |       also have "\<dots> \<le> setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)} / 2^n" unfolding setsum_divide_distrib
 | 
| 35172 | 1085 | proof(rule setsum_mono) case goal1 thus ?case | 
| 1086 | proof(induct n) case 0 thus ?case unfolding AB by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1087 | next case (Suc n) have "B (Suc n) $$ i - A (Suc n) $$ i \<le> (B n $$ i - A n $$ i) / 2" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1088 | using AB(4)[of i n] using goal1 by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1089 | also have "\<dots> \<le> (b $$ i - a $$ i) / 2 ^ Suc n" using Suc by(auto simp add:field_simps) finally show ?case . | 
| 35172 | 1090 | qed qed | 
| 1091 | also have "\<dots> < e" using n using goal1 by(auto simp add:field_simps) finally show "dist x y < e" . | |
| 1092 | qed qed | |
| 1093 |   { fix n m ::nat assume "m \<le> n" then guess d unfolding le_Suc_ex_iff .. note d=this
 | |
| 1094 |     have "{A n..B n} \<subseteq> {A m..B m}" unfolding d 
 | |
| 1095 | proof(induct d) case 0 thus ?case by auto | |
| 1096 | next case (Suc d) show ?case apply(rule subset_trans[OF _ Suc]) | |
| 1097 | apply(rule) unfolding mem_interval apply(rule,erule_tac x=i in allE) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1098 | proof- case goal1 thus ?case using AB(4)[of i "m + d"] by(auto simp add:field_simps) | 
| 35172 | 1099 | qed qed } note ABsubset = this | 
| 1100 |   have "\<exists>a. \<forall>n. a\<in>{A n..B n}" apply(rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
 | |
| 1101 |   proof- fix n show "{A n..B n} \<noteq> {}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(1,3) AB(1-2) by auto qed auto
 | |
| 1102 | then guess x0 .. note x0=this[rule_format] | |
| 1103 | show thesis proof(rule that[rule_format,of x0]) | |
| 1104 |     show "x0\<in>{a..b}" using x0[of 0] unfolding AB .
 | |
| 1105 | fix e assume "0 < (e::real)" from interv[OF this] guess n .. note n=this | |
| 1106 |     show "\<exists>c d. x0 \<in> {c..d} \<and> {c..d} \<subseteq> ball x0 e \<and> {c..d} \<subseteq> {a..b} \<and> \<not> P {c..d}"
 | |
| 1107 | apply(rule_tac x="A n" in exI,rule_tac x="B n" in exI) apply(rule,rule x0) apply rule defer | |
| 1108 |     proof show "\<not> P {A n..B n}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(3) AB(1-2) by auto
 | |
| 1109 |       show "{A n..B n} \<subseteq> ball x0 e" using n using x0[of n] by auto
 | |
| 1110 |       show "{A n..B n} \<subseteq> {a..b}" unfolding AB(1-2)[symmetric] apply(rule ABsubset) by auto
 | |
| 1111 | qed qed qed | |
| 1112 | ||
| 1113 | subsection {* Cousin's lemma. *}
 | |
| 1114 | ||
| 1115 | lemma fine_division_exists: assumes "gauge g" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1116 |   obtains p where "p tagged_division_of {a..b::'a::ordered_euclidean_space}" "g fine p"
 | 
| 35172 | 1117 | proof- presume "\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p) \<Longrightarrow> False"
 | 
| 1118 | then guess p unfolding atomize_not not_not .. thus thesis apply-apply(rule that[of p]) by auto | |
| 1119 | next assume as:"\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p)"
 | |
| 1120 | guess x apply(rule interval_bisection[of "\<lambda>s. \<exists>p. p tagged_division_of s \<and> g fine p",rule_format,OF _ _ as]) | |
| 1121 |     apply(rule_tac x="{}" in exI) defer apply(erule conjE exE)+
 | |
| 1122 |   proof- show "{} tagged_division_of {} \<and> g fine {}" unfolding fine_def by auto
 | |
| 1123 |     fix s t p p' assume "p tagged_division_of s" "g fine p" "p' tagged_division_of t" "g fine p'" "interior s \<inter> interior t = {}"
 | |
| 1124 | thus "\<exists>p. p tagged_division_of s \<union> t \<and> g fine p" apply-apply(rule_tac x="p \<union> p'" in exI) apply rule | |
| 1125 | apply(rule tagged_division_union) prefer 4 apply(rule fine_union) by auto | |
| 1126 | qed note x=this | |
| 1127 | obtain e where e:"e>0" "ball x e \<subseteq> g x" using gaugeD[OF assms, of x] unfolding open_contains_ball by auto | |
| 1128 | from x(2)[OF e(1)] guess c d apply-apply(erule exE conjE)+ . note c_d = this | |
| 1129 |   have "g fine {(x, {c..d})}" unfolding fine_def using e using c_d(2) by auto
 | |
| 1130 | thus False using tagged_division_of_self[OF c_d(1)] using c_d by auto qed | |
| 1131 | ||
| 1132 | subsection {* Basic theorems about integrals. *}
 | |
| 1133 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1134 | lemma has_integral_unique: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" | 
| 35172 | 1135 | assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2" | 
| 1136 | proof(rule ccontr) let ?e = "norm(k1 - k2) / 2" assume as:"k1 \<noteq> k2" hence e:"?e > 0" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1137 | have lem:"\<And>f::'n \<Rightarrow> 'a. \<And> a b k1 k2. | 
| 35172 | 1138 |     (f has_integral k1) ({a..b}) \<Longrightarrow> (f has_integral k2) ({a..b}) \<Longrightarrow> k1 \<noteq> k2 \<Longrightarrow> False"
 | 
| 1139 | proof- case goal1 let ?e = "norm(k1 - k2) / 2" from goal1(3) have e:"?e > 0" by auto | |
| 1140 | guess d1 by(rule has_integralD[OF goal1(1) e]) note d1=this | |
| 1141 | guess d2 by(rule has_integralD[OF goal1(2) e]) note d2=this | |
| 1142 | guess p by(rule fine_division_exists[OF gauge_inter[OF d1(1) d2(1)],of a b]) note p=this | |
| 1143 | let ?c = "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" have "norm (k1 - k2) \<le> norm (?c - k2) + norm (?c - k1)" | |
| 36350 | 1144 | using norm_triangle_ineq4[of "k1 - ?c" "k2 - ?c"] by(auto simp add:algebra_simps norm_minus_commute) | 
| 35172 | 1145 | also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" | 
| 1146 | apply(rule add_strict_mono) apply(rule_tac[!] d2(2) d1(2)) using p unfolding fine_def by auto | |
| 1147 | finally show False by auto | |
| 1148 |   qed { presume "\<not> (\<exists>a b. i = {a..b}) \<Longrightarrow> False"
 | |
| 1149 |     thus False apply-apply(cases "\<exists>a b. i = {a..b}")
 | |
| 1150 | using assms by(auto simp add:has_integral intro:lem[OF _ _ as]) } | |
| 1151 |   assume as:"\<not> (\<exists>a b. i = {a..b})"
 | |
| 1152 | guess B1 by(rule has_integral_altD[OF assms(1) as,OF e]) note B1=this[rule_format] | |
| 1153 | guess B2 by(rule has_integral_altD[OF assms(2) as,OF e]) note B2=this[rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1154 |   have "\<exists>a b::'n. ball 0 B1 \<union> ball 0 B2 \<subseteq> {a..b}" apply(rule bounded_subset_closed_interval)
 | 
| 35172 | 1155 | using bounded_Un bounded_ball by auto then guess a b apply-by(erule exE)+ | 
| 1156 | note ab=conjunctD2[OF this[unfolded Un_subset_iff]] | |
| 1157 | guess w using B1(2)[OF ab(1)] .. note w=conjunctD2[OF this] | |
| 1158 | guess z using B2(2)[OF ab(2)] .. note z=conjunctD2[OF this] | |
| 1159 | have "z = w" using lem[OF w(1) z(1)] by auto | |
| 1160 | hence "norm (k1 - k2) \<le> norm (z - k2) + norm (w - k1)" | |
| 1161 | using norm_triangle_ineq4[of "k1 - w" "k2 - z"] by(auto simp add: norm_minus_commute) | |
| 1162 | also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" apply(rule add_strict_mono) by(rule_tac[!] z(2) w(2)) | |
| 1163 | finally show False by auto qed | |
| 1164 | ||
| 1165 | lemma integral_unique[intro]: | |
| 1166 | "(f has_integral y) k \<Longrightarrow> integral k f = y" | |
| 1167 | unfolding integral_def apply(rule some_equality) by(auto intro: has_integral_unique) | |
| 1168 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1169 | lemma has_integral_is_0: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" | 
| 35172 | 1170 | assumes "\<forall>x\<in>s. f x = 0" shows "(f has_integral 0) s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1171 | proof- have lem:"\<And>a b. \<And>f::'n \<Rightarrow> 'a. | 
| 35172 | 1172 |     (\<forall>x\<in>{a..b}. f(x) = 0) \<Longrightarrow> (f has_integral 0) ({a..b})" unfolding has_integral
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1173 | proof(rule,rule) fix a b e and f::"'n \<Rightarrow> 'a" | 
| 35172 | 1174 |     assume as:"\<forall>x\<in>{a..b}. f x = 0" "0 < (e::real)"
 | 
| 1175 |     show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e)"
 | |
| 1176 | apply(rule_tac x="\<lambda>x. ball x 1" in exI) apply(rule,rule gaugeI) unfolding centre_in_ball defer apply(rule open_ball) | |
| 1177 | proof(rule,rule,erule conjE) case goal1 | |
| 1178 | have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) = 0" proof(rule setsum_0',rule) | |
| 1179 | fix x assume x:"x\<in>p" have "f (fst x) = 0" using tagged_division_ofD(2-3)[OF goal1(1), of "fst x" "snd x"] using as x by auto | |
| 1180 | thus "(\<lambda>(x, k). content k *\<^sub>R f x) x = 0" apply(subst surjective_pairing[of x]) unfolding split_conv by auto | |
| 1181 | qed thus ?case using as by auto | |
| 1182 |     qed auto qed  { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | |
| 1183 |     thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}")
 | |
| 1184 | using assms by(auto simp add:has_integral intro:lem) } | |
| 1185 | have *:"(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. 0)" apply(rule ext) using assms by auto | |
| 1186 |   assume "\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P *
 | |
| 1187 | apply(rule,rule,rule_tac x=1 in exI,rule) defer apply(rule,rule,rule) | |
| 1188 | proof- fix e::real and a b assume "e>0" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1189 |     thus "\<exists>z. ((\<lambda>x::'n. 0::'a) has_integral z) {a..b} \<and> norm (z - 0) < e"
 | 
| 35172 | 1190 | apply(rule_tac x=0 in exI) apply(rule,rule lem) by auto | 
| 1191 | qed auto qed | |
| 1192 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1193 | lemma has_integral_0[simp]: "((\<lambda>x::'n::ordered_euclidean_space. 0) has_integral 0) s" | 
| 35172 | 1194 | apply(rule has_integral_is_0) by auto | 
| 1195 | ||
| 1196 | lemma has_integral_0_eq[simp]: "((\<lambda>x. 0) has_integral i) s \<longleftrightarrow> i = 0" | |
| 1197 | using has_integral_unique[OF has_integral_0] by auto | |
| 1198 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1199 | lemma has_integral_linear: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" | 
| 35172 | 1200 | assumes "(f has_integral y) s" "bounded_linear h" shows "((h o f) has_integral ((h y))) s" | 
| 1201 | proof- interpret bounded_linear h using assms(2) . from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1202 | have lem:"\<And>f::'n \<Rightarrow> 'a. \<And> y a b. | 
| 35172 | 1203 |     (f has_integral y) ({a..b}) \<Longrightarrow> ((h o f) has_integral h(y)) ({a..b})"
 | 
| 1204 | proof(subst has_integral,rule,rule) case goal1 | |
| 1205 | from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format] | |
| 1206 | have *:"e / B > 0" apply(rule divide_pos_pos) using goal1(2) B by auto | |
| 1207 | guess g using has_integralD[OF goal1(1) *] . note g=this | |
| 1208 | show ?case apply(rule_tac x=g in exI) apply(rule,rule g(1)) | |
| 1209 |     proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "g fine p" 
 | |
| 1210 | have *:"\<And>x k. h ((\<lambda>(x, k). content k *\<^sub>R f x) x) = (\<lambda>(x, k). h (content k *\<^sub>R f x)) x" by auto | |
| 1211 | have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = setsum (h \<circ> (\<lambda>(x, k). content k *\<^sub>R f x)) p" | |
| 1212 | unfolding o_def unfolding scaleR[THEN sym] * by simp | |
| 1213 | also have "\<dots> = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" using setsum[of "\<lambda>(x,k). content k *\<^sub>R f x" p] using as by auto | |
| 1214 | finally have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" . | |
| 1215 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) - h y) < e" unfolding * diff[THEN sym] | |
| 1216 | apply(rule le_less_trans[OF B(2)]) using g(2)[OF as] B(1) by(auto simp add:field_simps) | |
| 1217 |     qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | |
| 1218 |     thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
 | |
| 1219 |   assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
 | |
| 1220 | proof(rule,rule) fix e::real assume e:"0<e" | |
| 1221 | have *:"0 < e/B" by(rule divide_pos_pos,rule e,rule B(1)) | |
| 1222 | guess M using has_integral_altD[OF assms(1) as *,rule_format] . note M=this | |
| 1223 |     show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) has_integral z) {a..b} \<and> norm (z - h y) < e)"
 | |
| 1224 | apply(rule_tac x=M in exI) apply(rule,rule M(1)) | |
| 1225 | proof(rule,rule,rule) case goal1 guess z using M(2)[OF goal1(1)] .. note z=conjunctD2[OF this] | |
| 1226 | have *:"(\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) = h \<circ> (\<lambda>x. if x \<in> s then f x else 0)" | |
| 1227 | unfolding o_def apply(rule ext) using zero by auto | |
| 1228 | show ?case apply(rule_tac x="h z" in exI,rule) unfolding * apply(rule lem[OF z(1)]) unfolding diff[THEN sym] | |
| 1229 | apply(rule le_less_trans[OF B(2)]) using B(1) z(2) by(auto simp add:field_simps) | |
| 1230 | qed qed qed | |
| 1231 | ||
| 1232 | lemma has_integral_cmul: | |
| 1233 | shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) s" | |
| 1234 | unfolding o_def[THEN sym] apply(rule has_integral_linear,assumption) | |
| 1235 | by(rule scaleR.bounded_linear_right) | |
| 1236 | ||
| 1237 | lemma has_integral_neg: | |
| 1238 | shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. -(f x)) has_integral (-k)) s" | |
| 1239 | apply(drule_tac c="-1" in has_integral_cmul) by auto | |
| 1240 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1241 | lemma has_integral_add: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" | 
| 35172 | 1242 | assumes "(f has_integral k) s" "(g has_integral l) s" | 
| 1243 | shows "((\<lambda>x. f x + g x) has_integral (k + l)) s" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1244 | proof- have lem:"\<And>f g::'n \<Rightarrow> 'a. \<And>a b k l. | 
| 35172 | 1245 |     (f has_integral k) ({a..b}) \<Longrightarrow> (g has_integral l) ({a..b}) \<Longrightarrow>
 | 
| 1246 |      ((\<lambda>x. f(x) + g(x)) has_integral (k + l)) ({a..b})" proof- case goal1
 | |
| 1247 | show ?case unfolding has_integral proof(rule,rule) fix e::real assume e:"e>0" hence *:"e/2>0" by auto | |
| 1248 | guess d1 using has_integralD[OF goal1(1) *] . note d1=this | |
| 1249 | guess d2 using has_integralD[OF goal1(2) *] . note d2=this | |
| 1250 |       show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e)"
 | |
| 1251 | apply(rule_tac x="\<lambda>x. (d1 x) \<inter> (d2 x)" in exI) apply(rule,rule gauge_inter[OF d1(1) d2(1)]) | |
| 1252 |       proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d1 x \<inter> d2 x) fine p"
 | |
| 1253 | have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) = (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p. content k *\<^sub>R g x)" | |
| 1254 | unfolding scaleR_right_distrib setsum_addf[of "\<lambda>(x,k). content k *\<^sub>R f x" "\<lambda>(x,k). content k *\<^sub>R g x" p,THEN sym] | |
| 1255 | by(rule setsum_cong2,auto) | |
| 1256 | have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) = norm (((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - l))" | |
| 36350 | 1257 | unfolding * by(auto simp add:algebra_simps) also let ?res = "\<dots>" | 
| 35172 | 1258 | from as have *:"d1 fine p" "d2 fine p" unfolding fine_inter by auto | 
| 1259 | have "?res < e/2 + e/2" apply(rule le_less_trans[OF norm_triangle_ineq]) | |
| 1260 | apply(rule add_strict_mono) using d1(2)[OF as(1) *(1)] and d2(2)[OF as(1) *(2)] by auto | |
| 1261 | finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e" by auto | |
| 1262 |       qed qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | |
| 1263 |     thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
 | |
| 1264 |   assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
 | |
| 1265 | proof(rule,rule) case goal1 hence *:"e/2 > 0" by auto | |
| 1266 | from has_integral_altD[OF assms(1) as *] guess B1 . note B1=this[rule_format] | |
| 1267 | from has_integral_altD[OF assms(2) as *] guess B2 . note B2=this[rule_format] | |
| 1268 | show ?case apply(rule_tac x="max B1 B2" in exI) apply(rule,rule min_max.less_supI1,rule B1) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1269 |     proof(rule,rule,rule) fix a b assume "ball 0 (max B1 B2) \<subseteq> {a..b::'n}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1270 |       hence *:"ball 0 B1 \<subseteq> {a..b::'n}" "ball 0 B2 \<subseteq> {a..b::'n}" by auto
 | 
| 35172 | 1271 | guess w using B1(2)[OF *(1)] .. note w=conjunctD2[OF this] | 
| 1272 | guess z using B2(2)[OF *(2)] .. note z=conjunctD2[OF this] | |
| 1273 | have *:"\<And>x. (if x \<in> s then f x + g x else 0) = (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)" by auto | |
| 1274 |       show "\<exists>z. ((\<lambda>x. if x \<in> s then f x + g x else 0) has_integral z) {a..b} \<and> norm (z - (k + l)) < e"
 | |
| 1275 | apply(rule_tac x="w + z" in exI) apply(rule,rule lem[OF w(1) z(1), unfolded *[THEN sym]]) | |
| 1276 | using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2) by(auto simp add:field_simps) | |
| 1277 | qed qed qed | |
| 1278 | ||
| 1279 | lemma has_integral_sub: | |
| 1280 | shows "(f has_integral k) s \<Longrightarrow> (g has_integral l) s \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) has_integral (k - l)) s" | |
| 36350 | 1281 | using has_integral_add[OF _ has_integral_neg,of f k s g l] unfolding algebra_simps by auto | 
| 35172 | 1282 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1283 | lemma integral_0: "integral s (\<lambda>x::'n::ordered_euclidean_space. 0::'m::real_normed_vector) = 0" | 
| 35172 | 1284 | by(rule integral_unique has_integral_0)+ | 
| 1285 | ||
| 1286 | lemma integral_add: | |
| 1287 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> | |
| 1288 | integral s (\<lambda>x. f x + g x) = integral s f + integral s g" | |
| 1289 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1290 | apply(rule has_integral_add) by assumption+ | |
| 1291 | ||
| 1292 | lemma integral_cmul: | |
| 1293 | shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. c *\<^sub>R f x) = c *\<^sub>R integral s f" | |
| 1294 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1295 | apply(rule has_integral_cmul) by assumption+ | |
| 1296 | ||
| 1297 | lemma integral_neg: | |
| 1298 | shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. - f x) = - integral s f" | |
| 1299 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1300 | apply(rule has_integral_neg) by assumption+ | |
| 1301 | ||
| 1302 | lemma integral_sub: | |
| 1303 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> integral s (\<lambda>x. f x - g x) = integral s f - integral s g" | |
| 1304 | apply(rule integral_unique) apply(drule integrable_integral)+ | |
| 1305 | apply(rule has_integral_sub) by assumption+ | |
| 1306 | ||
| 1307 | lemma integrable_0: "(\<lambda>x. 0) integrable_on s" | |
| 1308 | unfolding integrable_on_def using has_integral_0 by auto | |
| 1309 | ||
| 1310 | lemma integrable_add: | |
| 1311 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x + g x) integrable_on s" | |
| 1312 | unfolding integrable_on_def by(auto intro: has_integral_add) | |
| 1313 | ||
| 1314 | lemma integrable_cmul: | |
| 1315 | shows "f integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) integrable_on s" | |
| 1316 | unfolding integrable_on_def by(auto intro: has_integral_cmul) | |
| 1317 | ||
| 1318 | lemma integrable_neg: | |
| 1319 | shows "f integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) integrable_on s" | |
| 1320 | unfolding integrable_on_def by(auto intro: has_integral_neg) | |
| 1321 | ||
| 1322 | lemma integrable_sub: | |
| 1323 | shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x - g x) integrable_on s" | |
| 1324 | unfolding integrable_on_def by(auto intro: has_integral_sub) | |
| 1325 | ||
| 1326 | lemma integrable_linear: | |
| 1327 | shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> (h o f) integrable_on s" | |
| 1328 | unfolding integrable_on_def by(auto intro: has_integral_linear) | |
| 1329 | ||
| 1330 | lemma integral_linear: | |
| 1331 | shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> integral s (h o f) = h(integral s f)" | |
| 1332 | apply(rule has_integral_unique) defer unfolding has_integral_integral | |
| 1333 | apply(drule has_integral_linear,assumption,assumption) unfolding has_integral_integral[THEN sym] | |
| 1334 | apply(rule integrable_linear) by assumption+ | |
| 1335 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1336 | lemma integral_component_eq[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1337 | assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $$ k) = integral s f $$ k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1338 | unfolding integral_linear[OF assms(1) bounded_linear_component,unfolded o_def] .. | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 1339 | |
| 35172 | 1340 | lemma has_integral_setsum: | 
| 1341 | assumes "finite t" "\<forall>a\<in>t. ((f a) has_integral (i a)) s" | |
| 1342 | shows "((\<lambda>x. setsum (\<lambda>a. f a x) t) has_integral (setsum i t)) s" | |
| 1343 | proof(insert assms(1) subset_refl[of t],induct rule:finite_subset_induct) | |
| 1344 | case (insert x F) show ?case unfolding setsum_insert[OF insert(1,3)] | |
| 1345 | apply(rule has_integral_add) using insert assms by auto | |
| 1346 | qed auto | |
| 1347 | ||
| 1348 | lemma integral_setsum: | |
| 1349 | shows "finite t \<Longrightarrow> \<forall>a\<in>t. (f a) integrable_on s \<Longrightarrow> | |
| 1350 | integral s (\<lambda>x. setsum (\<lambda>a. f a x) t) = setsum (\<lambda>a. integral s (f a)) t" | |
| 1351 | apply(rule integral_unique) apply(rule has_integral_setsum) | |
| 1352 | using integrable_integral by auto | |
| 1353 | ||
| 1354 | lemma integrable_setsum: | |
| 1355 | shows "finite t \<Longrightarrow> \<forall>a \<in> t.(f a) integrable_on s \<Longrightarrow> (\<lambda>x. setsum (\<lambda>a. f a x) t) integrable_on s" | |
| 1356 | unfolding integrable_on_def apply(drule bchoice) using has_integral_setsum[of t] by auto | |
| 1357 | ||
| 1358 | lemma has_integral_eq: | |
| 1359 | assumes "\<forall>x\<in>s. f x = g x" "(f has_integral k) s" shows "(g has_integral k) s" | |
| 1360 | using has_integral_sub[OF assms(2), of "\<lambda>x. f x - g x" 0] | |
| 1361 | using has_integral_is_0[of s "\<lambda>x. f x - g x"] using assms(1) by auto | |
| 1362 | ||
| 1363 | lemma integrable_eq: | |
| 1364 | shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> f integrable_on s \<Longrightarrow> g integrable_on s" | |
| 1365 | unfolding integrable_on_def using has_integral_eq[of s f g] by auto | |
| 1366 | ||
| 1367 | lemma has_integral_eq_eq: | |
| 1368 | shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> ((f has_integral k) s \<longleftrightarrow> (g has_integral k) s)" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36359diff
changeset | 1369 | using has_integral_eq[of s f g] has_integral_eq[of s g f] by rule auto | 
| 35172 | 1370 | |
| 1371 | lemma has_integral_null[dest]: | |
| 1372 |   assumes "content({a..b}) = 0" shows  "(f has_integral 0) ({a..b})"
 | |
| 1373 | unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI,rule) defer | |
| 1374 | proof(rule,rule,erule conjE) fix e::real assume e:"e>0" thus "gauge (\<lambda>x. ball x 1)" by auto | |
| 1375 |   fix p assume p:"p tagged_division_of {a..b}" (*"(\<lambda>x. ball x 1) fine p"*)
 | |
| 1376 | have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) = 0" unfolding norm_eq_zero diff_0_right | |
| 1377 | using setsum_content_null[OF assms(1) p, of f] . | |
| 1378 | thus "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" using e by auto qed | |
| 1379 | ||
| 1380 | lemma has_integral_null_eq[simp]: | |
| 1381 |   shows "content({a..b}) = 0 \<Longrightarrow> ((f has_integral i) ({a..b}) \<longleftrightarrow> i = 0)"
 | |
| 1382 | apply rule apply(rule has_integral_unique,assumption) | |
| 1383 | apply(drule has_integral_null,assumption) | |
| 1384 | apply(drule has_integral_null) by auto | |
| 1385 | ||
| 1386 | lemma integral_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> integral({a..b}) f = 0"
 | |
| 1387 | by(rule integral_unique,drule has_integral_null) | |
| 1388 | ||
| 1389 | lemma integrable_on_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> f integrable_on {a..b}"
 | |
| 1390 | unfolding integrable_on_def apply(drule has_integral_null) by auto | |
| 1391 | ||
| 1392 | lemma has_integral_empty[intro]: shows "(f has_integral 0) {}"
 | |
| 1393 | unfolding empty_as_interval apply(rule has_integral_null) | |
| 1394 | using content_empty unfolding empty_as_interval . | |
| 1395 | ||
| 1396 | lemma has_integral_empty_eq[simp]: shows "(f has_integral i) {} \<longleftrightarrow> i = 0"
 | |
| 1397 | apply(rule,rule has_integral_unique,assumption) by auto | |
| 1398 | ||
| 1399 | lemma integrable_on_empty[intro]: shows "f integrable_on {}" unfolding integrable_on_def by auto
 | |
| 1400 | ||
| 1401 | lemma integral_empty[simp]: shows "integral {} f = 0"
 | |
| 1402 | apply(rule integral_unique) using has_integral_empty . | |
| 1403 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1404 | lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a::'a::ordered_euclidean_space}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 1405 | proof- have *:"{a} = {a..a}" apply(rule set_eqI) unfolding mem_interval singleton_iff euclidean_eq[where 'a='a]
 | 
| 35540 | 1406 | apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps) | 
| 1407 |   show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
 | |
| 1408 | apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior | |
| 1409 | unfolding interior_closed_interval using interval_sing by auto qed | |
| 35172 | 1410 | |
| 1411 | lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
 | |
| 1412 | ||
| 1413 | lemma integral_refl: shows "integral {a..a} f = 0" apply(rule integral_unique) by auto
 | |
| 1414 | ||
| 1415 | subsection {* Cauchy-type criterion for integrability. *}
 | |
| 1416 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1417 | (* XXXXXXX *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1418 | lemma integrable_cauchy: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::{real_normed_vector,complete_space}" 
 | 
| 35172 | 1419 |   shows "f integrable_on {a..b} \<longleftrightarrow>
 | 
| 1420 |   (\<forall>e>0.\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<and> d fine p1 \<and>
 | |
| 1421 |                             p2 tagged_division_of {a..b} \<and> d fine p2
 | |
| 1422 | \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 - | |
| 1423 | setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) < e))" (is "?l = (\<forall>e>0. \<exists>d. ?P e d)") | |
| 1424 | proof assume ?l | |
| 1425 | then guess y unfolding integrable_on_def has_integral .. note y=this | |
| 1426 | show "\<forall>e>0. \<exists>d. ?P e d" proof(rule,rule) case goal1 hence "e/2 > 0" by auto | |
| 1427 | then guess d apply- apply(drule y[rule_format]) by(erule exE,erule conjE) note d=this[rule_format] | |
| 1428 | show ?case apply(rule_tac x=d in exI,rule,rule d) apply(rule,rule,rule,(erule conjE)+) | |
| 1429 |     proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b}" "d fine p1" "p2 tagged_division_of {a..b}" "d fine p2"
 | |
| 1430 | show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" | |
| 36587 | 1431 | apply(rule dist_triangle_half_l[where y=y,unfolded dist_norm]) | 
| 35172 | 1432 | using d(2)[OF conjI[OF as(1-2)]] d(2)[OF conjI[OF as(3-4)]] . | 
| 1433 | qed qed | |
| 1434 | next assume "\<forall>e>0. \<exists>d. ?P e d" hence "\<forall>n::nat. \<exists>d. ?P (inverse(real (n + 1))) d" by auto | |
| 1435 | from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format],rule_format] | |
| 1436 |   have "\<And>n. gauge (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}})" apply(rule gauge_inters) using d(1) by auto
 | |
| 1437 |   hence "\<forall>n. \<exists>p. p tagged_division_of {a..b} \<and> (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}}) fine p" apply-
 | |
| 1438 | proof case goal1 from this[of n] show ?case apply(drule_tac fine_division_exists) by auto qed | |
| 1439 | from choice[OF this] guess p .. note p = conjunctD2[OF this[rule_format]] | |
| 1440 | have dp:"\<And>i n. i\<le>n \<Longrightarrow> d i fine p n" using p(2) unfolding fine_inters by auto | |
| 1441 | have "Cauchy (\<lambda>n. setsum (\<lambda>(x,k). content k *\<^sub>R (f x)) (p n))" | |
| 1442 | proof(rule CauchyI) case goal1 then guess N unfolding real_arch_inv[of e] .. note N=this | |
| 1443 | show ?case apply(rule_tac x=N in exI) | |
| 1444 | proof(rule,rule,rule,rule) fix m n assume mn:"N \<le> m" "N \<le> n" have *:"N = (N - 1) + 1" using N by auto | |
| 1445 | show "norm ((\<Sum>(x, k)\<in>p m. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p n. content k *\<^sub>R f x)) < e" | |
| 1446 | apply(rule less_trans[OF _ N[THEN conjunct2,THEN conjunct2]]) apply(subst *) apply(rule d(2)) | |
| 1447 | using dp p(1) using mn by auto | |
| 1448 | qed qed | |
| 1449 | then guess y unfolding convergent_eq_cauchy[THEN sym] .. note y=this[unfolded Lim_sequentially,rule_format] | |
| 1450 | show ?l unfolding integrable_on_def has_integral apply(rule_tac x=y in exI) | |
| 1451 | proof(rule,rule) fix e::real assume "e>0" hence *:"e/2 > 0" by auto | |
| 1452 | then guess N1 unfolding real_arch_inv[of "e/2"] .. note N1=this hence N1':"N1 = N1 - 1 + 1" by auto | |
| 1453 | guess N2 using y[OF *] .. note N2=this | |
| 1454 |     show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - y) < e)"
 | |
| 1455 | apply(rule_tac x="d (N1 + N2)" in exI) apply rule defer | |
| 1456 | proof(rule,rule,erule conjE) show "gauge (d (N1 + N2))" using d by auto | |
| 1457 |       fix q assume as:"q tagged_division_of {a..b}" "d (N1 + N2) fine q"
 | |
| 1458 | have *:"inverse (real (N1 + N2 + 1)) < e / 2" apply(rule less_trans) using N1 by auto | |
| 1459 | show "norm ((\<Sum>(x, k)\<in>q. content k *\<^sub>R f x) - y) < e" apply(rule norm_triangle_half_r) | |
| 1460 | apply(rule less_trans[OF _ *]) apply(subst N1', rule d(2)[of "p (N1+N2)"]) defer | |
| 36587 | 1461 | using N2[rule_format,unfolded dist_norm,of "N1+N2"] | 
| 35172 | 1462 | using as dp[of "N1 - 1 + 1 + N2" "N1 + N2"] using p(1)[of "N1 + N2"] using N1 by auto qed qed qed | 
| 1463 | ||
| 1464 | subsection {* Additivity of integral on abutting intervals. *}
 | |
| 1465 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1466 | lemma interval_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1467 |   "{a..b} \<inter> {x. x$$k \<le> c} = {a .. (\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1468 |   "{a..b} \<inter> {x. x$$k \<ge> c} = {(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i) .. b}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 1469 | apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval mem_Collect_eq using assms by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1470 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1471 | lemma content_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1472 |   "content {a..b} = content({a..b} \<inter> {x. x$$k \<le> c}) + content({a..b} \<inter> {x. x$$k >= c})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1473 | proof- note simps = interval_split[OF assms] content_closed_interval_cases eucl_le[where 'a='a] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1474 |   { presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps using assms by auto }
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1475 |   have *:"{..<DIM('a)} = insert k ({..<DIM('a)} - {k})" "\<And>x. finite ({..<DIM('a)}-{x})" "\<And>x. x\<notin>{..<DIM('a)}-{x}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1476 | using assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1477 |   have *:"\<And>X Y Z. (\<Prod>i\<in>{..<DIM('a)}. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>{..<DIM('a)}-{k}. Z i (Y i))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1478 |     "(\<Prod>i\<in>{..<DIM('a)}. b$$i - a$$i) = (\<Prod>i\<in>{..<DIM('a)}-{k}. b$$i - a$$i) * (b$$k - a$$k)" 
 | 
| 35172 | 1479 | apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1480 | assume as:"a\<le>b" moreover have "\<And>x. min (b $$ k) c = max (a $$ k) c | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1481 | \<Longrightarrow> x* (b$$k - a$$k) = x*(max (a $$ k) c - a $$ k) + x*(b $$ k - max (a $$ k) c)" | 
| 35172 | 1482 | by (auto simp add:field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1483 |   moreover have **:"(\<Prod>i<DIM('a). ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i - a $$ i) = 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1484 |     (\<Prod>i<DIM('a). (if i = k then min (b $$ k) c else b $$ i) - a $$ i)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1485 |     "(\<Prod>i<DIM('a). b $$ i - ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1486 |     (\<Prod>i<DIM('a). b $$ i - (if i = k then max (a $$ k) c else a $$ i))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1487 | apply(rule_tac[!] setprod.cong) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1488 | have "\<not> a $$ k \<le> c \<Longrightarrow> \<not> c \<le> b $$ k \<Longrightarrow> False" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1489 | unfolding not_le using as[unfolded eucl_le[where 'a='a],rule_format,of k] assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1490 | ultimately show ?thesis using assms unfolding simps ** | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1491 | unfolding *(1)[of "\<lambda>i x. b$$i - x"] *(1)[of "\<lambda>i x. x - a$$i"] unfolding *(2) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1492 | apply(subst(2) euclidean_lambda_beta''[where 'a='a]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1493 | apply(subst(3) euclidean_lambda_beta''[where 'a='a]) by auto | 
| 35172 | 1494 | qed | 
| 1495 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1496 | lemma division_split_left_inj: fixes type::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1497 | assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1498 |   "k1 \<inter> {x::'a. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}"and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1499 |   shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
 | 
| 35172 | 1500 | proof- note d=division_ofD[OF assms(1)] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1501 |   have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k \<le> c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k \<le> c}) = {})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1502 | unfolding interval_split[OF k] content_eq_0_interior by auto | 
| 35172 | 1503 | guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this | 
| 1504 | guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this | |
| 1505 |   have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
 | |
| 1506 | show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]]) | |
| 1507 | defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1508 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1509 | lemma division_split_right_inj: fixes type::"'a::ordered_euclidean_space" | 
| 35172 | 1510 | assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1511 |   "k1 \<inter> {x::'a. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1512 |   shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
 | 
| 35172 | 1513 | proof- note d=division_ofD[OF assms(1)] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1514 |   have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k >= c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k >= c}) = {})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1515 | unfolding interval_split[OF k] content_eq_0_interior by auto | 
| 35172 | 1516 | guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this | 
| 1517 | guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this | |
| 1518 |   have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
 | |
| 1519 | show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]]) | |
| 1520 | defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed | |
| 1521 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1522 | lemma tagged_division_split_left_inj: fixes x1::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1523 |   assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1524 |   and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1525 |   shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
 | 
| 35172 | 1526 | proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto | 
| 1527 | show ?thesis apply(rule division_split_left_inj[OF division_of_tagged_division[OF assms(1)]]) | |
| 1528 | apply(rule_tac[1-2] *) using assms(2-) by auto qed | |
| 1529 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1530 | lemma tagged_division_split_right_inj: fixes x1::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1531 |   assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1532 |   and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1533 |   shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
 | 
| 35172 | 1534 | proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto | 
| 1535 | show ?thesis apply(rule division_split_right_inj[OF division_of_tagged_division[OF assms(1)]]) | |
| 1536 | apply(rule_tac[1-2] *) using assms(2-) by auto qed | |
| 1537 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1538 | lemma division_split: fixes a::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1539 |   assumes "p division_of {a..b}" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1540 |   shows "{l \<inter> {x. x$$k \<le> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<le> c} = {})} division_of({a..b} \<inter> {x. x$$k \<le> c})" (is "?p1 division_of ?I1") and 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1541 |         "{l \<inter> {x. x$$k \<ge> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})} division_of ({a..b} \<inter> {x. x$$k \<ge> c})" (is "?p2 division_of ?I2")
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1542 | proof(rule_tac[!] division_ofI) note p=division_ofD[OF assms(1)] | 
| 35172 | 1543 | show "finite ?p1" "finite ?p2" using p(1) by auto show "\<Union>?p1 = ?I1" "\<Union>?p2 = ?I2" unfolding p(6)[THEN sym] by auto | 
| 1544 |   { fix k assume "k\<in>?p1" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
 | |
| 1545 | guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this | |
| 1546 |     show "k\<subseteq>?I1" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1547 | using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto | 
| 35172 | 1548 | fix k' assume "k'\<in>?p1" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this | 
| 1549 |     assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
 | |
| 1550 |   { fix k assume "k\<in>?p2" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
 | |
| 1551 | guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this | |
| 1552 |     show "k\<subseteq>?I2" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1553 | using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto | 
| 35172 | 1554 | fix k' assume "k'\<in>?p2" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this | 
| 1555 |     assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
 | |
| 1556 | qed | |
| 1557 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1558 | lemma has_integral_split: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1559 |   assumes "(f has_integral i) ({a..b} \<inter> {x. x$$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$$k \<ge> c})" and k:"k<DIM('a)"
 | 
| 35172 | 1560 |   shows "(f has_integral (i + j)) ({a..b})"
 | 
| 1561 | proof(unfold has_integral,rule,rule) case goal1 hence e:"e/2>0" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1562 | guess d1 using has_integralD[OF assms(1)[unfolded interval_split[OF k]] e] . note d1=this[unfolded interval_split[THEN sym,OF k]] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1563 | guess d2 using has_integralD[OF assms(2)[unfolded interval_split[OF k]] e] . note d2=this[unfolded interval_split[THEN sym,OF k]] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1564 | let ?d = "\<lambda>x. if x$$k = c then (d1 x \<inter> d2 x) else ball x (abs(x$$k - c)) \<inter> d1 x \<inter> d2 x" | 
| 35172 | 1565 | show ?case apply(rule_tac x="?d" in exI,rule) defer apply(rule,rule,(erule conjE)+) | 
| 1566 | proof- show "gauge ?d" using d1(1) d2(1) unfolding gauge_def by auto | |
| 1567 |     fix p assume "p tagged_division_of {a..b}" "?d fine p" note p = this tagged_division_ofD[OF this(1)]
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1568 |     have lem0:"\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1569 |          "\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
 | 
| 35172 | 1570 | proof- fix x kk assume as:"(x,kk)\<in>p" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1571 |       show "~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
 | 
| 35172 | 1572 | proof(rule ccontr) case goal1 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1573 | from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>" | 
| 35172 | 1574 | using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1575 |         hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<le> c}" using goal1(1) by blast 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1576 | then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<le> c" apply-apply(rule le_less_trans) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1577 | using component_le_norm[of "x - y" k] by(auto simp add:dist_norm) | 
| 35172 | 1578 | thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps) | 
| 1579 | qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1580 |       show "~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
 | 
| 35172 | 1581 | proof(rule ccontr) case goal1 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1582 | from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>" | 
| 35172 | 1583 | using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1584 |         hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<ge> c}" using goal1(1) by blast 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1585 | then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<ge> c" apply-apply(rule le_less_trans) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1586 | using component_le_norm[of "x - y" k] by(auto simp add:dist_norm) | 
| 35172 | 1587 | thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps) | 
| 1588 | qed | |
| 1589 | qed | |
| 1590 | ||
| 1591 |     have lem1: "\<And>f P Q. (\<forall>x k. (x,k) \<in> {(x,f k) | x k. P x k} \<longrightarrow> Q x k) \<longleftrightarrow> (\<forall>x k. P x k \<longrightarrow> Q x (f k))" by auto
 | |
| 1592 |     have lem2: "\<And>f s P f. finite s \<Longrightarrow> finite {(x,f k) | x k. (x,k) \<in> s \<and> P x k}"
 | |
| 1593 | proof- case goal1 thus ?case apply-apply(rule finite_subset[of _ "(\<lambda>(x,k). (x,f k)) ` s"]) by auto qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1594 |     have lem3: "\<And>g::('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool. finite p \<Longrightarrow>
 | 
| 35172 | 1595 |       setsum (\<lambda>(x,k). content k *\<^sub>R f x) {(x,g k) |x k. (x,k) \<in> p \<and> ~(g k = {})}
 | 
| 1596 | = setsum (\<lambda>(x,k). content k *\<^sub>R f x) ((\<lambda>(x,k). (x,g k)) ` p)" | |
| 1597 | apply(rule setsum_mono_zero_left) prefer 3 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1598 |     proof fix g::"('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" and i::"('a) \<times> (('a) set)"
 | 
| 35172 | 1599 |       assume "i \<in> (\<lambda>(x, k). (x, g k)) ` p - {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}"
 | 
| 1600 |       then obtain x k where xk:"i=(x,g k)" "(x,k)\<in>p" "(x,g k) \<notin> {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}" by auto
 | |
| 1601 | have "content (g k) = 0" using xk using content_empty by auto | |
| 1602 | thus "(\<lambda>(x, k). content k *\<^sub>R f x) i = 0" unfolding xk split_conv by auto | |
| 1603 | qed auto | |
| 1604 | have lem4:"\<And>g. (\<lambda>(x,l). content (g l) *\<^sub>R f x) = (\<lambda>(x,l). content l *\<^sub>R f x) o (\<lambda>(x,l). (x,g l))" apply(rule ext) by auto | |
| 1605 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1606 |     let ?M1 = "{(x,kk \<inter> {x. x$$k \<le> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<le> c} \<noteq> {}}"
 | 
| 35172 | 1607 | have "norm ((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) < e/2" apply(rule d1(2),rule tagged_division_ofI) | 
| 1608 | apply(rule lem2 p(3))+ prefer 6 apply(rule fineI) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1609 |     proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M1} = {a..b} \<inter> {x. x$$k \<le> c}" unfolding p(8)[THEN sym] by auto
 | 
| 35172 | 1610 | fix x l assume xl:"(x,l)\<in>?M1" | 
| 1611 | then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this | |
| 1612 | have "l' \<subseteq> d1 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto | |
| 1613 | thus "l \<subseteq> d1 x" unfolding xl' by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1614 |       show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<le> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
 | 
| 35172 | 1615 | using lem0(1)[OF xl'(3-4)] by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1616 |       show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[OF k,where c=c])
 | 
| 35172 | 1617 |       fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M1"
 | 
| 1618 | then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this | |
| 1619 |       assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
 | |
| 1620 | proof(cases "l' = r' \<longrightarrow> x' = y'") | |
| 1621 | case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1622 | next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto | |
| 1623 | thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1624 | qed qed moreover | |
| 1625 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1626 |     let ?M2 = "{(x,kk \<inter> {x. x$$k \<ge> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<ge> c} \<noteq> {}}" 
 | 
| 35172 | 1627 | have "norm ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) < e/2" apply(rule d2(2),rule tagged_division_ofI) | 
| 1628 | apply(rule lem2 p(3))+ prefer 6 apply(rule fineI) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1629 |     proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M2} = {a..b} \<inter> {x. x$$k \<ge> c}" unfolding p(8)[THEN sym] by auto
 | 
| 35172 | 1630 | fix x l assume xl:"(x,l)\<in>?M2" | 
| 1631 | then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this | |
| 1632 | have "l' \<subseteq> d2 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto | |
| 1633 | thus "l \<subseteq> d2 x" unfolding xl' by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1634 |       show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<ge> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
 | 
| 35172 | 1635 | using lem0(2)[OF xl'(3-4)] by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1636 |       show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[OF k, where c=c])
 | 
| 35172 | 1637 |       fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M2"
 | 
| 1638 | then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this | |
| 1639 |       assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
 | |
| 1640 | proof(cases "l' = r' \<longrightarrow> x' = y'") | |
| 1641 | case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1642 | next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto | |
| 1643 | thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto | |
| 1644 | qed qed ultimately | |
| 1645 | ||
| 1646 | have "norm (((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)) < e/2 + e/2" | |
| 1647 | apply- apply(rule norm_triangle_lt) by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1648 |     also { have *:"\<And>x y. x = (0::real) \<Longrightarrow> x *\<^sub>R (y::'b) = 0" using scaleR_zero_left by auto
 | 
| 35172 | 1649 | have "((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) | 
| 1650 | = (\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - (i + j)" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1651 |       also have "\<dots> = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) +
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1652 |         (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) - (i + j)"
 | 
| 35172 | 1653 | unfolding lem3[OF p(3)] apply(subst setsum_reindex_nonzero[OF p(3)]) defer apply(subst setsum_reindex_nonzero[OF p(3)]) | 
| 1654 | defer unfolding lem4[THEN sym] apply(rule refl) unfolding split_paired_all split_conv apply(rule_tac[!] *) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1655 | proof- case goal1 thus ?case apply- apply(rule tagged_division_split_left_inj [OF p(1), of a b aa ba]) using k by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1656 | next case goal2 thus ?case apply- apply(rule tagged_division_split_right_inj[OF p(1), of a b aa ba]) using k by auto | 
| 35172 | 1657 | qed also note setsum_addf[THEN sym] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1658 |       also have *:"\<And>x. x\<in>p \<Longrightarrow> (\<lambda>(x, ka). content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) x + (\<lambda>(x, ka). content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) x
 | 
| 35172 | 1659 | = (\<lambda>(x,ka). content ka *\<^sub>R f x) x" unfolding split_paired_all split_conv | 
| 1660 | proof- fix a b assume "(a,b) \<in> p" from p(6)[OF this] guess u v apply-by(erule exE)+ note uv=this | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1661 |         thus "content (b \<inter> {x. x $$ k \<le> c}) *\<^sub>R f a + content (b \<inter> {x. c \<le> x $$ k}) *\<^sub>R f a = content b *\<^sub>R f a"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1662 | unfolding scaleR_left_distrib[THEN sym] unfolding uv content_split[OF k,of u v c] by auto | 
| 35172 | 1663 | qed note setsum_cong2[OF this] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1664 |       finally have "(\<Sum>(x, k)\<in>{(x, kk \<inter> {x. x $$ k \<le> c}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. x $$ k \<le> c} \<noteq> {}}. content k *\<^sub>R f x) - i +
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1665 |         ((\<Sum>(x, k)\<in>{(x, kk \<inter> {x. c \<le> x $$ k}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. c \<le> x $$ k} \<noteq> {}}. content k *\<^sub>R f x) - j) =
 | 
| 35172 | 1666 | (\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f x) - (i + j)" by auto } | 
| 1667 | finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed | |
| 1668 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1669 | (*lemma has_integral_split_cart: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1670 |   assumes "(f has_integral i) ({a..b} \<inter> {x. x$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$k \<ge> c})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1671 |   shows "(f has_integral (i + j)) ({a..b})" *)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1672 | |
| 35172 | 1673 | subsection {* A sort of converse, integrability on subintervals. *}
 | 
| 1674 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1675 | lemma tagged_division_union_interval: fixes a::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1676 |   assumes "p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> (c::real)})"  "p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1677 |   and k:"k<DIM('a)"
 | 
| 35172 | 1678 |   shows "(p1 \<union> p2) tagged_division_of ({a..b})"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1679 | proof- have *:"{a..b} = ({a..b} \<inter> {x. x$$k \<le> c}) \<union> ({a..b} \<inter> {x. x$$k \<ge> c})" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1680 | show ?thesis apply(subst *) apply(rule tagged_division_union[OF assms(1-2)]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1681 | unfolding interval_split[OF k] interior_closed_interval using k | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1682 | by(auto simp add: eucl_less[where 'a='a] elim!:allE[where x=k]) qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1683 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1684 | lemma has_integral_separate_sides: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1685 |   assumes "(f has_integral i) ({a..b})" "e>0" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1686 |   obtains d where "gauge d" "(\<forall>p1 p2. p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> c}) \<and> d fine p1 \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1687 |                                 p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c}) \<and> d fine p2
 | 
| 35172 | 1688 | \<longrightarrow> norm((setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 + | 
| 1689 | setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) - i) < e)" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1690 | proof- guess d using has_integralD[OF assms(1-2)] . note d=this | 
| 35172 | 1691 | show ?thesis apply(rule that[of d]) apply(rule d) apply(rule,rule,rule,(erule conjE)+) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1692 |   proof- fix p1 p2 assume "p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c}" "d fine p1" note p1=tagged_division_ofD[OF this(1)] this
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1693 |                    assume "p2 tagged_division_of {a..b} \<inter> {x. c \<le> x $$ k}" "d fine p2" note p2=tagged_division_ofD[OF this(1)] this
 | 
| 35172 | 1694 | note tagged_division_union_interval[OF p1(7) p2(7)] note p12 = tagged_division_ofD[OF this] this | 
| 1695 | have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) = norm ((\<Sum>(x, k)\<in>p1 \<union> p2. content k *\<^sub>R f x) - i)" | |
| 1696 | apply(subst setsum_Un_zero) apply(rule p1 p2)+ apply(rule) unfolding split_paired_all split_conv | |
| 1697 | proof- fix a b assume ab:"(a,b) \<in> p1 \<inter> p2" | |
| 1698 | have "(a,b) \<in> p1" using ab by auto from p1(4)[OF this] guess u v apply-by(erule exE)+ note uv =this | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1699 |       have "b \<subseteq> {x. x$$k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastsimp
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1700 |       moreover have "interior {x::'a. x $$ k = c} = {}" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1701 |       proof(rule ccontr) case goal1 then obtain x where x:"x\<in>interior {x::'a. x$$k = c}" by auto
 | 
| 35172 | 1702 | then guess e unfolding mem_interior .. note e=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1703 | have x:"x$$k = c" using x interior_subset by fastsimp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1704 |         have *:"\<And>i. i<DIM('a) \<Longrightarrow> \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1705 | = (if i = k then e/2 else 0)" using e by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1706 |         have "(\<Sum>i<DIM('a). \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1707 |           (\<Sum>i<DIM('a). (if i = k then e / 2 else 0))" apply(rule setsum_cong2) apply(subst *) by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1708 | also have "... < e" apply(subst setsum_delta) using e by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1709 | finally have "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> ball x e" unfolding mem_ball dist_norm | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1710 | by(rule le_less_trans[OF norm_le_l1]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1711 |         hence "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> {x. x$$k = c}" using e by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1712 | thus False unfolding mem_Collect_eq using e x k by auto | 
| 35172 | 1713 | qed ultimately have "content b = 0" unfolding uv content_eq_0_interior apply-apply(drule subset_interior) by auto | 
| 1714 | thus "content b *\<^sub>R f a = 0" by auto | |
| 1715 | qed auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1716 | also have "\<dots> < e" by(rule k d(2) p12 fine_union p1 p2)+ | 
| 35172 | 1717 | finally show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) < e" . qed qed | 
| 1718 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1719 | lemma integrable_split[intro]: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::{real_normed_vector,complete_space}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1720 |   assumes "f integrable_on {a..b}" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1721 |   shows "f integrable_on ({a..b} \<inter> {x. x$$k \<le> c})" (is ?t1) and "f integrable_on ({a..b} \<inter> {x. x$$k \<ge> c})" (is ?t2) 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1722 | proof- guess y using assms(1) unfolding integrable_on_def .. note y=this | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1723 | def b' \<equiv> "(\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)::'a" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1724 | and a' \<equiv> "(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i)::'a" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1725 | show ?t1 ?t2 unfolding interval_split[OF k] integrable_cauchy unfolding interval_split[THEN sym,OF k] | 
| 35172 | 1726 | proof(rule_tac[!] allI impI)+ fix e::real assume "e>0" hence "e/2>0" by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1727 | from has_integral_separate_sides[OF y this k,of c] guess d . note d=this[rule_format] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1728 |     let ?P = "\<lambda>A. \<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<inter> A \<and> d fine p1
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1729 |       \<and> p2 tagged_division_of {a..b} \<inter> A \<and> d fine p2 \<longrightarrow>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1730 | norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1731 |     show "?P {x. x $$ k \<le> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1732 |     proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p1
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1733 |         \<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p2"
 | 
| 35172 | 1734 | show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" | 
| 1735 | proof- guess p using fine_division_exists[OF d(1), of a' b] . note p=this | |
| 1736 | show ?thesis using norm_triangle_half_l[OF d(2)[of p1 p] d(2)[of p2 p]] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1737 | using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric] | 
| 36350 | 1738 | using p using assms by(auto simp add:algebra_simps) | 
| 35172 | 1739 | qed qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1740 |     show "?P {x. x $$ k \<ge> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1741 |     proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p1
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1742 |         \<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p2"
 | 
| 35172 | 1743 | show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" | 
| 1744 | proof- guess p using fine_division_exists[OF d(1), of a b'] . note p=this | |
| 1745 | show ?thesis using norm_triangle_half_l[OF d(2)[of p p1] d(2)[of p p2]] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1746 | using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric] | 
| 36350 | 1747 | using p using assms by(auto simp add:algebra_simps) qed qed qed qed | 
| 35172 | 1748 | |
| 1749 | subsection {* Generalized notion of additivity. *}
 | |
| 1750 | ||
| 1751 | definition "neutral opp = (SOME x. \<forall>y. opp x y = y \<and> opp y x = y)" | |
| 1752 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1753 | definition operative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (('b::ordered_euclidean_space) set \<Rightarrow> 'a) \<Rightarrow> bool" where
 | 
| 35172 | 1754 | "operative opp f \<equiv> | 
| 1755 |     (\<forall>a b. content {a..b} = 0 \<longrightarrow> f {a..b} = neutral(opp)) \<and>
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1756 |     (\<forall>a b c. \<forall>k<DIM('b). f({a..b}) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1757 |                    opp (f({a..b} \<inter> {x. x$$k \<le> c}))
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1758 |                        (f({a..b} \<inter> {x. x$$k \<ge> c})))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1759 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1760 | lemma operativeD[dest]: fixes type::"'a::ordered_euclidean_space" assumes "operative opp f" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1761 |   shows "\<And>a b. content {a..b} = 0 \<Longrightarrow> f {a..b::'a} = neutral(opp)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1762 |   "\<And>a b c k. k<DIM('a) \<Longrightarrow> f({a..b}) = opp (f({a..b} \<inter> {x. x$$k \<le> c})) (f({a..b} \<inter> {x. x$$k \<ge> c}))"
 | 
| 35172 | 1763 | using assms unfolding operative_def by auto | 
| 1764 | ||
| 1765 | lemma operative_trivial: | |
| 1766 |  "operative opp f \<Longrightarrow> content({a..b}) = 0 \<Longrightarrow> f({a..b}) = neutral opp"
 | |
| 1767 | unfolding operative_def by auto | |
| 1768 | ||
| 1769 | lemma property_empty_interval: | |
| 1770 |  "(\<forall>a b. content({a..b}) = 0 \<longrightarrow> P({a..b})) \<Longrightarrow> P {}" 
 | |
| 1771 | using content_empty unfolding empty_as_interval by auto | |
| 1772 | ||
| 1773 | lemma operative_empty: "operative opp f \<Longrightarrow> f {} = neutral opp"
 | |
| 1774 | unfolding operative_def apply(rule property_empty_interval) by auto | |
| 1775 | ||
| 1776 | subsection {* Using additivity of lifted function to encode definedness. *}
 | |
| 1777 | ||
| 1778 | lemma forall_option: "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>x. P(Some x))" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36359diff
changeset | 1779 | by (metis option.nchotomy) | 
| 35172 | 1780 | |
| 1781 | lemma exists_option: | |
| 1782 | "(\<exists>x. P x) \<longleftrightarrow> P None \<or> (\<exists>x. P(Some x))" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36359diff
changeset | 1783 | by (metis option.nchotomy) | 
| 35172 | 1784 | |
| 1785 | fun lifted where | |
| 1786 | "lifted (opp::'a\<Rightarrow>'a\<Rightarrow>'b) (Some x) (Some y) = Some(opp x y)" | | |
| 1787 | "lifted opp None _ = (None::'b option)" | | |
| 1788 | "lifted opp _ None = None" | |
| 1789 | ||
| 1790 | lemma lifted_simp_1[simp]: "lifted opp v None = None" | |
| 1791 | apply(induct v) by auto | |
| 1792 | ||
| 1793 | definition "monoidal opp \<equiv> (\<forall>x y. opp x y = opp y x) \<and> | |
| 1794 | (\<forall>x y z. opp x (opp y z) = opp (opp x y) z) \<and> | |
| 1795 | (\<forall>x. opp (neutral opp) x = x)" | |
| 1796 | ||
| 1797 | lemma monoidalI: assumes "\<And>x y. opp x y = opp y x" | |
| 1798 | "\<And>x y z. opp x (opp y z) = opp (opp x y) z" | |
| 1799 | "\<And>x. opp (neutral opp) x = x" shows "monoidal opp" | |
| 1800 | unfolding monoidal_def using assms by fastsimp | |
| 1801 | ||
| 1802 | lemma monoidal_ac: assumes "monoidal opp" | |
| 1803 | shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" "opp a b = opp b a" | |
| 1804 | "opp (opp a b) c = opp a (opp b c)" "opp a (opp b c) = opp b (opp a c)" | |
| 1805 | using assms unfolding monoidal_def apply- by metis+ | |
| 1806 | ||
| 1807 | lemma monoidal_simps[simp]: assumes "monoidal opp" | |
| 1808 | shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" | |
| 1809 | using monoidal_ac[OF assms] by auto | |
| 1810 | ||
| 1811 | lemma neutral_lifted[cong]: assumes "monoidal opp" | |
| 1812 | shows "neutral (lifted opp) = Some(neutral opp)" | |
| 1813 | apply(subst neutral_def) apply(rule some_equality) apply(rule,induct_tac y) prefer 3 | |
| 1814 | proof- fix x assume "\<forall>y. lifted opp x y = y \<and> lifted opp y x = y" | |
| 1815 | thus "x = Some (neutral opp)" apply(induct x) defer | |
| 1816 | apply rule apply(subst neutral_def) apply(subst eq_commute,rule some_equality) | |
| 1817 | apply(rule,erule_tac x="Some y" in allE) defer apply(erule_tac x="Some x" in allE) by auto | |
| 1818 | qed(auto simp add:monoidal_ac[OF assms]) | |
| 1819 | ||
| 1820 | lemma monoidal_lifted[intro]: assumes "monoidal opp" shows "monoidal(lifted opp)" | |
| 1821 | unfolding monoidal_def forall_option neutral_lifted[OF assms] using monoidal_ac[OF assms] by auto | |
| 1822 | ||
| 1823 | definition "support opp f s = {x. x\<in>s \<and> f x \<noteq> neutral opp}"
 | |
| 1824 | definition "fold' opp e s \<equiv> (if finite s then fold opp e s else e)" | |
| 1825 | definition "iterate opp s f \<equiv> fold' (\<lambda>x a. opp (f x) a) (neutral opp) (support opp f s)" | |
| 1826 | ||
| 1827 | lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto | |
| 1828 | lemma support_empty[simp]:"support opp f {} = {}" using support_subset[of opp f "{}"] by auto
 | |
| 1829 | ||
| 1830 | lemma fun_left_comm_monoidal[intro]: assumes "monoidal opp" shows "fun_left_comm opp" | |
| 1831 | unfolding fun_left_comm_def using monoidal_ac[OF assms] by auto | |
| 1832 | ||
| 1833 | lemma support_clauses: | |
| 1834 |   "\<And>f g s. support opp f {} = {}"
 | |
| 1835 | "\<And>f g s. support opp f (insert x s) = (if f(x) = neutral opp then support opp f s else insert x (support opp f s))" | |
| 1836 |   "\<And>f g s. support opp f (s - {x}) = (support opp f s) - {x}"
 | |
| 1837 | "\<And>f g s. support opp f (s \<union> t) = (support opp f s) \<union> (support opp f t)" | |
| 1838 | "\<And>f g s. support opp f (s \<inter> t) = (support opp f s) \<inter> (support opp f t)" | |
| 1839 | "\<And>f g s. support opp f (s - t) = (support opp f s) - (support opp f t)" | |
| 1840 | "\<And>f g s. support opp g (f ` s) = f ` (support opp (g o f) s)" | |
| 1841 | unfolding support_def by auto | |
| 1842 | ||
| 1843 | lemma finite_support[intro]:"finite s \<Longrightarrow> finite (support opp f s)" | |
| 1844 | unfolding support_def by auto | |
| 1845 | ||
| 1846 | lemma iterate_empty[simp]:"iterate opp {} f = neutral opp"
 | |
| 1847 | unfolding iterate_def fold'_def by auto | |
| 1848 | ||
| 1849 | lemma iterate_insert[simp]: assumes "monoidal opp" "finite s" | |
| 1850 | shows "iterate opp (insert x s) f = (if x \<in> s then iterate opp s f else opp (f x) (iterate opp s f))" | |
| 1851 | proof(cases "x\<in>s") case True hence *:"insert x s = s" by auto | |
| 1852 | show ?thesis unfolding iterate_def if_P[OF True] * by auto | |
| 1853 | next case False note x=this | |
| 1854 | note * = fun_left_comm.fun_left_comm_apply[OF fun_left_comm_monoidal[OF assms(1)]] | |
| 1855 | show ?thesis proof(cases "f x = neutral opp") | |
| 1856 | case True show ?thesis unfolding iterate_def if_not_P[OF x] support_clauses if_P[OF True] | |
| 1857 | unfolding True monoidal_simps[OF assms(1)] by auto | |
| 1858 | next case False show ?thesis unfolding iterate_def fold'_def if_not_P[OF x] support_clauses if_not_P[OF False] | |
| 1859 | apply(subst fun_left_comm.fold_insert[OF * finite_support]) | |
| 1860 | using `finite s` unfolding support_def using False x by auto qed qed | |
| 1861 | ||
| 1862 | lemma iterate_some: | |
| 1863 | assumes "monoidal opp" "finite s" | |
| 1864 | shows "iterate (lifted opp) s (\<lambda>x. Some(f x)) = Some (iterate opp s f)" using assms(2) | |
| 1865 | proof(induct s) case empty thus ?case using assms by auto | |
| 1866 | next case (insert x F) show ?case apply(subst iterate_insert) prefer 3 apply(subst if_not_P) | |
| 1867 | defer unfolding insert(3) lifted.simps apply rule using assms insert by auto qed | |
| 1868 | subsection {* Two key instances of additivity. *}
 | |
| 1869 | ||
| 1870 | lemma neutral_add[simp]: | |
| 1871 | "neutral op + = (0::_::comm_monoid_add)" unfolding neutral_def | |
| 1872 | apply(rule some_equality) defer apply(erule_tac x=0 in allE) by auto | |
| 1873 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1874 | lemma operative_content[intro]: "operative (op +) content" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1875 | unfolding operative_def neutral_add apply safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1876 | unfolding content_split[THEN sym] .. | 
| 35172 | 1877 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36359diff
changeset | 1878 | lemma neutral_monoid: "neutral ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a) = 0"
 | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36359diff
changeset | 1879 | by (rule neutral_add) (* FIXME: duplicate *) | 
| 35172 | 1880 | |
| 1881 | lemma monoidal_monoid[intro]: | |
| 1882 |   shows "monoidal ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a)"
 | |
| 36350 | 1883 | unfolding monoidal_def neutral_monoid by(auto simp add: algebra_simps) | 
| 35172 | 1884 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1885 | lemma operative_integral: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" | 
| 35172 | 1886 | shows "operative (lifted(op +)) (\<lambda>i. if f integrable_on i then Some(integral i f) else None)" | 
| 1887 | unfolding operative_def unfolding neutral_lifted[OF monoidal_monoid] neutral_add | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1888 | apply(rule,rule,rule,rule) defer apply(rule allI impI)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1889 | proof- fix a b c k assume k:"k<DIM('a)" show "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1890 |     lifted op + (if f integrable_on {a..b} \<inter> {x. x $$ k \<le> c} then Some (integral ({a..b} \<inter> {x. x $$ k \<le> c}) f) else None)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1891 |     (if f integrable_on {a..b} \<inter> {x. c \<le> x $$ k} then Some (integral ({a..b} \<inter> {x. c \<le> x $$ k}) f) else None)"
 | 
| 35172 | 1892 |   proof(cases "f integrable_on {a..b}") 
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1893 | case True show ?thesis unfolding if_P[OF True] using k apply- | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1894 | unfolding if_P[OF integrable_split(1)[OF True]] unfolding if_P[OF integrable_split(2)[OF True]] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1895 | unfolding lifted.simps option.inject apply(rule integral_unique) apply(rule has_integral_split[OF _ _ k]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1896 | apply(rule_tac[!] integrable_integral integrable_split)+ using True k by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1897 |   next case False have "(\<not> (f integrable_on {a..b} \<inter> {x. x $$ k \<le> c})) \<or> (\<not> ( f integrable_on {a..b} \<inter> {x. c \<le> x $$ k}))"
 | 
| 35172 | 1898 |     proof(rule ccontr) case goal1 hence "f integrable_on {a..b}" apply- unfolding integrable_on_def
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1899 |         apply(rule_tac x="integral ({a..b} \<inter> {x. x $$ k \<le> c}) f + integral ({a..b} \<inter> {x. x $$ k \<ge> c}) f" in exI)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1900 | apply(rule has_integral_split[OF _ _ k]) apply(rule_tac[!] integrable_integral) by auto | 
| 35172 | 1901 | thus False using False by auto | 
| 1902 | qed thus ?thesis using False by auto | |
| 1903 | qed next | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1904 |   fix a b assume as:"content {a..b::'a} = 0"
 | 
| 35172 | 1905 |   thus "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) = Some 0"
 | 
| 1906 | unfolding if_P[OF integrable_on_null[OF as]] using has_integral_null_eq[OF as] by auto qed | |
| 1907 | ||
| 1908 | subsection {* Points of division of a partition. *}
 | |
| 1909 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1910 | definition "division_points (k::('a::ordered_euclidean_space) set) d = 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1911 |     {(j,x). j<DIM('a) \<and> (interval_lowerbound k)$$j < x \<and> x < (interval_upperbound k)$$j \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1912 | (\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1913 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1914 | lemma division_points_finite: fixes i::"('a::ordered_euclidean_space) set"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1915 | assumes "d division_of i" shows "finite (division_points i d)" | 
| 35172 | 1916 | proof- note assm = division_ofD[OF assms] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1917 |   let ?M = "\<lambda>j. {(j,x)|x. (interval_lowerbound i)$$j < x \<and> x < (interval_upperbound i)$$j \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1918 | (\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1919 |   have *:"division_points i d = \<Union>(?M ` {..<DIM('a)})"
 | 
| 35172 | 1920 | unfolding division_points_def by auto | 
| 1921 | show ?thesis unfolding * using assm by auto qed | |
| 1922 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1923 | lemma division_points_subset: fixes a::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1924 |   assumes "d division_of {a..b}" "\<forall>i<DIM('a). a$$i < b$$i"  "a$$k < c" "c < b$$k" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1925 |   shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<le> c} = {})}
 | 
| 35172 | 1926 |                   \<subseteq> division_points ({a..b}) d" (is ?t1) and
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1927 |         "division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})}
 | 
| 35172 | 1928 |                   \<subseteq> division_points ({a..b}) d" (is ?t2)
 | 
| 1929 | proof- note assm = division_ofD[OF assms(1)] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1930 |   have *:"\<forall>i<DIM('a). a$$i \<le> b$$i"   "\<forall>i<DIM('a). a$$i \<le> ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1931 |     "\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i \<le> b$$i"  "min (b $$ k) c = c" "max (a $$ k) c = c"
 | 
| 35172 | 1932 | using assms using less_imp_le by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1933 | show ?t1 unfolding division_points_def interval_split[OF k, of a b] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1934 | unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding * | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1935 | unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1936 | unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta' | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1937 | proof- fix i l x assume as:"a $$ fst x < snd x" "snd x < (if fst x = k then c else b $$ fst x)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1938 | "interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1939 |       "i = l \<inter> {x. x $$ k \<le> c}" "l \<in> d" "l \<inter> {x. x $$ k \<le> c} \<noteq> {}" and fstx:"fst x <DIM('a)"
 | 
| 35172 | 1940 | from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1941 |     have *:"\<forall>i<DIM('a). u $$ i \<le> ((\<chi>\<chi> i. if i = k then min (v $$ k) c else v $$ i)::'a) $$ i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1942 | using as(6) unfolding l interval_split[OF k] interval_ne_empty as . | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1943 |     have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1944 |     show "fst x <DIM('a) \<and> a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1945 | \<or> interval_upperbound i $$ fst x = snd x)" apply(rule,rule fstx) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1946 | using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply- | 
| 35172 | 1947 |       apply(rule,assumption,rule) defer apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1948 | apply(case_tac[!] "fst x = k") using assms fstx apply- unfolding euclidean_lambda_beta by auto | 
| 35172 | 1949 | qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1950 | show ?t2 unfolding division_points_def interval_split[OF k, of a b] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1951 | unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding * | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1952 | unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1953 | unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta' apply(rule,assumption) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1954 | proof- fix i l x assume as:"(if fst x = k then c else a $$ fst x) < snd x" "snd x < b $$ fst x" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1955 | "interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1956 |       "i = l \<inter> {x. c \<le> x $$ k}" "l \<in> d" "l \<inter> {x. c \<le> x $$ k} \<noteq> {}" and fstx:"fst x < DIM('a)"
 | 
| 35172 | 1957 | from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1958 |     have *:"\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (u $$ k) c else u $$ i)::'a) $$ i \<le> v $$ i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1959 | using as(6) unfolding l interval_split[OF k] interval_ne_empty as . | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1960 |     have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1961 | show "a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x \<or> | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1962 | interval_upperbound i $$ fst x = snd x)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1963 | using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply- | 
| 35172 | 1964 |       apply rule defer apply(rule,assumption) apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1965 | apply(case_tac[!] "fst x = k") using assms fstx apply- by(auto simp add:euclidean_lambda_beta'[OF k]) qed qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1966 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1967 | lemma division_points_psubset: fixes a::"'a::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1968 |   assumes "d division_of {a..b}"  "\<forall>i<DIM('a). a$$i < b$$i"  "a$$k < c" "c < b$$k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1969 |   "l \<in> d" "interval_lowerbound l$$k = c \<or> interval_upperbound l$$k = c" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1970 |   shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<le> c} \<noteq> {}}
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1971 |               \<subset> division_points ({a..b}) d" (is "?D1 \<subset> ?D") 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1972 |         "division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<ge> c} \<noteq> {}}
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1973 |               \<subset> division_points ({a..b}) d" (is "?D2 \<subset> ?D") 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1974 | proof- have ab:"\<forall>i<DIM('a). a$$i \<le> b$$i" using assms(2) by(auto intro!:less_imp_le)
 | 
| 35172 | 1975 | guess u v using division_ofD(4)[OF assms(1,5)] apply-by(erule exE)+ note l=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1976 |   have uv:"\<forall>i<DIM('a). u$$i \<le> v$$i" "\<forall>i<DIM('a). a$$i \<le> u$$i \<and> v$$i \<le> b$$i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1977 | using division_ofD(2,2,3)[OF assms(1,5)] unfolding l interval_ne_empty | 
| 35172 | 1978 | unfolding subset_eq apply- defer apply(erule_tac x=u in ballE, erule_tac x=v in ballE) unfolding mem_interval by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1979 |   have *:"interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1980 |          "interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1981 | unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1982 | unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto | 
| 35172 | 1983 | have "\<exists>x. x \<in> ?D - ?D1" using assms(2-) apply-apply(erule disjE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1984 | apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1985 | apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1986 | unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1987 | thus "?D1 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) using k by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1988 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1989 |   have *:"interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1990 |          "interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1991 | unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1992 | unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto | 
| 35172 | 1993 | have "\<exists>x. x \<in> ?D - ?D2" using assms(2-) apply-apply(erule disjE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1994 | apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1995 | apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1996 | unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 1997 | thus "?D2 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4) k]) by auto qed | 
| 35172 | 1998 | |
| 1999 | subsection {* Preservation by divisions and tagged divisions. *}
 | |
| 2000 | ||
| 2001 | lemma support_support[simp]:"support opp f (support opp f s) = support opp f s" | |
| 2002 | unfolding support_def by auto | |
| 2003 | ||
| 2004 | lemma iterate_support[simp]: "iterate opp (support opp f s) f = iterate opp s f" | |
| 2005 | unfolding iterate_def support_support by auto | |
| 2006 | ||
| 2007 | lemma iterate_expand_cases: | |
| 2008 | "iterate opp s f = (if finite(support opp f s) then iterate opp (support opp f s) f else neutral opp)" | |
| 2009 | apply(cases) apply(subst if_P,assumption) unfolding iterate_def support_support fold'_def by auto | |
| 2010 | ||
| 2011 | lemma iterate_image: assumes "monoidal opp" "inj_on f s" | |
| 2012 | shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)" | |
| 2013 | proof- have *:"\<And>s. finite s \<Longrightarrow> \<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<longrightarrow> x = y \<Longrightarrow> | |
| 2014 | iterate opp (f ` s) g = iterate opp s (g \<circ> f)" | |
| 2015 | proof- case goal1 show ?case using goal1 | |
| 2016 | proof(induct s) case empty thus ?case using assms(1) by auto | |
| 2017 | next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)] | |
| 2018 | unfolding if_not_P[OF insert(2)] apply(subst insert(3)[THEN sym]) | |
| 2019 | unfolding image_insert defer apply(subst iterate_insert[OF assms(1)]) | |
| 2020 | apply(rule finite_imageI insert)+ apply(subst if_not_P) | |
| 2021 | unfolding image_iff o_def using insert(2,4) by auto | |
| 2022 | qed qed | |
| 2023 | show ?thesis | |
| 2024 | apply(cases "finite (support opp g (f ` s))") | |
| 2025 | apply(subst (1) iterate_support[THEN sym],subst (2) iterate_support[THEN sym]) | |
| 2026 | unfolding support_clauses apply(rule *)apply(rule finite_imageD,assumption) unfolding inj_on_def[symmetric] | |
| 2027 | apply(rule subset_inj_on[OF assms(2) support_subset])+ | |
| 2028 | apply(subst iterate_expand_cases) unfolding support_clauses apply(simp only: if_False) | |
| 2029 | apply(subst iterate_expand_cases) apply(subst if_not_P) by auto qed | |
| 2030 | ||
| 2031 | ||
| 2032 | (* This lemma about iterations comes up in a few places. *) | |
| 2033 | lemma iterate_nonzero_image_lemma: | |
| 2034 | assumes "monoidal opp" "finite s" "g(a) = neutral opp" | |
| 2035 | "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = neutral opp" | |
| 2036 |   shows "iterate opp {f x | x. x \<in> s \<and> f x \<noteq> a} g = iterate opp s (g \<circ> f)"
 | |
| 2037 | proof- have *:"{f x |x. x \<in> s \<and> ~(f x = a)} = f ` {x. x \<in> s \<and> ~(f x = a)}" by auto
 | |
| 2038 |   have **:"support opp (g \<circ> f) {x \<in> s. f x \<noteq> a} = support opp (g \<circ> f) s"
 | |
| 2039 | unfolding support_def using assms(3) by auto | |
| 2040 | show ?thesis unfolding * | |
| 2041 | apply(subst iterate_support[THEN sym]) unfolding support_clauses | |
| 2042 | apply(subst iterate_image[OF assms(1)]) defer | |
| 2043 | apply(subst(2) iterate_support[THEN sym]) apply(subst **) | |
| 2044 | unfolding inj_on_def using assms(3,4) unfolding support_def by auto qed | |
| 2045 | ||
| 2046 | lemma iterate_eq_neutral: | |
| 2047 | assumes "monoidal opp" "\<forall>x \<in> s. (f(x) = neutral opp)" | |
| 2048 | shows "(iterate opp s f = neutral opp)" | |
| 2049 | proof- have *:"support opp f s = {}" unfolding support_def using assms(2) by auto
 | |
| 2050 | show ?thesis apply(subst iterate_support[THEN sym]) | |
| 2051 | unfolding * using assms(1) by auto qed | |
| 2052 | ||
| 2053 | lemma iterate_op: assumes "monoidal opp" "finite s" | |
| 2054 | shows "iterate opp s (\<lambda>x. opp (f x) (g x)) = opp (iterate opp s f) (iterate opp s g)" using assms(2) | |
| 2055 | proof(induct s) case empty thus ?case unfolding iterate_insert[OF assms(1)] using assms(1) by auto | |
| 2056 | next case (insert x F) show ?case unfolding iterate_insert[OF assms(1) insert(1)] if_not_P[OF insert(2)] insert(3) | |
| 2057 | unfolding monoidal_ac[OF assms(1)] by(rule refl) qed | |
| 2058 | ||
| 2059 | lemma iterate_eq: assumes "monoidal opp" "\<And>x. x \<in> s \<Longrightarrow> f x = g x" | |
| 2060 | shows "iterate opp s f = iterate opp s g" | |
| 2061 | proof- have *:"support opp g s = support opp f s" | |
| 2062 | unfolding support_def using assms(2) by auto | |
| 2063 | show ?thesis | |
| 2064 | proof(cases "finite (support opp f s)") | |
| 2065 | case False thus ?thesis apply(subst iterate_expand_cases,subst(2) iterate_expand_cases) | |
| 2066 | unfolding * by auto | |
| 2067 | next def su \<equiv> "support opp f s" | |
| 2068 | case True note support_subset[of opp f s] | |
| 2069 | thus ?thesis apply- apply(subst iterate_support[THEN sym],subst(2) iterate_support[THEN sym]) unfolding * using True | |
| 2070 | unfolding su_def[symmetric] | |
| 2071 | proof(induct su) case empty show ?case by auto | |
| 2072 | next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)] | |
| 2073 | unfolding if_not_P[OF insert(2)] apply(subst insert(3)) | |
| 2074 | defer apply(subst assms(2)[of x]) using insert by auto qed qed qed | |
| 2075 | ||
| 2076 | lemma nonempty_witness: assumes "s \<noteq> {}" obtains x where "x \<in> s" using assms by auto
 | |
| 2077 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2078 | lemma operative_division: fixes f::"('a::ordered_euclidean_space) set \<Rightarrow> 'b"
 | 
| 35172 | 2079 |   assumes "monoidal opp" "operative opp f" "d division_of {a..b}"
 | 
| 2080 |   shows "iterate opp d f = f {a..b}"
 | |
| 2081 | proof- def C \<equiv> "card (division_points {a..b} d)" thus ?thesis using assms
 | |
| 2082 | proof(induct C arbitrary:a b d rule:full_nat_induct) | |
| 2083 | case goal1 | |
| 2084 |     { presume *:"content {a..b} \<noteq> 0 \<Longrightarrow> ?case"
 | |
| 2085 | thus ?case apply-apply(cases) defer apply assumption | |
| 2086 |       proof- assume as:"content {a..b} = 0"
 | |
| 2087 | show ?case unfolding operativeD(1)[OF assms(2) as] apply(rule iterate_eq_neutral[OF goal1(2)]) | |
| 2088 | proof fix x assume x:"x\<in>d" | |
| 2089 | then guess u v apply(drule_tac division_ofD(4)[OF goal1(4)]) by(erule exE)+ | |
| 2090 | thus "f x = neutral opp" using division_of_content_0[OF as goal1(4)] | |
| 2091 | using operativeD(1)[OF assms(2)] x by auto | |
| 2092 | qed qed } | |
| 2093 |     assume "content {a..b} \<noteq> 0" note ab = this[unfolded content_lt_nz[THEN sym] content_pos_lt_eq]
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2094 |     hence ab':"\<forall>i<DIM('a). a$$i \<le> b$$i" by (auto intro!: less_imp_le) show ?case 
 | 
| 35172 | 2095 |     proof(cases "division_points {a..b} d = {}")
 | 
| 2096 |       case True have d':"\<forall>i\<in>d. \<exists>u v. i = {u..v} \<and>
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2097 |         (\<forall>j<DIM('a). u$$j = a$$j \<and> v$$j = a$$j \<or> u$$j = b$$j \<and> v$$j = b$$j \<or> u$$j = a$$j \<and> v$$j = b$$j)"
 | 
| 35172 | 2098 | unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2099 | apply(rule_tac x=a in exI,rule_tac x=b in exI) apply(rule,rule refl) apply(rule,rule) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2100 |       proof- fix u v j assume j:"j<DIM('a)" assume as:"{u..v} \<in> d" note division_ofD(3)[OF goal1(4) this]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2101 |         hence uv:"\<forall>i<DIM('a). u$$i \<le> v$$i" "u$$j \<le> v$$j" using j unfolding interval_ne_empty by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2102 |         have *:"\<And>p r Q. \<not> j<DIM('a) \<or> p \<or> r \<or> (\<forall>x\<in>d. Q x) \<Longrightarrow> p \<or> r \<or> (Q {u..v})" using as j by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2103 |         have "(j, u$$j) \<notin> division_points {a..b} d"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2104 |           "(j, v$$j) \<notin> division_points {a..b} d" using True by auto
 | 
| 35172 | 2105 | note this[unfolded de_Morgan_conj division_points_def mem_Collect_eq split_conv interval_bounds[OF ab'] bex_simps] | 
| 2106 | note *[OF this(1)] *[OF this(2)] note this[unfolded interval_bounds[OF uv(1)]] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2107 | moreover have "a$$j \<le> u$$j" "v$$j \<le> b$$j" using division_ofD(2,2,3)[OF goal1(4) as] | 
| 35172 | 2108 | unfolding subset_eq apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2109 | unfolding interval_ne_empty mem_interval using j by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2110 | ultimately show "u$$j = a$$j \<and> v$$j = a$$j \<or> u$$j = b$$j \<and> v$$j = b$$j \<or> u$$j = a$$j \<and> v$$j = b$$j" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2111 | unfolding not_less de_Morgan_disj using ab[rule_format,of j] uv(2) j by auto | 
| 35172 | 2112 |       qed have "(1/2) *\<^sub>R (a+b) \<in> {a..b}" unfolding mem_interval using ab by(auto intro!:less_imp_le)
 | 
| 2113 | note this[unfolded division_ofD(6)[OF goal1(4),THEN sym] Union_iff] | |
| 2114 | then guess i .. note i=this guess u v using d'[rule_format,OF i(1)] apply-by(erule exE conjE)+ note uv=this | |
| 2115 |       have "{a..b} \<in> d"
 | |
| 2116 |       proof- { presume "i = {a..b}" thus ?thesis using i by auto }
 | |
| 2117 |         { presume "u = a" "v = b" thus "i = {a..b}" using uv by auto }
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2118 | show "u = a" "v = b" unfolding euclidean_eq[where 'a='a] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2119 |         proof(safe) fix j assume j:"j<DIM('a)" note i(2)[unfolded uv mem_interval,rule_format,of j]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2120 | thus "u $$ j = a $$ j" "v $$ j = b $$ j" using uv(2)[rule_format,of j] j by auto | 
| 35172 | 2121 | qed qed | 
| 2122 |       hence *:"d = insert {a..b} (d - {{a..b}})" by auto
 | |
| 2123 |       have "iterate opp (d - {{a..b}}) f = neutral opp" apply(rule iterate_eq_neutral[OF goal1(2)])
 | |
| 2124 |       proof fix x assume x:"x \<in> d - {{a..b}}" hence "x\<in>d" by auto note d'[rule_format,OF this]
 | |
| 2125 | then guess u v apply-by(erule exE conjE)+ note uv=this | |
| 2126 | have "u\<noteq>a \<or> v\<noteq>b" using x[unfolded uv] by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2127 |         then obtain j where "u$$j \<noteq> a$$j \<or> v$$j \<noteq> b$$j" and j:"j<DIM('a)" unfolding euclidean_eq[where 'a='a] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2128 | hence "u$$j = v$$j" using uv(2)[rule_format,OF j] by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2129 |         hence "content {u..v} = 0"  unfolding content_eq_0 apply(rule_tac x=j in exI) using j by auto
 | 
| 35172 | 2130 | thus "f x = neutral opp" unfolding uv(1) by(rule operativeD(1)[OF goal1(3)]) | 
| 2131 |       qed thus "iterate opp d f = f {a..b}" apply-apply(subst *) 
 | |
| 2132 | apply(subst iterate_insert[OF goal1(2)]) using goal1(2,4) by auto | |
| 2133 |     next case False hence "\<exists>x. x\<in>division_points {a..b} d" by auto
 | |
| 2134 | then guess k c unfolding split_paired_Ex apply- unfolding division_points_def mem_Collect_eq split_conv | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2135 | by(erule exE conjE)+ note this(2-4,1) note kc=this[unfolded interval_bounds[OF ab']] | 
| 35172 | 2136 | from this(3) guess j .. note j=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2137 |       def d1 \<equiv> "{l \<inter> {x. x$$k \<le> c} | l. l \<in> d \<and> l \<inter> {x. x$$k \<le> c} \<noteq> {}}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2138 |       def d2 \<equiv> "{l \<inter> {x. x$$k \<ge> c} | l. l \<in> d \<and> l \<inter> {x. x$$k \<ge> c} \<noteq> {}}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2139 | def cb \<equiv> "(\<chi>\<chi> i. if i = k then c else b$$i)::'a" and ca \<equiv> "(\<chi>\<chi> i. if i = k then c else a$$i)::'a" | 
| 35172 | 2140 | note division_points_psubset[OF goal1(4) ab kc(1-2) j] | 
| 2141 | note psubset_card_mono[OF _ this(1)] psubset_card_mono[OF _ this(2)] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2142 |       hence *:"(iterate opp d1 f) = f ({a..b} \<inter> {x. x$$k \<le> c})" "(iterate opp d2 f) = f ({a..b} \<inter> {x. x$$k \<ge> c})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2143 | apply- unfolding interval_split[OF kc(4)] apply(rule_tac[!] goal1(1)[rule_format]) | 
| 35172 | 2144 | using division_split[OF goal1(4), where k=k and c=c] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2145 | unfolding interval_split[OF kc(4)] d1_def[symmetric] d2_def[symmetric] unfolding goal1(2) Suc_le_mono | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2146 | using goal1(2-3) using division_points_finite[OF goal1(4)] using kc(4) by auto | 
| 35172 | 2147 |       have "f {a..b} = opp (iterate opp d1 f) (iterate opp d2 f)" (is "_ = ?prev")
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2148 | unfolding * apply(rule operativeD(2)) using goal1(3) using kc(4) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2149 |       also have "iterate opp d1 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$$k \<le> c}))"
 | 
| 35172 | 2150 | unfolding d1_def apply(rule iterate_nonzero_image_lemma[unfolded o_def]) | 
| 2151 | unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+ | |
| 2152 | unfolding empty_as_interval[THEN sym] apply(rule content_empty) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2153 |       proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. x $$ k \<le> c} = y \<inter> {x. x $$ k \<le> c}" "l \<noteq> y" 
 | 
| 35172 | 2154 | from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2155 |         show "f (l \<inter> {x. x $$ k \<le> c}) = neutral opp" unfolding l interval_split[OF kc(4)] 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2156 | apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym,OF kc(4)] apply(rule division_split_left_inj) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2157 | apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule kc(4) as)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2158 |       qed also have "iterate opp d2 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$$k \<ge> c}))"
 | 
| 35172 | 2159 | unfolding d2_def apply(rule iterate_nonzero_image_lemma[unfolded o_def]) | 
| 2160 | unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+ | |
| 2161 | unfolding empty_as_interval[THEN sym] apply(rule content_empty) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2162 |       proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. c \<le> x $$ k} = y \<inter> {x. c \<le> x $$ k}" "l \<noteq> y" 
 | 
| 35172 | 2163 | from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2164 |         show "f (l \<inter> {x. x $$ k \<ge> c}) = neutral opp" unfolding l interval_split[OF kc(4)] 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2165 | apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym,OF kc(4)] apply(rule division_split_right_inj) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2166 | apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule as kc(4))+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2167 |       qed also have *:"\<forall>x\<in>d. f x = opp (f (x \<inter> {x. x $$ k \<le> c})) (f (x \<inter> {x. c \<le> x $$ k}))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2168 | unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule,rule operativeD(2)) using goal1(3) kc by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2169 |       have "opp (iterate opp d (\<lambda>l. f (l \<inter> {x. x $$ k \<le> c}))) (iterate opp d (\<lambda>l. f (l \<inter> {x. c \<le> x $$ k})))
 | 
| 35172 | 2170 | = iterate opp d f" apply(subst(3) iterate_eq[OF _ *[rule_format]]) prefer 3 | 
| 2171 | apply(rule iterate_op[THEN sym]) using goal1 by auto | |
| 2172 | finally show ?thesis by auto | |
| 2173 | qed qed qed | |
| 2174 | ||
| 2175 | lemma iterate_image_nonzero: assumes "monoidal opp" | |
| 2176 | "finite s" "\<forall>x\<in>s. \<forall>y\<in>s. ~(x = y) \<and> f x = f y \<longrightarrow> g(f x) = neutral opp" | |
| 2177 | shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)" using assms | |
| 2178 | proof(induct rule:finite_subset_induct[OF assms(2) subset_refl]) | |
| 2179 | case goal1 show ?case using assms(1) by auto | |
| 2180 | next case goal2 have *:"\<And>x y. y = neutral opp \<Longrightarrow> x = opp y x" using assms(1) by auto | |
| 2181 | show ?case unfolding image_insert apply(subst iterate_insert[OF assms(1)]) | |
| 2182 | apply(rule finite_imageI goal2)+ | |
| 2183 | apply(cases "f a \<in> f ` F") unfolding if_P if_not_P apply(subst goal2(4)[OF assms(1) goal2(1)]) defer | |
| 2184 | apply(subst iterate_insert[OF assms(1) goal2(1)]) defer | |
| 2185 | apply(subst iterate_insert[OF assms(1) goal2(1)]) | |
| 2186 | unfolding if_not_P[OF goal2(3)] defer unfolding image_iff defer apply(erule bexE) | |
| 2187 | apply(rule *) unfolding o_def apply(rule_tac y=x in goal2(7)[rule_format]) | |
| 2188 | using goal2 unfolding o_def by auto qed | |
| 2189 | ||
| 2190 | lemma operative_tagged_division: assumes "monoidal opp" "operative opp f" "d tagged_division_of {a..b}"
 | |
| 2191 |   shows "iterate(opp) d (\<lambda>(x,l). f l) = f {a..b}"
 | |
| 2192 | proof- have *:"(\<lambda>(x,l). f l) = (f o snd)" unfolding o_def by(rule,auto) note assm = tagged_division_ofD[OF assms(3)] | |
| 2193 | have "iterate(opp) d (\<lambda>(x,l). f l) = iterate opp (snd ` d) f" unfolding * | |
| 2194 | apply(rule iterate_image_nonzero[THEN sym,OF assms(1)]) apply(rule tagged_division_of_finite assms)+ | |
| 2195 | unfolding Ball_def split_paired_All snd_conv apply(rule,rule,rule,rule,rule,rule,rule,erule conjE) | |
| 2196 | proof- fix a b aa ba assume as:"(a, b) \<in> d" "(aa, ba) \<in> d" "(a, b) \<noteq> (aa, ba)" "b = ba" | |
| 2197 | guess u v using assm(4)[OF as(1)] apply-by(erule exE)+ note uv=this | |
| 2198 | show "f b = neutral opp" unfolding uv apply(rule operativeD(1)[OF assms(2)]) | |
| 2199 | unfolding content_eq_0_interior using tagged_division_ofD(5)[OF assms(3) as(1-3)] | |
| 2200 | unfolding as(4)[THEN sym] uv by auto | |
| 2201 |   qed also have "\<dots> = f {a..b}" 
 | |
| 2202 | using operative_division[OF assms(1-2) division_of_tagged_division[OF assms(3)]] . | |
| 2203 | finally show ?thesis . qed | |
| 2204 | ||
| 2205 | subsection {* Additivity of content. *}
 | |
| 2206 | ||
| 2207 | lemma setsum_iterate:assumes "finite s" shows "setsum f s = iterate op + s f" | |
| 2208 | proof- have *:"setsum f s = setsum f (support op + f s)" | |
| 2209 | apply(rule setsum_mono_zero_right) | |
| 2210 | unfolding support_def neutral_monoid using assms by auto | |
| 2211 | thus ?thesis unfolding * setsum_def iterate_def fold_image_def fold'_def | |
| 2212 | unfolding neutral_monoid . qed | |
| 2213 | ||
| 2214 | lemma additive_content_division: assumes "d division_of {a..b}"
 | |
| 2215 |   shows "setsum content d = content({a..b})"
 | |
| 2216 | unfolding operative_division[OF monoidal_monoid operative_content assms,THEN sym] | |
| 2217 | apply(subst setsum_iterate) using assms by auto | |
| 2218 | ||
| 2219 | lemma additive_content_tagged_division: | |
| 2220 |   assumes "d tagged_division_of {a..b}"
 | |
| 2221 |   shows "setsum (\<lambda>(x,l). content l) d = content({a..b})"
 | |
| 2222 | unfolding operative_tagged_division[OF monoidal_monoid operative_content assms,THEN sym] | |
| 2223 | apply(subst setsum_iterate) using assms by auto | |
| 2224 | ||
| 36334 | 2225 | subsection {* Finally, the integral of a constant *}
 | 
| 35172 | 2226 | |
| 2227 | lemma has_integral_const[intro]: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2228 |   "((\<lambda>x. c) has_integral (content({a..b::'a::ordered_euclidean_space}) *\<^sub>R c)) ({a..b})"
 | 
| 35172 | 2229 | unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI) | 
| 2230 | apply(rule,rule gauge_trivial)apply(rule,rule,erule conjE) | |
| 2231 | unfolding split_def apply(subst scaleR_left.setsum[THEN sym, unfolded o_def]) | |
| 2232 | defer apply(subst additive_content_tagged_division[unfolded split_def]) apply assumption by auto | |
| 2233 | ||
| 2234 | subsection {* Bounds on the norm of Riemann sums and the integral itself. *}
 | |
| 2235 | ||
| 2236 | lemma dsum_bound: assumes "p division_of {a..b}" "norm(c) \<le> e"
 | |
| 2237 |   shows "norm(setsum (\<lambda>l. content l *\<^sub>R c) p) \<le> e * content({a..b})" (is "?l \<le> ?r")
 | |
| 2238 | apply(rule order_trans,rule setsum_norm) defer unfolding norm_scaleR setsum_left_distrib[THEN sym] | |
| 2239 | apply(rule order_trans[OF mult_left_mono],rule assms,rule setsum_abs_ge_zero) | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 2240 | apply(subst mult_commute) apply(rule mult_left_mono) | 
| 35172 | 2241 | apply(rule order_trans[of _ "setsum content p"]) apply(rule eq_refl,rule setsum_cong2) | 
| 2242 | apply(subst abs_of_nonneg) unfolding additive_content_division[OF assms(1)] | |
| 2243 | proof- from order_trans[OF norm_ge_zero[of c] assms(2)] show "0 \<le> e" . | |
| 2244 | fix x assume "x\<in>p" from division_ofD(4)[OF assms(1) this] guess u v apply-by(erule exE)+ | |
| 2245 | thus "0 \<le> content x" using content_pos_le by auto | |
| 2246 | qed(insert assms,auto) | |
| 2247 | ||
| 2248 | lemma rsum_bound: assumes "p tagged_division_of {a..b}" "\<forall>x\<in>{a..b}. norm(f x) \<le> e"
 | |
| 2249 |   shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p) \<le> e * content({a..b})"
 | |
| 2250 | proof(cases "{a..b} = {}") case True
 | |
| 2251 | show ?thesis using assms(1) unfolding True tagged_division_of_trivial by auto | |
| 2252 | next case False show ?thesis | |
| 2253 | apply(rule order_trans,rule setsum_norm) defer unfolding split_def norm_scaleR | |
| 2254 | apply(rule order_trans[OF setsum_mono]) apply(rule mult_left_mono[OF _ abs_ge_zero, of _ e]) defer | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 2255 | unfolding setsum_left_distrib[THEN sym] apply(subst mult_commute) apply(rule mult_left_mono) | 
| 35172 | 2256 | apply(rule order_trans[of _ "setsum (content \<circ> snd) p"]) apply(rule eq_refl,rule setsum_cong2) | 
| 2257 | apply(subst o_def, rule abs_of_nonneg) | |
| 2258 |   proof- show "setsum (content \<circ> snd) p \<le> content {a..b}" apply(rule eq_refl)
 | |
| 2259 | unfolding additive_content_tagged_division[OF assms(1),THEN sym] split_def by auto | |
| 2260 | guess w using nonempty_witness[OF False] . | |
| 2261 | thus "e\<ge>0" apply-apply(rule order_trans) defer apply(rule assms(2)[rule_format],assumption) by auto | |
| 2262 | fix xk assume *:"xk\<in>p" guess x k using surj_pair[of xk] apply-by(erule exE)+ note xk = this *[unfolded this] | |
| 2263 | from tagged_division_ofD(4)[OF assms(1) xk(2)] guess u v apply-by(erule exE)+ note uv=this | |
| 2264 | show "0\<le> content (snd xk)" unfolding xk snd_conv uv by(rule content_pos_le) | |
| 2265 | show "norm (f (fst xk)) \<le> e" unfolding xk fst_conv using tagged_division_ofD(2,3)[OF assms(1) xk(2)] assms(2) by auto | |
| 2266 | qed(insert assms,auto) qed | |
| 2267 | ||
| 2268 | lemma rsum_diff_bound: | |
| 2269 |   assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e"
 | |
| 2270 |   shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - setsum (\<lambda>(x,k). content k *\<^sub>R g x) p) \<le> e * content({a..b})"
 | |
| 2271 | apply(rule order_trans[OF _ rsum_bound[OF assms]]) apply(rule eq_refl) apply(rule arg_cong[where f=norm]) | |
| 2272 | unfolding setsum_subtractf[THEN sym] apply(rule setsum_cong2) unfolding scaleR.diff_right by auto | |
| 2273 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2274 | lemma has_integral_bound: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 35172 | 2275 |   assumes "0 \<le> B" "(f has_integral i) ({a..b})" "\<forall>x\<in>{a..b}. norm(f x) \<le> B"
 | 
| 2276 |   shows "norm i \<le> B * content {a..b}"
 | |
| 2277 | proof- let ?P = "content {a..b} > 0" { presume "?P \<Longrightarrow> ?thesis"
 | |
| 2278 | thus ?thesis proof(cases ?P) case False | |
| 2279 |       hence *:"content {a..b} = 0" using content_lt_nz by auto
 | |
| 2280 | hence **:"i = 0" using assms(2) apply(subst has_integral_null_eq[THEN sym]) by auto | |
| 2281 | show ?thesis unfolding * ** using assms(1) by auto | |
| 2282 | qed auto } assume ab:?P | |
| 2283 |   { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
 | |
| 2284 |   assume "\<not> ?thesis" hence *:"norm i - B * content {a..b} > 0" by auto
 | |
| 2285 | from assms(2)[unfolded has_integral,rule_format,OF *] guess d apply-by(erule exE conjE)+ note d=this[rule_format] | |
| 2286 | from fine_division_exists[OF this(1), of a b] guess p . note p=this | |
| 2287 | have *:"\<And>s B. norm s \<le> B \<Longrightarrow> \<not> (norm (s - i) < norm i - B)" | |
| 2288 | proof- case goal1 thus ?case unfolding not_less | |
| 2289 | using norm_triangle_sub[of i s] unfolding norm_minus_commute by auto | |
| 2290 | qed show False using d(2)[OF conjI[OF p]] *[OF rsum_bound[OF p(1) assms(3)]] by auto qed | |
| 2291 | ||
| 2292 | subsection {* Similar theorems about relationship among components. *}
 | |
| 2293 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2294 | lemma rsum_component_le: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2295 |   assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. (f x)$$i \<le> (g x)$$i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2296 | shows "(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p)$$i \<le> (setsum (\<lambda>(x,k). content k *\<^sub>R g x) p)$$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2297 | unfolding euclidean_component.setsum apply(rule setsum_mono) apply safe | 
| 35172 | 2298 | proof- fix a b assume ab:"(a,b) \<in> p" note assm = tagged_division_ofD(2-4)[OF assms(1) ab] | 
| 2299 | from this(3) guess u v apply-by(erule exE)+ note b=this | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2300 | show "(content b *\<^sub>R f a) $$ i \<le> (content b *\<^sub>R g a) $$ i" unfolding b | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2301 | unfolding euclidean_simps real_scaleR_def apply(rule mult_left_mono) | 
| 35172 | 2302 | defer apply(rule content_pos_le,rule assms(2)[rule_format]) using assm by auto qed | 
| 2303 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2304 | lemma has_integral_component_le: fixes f g::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2305 | assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. (f x)$$k \<le> (g x)$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2306 | shows "i$$k \<le> j$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2307 | proof- have lem:"\<And>a b i (j::'b). \<And>g f::'a \<Rightarrow> 'b. (f has_integral i) ({a..b}) \<Longrightarrow> 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2308 |     (g has_integral j) ({a..b}) \<Longrightarrow> \<forall>x\<in>{a..b}. (f x)$$k \<le> (g x)$$k \<Longrightarrow> i$$k \<le> j$$k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2309 | proof(rule ccontr) case goal1 hence *:"0 < (i$$k - j$$k) / 3" by auto | 
| 35172 | 2310 | guess d1 using goal1(1)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d1=this[rule_format] | 
| 2311 | guess d2 using goal1(2)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d2=this[rule_format] | |
| 2312 | guess p using fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] unfolding fine_inter . | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2313 | note p = this(1) conjunctD2[OF this(2)] note le_less_trans[OF component_le_norm, of _ _ k] term g | 
| 35172 | 2314 | note this[OF d1(2)[OF conjI[OF p(1,2)]]] this[OF d2(2)[OF conjI[OF p(1,3)]]] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2315 | thus False unfolding euclidean_simps using rsum_component_le[OF p(1) goal1(3)] apply simp by smt | 
| 35172 | 2316 |   qed let ?P = "\<exists>a b. s = {a..b}"
 | 
| 2317 |   { presume "\<not> ?P \<Longrightarrow> ?thesis" thus ?thesis proof(cases ?P)
 | |
| 2318 | case True then guess a b apply-by(erule exE)+ note s=this | |
| 2319 | show ?thesis apply(rule lem) using assms[unfolded s] by auto | |
| 2320 | qed auto } assume as:"\<not> ?P" | |
| 2321 |   { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2322 | assume "\<not> i$$k \<le> j$$k" hence ij:"(i$$k - j$$k) / 3 > 0" by auto | 
| 35172 | 2323 | note has_integral_altD[OF _ as this] from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2324 | have "bounded (ball 0 B1 \<union> ball (0::'a) B2)" unfolding bounded_Un by(rule conjI bounded_ball)+ | 
| 35172 | 2325 | from bounded_subset_closed_interval[OF this] guess a b apply- by(erule exE)+ | 
| 2326 | note ab = conjunctD2[OF this[unfolded Un_subset_iff]] | |
| 2327 | guess w1 using B(2)[OF ab(1)] .. note w1=conjunctD2[OF this] | |
| 2328 | guess w2 using B(4)[OF ab(2)] .. note w2=conjunctD2[OF this] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2329 | have *:"\<And>w1 w2 j i::real .\<bar>w1 - i\<bar> < (i - j) / 3 \<Longrightarrow> \<bar>w2 - j\<bar> < (i - j) / 3 \<Longrightarrow> w1 \<le> w2 \<Longrightarrow> False" by smt | 
| 35172 | 2330 | note le_less_trans[OF component_le_norm[of _ k]] note this[OF w1(2)] this[OF w2(2)] moreover | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2331 | have "w1$$k \<le> w2$$k" apply(rule lem[OF w1(1) w2(1)]) using assms by auto ultimately | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2332 | show False unfolding euclidean_simps by(rule *) qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2333 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2334 | lemma integral_component_le: fixes g f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2335 | assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. (f x)$$k \<le> (g x)$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2336 | shows "(integral s f)$$k \<le> (integral s g)$$k" | 
| 35172 | 2337 | apply(rule has_integral_component_le) using integrable_integral assms by auto | 
| 2338 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2339 | (*lemma has_integral_dest_vec1_le: fixes f::"'a::ordered_euclidean_space \<Rightarrow> real^1" | 
| 35172 | 2340 | assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. f x \<le> g x" | 
| 2341 | shows "dest_vec1 i \<le> dest_vec1 j" apply(rule has_integral_component_le[OF assms(1-2)]) | |
| 2342 | using assms(3) unfolding vector_le_def by auto | |
| 2343 | ||
| 2344 | lemma integral_dest_vec1_le: fixes f::"real^'n \<Rightarrow> real^1" | |
| 2345 | assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x" | |
| 2346 | shows "dest_vec1(integral s f) \<le> dest_vec1(integral s g)" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2347 | apply(rule has_integral_dest_vec1_le) apply(rule_tac[1-2] integrable_integral) using assms by auto*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2348 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2349 | lemma has_integral_component_nonneg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2350 | assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> (f x)$$k" shows "0 \<le> i$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2351 | using has_integral_component_le[OF has_integral_0 assms(1)] using assms(2-) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2352 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2353 | lemma integral_component_nonneg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2354 | assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> (f x)$$k" shows "0 \<le> (integral s f)$$k" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 2355 | apply(rule has_integral_component_nonneg) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 2356 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2357 | (*lemma has_integral_dest_vec1_nonneg: fixes f::"real^'n \<Rightarrow> real^1" | 
| 35172 | 2358 | assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 2359 | using has_integral_component_nonneg[OF assms(1), of 1] | 
| 35172 | 2360 | using assms(2) unfolding vector_le_def by auto | 
| 2361 | ||
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 2362 | lemma integral_dest_vec1_nonneg: fixes f::"real^'n \<Rightarrow> real^1" | 
| 35172 | 2363 | assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2364 | apply(rule has_integral_dest_vec1_nonneg) using assms by auto*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2365 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2366 | lemma has_integral_component_neg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2367 | assumes "(f has_integral i) s" "\<forall>x\<in>s. (f x)$$k \<le> 0"shows "i$$k \<le> 0" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2368 | using has_integral_component_le[OF assms(1) has_integral_0] assms(2-) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2369 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2370 | (*lemma has_integral_dest_vec1_neg: fixes f::"real^'n \<Rightarrow> real^1" | 
| 35172 | 2371 | assumes "(f has_integral i) s" "\<forall>x\<in>s. f x \<le> 0" shows "i \<le> 0" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2372 | using has_integral_component_neg[OF assms(1),of 1] using assms(2) by auto*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2373 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2374 | lemma has_integral_component_lbound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2375 |   assumes "(f has_integral i) {a..b}"  "\<forall>x\<in>{a..b}. B \<le> f(x)$$k" "k<DIM('b)" shows "B * content {a..b} \<le> i$$k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2376 | using has_integral_component_le[OF has_integral_const assms(1),of "(\<chi>\<chi> i. B)::'b" k] assms(2-) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2377 | unfolding euclidean_simps euclidean_lambda_beta'[OF assms(3)] by(auto simp add:field_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2378 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2379 | lemma has_integral_component_ubound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2380 |   assumes "(f has_integral i) {a..b}" "\<forall>x\<in>{a..b}. f x$$k \<le> B" "k<DIM('b)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2381 |   shows "i$$k \<le> B * content({a..b})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2382 | using has_integral_component_le[OF assms(1) has_integral_const, of k "\<chi>\<chi> i. B"] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2383 | unfolding euclidean_simps euclidean_lambda_beta'[OF assms(3)] using assms(2) by(auto simp add:field_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2384 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2385 | lemma integral_component_lbound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2386 |   assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. B \<le> f(x)$$k" "k<DIM('b)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2387 |   shows "B * content({a..b}) \<le> (integral({a..b}) f)$$k"
 | 
| 35172 | 2388 | apply(rule has_integral_component_lbound) using assms unfolding has_integral_integral by auto | 
| 2389 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2390 | lemma integral_component_ubound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2391 |   assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. f(x)$$k \<le> B" "k<DIM('b)" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2392 |   shows "(integral({a..b}) f)$$k \<le> B * content({a..b})"
 | 
| 35172 | 2393 | apply(rule has_integral_component_ubound) using assms unfolding has_integral_integral by auto | 
| 2394 | ||
| 2395 | subsection {* Uniform limit of integrable functions is integrable. *}
 | |
| 2396 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2397 | lemma integrable_uniform_limit: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" | 
| 35172 | 2398 |   assumes "\<forall>e>0. \<exists>g. (\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e) \<and> g integrable_on {a..b}"
 | 
| 2399 |   shows "f integrable_on {a..b}"
 | |
| 2400 | proof- { presume *:"content {a..b} > 0 \<Longrightarrow> ?thesis"
 | |
| 2401 | show ?thesis apply cases apply(rule *,assumption) | |
| 2402 | unfolding content_lt_nz integrable_on_def using has_integral_null by auto } | |
| 2403 |   assume as:"content {a..b} > 0"
 | |
| 2404 | have *:"\<And>P. \<forall>e>(0::real). P e \<Longrightarrow> \<forall>n::nat. P (inverse (real n+1))" by auto | |
| 2405 | from choice[OF *[OF assms]] guess g .. note g=conjunctD2[OF this[rule_format],rule_format] | |
| 2406 | from choice[OF allI[OF g(2)[unfolded integrable_on_def], of "\<lambda>x. x"]] guess i .. note i=this[rule_format] | |
| 2407 | ||
| 2408 | have "Cauchy i" unfolding Cauchy_def | |
| 2409 | proof(rule,rule) fix e::real assume "e>0" | |
| 2410 |     hence "e / 4 / content {a..b} > 0" using as by(auto simp add:field_simps)
 | |
| 2411 | then guess M apply-apply(subst(asm) real_arch_inv) by(erule exE conjE)+ note M=this | |
| 2412 | show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (i m) (i n) < e" apply(rule_tac x=M in exI,rule,rule,rule,rule) | |
| 2413 | proof- case goal1 have "e/4>0" using `e>0` by auto note * = i[unfolded has_integral,rule_format,OF this] | |
| 2414 | from *[of m] guess gm apply-by(erule conjE exE)+ note gm=this[rule_format] | |
| 2415 | from *[of n] guess gn apply-by(erule conjE exE)+ note gn=this[rule_format] | |
| 2416 | from fine_division_exists[OF gauge_inter[OF gm(1) gn(1)], of a b] guess p . note p=this | |
| 2417 | have lem2:"\<And>s1 s2 i1 i2. norm(s2 - s1) \<le> e/2 \<Longrightarrow> norm(s1 - i1) < e / 4 \<Longrightarrow> norm(s2 - i2) < e / 4 \<Longrightarrow>norm(i1 - i2) < e" | |
| 2418 | proof- case goal1 have "norm (i1 - i2) \<le> norm (i1 - s1) + norm (s1 - s2) + norm (s2 - i2)" | |
| 2419 | using norm_triangle_ineq[of "i1 - s1" "s1 - i2"] | |
| 36350 | 2420 | using norm_triangle_ineq[of "s1 - s2" "s2 - i2"] by(auto simp add:algebra_simps) | 
| 2421 | also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:algebra_simps) | |
| 35172 | 2422 | finally show ?case . | 
| 2423 | qed | |
| 36587 | 2424 | show ?case unfolding dist_norm apply(rule lem2) defer | 
| 35172 | 2425 | apply(rule gm(2)[OF conjI[OF p(1)]],rule_tac[2] gn(2)[OF conjI[OF p(1)]]) | 
| 2426 | using conjunctD2[OF p(2)[unfolded fine_inter]] apply- apply assumption+ apply(rule order_trans) | |
| 2427 | apply(rule rsum_diff_bound[OF p(1), where e="2 / real M"]) | |
| 2428 |       proof show "2 / real M * content {a..b} \<le> e / 2" unfolding divide_inverse 
 | |
| 2429 | using M as by(auto simp add:field_simps) | |
| 2430 |         fix x assume x:"x \<in> {a..b}"
 | |
| 2431 | have "norm (f x - g n x) + norm (f x - g m x) \<le> inverse (real n + 1) + inverse (real m + 1)" | |
| 2432 | using g(1)[OF x, of n] g(1)[OF x, of m] by auto | |
| 2433 | also have "\<dots> \<le> inverse (real M) + inverse (real M)" apply(rule add_mono) | |
| 2434 | apply(rule_tac[!] le_imp_inverse_le) using goal1 M by auto | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 2435 | also have "\<dots> = 2 / real M" unfolding divide_inverse by auto | 
| 35172 | 2436 | finally show "norm (g n x - g m x) \<le> 2 / real M" | 
| 2437 | using norm_triangle_le[of "g n x - f x" "f x - g m x" "2 / real M"] | |
| 36350 | 2438 | by(auto simp add:algebra_simps simp add:norm_minus_commute) | 
| 35172 | 2439 | qed qed qed | 
| 2440 | from this[unfolded convergent_eq_cauchy[THEN sym]] guess s .. note s=this | |
| 2441 | ||
| 2442 | show ?thesis unfolding integrable_on_def apply(rule_tac x=s in exI) unfolding has_integral | |
| 2443 | proof(rule,rule) | |
| 2444 | case goal1 hence *:"e/3 > 0" by auto | |
| 2445 | from s[unfolded Lim_sequentially,rule_format,OF this] guess N1 .. note N1=this | |
| 2446 |     from goal1 as have "e / 3 / content {a..b} > 0" by(auto simp add:field_simps)
 | |
| 2447 | from real_arch_invD[OF this] guess N2 apply-by(erule exE conjE)+ note N2=this | |
| 2448 | from i[of "N1 + N2",unfolded has_integral,rule_format,OF *] guess g' .. note g'=conjunctD2[OF this,rule_format] | |
| 2449 | have lem:"\<And>sf sg i. norm(sf - sg) \<le> e / 3 \<Longrightarrow> norm(i - s) < e / 3 \<Longrightarrow> norm(sg - i) < e / 3 \<Longrightarrow> norm(sf - s) < e" | |
| 2450 | proof- case goal1 have "norm (sf - s) \<le> norm (sf - sg) + norm (sg - i) + norm (i - s)" | |
| 2451 | using norm_triangle_ineq[of "sf - sg" "sg - s"] | |
| 36350 | 2452 | using norm_triangle_ineq[of "sg - i" " i - s"] by(auto simp add:algebra_simps) | 
| 2453 | also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:algebra_simps) | |
| 35172 | 2454 | finally show ?case . | 
| 2455 | qed | |
| 2456 | show ?case apply(rule_tac x=g' in exI) apply(rule,rule g') | |
| 2457 |     proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> g' fine p" note * = g'(2)[OF this]
 | |
| 2458 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - s) < e" apply-apply(rule lem[OF _ _ *]) | |
| 2459 | apply(rule order_trans,rule rsum_diff_bound[OF p[THEN conjunct1]]) apply(rule,rule g,assumption) | |
| 2460 |       proof- have "content {a..b} < e / 3 * (real N2)"
 | |
| 2461 | using N2 unfolding inverse_eq_divide using as by(auto simp add:field_simps) | |
| 2462 |         hence "content {a..b} < e / 3 * (real (N1 + N2) + 1)"
 | |
| 2463 | apply-apply(rule less_le_trans,assumption) using `e>0` by auto | |
| 2464 |         thus "inverse (real (N1 + N2) + 1) * content {a..b} \<le> e / 3"
 | |
| 2465 | unfolding inverse_eq_divide by(auto simp add:field_simps) | |
| 36587 | 2466 | show "norm (i (N1 + N2) - s) < e / 3" by(rule N1[rule_format,unfolded dist_norm],auto) | 
| 35172 | 2467 | qed qed qed qed | 
| 2468 | ||
| 2469 | subsection {* Negligible sets. *}
 | |
| 2470 | ||
| 37665 | 2471 | definition "negligible (s::('a::ordered_euclidean_space) set) \<equiv> (\<forall>a b. ((indicator s :: 'a\<Rightarrow>real) has_integral 0) {a..b})"
 | 
| 35172 | 2472 | |
| 2473 | subsection {* Negligibility of hyperplane. *}
 | |
| 2474 | ||
| 2475 | lemma vsum_nonzero_image_lemma: | |
| 2476 | assumes "finite s" "g(a) = 0" | |
| 2477 | "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = 0" | |
| 2478 |   shows "setsum g {f x |x. x \<in> s \<and> f x \<noteq> a} = setsum (g o f) s"
 | |
| 2479 | unfolding setsum_iterate[OF assms(1)] apply(subst setsum_iterate) defer | |
| 2480 | apply(rule iterate_nonzero_image_lemma) apply(rule assms monoidal_monoid)+ | |
| 2481 | unfolding assms using neutral_add unfolding neutral_add using assms by auto | |
| 2482 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2483 | lemma interval_doublesplit:  fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2484 |   shows "{a..b} \<inter> {x . abs(x$$k - c) \<le> (e::real)} = 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2485 |   {(\<chi>\<chi> i. if i = k then max (a$$k) (c - e) else a$$i) .. (\<chi>\<chi> i. if i = k then min (b$$k) (c + e) else b$$i)}"
 | 
| 35172 | 2486 | proof- have *:"\<And>x c e::real. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto | 
| 2487 |   have **:"\<And>s P Q. s \<inter> {x. P x \<and> Q x} = (s \<inter> {x. Q x}) \<inter> {x. P x}" by blast
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2488 | show ?thesis unfolding * ** interval_split[OF assms] by(rule refl) qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2489 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2490 | lemma division_doublesplit: fixes a::"'a::ordered_euclidean_space" assumes "p division_of {a..b}" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2491 |   shows "{l \<inter> {x. abs(x$$k - c) \<le> e} |l. l \<in> p \<and> l \<inter> {x. abs(x$$k - c) \<le> e} \<noteq> {}} division_of ({a..b} \<inter> {x. abs(x$$k - c) \<le> e})"
 | 
| 35172 | 2492 | proof- have *:"\<And>x c. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto | 
| 2493 | have **:"\<And>p q p' q'. p division_of q \<Longrightarrow> p = p' \<Longrightarrow> q = q' \<Longrightarrow> p' division_of q'" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2494 | note division_split(1)[OF assms, where c="c+e",unfolded interval_split[OF k]] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2495 | note division_split(2)[OF this, where c="c-e" and k=k,OF k] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2496 | thus ?thesis apply(rule **) using k apply- unfolding interval_doublesplit unfolding * unfolding interval_split interval_doublesplit | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 2497 | apply(rule set_eqI) unfolding mem_Collect_eq apply rule apply(erule conjE exE)+ apply(rule_tac x=la in exI) defer | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2498 |     apply(erule conjE exE)+ apply(rule_tac x="l \<inter> {x. c + e \<ge> x $$ k}" in exI) apply rule defer apply rule
 | 
| 35172 | 2499 | apply(rule_tac x=l in exI) by blast+ qed | 
| 2500 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2501 | lemma content_doublesplit: fixes a::"'a::ordered_euclidean_space" assumes "0 < e" and k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2502 |   obtains d where "0 < d" "content({a..b} \<inter> {x. abs(x$$k - c) \<le> d}) < e"
 | 
| 35172 | 2503 | proof(cases "content {a..b} = 0")
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2504 | case True show ?thesis apply(rule that[of 1]) defer unfolding interval_doublesplit[OF k] | 
| 35172 | 2505 | apply(rule le_less_trans[OF content_subset]) defer apply(subst True) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2506 | unfolding interval_doublesplit[THEN sym,OF k] using assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2507 | next case False def d \<equiv> "e / 3 / setprod (\<lambda>i. b$$i - a$$i) ({..<DIM('a)} - {k})"
 | 
| 35172 | 2508 | note False[unfolded content_eq_0 not_ex not_le, rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2509 |   hence "\<And>x. x<DIM('a) \<Longrightarrow> b$$x > a$$x" by(auto simp add:not_le)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2510 |   hence prod0:"0 < setprod (\<lambda>i. b$$i - a$$i) ({..<DIM('a)} - {k})" apply-apply(rule setprod_pos) by(auto simp add:field_simps)
 | 
| 35172 | 2511 | hence "d > 0" unfolding d_def using assms by(auto simp add:field_simps) thus ?thesis | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2512 |   proof(rule that[of d]) have *:"{..<DIM('a)} = insert k ({..<DIM('a)} - {k})" using k by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2513 |     have **:"{a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} \<noteq> {} \<Longrightarrow> 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2514 |       (\<Prod>i\<in>{..<DIM('a)} - {k}. interval_upperbound ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) $$ i
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2515 |       - interval_lowerbound ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) $$ i)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2516 |       = (\<Prod>i\<in>{..<DIM('a)} - {k}. b$$i - a$$i)" apply(rule setprod_cong,rule refl) 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2517 | unfolding interval_doublesplit[OF k] apply(subst interval_bounds) defer apply(subst interval_bounds) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2518 | unfolding interval_eq_empty not_ex not_less by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2519 |     show "content ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) < e" apply(cases) unfolding content_def apply(subst if_P,assumption,rule assms)
 | 
| 35172 | 2520 | unfolding if_not_P apply(subst *) apply(subst setprod_insert) unfolding ** | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2521 | unfolding interval_doublesplit[OF k] interval_eq_empty not_ex not_less prefer 3 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2522 | apply(subst interval_bounds) defer apply(subst interval_bounds) unfolding euclidean_lambda_beta'[OF k] if_P[OF refl] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2523 | proof- have "(min (b $$ k) (c + d) - max (a $$ k) (c - d)) \<le> 2 * d" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2524 |       also have "... < e / (\<Prod>i\<in>{..<DIM('a)} - {k}. b $$ i - a $$ i)" unfolding d_def using assms prod0 by(auto simp add:field_simps)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2525 |       finally show "(min (b $$ k) (c + d) - max (a $$ k) (c - d)) * (\<Prod>i\<in>{..<DIM('a)} - {k}. b $$ i - a $$ i) < e"
 | 
| 35172 | 2526 | unfolding pos_less_divide_eq[OF prod0] . qed auto qed qed | 
| 2527 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2528 | lemma negligible_standard_hyperplane[intro]: fixes type::"'a::ordered_euclidean_space" assumes k:"k<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2529 |   shows "negligible {x::'a. x$$k = (c::real)}" 
 | 
| 35172 | 2530 | unfolding negligible_def has_integral apply(rule,rule,rule,rule) | 
| 37665 | 2531 | proof- | 
| 2532 | case goal1 from content_doublesplit[OF this k,of a b c] guess d . note d=this | |
| 2533 |   let ?i = "indicator {x::'a. x$$k = c} :: 'a\<Rightarrow>real"
 | |
| 35172 | 2534 | show ?case apply(rule_tac x="\<lambda>x. ball x d" in exI) apply(rule,rule gauge_ball,rule d) | 
| 2535 |   proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> (\<lambda>x. ball x d) fine p"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2536 |     have *:"(\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. abs(x$$k - c) \<le> d}) *\<^sub>R ?i x)"
 | 
| 35172 | 2537 | apply(rule setsum_cong2) unfolding split_paired_all real_scaleR_def mult_cancel_right split_conv | 
| 2538 | apply(cases,rule disjI1,assumption,rule disjI2) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2539 | proof- fix x l assume as:"(x,l)\<in>p" "?i x \<noteq> 0" hence xk:"x$$k = c" unfolding indicator_def apply-by(rule ccontr,auto) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2540 |       show "content l = content (l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d})" apply(rule arg_cong[where f=content])
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 2541 | apply(rule set_eqI,rule,rule) unfolding mem_Collect_eq | 
| 35172 | 2542 | proof- fix y assume y:"y\<in>l" note p[THEN conjunct2,unfolded fine_def,rule_format,OF as(1),unfolded split_conv] | 
| 36587 | 2543 | note this[unfolded subset_eq mem_ball dist_norm,rule_format,OF y] note le_less_trans[OF component_le_norm[of _ k] this] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2544 | thus "\<bar>y $$ k - c\<bar> \<le> d" unfolding euclidean_simps xk by auto | 
| 35172 | 2545 | qed auto qed | 
| 2546 | note p'= tagged_division_ofD[OF p[THEN conjunct1]] and p''=division_of_tagged_division[OF p[THEN conjunct1]] | |
| 2547 | show "norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) - 0) < e" unfolding diff_0_right * unfolding real_scaleR_def real_norm_def | |
| 2548 | apply(subst abs_of_nonneg) apply(rule setsum_nonneg,rule) unfolding split_paired_all split_conv | |
| 2549 | apply(rule mult_nonneg_nonneg) apply(drule p'(4)) apply(erule exE)+ apply(rule_tac b=b in back_subst) | |
| 2550 | prefer 2 apply(subst(asm) eq_commute) apply assumption | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2551 | apply(subst interval_doublesplit[OF k]) apply(rule content_pos_le) apply(rule indicator_pos_le) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2552 |     proof- have "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) * ?i x) \<le> (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}))"
 | 
| 35172 | 2553 | apply(rule setsum_mono) unfolding split_paired_all split_conv | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2554 | apply(rule mult_right_le_one_le) apply(drule p'(4)) by(auto simp add:interval_doublesplit[OF k] intro!:content_pos_le) | 
| 35172 | 2555 | also have "... < e" apply(subst setsum_over_tagged_division_lemma[OF p[THEN conjunct1]]) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2556 |       proof- case goal1 have "content ({u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<le> content {u..v}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2557 | unfolding interval_doublesplit[OF k] apply(rule content_subset) unfolding interval_doublesplit[THEN sym,OF k] by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2558 | thus ?case unfolding goal1 unfolding interval_doublesplit[OF k] using content_pos_le by smt | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2559 |       next have *:"setsum content {l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} |l. l \<in> snd ` p \<and> l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} \<noteq> {}} \<ge> 0"
 | 
| 35172 | 2560 | apply(rule setsum_nonneg,rule) unfolding mem_Collect_eq image_iff apply(erule exE bexE conjE)+ unfolding split_paired_all | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2561 |         proof- fix x l a b assume as:"x = l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}" "(a, b) \<in> p" "l = snd (a, b)"
 | 
| 35172 | 2562 | guess u v using p'(4)[OF as(2)] apply-by(erule exE)+ note * = this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2563 | show "content x \<ge> 0" unfolding as snd_conv * interval_doublesplit[OF k] by(rule content_pos_le) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2564 | qed have **:"norm (1::real) \<le> 1" by auto note division_doublesplit[OF p'' k,unfolded interval_doublesplit[OF k]] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2565 | note dsum_bound[OF this **,unfolded interval_doublesplit[THEN sym,OF k]] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2566 | note this[unfolded real_scaleR_def real_norm_def mult_1_right mult_1, of c d] note le_less_trans[OF this d(2)] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2567 |         from this[unfolded abs_of_nonneg[OF *]] show "(\<Sum>ka\<in>snd ` p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d})) < e"
 | 
| 35172 | 2568 |           apply(subst vsum_nonzero_image_lemma[of "snd ` p" content "{}", unfolded o_def,THEN sym])
 | 
| 2569 | apply(rule finite_imageI p' content_empty)+ unfolding forall_in_division[OF p''] | |
| 2570 | proof(rule,rule,rule,rule,rule,rule,rule,erule conjE) fix m n u v | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2571 |           assume as:"{m..n} \<in> snd ` p" "{u..v} \<in> snd ` p" "{m..n} \<noteq> {u..v}"  "{m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} = {u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2572 |           have "({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<inter> ({u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<subseteq> {m..n} \<inter> {u..v}" by blast
 | 
| 35172 | 2573 |           note subset_interior[OF this, unfolded division_ofD(5)[OF p'' as(1-3)] interior_inter[of "{m..n}"]]
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2574 |           hence "interior ({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) = {}" unfolding as Int_absorb by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2575 |           thus "content ({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) = 0" unfolding interval_doublesplit[OF k] content_eq_0_interior[THEN sym] .
 | 
| 35172 | 2576 | qed qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2577 |       finally show "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) * ?i x) < e" .
 | 
| 35172 | 2578 | qed qed qed | 
| 2579 | ||
| 2580 | subsection {* A technical lemma about "refinement" of division. *}
 | |
| 2581 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2582 | lemma tagged_division_finer: fixes p::"(('a::ordered_euclidean_space) \<times> (('a::ordered_euclidean_space) set)) set"
 | 
| 35172 | 2583 |   assumes "p tagged_division_of {a..b}" "gauge d"
 | 
| 2584 |   obtains q where "q tagged_division_of {a..b}" "d fine q" "\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q"
 | |
| 2585 | proof- | |
| 2586 |   let ?P = "\<lambda>p. p tagged_partial_division_of {a..b} \<longrightarrow> gauge d \<longrightarrow>
 | |
| 2587 |     (\<exists>q. q tagged_division_of (\<Union>{k. \<exists>x. (x,k) \<in> p}) \<and> d fine q \<and>
 | |
| 2588 | (\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q))" | |
| 2589 |   { have *:"finite p" "p tagged_partial_division_of {a..b}" using assms(1) unfolding tagged_division_of_def by auto
 | |
| 2590 | presume "\<And>p. finite p \<Longrightarrow> ?P p" from this[rule_format,OF * assms(2)] guess q .. note q=this | |
| 2591 | thus ?thesis apply-apply(rule that[of q]) unfolding tagged_division_ofD[OF assms(1)] by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2592 |   } fix p::"(('a::ordered_euclidean_space) \<times> (('a::ordered_euclidean_space) set)) set" assume as:"finite p"
 | 
| 35172 | 2593 | show "?P p" apply(rule,rule) using as proof(induct p) | 
| 2594 |     case empty show ?case apply(rule_tac x="{}" in exI) unfolding fine_def by auto
 | |
| 2595 | next case (insert xk p) guess x k using surj_pair[of xk] apply- by(erule exE)+ note xk=this | |
| 2596 | note tagged_partial_division_subset[OF insert(4) subset_insertI] | |
| 2597 | from insert(3)[OF this insert(5)] guess q1 .. note q1 = conjunctD3[OF this] | |
| 2598 |     have *:"\<Union>{l. \<exists>y. (y,l) \<in> insert xk p} = k \<union> \<Union>{l. \<exists>y. (y,l) \<in> p}" unfolding xk by auto
 | |
| 2599 | note p = tagged_partial_division_ofD[OF insert(4)] | |
| 2600 | from p(4)[unfolded xk, OF insertI1] guess u v apply-by(erule exE)+ note uv=this | |
| 2601 | ||
| 2602 |     have "finite {k. \<exists>x. (x, k) \<in> p}" 
 | |
| 2603 | apply(rule finite_subset[of _ "snd ` p"],rule) unfolding subset_eq image_iff mem_Collect_eq | |
| 2604 | apply(erule exE,rule_tac x="(xa,x)" in bexI) using p by auto | |
| 2605 |     hence int:"interior {u..v} \<inter> interior (\<Union>{k. \<exists>x. (x, k) \<in> p}) = {}"
 | |
| 2606 | apply(rule inter_interior_unions_intervals) apply(rule open_interior) apply(rule_tac[!] ballI) | |
| 2607 | unfolding mem_Collect_eq apply(erule_tac[!] exE) apply(drule p(4)[OF insertI2],assumption) | |
| 2608 | apply(rule p(5)) unfolding uv xk apply(rule insertI1,rule insertI2) apply assumption | |
| 2609 | using insert(2) unfolding uv xk by auto | |
| 2610 | ||
| 2611 |     show ?case proof(cases "{u..v} \<subseteq> d x")
 | |
| 2612 |       case True thus ?thesis apply(rule_tac x="{(x,{u..v})} \<union> q1" in exI) apply rule
 | |
| 2613 | unfolding * uv apply(rule tagged_division_union,rule tagged_division_of_self) | |
| 2614 | apply(rule p[unfolded xk uv] insertI1)+ apply(rule q1,rule int) | |
| 2615 | apply(rule,rule fine_union,subst fine_def) defer apply(rule q1) | |
| 2616 | unfolding Ball_def split_paired_All split_conv apply(rule,rule,rule,rule) | |
| 2617 | apply(erule insertE) defer apply(rule UnI2) apply(drule q1(3)[rule_format]) unfolding xk uv by auto | |
| 2618 | next case False from fine_division_exists[OF assms(2), of u v] guess q2 . note q2=this | |
| 2619 | show ?thesis apply(rule_tac x="q2 \<union> q1" in exI) | |
| 2620 | apply rule unfolding * uv apply(rule tagged_division_union q2 q1 int fine_union)+ | |
| 2621 | unfolding Ball_def split_paired_All split_conv apply rule apply(rule fine_union) | |
| 2622 | apply(rule q1 q2)+ apply(rule,rule,rule,rule) apply(erule insertE) | |
| 2623 | apply(rule UnI2) defer apply(drule q1(3)[rule_format])using False unfolding xk uv by auto | |
| 2624 | qed qed qed | |
| 2625 | ||
| 2626 | subsection {* Hence the main theorem about negligible sets. *}
 | |
| 2627 | ||
| 2628 | lemma finite_product_dependent: assumes "finite s" "\<And>x. x\<in>s\<Longrightarrow> finite (t x)" | |
| 2629 |   shows "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" using assms
 | |
| 2630 | proof(induct) case (insert x s) | |
| 2631 |   have *:"{(i, j) |i j. i \<in> insert x s \<and> j \<in> t i} = (\<lambda>y. (x,y)) ` (t x) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
 | |
| 2632 | show ?case unfolding * apply(rule finite_UnI) using insert by auto qed auto | |
| 2633 | ||
| 2634 | lemma sum_sum_product: assumes "finite s" "\<forall>i\<in>s. finite (t i)" | |
| 2635 |   shows "setsum (\<lambda>i. setsum (x i) (t i)::real) s = setsum (\<lambda>(i,j). x i j) {(i,j) | i j. i \<in> s \<and> j \<in> t i}" using assms
 | |
| 2636 | proof(induct) case (insert a s) | |
| 2637 |   have *:"{(i, j) |i j. i \<in> insert a s \<and> j \<in> t i} = (\<lambda>y. (a,y)) ` (t a) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
 | |
| 2638 | show ?case unfolding * apply(subst setsum_Un_disjoint) unfolding setsum_insert[OF insert(1-2)] | |
| 2639 | prefer 4 apply(subst insert(3)) unfolding add_right_cancel | |
| 2640 | proof- show "setsum (x a) (t a) = (\<Sum>(xa, y)\<in>Pair a ` t a. x xa y)" apply(subst setsum_reindex) unfolding inj_on_def by auto | |
| 2641 |     show "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" apply(rule finite_product_dependent) using insert by auto
 | |
| 2642 | qed(insert insert, auto) qed auto | |
| 2643 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2644 | lemma has_integral_negligible: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" | 
| 35172 | 2645 | assumes "negligible s" "\<forall>x\<in>(t - s). f x = 0" | 
| 2646 | shows "(f has_integral 0) t" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2647 | proof- presume P:"\<And>f::'b::ordered_euclidean_space \<Rightarrow> 'a. \<And>a b. (\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0) \<Longrightarrow> (f has_integral 0) ({a..b})"
 | 
| 35172 | 2648 | let ?f = "(\<lambda>x. if x \<in> t then f x else 0)" | 
| 2649 | show ?thesis apply(rule_tac f="?f" in has_integral_eq) apply(rule) unfolding if_P apply(rule refl) | |
| 2650 | apply(subst has_integral_alt) apply(cases,subst if_P,assumption) unfolding if_not_P | |
| 2651 |   proof- assume "\<exists>a b. t = {a..b}" then guess a b apply-by(erule exE)+ note t = this
 | |
| 2652 | show "(?f has_integral 0) t" unfolding t apply(rule P) using assms(2) unfolding t by auto | |
| 2653 |   next show "\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> t then ?f x else 0) has_integral z) {a..b} \<and> norm (z - 0) < e)"
 | |
| 2654 | apply(safe,rule_tac x=1 in exI,rule) apply(rule zero_less_one,safe) apply(rule_tac x=0 in exI) | |
| 2655 | apply(rule,rule P) using assms(2) by auto | |
| 2656 | qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2657 | next fix f::"'b \<Rightarrow> 'a" and a b::"'b" assume assm:"\<forall>x. x \<notin> s \<longrightarrow> f x = 0" | 
| 35172 | 2658 |   show "(f has_integral 0) {a..b}" unfolding has_integral
 | 
| 2659 | proof(safe) case goal1 | |
| 2660 | hence "\<And>n. e / 2 / ((real n+1) * (2 ^ n)) > 0" | |
| 2661 | apply-apply(rule divide_pos_pos) defer apply(rule mult_pos_pos) by(auto simp add:field_simps) | |
| 2662 | note assms(1)[unfolded negligible_def has_integral,rule_format,OF this,of a b] note allI[OF this,of "\<lambda>x. x"] | |
| 2663 | from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format]] | |
| 2664 | show ?case apply(rule_tac x="\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x" in exI) | |
| 2665 | proof safe show "gauge (\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x)" using d(1) unfolding gauge_def by auto | |
| 2666 |       fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x) fine p" 
 | |
| 2667 | let ?goal = "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" | |
| 2668 |       { presume "p\<noteq>{} \<Longrightarrow> ?goal" thus ?goal apply(cases "p={}") using goal1 by auto  }
 | |
| 2669 |       assume as':"p \<noteq> {}" from real_arch_simple[of "Sup((\<lambda>(x,k). norm(f x)) ` p)"] guess N ..
 | |
| 2670 | hence N:"\<forall>x\<in>(\<lambda>(x, k). norm (f x)) ` p. x \<le> real N" apply(subst(asm) Sup_finite_le_iff) using as as' by auto | |
| 2671 |       have "\<forall>i. \<exists>q. q tagged_division_of {a..b} \<and> (d i) fine q \<and> (\<forall>(x, k)\<in>p. k \<subseteq> (d i) x \<longrightarrow> (x, k) \<in> q)"
 | |
| 2672 | apply(rule,rule tagged_division_finer[OF as(1) d(1)]) by auto | |
| 2673 | from choice[OF this] guess q .. note q=conjunctD3[OF this[rule_format]] | |
| 37665 | 2674 | have *:"\<And>i. (\<Sum>(x, k)\<in>q i. content k *\<^sub>R indicator s x) \<ge> (0::real)" apply(rule setsum_nonneg,safe) | 
| 35172 | 2675 | unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) apply(drule tagged_division_ofD(4)[OF q(1)]) by auto | 
| 2676 | have **:"\<And>f g s t. finite s \<Longrightarrow> finite t \<Longrightarrow> (\<forall>(x,y) \<in> t. (0::real) \<le> g(x,y)) \<Longrightarrow> (\<forall>y\<in>s. \<exists>x. (x,y) \<in> t \<and> f(y) \<le> g(x,y)) \<Longrightarrow> setsum f s \<le> setsum g t" | |
| 2677 | proof- case goal1 thus ?case apply-apply(rule setsum_le_included[of s t g snd f]) prefer 4 | |
| 2678 | apply safe apply(erule_tac x=x in ballE) apply(erule exE) apply(rule_tac x="(xa,x)" in bexI) by auto qed | |
| 2679 | have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) \<le> setsum (\<lambda>i. (real i + 1) * | |
| 37665 | 2680 |                      norm(setsum (\<lambda>(x,k). content k *\<^sub>R indicator s x :: real) (q i))) {0..N+1}"
 | 
| 35172 | 2681 | unfolding real_norm_def setsum_right_distrib abs_of_nonneg[OF *] diff_0_right | 
| 2682 | apply(rule order_trans,rule setsum_norm) defer apply(subst sum_sum_product) prefer 3 | |
| 2683 |       proof(rule **,safe) show "finite {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i}" apply(rule finite_product_dependent) using q by auto
 | |
| 2684 | fix i a b assume as'':"(a,b) \<in> q i" show "0 \<le> (real i + 1) * (content b *\<^sub>R indicator s a)" | |
| 2685 | unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) defer apply(rule mult_nonneg_nonneg) | |
| 2686 | using tagged_division_ofD(4)[OF q(1) as''] by auto | |
| 2687 | next fix i::nat show "finite (q i)" using q by auto | |
| 2688 | next fix x k assume xk:"(x,k) \<in> p" def n \<equiv> "nat \<lfloor>norm (f x)\<rfloor>" | |
| 2689 | have *:"norm (f x) \<in> (\<lambda>(x, k). norm (f x)) ` p" using xk by auto | |
| 2690 | have nfx:"real n \<le> norm(f x)" "norm(f x) \<le> real n + 1" unfolding n_def by auto | |
| 2691 |         hence "n \<in> {0..N + 1}" using N[rule_format,OF *] by auto
 | |
| 2692 | moreover note as(2)[unfolded fine_def,rule_format,OF xk,unfolded split_conv] | |
| 2693 | note q(3)[rule_format,OF xk,unfolded split_conv,rule_format,OF this] note this[unfolded n_def[symmetric]] | |
| 2694 | moreover have "norm (content k *\<^sub>R f x) \<le> (real n + 1) * (content k * indicator s x)" | |
| 2695 | proof(cases "x\<in>s") case False thus ?thesis using assm by auto | |
| 2696 | next case True have *:"content k \<ge> 0" using tagged_division_ofD(4)[OF as(1) xk] by auto | |
| 2697 | moreover have "content k * norm (f x) \<le> content k * (real n + 1)" apply(rule mult_mono) using nfx * by auto | |
| 2698 | ultimately show ?thesis unfolding abs_mult using nfx True by(auto simp add:field_simps) | |
| 2699 |         qed ultimately show "\<exists>y. (y, x, k) \<in> {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i} \<and> norm (content k *\<^sub>R f x) \<le> (real y + 1) * (content k *\<^sub>R indicator s x)"
 | |
| 2700 | apply(rule_tac x=n in exI,safe) apply(rule_tac x=n in exI,rule_tac x="(x,k)" in exI,safe) by auto | |
| 2701 | qed(insert as, auto) | |
| 2702 |       also have "... \<le> setsum (\<lambda>i. e / 2 / 2 ^ i) {0..N+1}" apply(rule setsum_mono) 
 | |
| 2703 | proof- case goal1 thus ?case apply(subst mult_commute, subst pos_le_divide_eq[THEN sym]) | |
| 2704 | using d(2)[rule_format,of "q i" i] using q[rule_format] by(auto simp add:field_simps) | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 2705 | qed also have "... < e * inverse 2 * 2" unfolding divide_inverse setsum_right_distrib[THEN sym] | 
| 35172 | 2706 | apply(rule mult_strict_left_mono) unfolding power_inverse atLeastLessThanSuc_atLeastAtMost[THEN sym] | 
| 2707 | apply(subst sumr_geometric) using goal1 by auto | |
| 2708 | finally show "?goal" by auto qed qed qed | |
| 2709 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2710 | lemma has_integral_spike: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" | 
| 35172 | 2711 | assumes "negligible s" "(\<forall>x\<in>(t - s). g x = f x)" "(f has_integral y) t" | 
| 2712 | shows "(g has_integral y) t" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2713 | proof- { fix a b::"'b" and f g ::"'b \<Rightarrow> 'a" and y::'a
 | 
| 35172 | 2714 |     assume as:"\<forall>x \<in> {a..b} - s. g x = f x" "(f has_integral y) {a..b}"
 | 
| 2715 |     have "((\<lambda>x. f x + (g x - f x)) has_integral (y + 0)) {a..b}" apply(rule has_integral_add[OF as(2)])
 | |
| 2716 | apply(rule has_integral_negligible[OF assms(1)]) using as by auto | |
| 2717 |     hence "(g has_integral y) {a..b}" by auto } note * = this
 | |
| 2718 | show ?thesis apply(subst has_integral_alt) using assms(2-) apply-apply(rule cond_cases,safe) | |
| 2719 | apply(rule *, assumption+) apply(subst(asm) has_integral_alt) unfolding if_not_P | |
| 2720 | apply(erule_tac x=e in allE,safe,rule_tac x=B in exI,safe) apply(erule_tac x=a in allE,erule_tac x=b in allE,safe) | |
| 2721 | apply(rule_tac x=z in exI,safe) apply(rule *[where fa2="\<lambda>x. if x\<in>t then f x else 0"]) by auto qed | |
| 2722 | ||
| 2723 | lemma has_integral_spike_eq: | |
| 2724 | assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" | |
| 2725 | shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)" | |
| 2726 | apply rule apply(rule_tac[!] has_integral_spike[OF assms(1)]) using assms(2) by auto | |
| 2727 | ||
| 2728 | lemma integrable_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" "f integrable_on t" | |
| 2729 | shows "g integrable_on t" | |
| 2730 | using assms unfolding integrable_on_def apply-apply(erule exE) | |
| 2731 | apply(rule,rule has_integral_spike) by fastsimp+ | |
| 2732 | ||
| 2733 | lemma integral_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" | |
| 2734 | shows "integral t f = integral t g" | |
| 2735 | unfolding integral_def using has_integral_spike_eq[OF assms] by auto | |
| 2736 | ||
| 2737 | subsection {* Some other trivialities about negligible sets. *}
 | |
| 2738 | ||
| 2739 | lemma negligible_subset[intro]: assumes "negligible s" "t \<subseteq> s" shows "negligible t" unfolding negligible_def | |
| 2740 | proof(safe) case goal1 show ?case using assms(1)[unfolded negligible_def,rule_format,of a b] | |
| 2741 | apply-apply(rule has_integral_spike[OF assms(1)]) defer apply assumption | |
| 2742 | using assms(2) unfolding indicator_def by auto qed | |
| 2743 | ||
| 2744 | lemma negligible_diff[intro?]: assumes "negligible s" shows "negligible(s - t)" using assms by auto | |
| 2745 | ||
| 2746 | lemma negligible_inter: assumes "negligible s \<or> negligible t" shows "negligible(s \<inter> t)" using assms by auto | |
| 2747 | ||
| 2748 | lemma negligible_union: assumes "negligible s" "negligible t" shows "negligible (s \<union> t)" unfolding negligible_def | |
| 2749 | proof safe case goal1 note assm = assms[unfolded negligible_def,rule_format,of a b] | |
| 2750 | thus ?case apply(subst has_integral_spike_eq[OF assms(2)]) | |
| 2751 | defer apply assumption unfolding indicator_def by auto qed | |
| 2752 | ||
| 2753 | lemma negligible_union_eq[simp]: "negligible (s \<union> t) \<longleftrightarrow> (negligible s \<and> negligible t)" | |
| 2754 | using negligible_union by auto | |
| 2755 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2756 | lemma negligible_sing[intro]: "negligible {a::_::ordered_euclidean_space}" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2757 | using negligible_standard_hyperplane[of 0 "a$$0"] by auto | 
| 35172 | 2758 | |
| 2759 | lemma negligible_insert[simp]: "negligible(insert a s) \<longleftrightarrow> negligible s" | |
| 2760 | apply(subst insert_is_Un) unfolding negligible_union_eq by auto | |
| 2761 | ||
| 2762 | lemma negligible_empty[intro]: "negligible {}" by auto
 | |
| 2763 | ||
| 2764 | lemma negligible_finite[intro]: assumes "finite s" shows "negligible s" | |
| 2765 | using assms apply(induct s) by auto | |
| 2766 | ||
| 2767 | lemma negligible_unions[intro]: assumes "finite s" "\<forall>t\<in>s. negligible t" shows "negligible(\<Union>s)" | |
| 2768 | using assms by(induct,auto) | |
| 2769 | ||
| 37665 | 2770 | lemma negligible:  "negligible s \<longleftrightarrow> (\<forall>t::('a::ordered_euclidean_space) set. ((indicator s::'a\<Rightarrow>real) has_integral 0) t)"
 | 
| 35172 | 2771 | apply safe defer apply(subst negligible_def) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2772 | proof- fix t::"'a set" assume as:"negligible s" | 
| 35172 | 2773 | have *:"(\<lambda>x. if x \<in> s \<inter> t then 1 else 0) = (\<lambda>x. if x\<in>t then if x\<in>s then 1 else 0 else 0)" by(rule ext,auto) | 
| 37665 | 2774 | show "((indicator s::'a\<Rightarrow>real) has_integral 0) t" apply(subst has_integral_alt) | 
| 35172 | 2775 | apply(cases,subst if_P,assumption) unfolding if_not_P apply(safe,rule as[unfolded negligible_def,rule_format]) | 
| 2776 | apply(rule_tac x=1 in exI) apply(safe,rule zero_less_one) apply(rule_tac x=0 in exI) | |
| 37665 | 2777 | using negligible_subset[OF as,of "s \<inter> t"] unfolding negligible_def indicator_def_raw unfolding * by auto qed auto | 
| 35172 | 2778 | |
| 2779 | subsection {* Finite case of the spike theorem is quite commonly needed. *}
 | |
| 2780 | ||
| 2781 | lemma has_integral_spike_finite: assumes "finite s" "\<forall>x\<in>t-s. g x = f x" | |
| 2782 | "(f has_integral y) t" shows "(g has_integral y) t" | |
| 2783 | apply(rule has_integral_spike) using assms by auto | |
| 2784 | ||
| 2785 | lemma has_integral_spike_finite_eq: assumes "finite s" "\<forall>x\<in>t-s. g x = f x" | |
| 2786 | shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)" | |
| 2787 | apply rule apply(rule_tac[!] has_integral_spike_finite) using assms by auto | |
| 2788 | ||
| 2789 | lemma integrable_spike_finite: | |
| 2790 | assumes "finite s" "\<forall>x\<in>t-s. g x = f x" "f integrable_on t" shows "g integrable_on t" | |
| 2791 | using assms unfolding integrable_on_def apply safe apply(rule_tac x=y in exI) | |
| 2792 | apply(rule has_integral_spike_finite) by auto | |
| 2793 | ||
| 2794 | subsection {* In particular, the boundary of an interval is negligible. *}
 | |
| 2795 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2796 | lemma negligible_frontier_interval: "negligible({a::'a::ordered_euclidean_space..b} - {a<..<b})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2797 | proof- let ?A = "\<Union>((\<lambda>k. {x. x$$k = a$$k} \<union> {x::'a. x$$k = b$$k}) ` {..<DIM('a)})"
 | 
| 35172 | 2798 |   have "{a..b} - {a<..<b} \<subseteq> ?A" apply rule unfolding Diff_iff mem_interval not_all
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2799 |     apply(erule conjE exE)+ apply(rule_tac X="{x. x $$ xa = a $$ xa} \<union> {x. x $$ xa = b $$ xa}" in UnionI)
 | 
| 35172 | 2800 | apply(erule_tac[!] x=xa in allE) by auto | 
| 2801 | thus ?thesis apply-apply(rule negligible_subset[of ?A]) apply(rule negligible_unions[OF finite_imageI]) by auto qed | |
| 2802 | ||
| 2803 | lemma has_integral_spike_interior: | |
| 2804 |   assumes "\<forall>x\<in>{a<..<b}. g x = f x" "(f has_integral y) ({a..b})" shows "(g has_integral y) ({a..b})"
 | |
| 2805 | apply(rule has_integral_spike[OF negligible_frontier_interval _ assms(2)]) using assms(1) by auto | |
| 2806 | ||
| 2807 | lemma has_integral_spike_interior_eq: | |
| 2808 |   assumes "\<forall>x\<in>{a<..<b}. g x = f x" shows "((f has_integral y) ({a..b}) \<longleftrightarrow> (g has_integral y) ({a..b}))"
 | |
| 2809 | apply rule apply(rule_tac[!] has_integral_spike_interior) using assms by auto | |
| 2810 | ||
| 2811 | lemma integrable_spike_interior: assumes "\<forall>x\<in>{a<..<b}. g x = f x" "f integrable_on {a..b}" shows "g integrable_on {a..b}"
 | |
| 2812 | using assms unfolding integrable_on_def using has_integral_spike_interior[OF assms(1)] by auto | |
| 2813 | ||
| 2814 | subsection {* Integrability of continuous functions. *}
 | |
| 2815 | ||
| 2816 | lemma neutral_and[simp]: "neutral op \<and> = True" | |
| 2817 | unfolding neutral_def apply(rule some_equality) by auto | |
| 2818 | ||
| 2819 | lemma monoidal_and[intro]: "monoidal op \<and>" unfolding monoidal_def by auto | |
| 2820 | ||
| 2821 | lemma iterate_and[simp]: assumes "finite s" shows "(iterate op \<and>) s p \<longleftrightarrow> (\<forall>x\<in>s. p x)" using assms | |
| 2822 | apply induct unfolding iterate_insert[OF monoidal_and] by auto | |
| 2823 | ||
| 2824 | lemma operative_division_and: assumes "operative op \<and> P" "d division_of {a..b}"
 | |
| 2825 |   shows "(\<forall>i\<in>d. P i) \<longleftrightarrow> P {a..b}"
 | |
| 2826 | using operative_division[OF monoidal_and assms] division_of_finite[OF assms(2)] by auto | |
| 2827 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2828 | lemma operative_approximable: assumes "0 \<le> e" fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2829 | shows "operative op \<and> (\<lambda>i. \<exists>g. (\<forall>x\<in>i. norm (f x - g (x::'b)) \<le> e) \<and> g integrable_on i)" unfolding operative_def neutral_and | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2830 | proof safe fix a b::"'b" { assume "content {a..b} = 0"
 | 
| 35172 | 2831 |     thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" 
 | 
| 2832 | apply(rule_tac x=f in exI) using assms by(auto intro!:integrable_on_null) } | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2833 |   { fix c k g assume as:"\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}" and k:"k<DIM('b)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2834 |     show "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. x $$ k \<le> c}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2835 |       "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $$ k}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. c \<le> x $$ k}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2836 | apply(rule_tac[!] x=g in exI) using as(1) integrable_split[OF as(2) k] by auto } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2837 |   fix c k g1 g2 assume as:"\<forall>x\<in>{a..b} \<inter> {x. x $$ k \<le> c}. norm (f x - g1 x) \<le> e" "g1 integrable_on {a..b} \<inter> {x. x $$ k \<le> c}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2838 |                           "\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $$ k}. norm (f x - g2 x) \<le> e" "g2 integrable_on {a..b} \<inter> {x. c \<le> x $$ k}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2839 |   assume k:"k<DIM('b)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2840 | let ?g = "\<lambda>x. if x$$k = c then f x else if x$$k \<le> c then g1 x else g2 x" | 
| 35172 | 2841 |   show "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" apply(rule_tac x="?g" in exI)
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2842 | proof safe case goal1 thus ?case apply- apply(cases "x$$k=c", case_tac "x$$k < c") using as assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2843 |   next case goal2 presume "?g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $$ k \<ge> c}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2844 | then guess h1 h2 unfolding integrable_on_def by auto from has_integral_split[OF this k] | 
| 35172 | 2845 | show ?case unfolding integrable_on_def by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2846 |   next show "?g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $$ k \<ge> c}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2847 | apply(rule_tac[!] integrable_spike[OF negligible_standard_hyperplane[of k c]]) using k as(2,4) by auto qed qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2848 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2849 | lemma approximable_on_division: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35172 | 2850 |   assumes "0 \<le> e" "d division_of {a..b}" "\<forall>i\<in>d. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"
 | 
| 2851 |   obtains g where "\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}"
 | |
| 2852 | proof- note * = operative_division[OF monoidal_and operative_approximable[OF assms(1)] assms(2)] | |
| 2853 | note this[unfolded iterate_and[OF division_of_finite[OF assms(2)]]] from assms(3)[unfolded this[of f]] | |
| 2854 | guess g .. thus thesis apply-apply(rule that[of g]) by auto qed | |
| 2855 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2856 | lemma integrable_continuous: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35172 | 2857 |   assumes "continuous_on {a..b} f" shows "f integrable_on {a..b}"
 | 
| 2858 | proof(rule integrable_uniform_limit,safe) fix e::real assume e:"0 < e" | |
| 2859 | from compact_uniformly_continuous[OF assms compact_interval,unfolded uniformly_continuous_on_def,rule_format,OF e] guess d .. | |
| 2860 | note d=conjunctD2[OF this,rule_format] | |
| 2861 | from fine_division_exists[OF gauge_ball[OF d(1)], of a b] guess p . note p=this | |
| 2862 | note p' = tagged_division_ofD[OF p(1)] | |
| 2863 | have *:"\<forall>i\<in>snd ` p. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i" | |
| 2864 | proof(safe,unfold snd_conv) fix x l assume as:"(x,l) \<in> p" | |
| 2865 | from p'(4)[OF this] guess a b apply-by(erule exE)+ note l=this | |
| 2866 | show "\<exists>g. (\<forall>x\<in>l. norm (f x - g x) \<le> e) \<and> g integrable_on l" apply(rule_tac x="\<lambda>y. f x" in exI) | |
| 2867 | proof safe show "(\<lambda>y. f x) integrable_on l" unfolding integrable_on_def l by(rule,rule has_integral_const) | |
| 2868 | fix y assume y:"y\<in>l" note fineD[OF p(2) as,unfolded subset_eq,rule_format,OF this] | |
| 2869 | note d(2)[OF _ _ this[unfolded mem_ball]] | |
| 36587 | 2870 | thus "norm (f y - f x) \<le> e" using y p'(2-3)[OF as] unfolding dist_norm l norm_minus_commute by fastsimp qed qed | 
| 35172 | 2871 | from e have "0 \<le> e" by auto from approximable_on_division[OF this division_of_tagged_division[OF p(1)] *] guess g . | 
| 2872 |   thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" by auto qed 
 | |
| 2873 | ||
| 2874 | subsection {* Specialization of additivity to one dimension. *}
 | |
| 2875 | ||
| 2876 | lemma operative_1_lt: assumes "monoidal opp" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2877 |   shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real} = neutral opp) \<and>
 | 
| 35172 | 2878 |                 (\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2879 | unfolding operative_def content_eq_0 DIM_real less_one dnf_simps(39,41) Eucl_real_simps | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2880 | (* The dnf_simps simplify "\<exists> x. x= _ \<and> _" and "\<forall>k. k = _ \<longrightarrow> _" *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2881 | proof safe fix a b c::"real" assume as:"\<forall>a b c. f {a..b} = opp (f ({a..b} \<inter> {x. x \<le> c}))
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2882 |     (f ({a..b} \<inter> {x. c \<le> x}))" "a < c" "c < b"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2883 |     from this(2-) have "{a..b} \<inter> {x. x \<le> c} = {a..c}" "{a..b} \<inter> {x. x \<ge> c} = {c..b}" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2884 |     thus "opp (f {a..c}) (f {c..b}) = f {a..b}" unfolding as(1)[rule_format,of a b "c"] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2885 | next fix a b c::real | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2886 |   assume as:"\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp" "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2887 |   show "f {a..b} = opp (f ({a..b} \<inter> {x. x \<le> c})) (f ({a..b} \<inter> {x. c \<le> x}))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2888 |   proof(cases "c \<in> {a .. b}")
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2889 | case False hence "c<a \<or> c>b" by auto | 
| 35172 | 2890 | thus ?thesis apply-apply(erule disjE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2891 |     proof- assume "c<a" hence *:"{a..b} \<inter> {x. x \<le> c} = {1..0}"  "{a..b} \<inter> {x. c \<le> x} = {a..b}" by auto
 | 
| 35172 | 2892 | show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2893 |     next   assume "b<c" hence *:"{a..b} \<inter> {x. x \<le> c} = {a..b}"  "{a..b} \<inter> {x. c \<le> x} = {1..0}" by auto
 | 
| 35172 | 2894 | show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto | 
| 2895 | qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2896 | next case True hence *:"min (b) c = c" "max a c = c" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2897 | have **:"0 < DIM(real)" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2898 | have ***:"\<And>P Q. (\<chi>\<chi> i. if i = 0 then P i else Q i) = (P 0::real)" apply(subst euclidean_eq) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2899 | apply safe unfolding euclidean_lambda_beta' by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2900 | show ?thesis unfolding interval_split[OF **,unfolded Eucl_real_simps(1,3)] unfolding *** * | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2901 | proof(cases "c = a \<or> c = b") | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2902 |       case False thus "f {a..b} = opp (f {a..c}) (f {c..b})"
 | 
| 35172 | 2903 | apply-apply(subst as(2)[rule_format]) using True by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2904 |     next case True thus "f {a..b} = opp (f {a..c}) (f {c..b})" apply-
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2905 | proof(erule disjE) assume *:"c=a" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2906 |         hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | 
| 35172 | 2907 | thus ?thesis using assms unfolding * by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2908 |       next assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | 
| 35172 | 2909 | thus ?thesis using assms unfolding * by auto qed qed qed qed | 
| 2910 | ||
| 2911 | lemma operative_1_le: assumes "monoidal opp" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2912 |   shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real} = neutral opp) \<and>
 | 
| 35172 | 2913 |                 (\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
 | 
| 2914 | unfolding operative_1_lt[OF assms] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2915 | proof safe fix a b c::"real" assume as:"\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a < c" "c < b"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2916 |   show "opp (f {a..c}) (f {c..b}) = f {a..b}" apply(rule as(1)[rule_format]) using as(2-) by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2917 | next fix a b c ::"real" assume "\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2918 |     "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a \<le> c" "c \<le> b"
 | 
| 35172 | 2919 | note as = this[rule_format] | 
| 2920 |   show "opp (f {a..c}) (f {c..b}) = f {a..b}"
 | |
| 2921 | proof(cases "c = a \<or> c = b") | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2922 | case False thus ?thesis apply-apply(subst as(2)) using as(3-) by(auto) | 
| 35172 | 2923 | next case True thus ?thesis apply- | 
| 2924 |       proof(erule disjE) assume *:"c=a" hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | |
| 2925 | thus ?thesis using assms unfolding * by auto | |
| 2926 |       next               assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | |
| 2927 | thus ?thesis using assms unfolding * by auto qed qed qed | |
| 2928 | ||
| 2929 | subsection {* Special case of additivity we need for the FCT. *}
 | |
| 2930 | ||
| 35540 | 2931 | lemma interval_bound_sing[simp]: "interval_upperbound {a} = a"  "interval_lowerbound {a} = a"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2932 | unfolding interval_upperbound_def interval_lowerbound_def by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2933 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2934 | lemma additive_tagged_division_1: fixes f::"real \<Rightarrow> 'a::real_normed_vector" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2935 |   assumes "a \<le> b" "p tagged_division_of {a..b}"
 | 
| 35172 | 2936 | shows "setsum (\<lambda>(x,k). f(interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2937 | proof- let ?f = "(\<lambda>k::(real) set. if k = {} then 0 else f(interval_upperbound k) - f(interval_lowerbound k))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2938 | have ***:"\<forall>i<DIM(real). a $$ i \<le> b $$ i" using assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2939 | have *:"operative op + ?f" unfolding operative_1_lt[OF monoidal_monoid] interval_eq_empty by auto | 
| 35172 | 2940 |   have **:"{a..b} \<noteq> {}" using assms(1) by auto note operative_tagged_division[OF monoidal_monoid * assms(2)]
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2941 | note * = this[unfolded if_not_P[OF **] interval_bounds[OF ***],THEN sym] | 
| 35172 | 2942 | show ?thesis unfolding * apply(subst setsum_iterate[THEN sym]) defer | 
| 2943 | apply(rule setsum_cong2) unfolding split_paired_all split_conv using assms(2) by auto qed | |
| 2944 | ||
| 2945 | subsection {* A useful lemma allowing us to factor out the content size. *}
 | |
| 2946 | ||
| 2947 | lemma has_integral_factor_content: | |
| 2948 |   "(f has_integral i) {a..b} \<longleftrightarrow> (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
 | |
| 2949 |     \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - i) \<le> e * content {a..b}))"
 | |
| 2950 | proof(cases "content {a..b} = 0")
 | |
| 2951 | case True show ?thesis unfolding has_integral_null_eq[OF True] apply safe | |
| 2952 | apply(rule,rule,rule gauge_trivial,safe) unfolding setsum_content_null[OF True] True defer | |
| 2953 | apply(erule_tac x=1 in allE,safe) defer apply(rule fine_division_exists[of _ a b],assumption) | |
| 2954 | apply(erule_tac x=p in allE) unfolding setsum_content_null[OF True] by auto | |
| 2955 | next case False note F = this[unfolded content_lt_nz[THEN sym]] | |
| 2956 |   let ?P = "\<lambda>e opp. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> opp (norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i)) e)"
 | |
| 2957 | show ?thesis apply(subst has_integral) | |
| 2958 | proof safe fix e::real assume e:"e>0" | |
| 2959 |     { assume "\<forall>e>0. ?P e op <" thus "?P (e * content {a..b}) op \<le>" apply(erule_tac x="e * content {a..b}" in allE)
 | |
| 2960 | apply(erule impE) defer apply(erule exE,rule_tac x=d in exI) | |
| 2961 | using F e by(auto simp add:field_simps intro:mult_pos_pos) } | |
| 2962 |     {  assume "\<forall>e>0. ?P (e * content {a..b}) op \<le>" thus "?P e op <" apply(erule_tac x="e / 2 / content {a..b}" in allE)
 | |
| 2963 | apply(erule impE) defer apply(erule exE,rule_tac x=d in exI) | |
| 2964 | using F e by(auto simp add:field_simps intro:mult_pos_pos) } qed qed | |
| 2965 | ||
| 2966 | subsection {* Fundamental theorem of calculus. *}
 | |
| 2967 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2968 | lemma interval_bounds_real: assumes "a\<le>(b::real)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2969 |   shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2970 | apply(rule_tac[!] interval_bounds) using assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2971 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2972 | lemma fundamental_theorem_of_calculus: fixes f::"real \<Rightarrow> 'a::banach" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2973 |   assumes "a \<le> b"  "\<forall>x\<in>{a..b}. (f has_vector_derivative f' x) (at x within {a..b})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2974 |   shows "(f' has_integral (f b - f a)) ({a..b})"
 | 
| 35172 | 2975 | unfolding has_integral_factor_content | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2976 | proof safe fix e::real assume e:"e>0" | 
| 35172 | 2977 | note assm = assms(2)[unfolded has_vector_derivative_def has_derivative_within_alt] | 
| 2978 |   have *:"\<And>P Q. \<forall>x\<in>{a..b}. P x \<and> (\<forall>e>0. \<exists>d>0. Q x e d) \<Longrightarrow> \<forall>x. \<exists>(d::real)>0. x\<in>{a..b} \<longrightarrow> Q x e d" using e by blast
 | |
| 2979 | note this[OF assm,unfolded gauge_existence_lemma] from choice[OF this,unfolded Ball_def[symmetric]] | |
| 2980 | guess d .. note d=conjunctD2[OF this[rule_format],rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2981 |   show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2982 |                  norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2983 | apply(rule_tac x="\<lambda>x. ball x (d x)" in exI,safe) | 
| 35172 | 2984 | apply(rule gauge_ball_dependent,rule,rule d(1)) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2985 |   proof- fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. ball x (d x)) fine p"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2986 |     show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b}" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2987 | unfolding content_real[OF assms(1)] additive_tagged_division_1[OF assms(1) as(1),of f,THEN sym] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2988 | unfolding additive_tagged_division_1[OF assms(1) as(1),of "\<lambda>x. x",THEN sym] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2989 | unfolding setsum_right_distrib defer unfolding setsum_subtractf[THEN sym] | 
| 35172 | 2990 | proof(rule setsum_norm_le,safe) fix x k assume "(x,k)\<in>p" | 
| 2991 | note xk = tagged_division_ofD(2-4)[OF as(1) this] from this(3) guess u v apply-by(erule exE)+ note k=this | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2992 | have *:"u \<le> v" using xk unfolding k by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2993 | have ball:"\<forall>xa\<in>k. xa \<in> ball x (d x)" using as(2)[unfolded fine_def,rule_format,OF `(x,k)\<in>p`, | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2994 | unfolded split_conv subset_eq] . | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2995 | have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) \<le> | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2996 | norm (f u - f x - (u - x) *\<^sub>R f' x) + norm (f v - f x - (v - x) *\<^sub>R f' x)" | 
| 35172 | 2997 | apply(rule order_trans[OF _ norm_triangle_ineq4]) apply(rule eq_refl) apply(rule arg_cong[where f=norm]) | 
| 36350 | 2998 | unfolding scaleR.diff_left by(auto simp add:algebra_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 2999 | also have "... \<le> e * norm (u - x) + e * norm (v - x)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3000 | apply(rule add_mono) apply(rule d(2)[of "x" "u",unfolded o_def]) prefer 4 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3001 | apply(rule d(2)[of "x" "v",unfolded o_def]) | 
| 35172 | 3002 | using ball[rule_format,of u] ball[rule_format,of v] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3003 | using xk(1-2) unfolding k subset_eq by(auto simp add:dist_real_def) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3004 | also have "... \<le> e * (interval_upperbound k - interval_lowerbound k)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3005 | unfolding k interval_bounds_real[OF *] using xk(1) unfolding k by(auto simp add:dist_real_def field_simps) | 
| 35172 | 3006 | finally show "norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k))) \<le> | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3007 | e * (interval_upperbound k - interval_lowerbound k)" unfolding k interval_bounds_real[OF *] content_real[OF *] . | 
| 35172 | 3008 | qed(insert as, auto) qed qed | 
| 3009 | ||
| 3010 | subsection {* Attempt a systematic general set of "offset" results for components. *}
 | |
| 3011 | ||
| 3012 | lemma gauge_modify: | |
| 3013 |   assumes "(\<forall>s. open s \<longrightarrow> open {x. f(x) \<in> s})" "gauge d"
 | |
| 3014 | shows "gauge (\<lambda>x y. d (f x) (f y))" | |
| 3015 | using assms unfolding gauge_def apply safe defer apply(erule_tac x="f x" in allE) | |
| 3016 | apply(erule_tac x="d (f x)" in allE) unfolding mem_def Collect_def by auto | |
| 3017 | ||
| 3018 | subsection {* Only need trivial subintervals if the interval itself is trivial. *}
 | |
| 3019 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3020 | lemma division_of_nontrivial: fixes s::"('a::ordered_euclidean_space) set set"
 | 
| 35172 | 3021 |   assumes "s division_of {a..b}" "content({a..b}) \<noteq> 0"
 | 
| 3022 |   shows "{k. k \<in> s \<and> content k \<noteq> 0} division_of {a..b}" using assms(1) apply-
 | |
| 3023 | proof(induct "card s" arbitrary:s rule:nat_less_induct) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3024 |   fix s::"'a set set" assume assm:"s division_of {a..b}"
 | 
| 35172 | 3025 |     "\<forall>m<card s. \<forall>x. m = card x \<longrightarrow> x division_of {a..b} \<longrightarrow> {k \<in> x. content k \<noteq> 0} division_of {a..b}" 
 | 
| 3026 |   note s = division_ofD[OF assm(1)] let ?thesis = "{k \<in> s. content k \<noteq> 0} division_of {a..b}"
 | |
| 3027 |   { presume *:"{k \<in> s. content k \<noteq> 0} \<noteq> s \<Longrightarrow> ?thesis"
 | |
| 3028 | show ?thesis apply cases defer apply(rule *,assumption) using assm(1) by auto } | |
| 3029 |   assume noteq:"{k \<in> s. content k \<noteq> 0} \<noteq> s"
 | |
| 3030 | then obtain k where k:"k\<in>s" "content k = 0" by auto | |
| 3031 | from s(4)[OF k(1)] guess c d apply-by(erule exE)+ note k=k this | |
| 3032 | from k have "card s > 0" unfolding card_gt_0_iff using assm(1) by auto | |
| 3033 |   hence card:"card (s - {k}) < card s" using assm(1) k(1) apply(subst card_Diff_singleton_if) by auto
 | |
| 3034 |   have *:"closed (\<Union>(s - {k}))" apply(rule closed_Union) defer apply rule apply(drule DiffD1,drule s(4))
 | |
| 3035 | apply safe apply(rule closed_interval) using assm(1) by auto | |
| 3036 |   have "k \<subseteq> \<Union>(s - {k})" apply safe apply(rule *[unfolded closed_limpt,rule_format]) unfolding islimpt_approachable
 | |
| 3037 | proof safe fix x and e::real assume as:"x\<in>k" "e>0" | |
| 3038 | from k(2)[unfolded k content_eq_0] guess i .. | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3039 |     hence i:"c$$i = d$$i" "i<DIM('a)" using s(3)[OF k(1),unfolded k] unfolding interval_ne_empty by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3040 | hence xi:"x$$i = d$$i" using as unfolding k mem_interval by smt | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3041 | def y \<equiv> "(\<chi>\<chi> j. if j = i then if c$$i \<le> (a$$i + b$$i) / 2 then c$$i + | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3042 | min e (b$$i - c$$i) / 2 else c$$i - min e (c$$i - a$$i) / 2 else x$$j)::'a" | 
| 35172 | 3043 |     show "\<exists>x'\<in>\<Union>(s - {k}). x' \<noteq> x \<and> dist x' x < e" apply(rule_tac x=y in bexI) 
 | 
| 3044 |     proof have "d \<in> {c..d}" using s(3)[OF k(1)] unfolding k interval_eq_empty mem_interval by(fastsimp simp add: not_less)
 | |
| 3045 |       hence "d \<in> {a..b}" using s(2)[OF k(1)] unfolding k by auto note di = this[unfolded mem_interval,THEN spec[where x=i]]
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3046 | hence xyi:"y$$i \<noteq> x$$i" unfolding y_def unfolding i xi euclidean_lambda_beta'[OF i(2)] if_P[OF refl] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3047 | apply(cases) apply(subst if_P,assumption) unfolding if_not_P not_le using as(2) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3048 | using assms(2)[unfolded content_eq_0] using i(2) by smt+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3049 | thus "y \<noteq> x" unfolding euclidean_eq[where 'a='a] using i by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3050 |       have *:"{..<DIM('a)} = insert i ({..<DIM('a)} - {i})" using i by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3051 |       have "norm (y - x) < e + setsum (\<lambda>i. 0) {..<DIM('a)}" apply(rule le_less_trans[OF norm_le_l1])
 | 
| 35172 | 3052 | apply(subst *,subst setsum_insert) prefer 3 apply(rule add_less_le_mono) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3053 | proof- show "\<bar>(y - x) $$ i\<bar> < e" unfolding y_def euclidean_simps euclidean_lambda_beta'[OF i(2)] if_P[OF refl] | 
| 35172 | 3054 | apply(cases) apply(subst if_P,assumption) unfolding if_not_P unfolding i xi using di as(2) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3055 |         show "(\<Sum>i\<in>{..<DIM('a)} - {i}. \<bar>(y - x) $$ i\<bar>) \<le> (\<Sum>i\<in>{..<DIM('a)}. 0)" unfolding y_def by auto 
 | 
| 36587 | 3056 | qed auto thus "dist y x < e" unfolding dist_norm by auto | 
| 35172 | 3057 | have "y\<notin>k" unfolding k mem_interval apply rule apply(erule_tac x=i in allE) using xyi unfolding k i xi by auto | 
| 3058 | moreover have "y \<in> \<Union>s" unfolding s mem_interval | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3059 | proof(rule,rule) note simps = y_def euclidean_lambda_beta' if_not_P | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3060 |         fix j assume j:"j<DIM('a)" show "a $$ j \<le> y $$ j \<and> y $$ j \<le> b $$ j" 
 | 
| 35172 | 3061 |         proof(cases "j = i") case False have "x \<in> {a..b}" using s(2)[OF k(1)] as(1) by auto
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3062 | thus ?thesis using j apply- unfolding simps if_not_P[OF False] unfolding mem_interval by auto | 
| 35172 | 3063 | next case True note T = this show ?thesis | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3064 | proof(cases "c $$ i \<le> (a $$ i + b $$ i) / 2") | 
| 35172 | 3065 | case True show ?thesis unfolding simps if_P[OF T] if_P[OF True] unfolding i | 
| 3066 | using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps) | |
| 3067 | next case False thus ?thesis unfolding simps if_P[OF T] if_not_P[OF False] unfolding i | |
| 3068 | using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps) | |
| 3069 | qed qed qed | |
| 3070 |       ultimately show "y \<in> \<Union>(s - {k})" by auto
 | |
| 3071 |     qed qed hence "\<Union>(s - {k}) = {a..b}" unfolding s(6)[THEN sym] by auto
 | |
| 3072 |   hence  "{ka \<in> s - {k}. content ka \<noteq> 0} division_of {a..b}" apply-apply(rule assm(2)[rule_format,OF card refl])
 | |
| 3073 | apply(rule division_ofI) defer apply(rule_tac[1-4] s) using assm(1) by auto | |
| 3074 |   moreover have "{ka \<in> s - {k}. content ka \<noteq> 0} = {k \<in> s. content k \<noteq> 0}" using k by auto ultimately show ?thesis by auto qed
 | |
| 3075 | ||
| 3076 | subsection {* Integrabibility on subintervals. *}
 | |
| 3077 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3078 | lemma operative_integrable: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" shows | 
| 35172 | 3079 | "operative op \<and> (\<lambda>i. f integrable_on i)" | 
| 3080 | unfolding operative_def neutral_and apply safe apply(subst integrable_on_def) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3081 | unfolding has_integral_null_eq apply(rule,rule refl) apply(rule,assumption,assumption)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3082 | unfolding integrable_on_def by(auto intro!: has_integral_split) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3083 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3084 | lemma integrable_subinterval: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35172 | 3085 |   assumes "f integrable_on {a..b}" "{c..d} \<subseteq> {a..b}" shows "f integrable_on {c..d}" 
 | 
| 3086 |   apply(cases "{c..d} = {}") defer apply(rule partial_division_extend_1[OF assms(2)],assumption)
 | |
| 3087 | using operative_division_and[OF operative_integrable,THEN sym,of _ _ _ f] assms(1) by auto | |
| 3088 | ||
| 3089 | subsection {* Combining adjacent intervals in 1 dimension. *}
 | |
| 3090 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3091 | lemma has_integral_combine: assumes "(a::real) \<le> c" "c \<le> b" | 
| 35172 | 3092 |   "(f has_integral i) {a..c}" "(f has_integral (j::'a::banach)) {c..b}"
 | 
| 3093 |   shows "(f has_integral (i + j)) {a..b}"
 | |
| 3094 | proof- note operative_integral[of f, unfolded operative_1_le[OF monoidal_lifted[OF monoidal_monoid]]] | |
| 3095 | note conjunctD2[OF this,rule_format] note * = this(2)[OF conjI[OF assms(1-2)],unfolded if_P[OF assms(3)]] | |
| 3096 |   hence "f integrable_on {a..b}" apply- apply(rule ccontr) apply(subst(asm) if_P) defer
 | |
| 3097 | apply(subst(asm) if_P) using assms(3-) by auto | |
| 3098 | with * show ?thesis apply-apply(subst(asm) if_P) defer apply(subst(asm) if_P) defer apply(subst(asm) if_P) | |
| 3099 | unfolding lifted.simps using assms(3-) by(auto simp add: integrable_on_def integral_unique) qed | |
| 3100 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3101 | lemma integral_combine: fixes f::"real \<Rightarrow> 'a::banach" | 
| 35172 | 3102 |   assumes "a \<le> c" "c \<le> b" "f integrable_on ({a..b})"
 | 
| 3103 |   shows "integral {a..c} f + integral {c..b} f = integral({a..b}) f"
 | |
| 3104 | apply(rule integral_unique[THEN sym]) apply(rule has_integral_combine[OF assms(1-2)]) | |
| 3105 | apply(rule_tac[!] integrable_integral integrable_subinterval[OF assms(3)])+ using assms(1-2) by auto | |
| 3106 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3107 | lemma integrable_combine: fixes f::"real \<Rightarrow> 'a::banach" | 
| 35172 | 3108 |   assumes "a \<le> c" "c \<le> b" "f integrable_on {a..c}" "f integrable_on {c..b}"
 | 
| 3109 |   shows "f integrable_on {a..b}" using assms unfolding integrable_on_def by(fastsimp intro!:has_integral_combine)
 | |
| 3110 | ||
| 3111 | subsection {* Reduce integrability to "local" integrability. *}
 | |
| 3112 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3113 | lemma integrable_on_little_subintervals: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35172 | 3114 |   assumes "\<forall>x\<in>{a..b}. \<exists>d>0. \<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v}"
 | 
| 3115 |   shows "f integrable_on {a..b}"
 | |
| 3116 | proof- have "\<forall>x. \<exists>d. x\<in>{a..b} \<longrightarrow> d>0 \<and> (\<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v})"
 | |
| 3117 | using assms by auto note this[unfolded gauge_existence_lemma] from choice[OF this] guess d .. note d=this[rule_format] | |
| 3118 | guess p apply(rule fine_division_exists[OF gauge_ball_dependent,of d a b]) using d by auto note p=this(1-2) | |
| 3119 | note division_of_tagged_division[OF this(1)] note * = operative_division_and[OF operative_integrable,OF this,THEN sym,of f] | |
| 3120 | show ?thesis unfolding * apply safe unfolding snd_conv | |
| 3121 | proof- fix x k assume "(x,k) \<in> p" note tagged_division_ofD(2-4)[OF p(1) this] fineD[OF p(2) this] | |
| 3122 | thus "f integrable_on k" apply safe apply(rule d[THEN conjunct2,rule_format,of x]) by auto qed qed | |
| 3123 | ||
| 3124 | subsection {* Second FCT or existence of antiderivative. *}
 | |
| 3125 | ||
| 3126 | lemma integrable_const[intro]:"(\<lambda>x. c) integrable_on {a..b}"
 | |
| 3127 | unfolding integrable_on_def by(rule,rule has_integral_const) | |
| 3128 | ||
| 3129 | lemma integral_has_vector_derivative: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3130 |   assumes "continuous_on {a..b} f" "x \<in> {a..b}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3131 |   shows "((\<lambda>u. integral {a..u} f) has_vector_derivative f(x)) (at x within {a..b})"
 | 
| 35172 | 3132 | unfolding has_vector_derivative_def has_derivative_within_alt | 
| 3133 | apply safe apply(rule scaleR.bounded_linear_left) | |
| 3134 | proof- fix e::real assume e:"e>0" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3135 | note compact_uniformly_continuous[OF assms(1) compact_interval,unfolded uniformly_continuous_on_def] | 
| 35172 | 3136 | from this[rule_format,OF e] guess d apply-by(erule conjE exE)+ note d=this[rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3137 |   let ?I = "\<lambda>a b. integral {a..b} f"
 | 
| 35172 | 3138 |   show "\<exists>d>0. \<forall>y\<in>{a..b}. norm (y - x) < d \<longrightarrow> norm (?I a y - ?I a x - (y - x) *\<^sub>R f x) \<le> e * norm (y - x)"
 | 
| 3139 | proof(rule,rule,rule d,safe) case goal1 show ?case proof(cases "y < x") | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3140 |       case False have "f integrable_on {a..y}" apply(rule integrable_subinterval,rule integrable_continuous)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3141 | apply(rule assms) unfolding not_less using assms(2) goal1 by auto | 
| 36350 | 3142 | hence *:"?I a y - ?I a x = ?I x y" unfolding algebra_simps apply(subst eq_commute) apply(rule integral_combine) | 
| 35172 | 3143 | using False unfolding not_less using assms(2) goal1 by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3144 |       have **:"norm (y - x) = content {x..y}" apply(subst content_real) using False unfolding not_less by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3145 | show ?thesis unfolding ** apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x)"]) unfolding * unfolding o_def | 
| 35172 | 3146 | defer apply(rule has_integral_sub) apply(rule integrable_integral) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3147 | apply(rule integrable_subinterval,rule integrable_continuous) apply(rule assms)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3148 |       proof- show "{x..y} \<subseteq> {a..b}" using goal1 assms(2) by auto
 | 
| 35172 | 3149 | have *:"y - x = norm(y - x)" using False by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3150 |         show "((\<lambda>xa. f x) has_integral (y - x) *\<^sub>R f x) {x.. y}" apply(subst *) unfolding ** by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3151 |         show "\<forall>xa\<in>{x..y}. norm (f xa - f x) \<le> e" apply safe apply(rule less_imp_le)
 | 
| 36587 | 3152 | apply(rule d(2)[unfolded dist_norm]) using assms(2) using goal1 by auto | 
| 35172 | 3153 | qed(insert e,auto) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3154 |     next case True have "f integrable_on {a..x}" apply(rule integrable_subinterval,rule integrable_continuous)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3155 | apply(rule assms)+ unfolding not_less using assms(2) goal1 by auto | 
| 36350 | 3156 | hence *:"?I a x - ?I a y = ?I y x" unfolding algebra_simps apply(subst eq_commute) apply(rule integral_combine) | 
| 35172 | 3157 | using True using assms(2) goal1 by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3158 |       have **:"norm (y - x) = content {y..x}" apply(subst content_real) using True unfolding not_less by auto
 | 
| 35172 | 3159 | have ***:"\<And>fy fx c::'a. fx - fy - (y - x) *\<^sub>R c = -(fy - fx - (x - y) *\<^sub>R c)" unfolding scaleR_left.diff by auto | 
| 3160 | show ?thesis apply(subst ***) unfolding norm_minus_cancel ** | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3161 | apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x)"]) unfolding * unfolding o_def | 
| 35172 | 3162 | defer apply(rule has_integral_sub) apply(subst minus_minus[THEN sym]) unfolding minus_minus | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3163 | apply(rule integrable_integral) apply(rule integrable_subinterval,rule integrable_continuous) apply(rule assms)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3164 |       proof- show "{y..x} \<subseteq> {a..b}" using goal1 assms(2) by auto
 | 
| 35172 | 3165 | have *:"x - y = norm(y - x)" using True by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3166 |         show "((\<lambda>xa. f x) has_integral (x - y) *\<^sub>R f x) {y..x}" apply(subst *) unfolding ** by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3167 |         show "\<forall>xa\<in>{y..x}. norm (f xa - f x) \<le> e" apply safe apply(rule less_imp_le)
 | 
| 36587 | 3168 | apply(rule d(2)[unfolded dist_norm]) using assms(2) using goal1 by auto | 
| 35172 | 3169 | qed(insert e,auto) qed qed qed | 
| 3170 | ||
| 3171 | lemma antiderivative_continuous: assumes "continuous_on {a..b::real} f"
 | |
| 3172 |   obtains g where "\<forall>x\<in> {a..b}. (g has_vector_derivative (f(x)::_::banach)) (at x within {a..b})"
 | |
| 3173 | apply(rule that,rule) using integral_has_vector_derivative[OF assms] by auto | |
| 3174 | ||
| 3175 | subsection {* Combined fundamental theorem of calculus. *}
 | |
| 3176 | ||
| 3177 | lemma antiderivative_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3178 |   obtains g where "\<forall>u\<in>{a..b}. \<forall>v \<in> {a..b}. u \<le> v \<longrightarrow> (f has_integral (g v - g u)) {u..v}"
 | 
| 35172 | 3179 | proof- from antiderivative_continuous[OF assms] guess g . note g=this | 
| 3180 | show ?thesis apply(rule that[of g]) | |
| 3181 |   proof safe case goal1 have "\<forall>x\<in>{u..v}. (g has_vector_derivative f x) (at x within {u..v})"
 | |
| 3182 | apply(rule,rule has_vector_derivative_within_subset) apply(rule g[rule_format]) using goal1(1-2) by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3183 | thus ?case using fundamental_theorem_of_calculus[OF goal1(3),of "g" "f"] by auto qed qed | 
| 35172 | 3184 | |
| 3185 | subsection {* General "twiddling" for interval-to-interval function image. *}
 | |
| 3186 | ||
| 3187 | lemma has_integral_twiddle: | |
| 3188 | assumes "0 < r" "\<forall>x. h(g x) = x" "\<forall>x. g(h x) = x" "\<forall>x. continuous (at x) g" | |
| 3189 |   "\<forall>u v. \<exists>w z. g ` {u..v} = {w..z}"
 | |
| 3190 |   "\<forall>u v. \<exists>w z. h ` {u..v} = {w..z}"
 | |
| 3191 |   "\<forall>u v. content(g ` {u..v}) = r * content {u..v}"
 | |
| 3192 |   "(f has_integral i) {a..b}"
 | |
| 3193 |   shows "((\<lambda>x. f(g x)) has_integral (1 / r) *\<^sub>R i) (h ` {a..b})"
 | |
| 3194 | proof- { presume *:"{a..b} \<noteq> {} \<Longrightarrow> ?thesis"
 | |
| 3195 | show ?thesis apply cases defer apply(rule *,assumption) | |
| 3196 | proof- case goal1 thus ?thesis unfolding goal1 assms(8)[unfolded goal1 has_integral_empty_eq] by auto qed } | |
| 3197 |   assume "{a..b} \<noteq> {}" from assms(6)[rule_format,of a b] guess w z apply-by(erule exE)+ note wz=this
 | |
| 3198 | have inj:"inj g" "inj h" unfolding inj_on_def apply safe apply(rule_tac[!] ccontr) | |
| 3199 | using assms(2) apply(erule_tac x=x in allE) using assms(2) apply(erule_tac x=y in allE) defer | |
| 3200 | using assms(3) apply(erule_tac x=x in allE) using assms(3) apply(erule_tac x=y in allE) by auto | |
| 3201 | show ?thesis unfolding has_integral_def has_integral_compact_interval_def apply(subst if_P) apply(rule,rule,rule wz) | |
| 3202 | proof safe fix e::real assume e:"e>0" hence "e * r > 0" using assms(1) by(rule mult_pos_pos) | |
| 3203 | from assms(8)[unfolded has_integral,rule_format,OF this] guess d apply-by(erule exE conjE)+ note d=this[rule_format] | |
| 3204 |     def d' \<equiv> "\<lambda>x y. d (g x) (g y)" have d':"\<And>x. d' x = {y. g y \<in> (d (g x))}" unfolding d'_def by(auto simp add:mem_def)
 | |
| 3205 |     show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of h ` {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e)"
 | |
| 3206 | proof(rule_tac x=d' in exI,safe) show "gauge d'" using d(1) unfolding gauge_def d' using continuous_open_preimage_univ[OF assms(4)] by auto | |
| 3207 |       fix p assume as:"p tagged_division_of h ` {a..b}" "d' fine p" note p = tagged_division_ofD[OF as(1)] 
 | |
| 3208 |       have "(\<lambda>(x, k). (g x, g ` k)) ` p tagged_division_of {a..b} \<and> d fine (\<lambda>(x, k). (g x, g ` k)) ` p" unfolding tagged_division_of 
 | |
| 3209 | proof safe show "finite ((\<lambda>(x, k). (g x, g ` k)) ` p)" using as by auto | |
| 3210 | show "d fine (\<lambda>(x, k). (g x, g ` k)) ` p" using as(2) unfolding fine_def d' by auto | |
| 3211 | fix x k assume xk[intro]:"(x,k) \<in> p" show "g x \<in> g ` k" using p(2)[OF xk] by auto | |
| 3212 |         show "\<exists>u v. g ` k = {u..v}" using p(4)[OF xk] using assms(5-6) by auto
 | |
| 3213 |         { fix y assume "y \<in> k" thus "g y \<in> {a..b}" "g y \<in> {a..b}" using p(3)[OF xk,unfolded subset_eq,rule_format,of "h (g y)"]
 | |
| 3214 | using assms(2)[rule_format,of y] unfolding inj_image_mem_iff[OF inj(2)] by auto } | |
| 3215 | fix x' k' assume xk':"(x',k') \<in> p" fix z assume "z \<in> interior (g ` k)" "z \<in> interior (g ` k')" | |
| 3216 |         hence *:"interior (g ` k) \<inter> interior (g ` k') \<noteq> {}" by auto
 | |
| 3217 | have same:"(x, k) = (x', k')" apply-apply(rule ccontr,drule p(5)[OF xk xk']) | |
| 3218 |         proof- assume as:"interior k \<inter> interior k' = {}" from nonempty_witness[OF *] guess z .
 | |
| 3219 | hence "z \<in> g ` (interior k \<inter> interior k')" using interior_image_subset[OF assms(4) inj(1)] | |
| 3220 | unfolding image_Int[OF inj(1)] by auto thus False using as by blast | |
| 3221 | qed thus "g x = g x'" by auto | |
| 3222 |         { fix z assume "z \<in> k"  thus  "g z \<in> g ` k'" using same by auto }
 | |
| 3223 |         { fix z assume "z \<in> k'" thus  "g z \<in> g ` k"  using same by auto }
 | |
| 3224 |       next fix x assume "x \<in> {a..b}" hence "h x \<in>  \<Union>{k. \<exists>x. (x, k) \<in> p}" using p(6) by auto
 | |
| 3225 | then guess X unfolding Union_iff .. note X=this from this(1) guess y unfolding mem_Collect_eq .. | |
| 3226 |         thus "x \<in> \<Union>{k. \<exists>x. (x, k) \<in> (\<lambda>(x, k). (g x, g ` k)) ` p}" apply-
 | |
| 3227 | apply(rule_tac X="g ` X" in UnionI) defer apply(rule_tac x="h x" in image_eqI) | |
| 3228 | using X(2) assms(3)[rule_format,of x] by auto | |
| 3229 | qed note ** = d(2)[OF this] have *:"inj_on (\<lambda>(x, k). (g x, g ` k)) p" using inj(1) unfolding inj_on_def by fastsimp | |
| 36350 | 3230 | have "(\<Sum>(x, k)\<in>(\<lambda>(x, k). (g x, g ` k)) ` p. content k *\<^sub>R f x) - i = r *\<^sub>R (\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - i" (is "?l = _") unfolding algebra_simps add_left_cancel | 
| 35172 | 3231 | unfolding setsum_reindex[OF *] apply(subst scaleR_right.setsum) defer apply(rule setsum_cong2) unfolding o_def split_paired_all split_conv | 
| 3232 | apply(drule p(4)) apply safe unfolding assms(7)[rule_format] using p by auto | |
| 3233 | also have "... = r *\<^sub>R ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" (is "_ = ?r") unfolding scaleR.diff_right scaleR.scaleR_left[THEN sym] | |
| 3234 | unfolding real_scaleR_def using assms(1) by auto finally have *:"?l = ?r" . | |
| 3235 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" using ** unfolding * unfolding norm_scaleR | |
| 3236 | using assms(1) by(auto simp add:field_simps) qed qed qed | |
| 3237 | ||
| 3238 | subsection {* Special case of a basic affine transformation. *}
 | |
| 3239 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3240 | lemma interval_image_affinity_interval: shows "\<exists>u v. (\<lambda>x. m *\<^sub>R (x::'a::ordered_euclidean_space) + c) ` {a..b} = {u..v}"
 | 
| 35172 | 3241 | unfolding image_affinity_interval by auto | 
| 3242 | ||
| 3243 | lemma setprod_cong2: assumes "\<And>x. x \<in> A \<Longrightarrow> f x = g x" shows "setprod f A = setprod g A" | |
| 3244 | apply(rule setprod_cong) using assms by auto | |
| 3245 | ||
| 3246 | lemma content_image_affinity_interval: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3247 |  "content((\<lambda>x::'a::ordered_euclidean_space. m *\<^sub>R x + c) ` {a..b}) = (abs m) ^ DIM('a) * content {a..b}" (is "?l = ?r")
 | 
| 35172 | 3248 | proof- { presume *:"{a..b}\<noteq>{} \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
 | 
| 3249 | unfolding not_not using content_empty by auto } | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3250 |   have *:"DIM('a) = card {..<DIM('a)}" by auto
 | 
| 35172 | 3251 |   assume as:"{a..b}\<noteq>{}" show ?thesis proof(cases "m \<ge> 0")
 | 
| 3252 | case True show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_P[OF True] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3253 | unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') defer apply(subst(2) *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3254 | apply(subst setprod_constant[THEN sym]) apply(rule finite_lessThan) unfolding setprod_timesf[THEN sym] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3255 | apply(rule setprod_cong2) using True as unfolding interval_ne_empty euclidean_simps not_le | 
| 35172 | 3256 | by(auto simp add:field_simps intro:mult_left_mono) | 
| 3257 | next case False show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_not_P[OF False] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3258 | unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') defer apply(subst(2) *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3259 | apply(subst setprod_constant[THEN sym]) apply(rule finite_lessThan) unfolding setprod_timesf[THEN sym] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3260 | apply(rule setprod_cong2) using False as unfolding interval_ne_empty euclidean_simps not_le | 
| 35172 | 3261 | by(auto simp add:field_simps mult_le_cancel_left_neg) qed qed | 
| 3262 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3263 | lemma has_integral_affinity: fixes a::"'a::ordered_euclidean_space" assumes "(f has_integral i) {a..b}" "m \<noteq> 0"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3264 |   shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral ((1 / (abs(m) ^ DIM('a))) *\<^sub>R i)) ((\<lambda>x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` {a..b})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3265 | apply(rule has_integral_twiddle,safe) apply(rule zero_less_power) unfolding euclidean_eq[where 'a='a] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3266 | unfolding scaleR_right_distrib euclidean_simps scaleR.scaleR_left[THEN sym] | 
| 35172 | 3267 | defer apply(insert assms(2), simp add:field_simps) apply(insert assms(2), simp add:field_simps) | 
| 3268 | apply(rule continuous_intros)+ apply(rule interval_image_affinity_interval)+ apply(rule content_image_affinity_interval) using assms by auto | |
| 3269 | ||
| 3270 | lemma integrable_affinity: assumes "f integrable_on {a..b}" "m \<noteq> 0"
 | |
| 3271 |   shows "(\<lambda>x. f(m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x + -((1/m) *\<^sub>R c)) ` {a..b})"
 | |
| 3272 | using assms unfolding integrable_on_def apply safe apply(drule has_integral_affinity) by auto | |
| 3273 | ||
| 3274 | subsection {* Special case of stretching coordinate axes separately. *}
 | |
| 3275 | ||
| 3276 | lemma image_stretch_interval: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3277 |   "(\<lambda>x. \<chi>\<chi> k. m k * x$$k) ` {a..b::'a::ordered_euclidean_space} =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3278 |   (if {a..b} = {} then {} else {(\<chi>\<chi> k. min (m(k) * a$$k) (m(k) * b$$k))::'a ..  (\<chi>\<chi> k. max (m(k) * a$$k) (m(k) * b$$k))})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3279 | (is "?l = ?r") | 
| 35172 | 3280 | proof(cases "{a..b}={}") case True thus ?thesis unfolding True by auto
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3281 | next have *:"\<And>P Q. (\<forall>i<DIM('a). P i) \<and> (\<forall>i<DIM('a). Q i) \<longleftrightarrow> (\<forall>i<DIM('a). P i \<and> Q i)" by auto
 | 
| 35172 | 3282 | case False note ab = this[unfolded interval_ne_empty] | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 3283 | show ?thesis apply-apply(rule set_eqI) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3284 |   proof- fix x::"'a" have **:"\<And>P Q. (\<forall>i<DIM('a). P i = Q i) \<Longrightarrow> (\<forall>i<DIM('a). P i) = (\<forall>i<DIM('a). Q i)" by auto
 | 
| 35172 | 3285 | show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" unfolding if_not_P[OF False] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3286 | unfolding image_iff mem_interval Bex_def euclidean_simps euclidean_eq[where 'a='a] * | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3287 | unfolding imp_conjR[THEN sym] apply(subst euclidean_lambda_beta'') apply(subst lambda_skolem'[THEN sym]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3288 | apply(rule **,rule,rule) unfolding euclidean_lambda_beta' | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3289 |     proof- fix i assume i:"i<DIM('a)" show "(\<exists>xa. (a $$ i \<le> xa \<and> xa \<le> b $$ i) \<and> x $$ i = m i * xa) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3290 | (min (m i * a $$ i) (m i * b $$ i) \<le> x $$ i \<and> x $$ i \<le> max (m i * a $$ i) (m i * b $$ i))" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3291 | proof(cases "m i = 0") case True thus ?thesis using ab i by auto | 
| 35172 | 3292 | next case False hence "0 < m i \<or> 0 > m i" by auto thus ?thesis apply- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3293 | proof(erule disjE) assume as:"0 < m i" hence *:"min (m i * a $$ i) (m i * b $$ i) = m i * a $$ i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3294 | "max (m i * a $$ i) (m i * b $$ i) = m i * b $$ i" using ab i unfolding min_def max_def by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3295 | show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$$i" in exI) | 
| 35172 | 3296 | using as by(auto simp add:field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3297 | next assume as:"0 > m i" hence *:"max (m i * a $$ i) (m i * b $$ i) = m i * a $$ i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3298 | "min (m i * a $$ i) (m i * b $$ i) = m i * b $$ i" using ab as i unfolding min_def max_def | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 3299 | by(auto simp add:field_simps mult_le_cancel_left_neg intro: order_antisym) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3300 | show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$$i" in exI) | 
| 35172 | 3301 | using as by(auto simp add:field_simps) qed qed qed qed qed | 
| 3302 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3303 | lemma interval_image_stretch_interval: "\<exists>u v. (\<lambda>x. \<chi>\<chi> k. m k * x$$k) ` {a..b::'a::ordered_euclidean_space} = {u..v::'a}"
 | 
| 35172 | 3304 | unfolding image_stretch_interval by auto | 
| 3305 | ||
| 3306 | lemma content_image_stretch_interval: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3307 |   "content((\<lambda>x::'a::ordered_euclidean_space. (\<chi>\<chi> k. m k * x$$k)::'a) ` {a..b}) = abs(setprod m {..<DIM('a)}) * content({a..b})"
 | 
| 35172 | 3308 | proof(cases "{a..b} = {}") case True thus ?thesis
 | 
| 3309 | unfolding content_def image_is_empty image_stretch_interval if_P[OF True] by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3310 | next case False hence "(\<lambda>x. (\<chi>\<chi> k. m k * x $$ k)::'a) ` {a..b} \<noteq> {}" by auto
 | 
| 35172 | 3311 | thus ?thesis using False unfolding content_def image_stretch_interval apply- unfolding interval_bounds' if_not_P | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3312 | unfolding abs_setprod setprod_timesf[THEN sym] apply(rule setprod_cong2) unfolding lessThan_iff euclidean_lambda_beta' | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3313 |   proof- fix i assume i:"i<DIM('a)" have "(m i < 0 \<or> m i > 0) \<or> m i = 0" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3314 | thus "max (m i * a $$ i) (m i * b $$ i) - min (m i * a $$ i) (m i * b $$ i) = \<bar>m i\<bar> * (b $$ i - a $$ i)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3315 | apply-apply(erule disjE)+ unfolding min_def max_def using False[unfolded interval_ne_empty,rule_format,of i] i | 
| 35172 | 3316 | by(auto simp add:field_simps not_le mult_le_cancel_left_neg mult_le_cancel_left_pos) qed qed | 
| 3317 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3318 | lemma has_integral_stretch: fixes f::"'a::ordered_euclidean_space => 'b::real_normed_vector" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3319 |   assumes "(f has_integral i) {a..b}" "\<forall>k<DIM('a). ~(m k = 0)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3320 | shows "((\<lambda>x. f(\<chi>\<chi> k. m k * x$$k)) has_integral | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3321 |              ((1/(abs(setprod m {..<DIM('a)}))) *\<^sub>R i)) ((\<lambda>x. (\<chi>\<chi> k. 1/(m k) * x$$k)::'a) ` {a..b})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3322 | apply(rule has_integral_twiddle[where f=f]) unfolding zero_less_abs_iff content_image_stretch_interval | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3323 | unfolding image_stretch_interval empty_as_interval euclidean_eq[where 'a='a] using assms | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3324 | proof- show "\<forall>y::'a. continuous (at y) (\<lambda>x. (\<chi>\<chi> k. m k * x $$ k)::'a)" | 
| 35172 | 3325 | apply(rule,rule linear_continuous_at) unfolding linear_linear | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3326 | unfolding linear_def euclidean_simps euclidean_eq[where 'a='a] by(auto simp add:field_simps) qed auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3327 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3328 | lemma integrable_stretch: fixes f::"'a::ordered_euclidean_space => 'b::real_normed_vector" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3329 |   assumes "f integrable_on {a..b}" "\<forall>k<DIM('a). ~(m k = 0)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3330 |   shows "(\<lambda>x::'a. f(\<chi>\<chi> k. m k * x$$k)) integrable_on ((\<lambda>x. \<chi>\<chi> k. 1/(m k) * x$$k) ` {a..b})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3331 | using assms unfolding integrable_on_def apply-apply(erule exE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3332 | apply(drule has_integral_stretch,assumption) by auto | 
| 35172 | 3333 | |
| 3334 | subsection {* even more special cases. *}
 | |
| 3335 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3336 | lemma uminus_interval_vector[simp]:"uminus ` {a..b} = {-b .. -a::'a::ordered_euclidean_space}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 3337 | apply(rule set_eqI,rule) defer unfolding image_iff | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3338 | apply(rule_tac x="-x" in bexI) by(auto simp add:minus_le_iff le_minus_iff eucl_le[where 'a='a]) | 
| 35172 | 3339 | |
| 3340 | lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) {a..b}"
 | |
| 3341 |   shows "((\<lambda>x. f(-x)) has_integral i) {-b .. -a}"
 | |
| 3342 | using has_integral_affinity[OF assms, of "-1" 0] by auto | |
| 3343 | ||
| 3344 | lemma has_integral_reflect[simp]: "((\<lambda>x. f(-x)) has_integral i) {-b..-a} \<longleftrightarrow> (f has_integral i) ({a..b})"
 | |
| 3345 | apply rule apply(drule_tac[!] has_integral_reflect_lemma) by auto | |
| 3346 | ||
| 3347 | lemma integrable_reflect[simp]: "(\<lambda>x. f(-x)) integrable_on {-b..-a} \<longleftrightarrow> f integrable_on {a..b}"
 | |
| 3348 | unfolding integrable_on_def by auto | |
| 3349 | ||
| 3350 | lemma integral_reflect[simp]: "integral {-b..-a} (\<lambda>x. f(-x)) = integral ({a..b}) f"
 | |
| 3351 | unfolding integral_def by auto | |
| 3352 | ||
| 3353 | subsection {* Stronger form of FCT; quite a tedious proof. *}
 | |
| 3354 | ||
| 3355 | lemma bgauge_existence_lemma: "(\<forall>x\<in>s. \<exists>d::real. 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. x\<in>s \<longrightarrow> q d x)" by(meson zero_less_one) | |
| 3356 | ||
| 3357 | lemma additive_tagged_division_1': fixes f::"real \<Rightarrow> 'a::real_normed_vector" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3358 |   assumes "a \<le> b" "p tagged_division_of {a..b}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3359 | shows "setsum (\<lambda>(x,k). f (interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3360 | using additive_tagged_division_1[OF _ assms(2), of f] using assms(1) by auto | 
| 35172 | 3361 | |
| 36318 | 3362 | lemma split_minus[simp]:"(\<lambda>(x, k). f x k) x - (\<lambda>(x, k). g x k) x = (\<lambda>(x, k). f x k - g x k) x" | 
| 35172 | 3363 | unfolding split_def by(rule refl) | 
| 3364 | ||
| 3365 | lemma norm_triangle_le_sub: "norm x + norm y \<le> e \<Longrightarrow> norm (x - y) \<le> e" | |
| 3366 | apply(subst(asm)(2) norm_minus_cancel[THEN sym]) | |
| 36350 | 3367 | apply(drule norm_triangle_le) by(auto simp add:algebra_simps) | 
| 35172 | 3368 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3369 | lemma fundamental_theorem_of_calculus_interior: fixes f::"real => 'a::real_normed_vector" | 
| 35172 | 3370 |   assumes"a \<le> b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_vector_derivative f'(x)) (at x)"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3371 |   shows "(f' has_integral (f b - f a)) {a..b}"
 | 
| 35172 | 3372 | proof- { presume *:"a < b \<Longrightarrow> ?thesis" 
 | 
| 3373 | show ?thesis proof(cases,rule *,assumption) | |
| 3374 | assume "\<not> a < b" hence "a = b" using assms(1) by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3375 |       hence *:"{a .. b} = {b}" "f b - f a = 0" by(auto simp add:  order_antisym)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3376 | show ?thesis unfolding *(2) apply(rule has_integral_null) unfolding content_eq_0 using * `a=b` by auto | 
| 35172 | 3377 | qed } assume ab:"a < b" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3378 |   let ?P = "\<lambda>e. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3379 |                    norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b})"
 | 
| 35172 | 3380 |   { presume "\<And>e. e>0 \<Longrightarrow> ?P e" thus ?thesis unfolding has_integral_factor_content by auto }
 | 
| 3381 | fix e::real assume e:"e>0" | |
| 3382 | note assms(3)[unfolded has_vector_derivative_def has_derivative_at_alt ball_conj_distrib] | |
| 3383 | note conjunctD2[OF this] note bounded=this(1) and this(2) | |
| 3384 |   from this(2) have "\<forall>x\<in>{a<..<b}. \<exists>d>0. \<forall>y. norm (y - x) < d \<longrightarrow> norm (f y - f x - (y - x) *\<^sub>R f' x) \<le> e/2 * norm (y - x)"
 | |
| 3385 | apply-apply safe apply(erule_tac x=x in ballE,erule_tac x="e/2" in allE) using e by auto note this[unfolded bgauge_existence_lemma] | |
| 3386 | from choice[OF this] guess d .. note conjunctD2[OF this[rule_format]] note d = this[rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3387 |   have "bounded (f ` {a..b})" apply(rule compact_imp_bounded compact_continuous_image)+ using compact_interval assms by auto
 | 
| 35172 | 3388 | from this[unfolded bounded_pos] guess B .. note B = this[rule_format] | 
| 3389 | ||
| 3390 |   have "\<exists>da. 0 < da \<and> (\<forall>c. a \<le> c \<and> {a..c} \<subseteq> {a..b} \<and> {a..c} \<subseteq> ball a da
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3391 |     \<longrightarrow> norm(content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> (e * (b - a)) / 4)"
 | 
| 35172 | 3392 |   proof- have "a\<in>{a..b}" using ab by auto
 | 
| 3393 | note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this] | |
| 3394 | note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" using e ab by(auto simp add:field_simps) | |
| 3395 | from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format] | |
| 3396 | have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' a) \<le> (e * (b - a)) / 8" | |
| 3397 | proof(cases "f' a = 0") case True | |
| 3398 | thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3399 | next case False thus ?thesis | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3400 | apply(rule_tac x="(e * (b - a)) / 8 / norm (f' a)" in exI) using ab e by(auto simp add:field_simps) | 
| 35172 | 3401 | qed then guess l .. note l = conjunctD2[OF this] | 
| 3402 | show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+) | |
| 3403 |     proof- fix c assume as:"a \<le> c" "{a..c} \<subseteq> {a..b}" "{a..c} \<subseteq> ball a (min k l)" 
 | |
| 3404 | note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval] | |
| 3405 | have "norm ((c - a) *\<^sub>R f' a - (f c - f a)) \<le> norm ((c - a) *\<^sub>R f' a) + norm (f c - f a)" by(rule norm_triangle_ineq4) | |
| 3406 | also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" | |
| 3407 | proof(rule add_mono) case goal1 have "\<bar>c - a\<bar> \<le> \<bar>l\<bar>" using as' by auto | |
| 3408 | thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto | |
| 3409 | next case goal2 show ?case apply(rule less_imp_le) apply(cases "a = c") defer | |
| 36587 | 3410 | apply(rule k(2)[unfolded dist_norm]) using as' e ab by(auto simp add:field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3411 |       qed finally show "norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> e * (b - a) / 4"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3412 | unfolding content_real[OF as(1)] by auto | 
| 35172 | 3413 | qed qed then guess da .. note da=conjunctD2[OF this,rule_format] | 
| 3414 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3415 |   have "\<exists>db>0. \<forall>c\<le>b. {c..b} \<subseteq> {a..b} \<and> {c..b} \<subseteq> ball b db \<longrightarrow>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3416 |     norm(content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> (e * (b - a)) / 4"
 | 
| 35172 | 3417 |   proof- have "b\<in>{a..b}" using ab by auto
 | 
| 3418 | note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3419 | note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3420 | using e ab by(auto simp add:field_simps) | 
| 35172 | 3421 | from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format] | 
| 3422 | have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' b) \<le> (e * (b - a)) / 8" | |
| 3423 | proof(cases "f' b = 0") case True | |
| 3424 | thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) | |
| 3425 | next case False thus ?thesis | |
| 3426 | apply(rule_tac x="(e * (b - a)) / 8 / norm (f' b)" in exI) | |
| 3427 | using ab e by(auto simp add:field_simps) | |
| 3428 | qed then guess l .. note l = conjunctD2[OF this] | |
| 3429 | show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+) | |
| 3430 |     proof- fix c assume as:"c \<le> b" "{c..b} \<subseteq> {a..b}" "{c..b} \<subseteq> ball b (min k l)" 
 | |
| 3431 | note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval] | |
| 3432 | have "norm ((b - c) *\<^sub>R f' b - (f b - f c)) \<le> norm ((b - c) *\<^sub>R f' b) + norm (f b - f c)" by(rule norm_triangle_ineq4) | |
| 3433 | also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" | |
| 3434 | proof(rule add_mono) case goal1 have "\<bar>c - b\<bar> \<le> \<bar>l\<bar>" using as' by auto | |
| 3435 | thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto | |
| 3436 | next case goal2 show ?case apply(rule less_imp_le) apply(cases "b = c") defer apply(subst norm_minus_commute) | |
| 36587 | 3437 | apply(rule k(2)[unfolded dist_norm]) using as' e ab by(auto simp add:field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3438 |       qed finally show "norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> e * (b - a) / 4"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3439 | unfolding content_real[OF as(1)] by auto | 
| 35172 | 3440 | qed qed then guess db .. note db=conjunctD2[OF this,rule_format] | 
| 3441 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3442 | let ?d = "(\<lambda>x. ball x (if x=a then da else if x=b then db else d x))" | 
| 35172 | 3443 | show "?P e" apply(rule_tac x="?d" in exI) | 
| 3444 | proof safe case goal1 show ?case apply(rule gauge_ball_dependent) using ab db(1) da(1) d(1) by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3445 |   next case goal2 note as=this let ?A = "{t. fst t \<in> {a, b}}" note p = tagged_division_ofD[OF goal2(1)]
 | 
| 35172 | 3446 |     have pA:"p = (p \<inter> ?A) \<union> (p - ?A)" "finite (p \<inter> ?A)" "finite (p - ?A)" "(p \<inter> ?A) \<inter> (p - ?A) = {}"  using goal2 by auto
 | 
| 3447 | note * = additive_tagged_division_1'[OF assms(1) goal2(1), THEN sym] | |
| 3448 | have **:"\<And>n1 s1 n2 s2::real. n2 \<le> s2 / 2 \<Longrightarrow> n1 - s1 \<le> s2 / 2 \<Longrightarrow> n1 + n2 \<le> s1 + s2" by arith | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3449 | show ?case unfolding content_real[OF assms(1)] and *[of "\<lambda>x. x"] *[of f] setsum_subtractf[THEN sym] split_minus | 
| 35172 | 3450 | unfolding setsum_right_distrib apply(subst(2) pA,subst pA) unfolding setsum_Un_disjoint[OF pA(2-)] | 
| 3451 | proof(rule norm_triangle_le,rule **) | |
| 3452 | case goal1 show ?case apply(rule order_trans,rule setsum_norm_le) apply(rule pA) defer apply(subst divide.setsum) | |
| 3453 | proof(rule order_refl,safe,unfold not_le o_def split_conv fst_conv,rule ccontr) fix x k assume as:"(x,k) \<in> p" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3454 | "e * (interval_upperbound k - interval_lowerbound k) / 2 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3455 | < norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k)))" | 
| 35172 | 3456 | from p(4)[OF this(1)] guess u v apply-by(erule exE)+ note k=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3457 |         hence "u \<le> v" and uv:"{u,v}\<subseteq>{u..v}" using p(2)[OF as(1)] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3458 | note result = as(2)[unfolded k interval_bounds_real[OF this(1)] content_real[OF this(1)]] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3459 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3460 |         assume as':"x \<noteq> a" "x \<noteq> b" hence "x \<in> {a<..<b}" using p(2-3)[OF as(1)] by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3461 | note * = d(2)[OF this] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3462 | have "norm ((v - u) *\<^sub>R f' (x) - (f (v) - f (u))) = | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3463 | norm ((f (u) - f (x) - (u - x) *\<^sub>R f' (x)) - (f (v) - f (x) - (v - x) *\<^sub>R f' (x)))" | 
| 35172 | 3464 | apply(rule arg_cong[of _ _ norm]) unfolding scaleR_left.diff by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3465 | also have "... \<le> e / 2 * norm (u - x) + e / 2 * norm (v - x)" apply(rule norm_triangle_le_sub) | 
| 35172 | 3466 | apply(rule add_mono) apply(rule_tac[!] *) using fineD[OF goal2(2) as(1)] as' unfolding k subset_eq | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3467 | apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE) using uv by(auto simp:dist_real_def) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3468 | also have "... \<le> e / 2 * norm (v - u)" using p(2)[OF as(1)] unfolding k by(auto simp add:field_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3469 | finally have "e * (v - u) / 2 < e * (v - u) / 2" | 
| 35172 | 3470 | apply- apply(rule less_le_trans[OF result]) using uv by auto thus False by auto qed | 
| 3471 | ||
| 3472 | next have *:"\<And>x s1 s2::real. 0 \<le> s1 \<Longrightarrow> x \<le> (s1 + s2) / 2 \<Longrightarrow> x - s1 \<le> s2 / 2" by auto | |
| 3473 | case goal2 show ?case apply(rule *) apply(rule setsum_nonneg) apply(rule,unfold split_paired_all split_conv) | |
| 3474 | defer unfolding setsum_Un_disjoint[OF pA(2-),THEN sym] pA(1)[THEN sym] unfolding setsum_right_distrib[THEN sym] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3475 | apply(subst additive_tagged_division_1[OF _ as(1)]) apply(rule assms) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3476 |       proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {a, b}}" note xk=IntD1[OF this]
 | 
| 35172 | 3477 | from p(4)[OF this] guess u v apply-by(erule exE)+ note uv=this | 
| 3478 |         with p(2)[OF xk] have "{u..v} \<noteq> {}" by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3479 | thus "0 \<le> e * ((interval_upperbound k) - (interval_lowerbound k))" | 
| 35172 | 3480 | unfolding uv using e by(auto simp add:field_simps) | 
| 3481 | next have *:"\<And>s f t e. setsum f s = setsum f t \<Longrightarrow> norm(setsum f t) \<le> e \<Longrightarrow> norm(setsum f s) \<le> e" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3482 | show "norm (\<Sum>(x, k)\<in>p \<inter> ?A. content k *\<^sub>R f' x - | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3483 | (f ((interval_upperbound k)) - f ((interval_lowerbound k)))) \<le> e * (b - a) / 2" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3484 |           apply(rule *[where t="p \<inter> {t. fst t \<in> {a, b} \<and> content(snd t) \<noteq> 0}"])
 | 
| 35172 | 3485 | apply(rule setsum_mono_zero_right[OF pA(2)]) defer apply(rule) unfolding split_paired_all split_conv o_def | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3486 |         proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {a, b}} - p \<inter> {t. fst t \<in> {a, b} \<and> content (snd t) \<noteq> 0}"
 | 
| 35172 | 3487 | hence xk:"(x,k)\<in>p" "content k = 0" by auto from p(4)[OF xk(1)] guess u v apply-by(erule exE)+ note uv=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3488 |           have "k\<noteq>{}" using p(2)[OF xk(1)] by auto hence *:"u = v" using xk
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3489 | unfolding uv content_eq_0 interval_eq_empty by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3490 | thus "content k *\<^sub>R (f' (x)) - (f ((interval_upperbound k)) - f ((interval_lowerbound k))) = 0" using xk unfolding uv by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3491 |         next have *:"p \<inter> {t. fst t \<in> {a, b} \<and> content(snd t) \<noteq> 0} = 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3492 |             {t. t\<in>p \<and> fst t = a \<and> content(snd t) \<noteq> 0} \<union> {t. t\<in>p \<and> fst t = b \<and> content(snd t) \<noteq> 0}" by blast
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3493 | have **:"\<And>s f. \<And>e::real. (\<forall>x y. x \<in> s \<and> y \<in> s \<longrightarrow> x = y) \<Longrightarrow> (\<forall>x. x \<in> s \<longrightarrow> norm(f x) \<le> e) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3494 | \<Longrightarrow> e>0 \<Longrightarrow> norm(setsum f s) \<le> e" | 
| 35172 | 3495 |           proof(case_tac "s={}") case goal2 then obtain x where "x\<in>s" by auto hence *:"s = {x}" using goal2(1) by auto
 | 
| 3496 | thus ?case using `x\<in>s` goal2(2) by auto | |
| 3497 | qed auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3498 | case goal2 show ?case apply(subst *, subst setsum_Un_disjoint) prefer 4 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3499 | apply(rule order_trans[of _ "e * (b - a)/4 + e * (b - a)/4"]) | 
| 35172 | 3500 | apply(rule norm_triangle_le,rule add_mono) apply(rule_tac[1-2] **) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3501 |           proof- let ?B = "\<lambda>x. {t \<in> p. fst t = x \<and> content (snd t) \<noteq> 0}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3502 |             have pa:"\<And>k. (a, k) \<in> p \<Longrightarrow> \<exists>v. k = {a .. v} \<and> a \<le> v" 
 | 
| 35172 | 3503 | proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this | 
| 3504 | have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3505 |               have u:"u = a" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3506 | have "u \<ge> a" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "u\<noteq>a" ultimately | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3507 | have "u > a" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3508 | thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:) | 
| 35172 | 3509 | qed thus ?case apply(rule_tac x=v in exI) unfolding uv using * by auto | 
| 3510 | qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3511 |             have pb:"\<And>k. (b, k) \<in> p \<Longrightarrow> \<exists>v. k = {v .. b} \<and> b \<ge> v" 
 | 
| 35172 | 3512 | proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this | 
| 3513 | have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3514 |               have u:"v =  b" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3515 | have "v \<le> b" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "v\<noteq> b" ultimately | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3516 | have "v < b" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3517 | thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:) | 
| 35172 | 3518 | qed thus ?case apply(rule_tac x=u in exI) unfolding uv using * by auto | 
| 3519 | qed | |
| 3520 | ||
| 3521 | show "\<forall>x y. x \<in> ?B a \<and> y \<in> ?B a \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all) | |
| 3522 | unfolding mem_Collect_eq fst_conv snd_conv apply safe | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3523 | proof- fix x k k' assume k:"( a, k) \<in> p" "( a, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0" | 
| 35172 | 3524 | guess v using pa[OF k(1)] .. note v = conjunctD2[OF this] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3525 | guess v' using pa[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = " (min (v) (v'))" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3526 |               have "{ a <..< ?v} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:) note subset_interior[OF this,unfolded interior_inter]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3527 |               moreover have " ((a + ?v)/2) \<in> { a <..< ?v}" using k(3-)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3528 | unfolding v v' content_eq_0 not_le by(auto simp add:not_le) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3529 | ultimately have " ((a + ?v)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto | 
| 35172 | 3530 | hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto | 
| 3531 |               { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
 | |
| 3532 | qed | |
| 3533 | show "\<forall>x y. x \<in> ?B b \<and> y \<in> ?B b \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all) | |
| 3534 | unfolding mem_Collect_eq fst_conv snd_conv apply safe | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3535 | proof- fix x k k' assume k:"( b, k) \<in> p" "( b, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0" | 
| 35172 | 3536 | guess v using pb[OF k(1)] .. note v = conjunctD2[OF this] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3537 | guess v' using pb[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = " (max (v) (v'))" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3538 |               have "{?v <..<  b} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:) note subset_interior[OF this,unfolded interior_inter]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3539 |               moreover have " ((b + ?v)/2) \<in> {?v <..<  b}" using k(3-) unfolding v v' content_eq_0 not_le by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3540 | ultimately have " ((b + ?v)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto | 
| 35172 | 3541 | hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto | 
| 3542 |               { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
 | |
| 3543 | qed | |
| 3544 | ||
| 3545 | let ?a = a and ?b = b (* a is something else while proofing the next theorem. *) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3546 | show "\<forall>x. x \<in> ?B a \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x) - (f ((interval_upperbound k)) - | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3547 | f ((interval_lowerbound k)))) x) \<le> e * (b - a) / 4" apply(rule,rule) unfolding mem_Collect_eq | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3548 | unfolding split_paired_all fst_conv snd_conv | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3549 | proof safe case goal1 guess v using pa[OF goal1(1)] .. note v = conjunctD2[OF this] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3550 |               have " ?a\<in>{ ?a..v}" using v(2) by auto hence "v \<le> ?b" using p(3)[OF goal1(1)] unfolding subset_eq v by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3551 |               moreover have "{?a..v} \<subseteq> ball ?a da" using fineD[OF as(2) goal1(1)]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3552 | apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe apply(erule_tac x=" x" in ballE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3553 | by(auto simp add:subset_eq dist_real_def v) ultimately | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3554 | show ?case unfolding v interval_bounds_real[OF v(2)] apply- apply(rule da(2)[of "v"]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3555 | using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0 by auto | 
| 35172 | 3556 | qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3557 | show "\<forall>x. x \<in> ?B b \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x) - | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3558 | (f ((interval_upperbound k)) - f ((interval_lowerbound k)))) x) \<le> e * (b - a) / 4" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3559 | apply(rule,rule) unfolding mem_Collect_eq unfolding split_paired_all fst_conv snd_conv | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3560 | proof safe case goal1 guess v using pb[OF goal1(1)] .. note v = conjunctD2[OF this] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3561 |               have " ?b\<in>{v.. ?b}" using v(2) by auto hence "v \<ge> ?a" using p(3)[OF goal1(1)]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3562 | unfolding subset_eq v by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3563 |               moreover have "{v..?b} \<subseteq> ball ?b db" using fineD[OF as(2) goal1(1)]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3564 | apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3565 | apply(erule_tac x=" x" in ballE) using ab | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3566 | by(auto simp add:subset_eq v dist_real_def) ultimately | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3567 | show ?case unfolding v unfolding interval_bounds_real[OF v(2)] apply- apply(rule db(2)[of "v"]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3568 | using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0 by auto | 
| 35172 | 3569 | qed | 
| 3570 | qed(insert p(1) ab e, auto simp add:field_simps) qed auto qed qed qed qed | |
| 3571 | ||
| 3572 | subsection {* Stronger form with finite number of exceptional points. *}
 | |
| 3573 | ||
| 3574 | lemma fundamental_theorem_of_calculus_interior_strong: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3575 |   assumes"finite s" "a \<le> b" "continuous_on {a..b} f"
 | |
| 3576 |   "\<forall>x\<in>{a<..<b} - s. (f has_vector_derivative f'(x)) (at x)"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3577 |   shows "(f' has_integral (f b - f a)) {a..b}" using assms apply- 
 | 
| 35172 | 3578 | proof(induct "card s" arbitrary:s a b) | 
| 3579 | case 0 show ?case apply(rule fundamental_theorem_of_calculus_interior) using 0 by auto | |
| 3580 | next case (Suc n) from this(2) guess c s' apply-apply(subst(asm) eq_commute) unfolding card_Suc_eq | |
| 3581 | apply(subst(asm)(2) eq_commute) by(erule exE conjE)+ note cs = this[rule_format] | |
| 3582 |   show ?case proof(cases "c\<in>{a<..<b}")
 | |
| 3583 | case False thus ?thesis apply- apply(rule Suc(1)[OF cs(3) _ Suc(4,5)]) apply safe defer | |
| 3584 | apply(rule Suc(6)[rule_format]) using Suc(3) unfolding cs by auto | |
| 3585 | next have *:"f b - f a = (f c - f a) + (f b - f c)" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3586 | case True hence "a \<le> c" "c \<le> b" by auto | 
| 35172 | 3587 | thus ?thesis apply(subst *) apply(rule has_integral_combine) apply assumption+ | 
| 3588 | apply(rule_tac[!] Suc(1)[OF cs(3)]) using Suc(3) unfolding cs | |
| 3589 |     proof- show "continuous_on {a..c} f" "continuous_on {c..b} f"
 | |
| 3590 | apply(rule_tac[!] continuous_on_subset[OF Suc(5)]) using True by auto | |
| 3591 |       let ?P = "\<lambda>i j. \<forall>x\<in>{i<..<j} - s'. (f has_vector_derivative f' x) (at x)"
 | |
| 3592 | show "?P a c" "?P c b" apply safe apply(rule_tac[!] Suc(6)[rule_format]) using True unfolding cs by auto | |
| 3593 | qed auto qed qed | |
| 3594 | ||
| 3595 | lemma fundamental_theorem_of_calculus_strong: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3596 |   assumes "finite s" "a \<le> b" "continuous_on {a..b} f"
 | |
| 3597 |   "\<forall>x\<in>{a..b} - s. (f has_vector_derivative f'(x)) (at x)"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3598 |   shows "(f' has_integral (f(b) - f(a))) {a..b}"
 | 
| 35172 | 3599 | apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1-3), of f']) | 
| 3600 | using assms(4) by auto | |
| 3601 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3602 | lemma indefinite_integral_continuous_left: fixes f::"real \<Rightarrow> 'a::banach" | 
| 35751 | 3603 |   assumes "f integrable_on {a..b}" "a < c" "c \<le> b" "0 < e"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3604 |   obtains d where "0 < d" "\<forall>t. c - d < t \<and> t \<le> c \<longrightarrow> norm(integral {a..c} f - integral {a..t} f) < e"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3605 | proof- have "\<exists>w>0. \<forall>t. c - w < t \<and> t < c \<longrightarrow> norm(f c) * norm(c - t) < e / 3" | 
| 35751 | 3606 | proof(cases "f c = 0") case False hence "0 < e / 3 / norm (f c)" | 
| 3607 | apply-apply(rule divide_pos_pos) using `e>0` by auto | |
| 3608 | thus ?thesis apply-apply(rule,rule,assumption,safe) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3609 | proof- fix t assume as:"t < c" and "c - e / 3 / norm (f c) < t" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3610 | hence "c - t < e / 3 / norm (f c)" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3611 | hence "norm (c - t) < e / 3 / norm (f c)" using as by auto | 
| 35751 | 3612 | thus "norm (f c) * norm (c - t) < e / 3" using False apply- | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 3613 | apply(subst mult_commute) apply(subst pos_less_divide_eq[THEN sym]) by auto | 
| 35751 | 3614 | qed next case True show ?thesis apply(rule_tac x=1 in exI) unfolding True using `e>0` by auto | 
| 3615 | qed then guess w .. note w = conjunctD2[OF this,rule_format] | |
| 3616 | ||
| 3617 | have *:"e / 3 > 0" using assms by auto | |
| 3618 |   have "f integrable_on {a..c}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) by auto
 | |
| 3619 | from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d1 .. | |
| 3620 | note d1 = conjunctD2[OF this,rule_format] def d \<equiv> "\<lambda>x. ball x w \<inter> d1 x" | |
| 3621 | have "gauge d" unfolding d_def using w(1) d1 by auto | |
| 3622 | note this[unfolded gauge_def,rule_format,of c] note conjunctD2[OF this] | |
| 3623 | from this(2)[unfolded open_contains_ball,rule_format,OF this(1)] guess k .. note k=conjunctD2[OF this] | |
| 3624 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3625 | let ?d = "min k (c - a)/2" show ?thesis apply(rule that[of ?d]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3626 | proof safe show "?d > 0" using k(1) using assms(2) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3627 |     fix t assume as:"c - ?d < t" "t \<le> c" let ?thesis = "norm (integral {a..c} f - integral {a..t} f) < e"
 | 
| 35751 | 3628 |     { presume *:"t < c \<Longrightarrow> ?thesis"
 | 
| 3629 | show ?thesis apply(cases "t = c") defer apply(rule *) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3630 | apply(subst less_le) using `e>0` as(2) by auto } assume "t < c" | 
| 35751 | 3631 | |
| 3632 |     have "f integrable_on {a..t}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) as(2) by auto
 | |
| 3633 | from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d2 .. | |
| 3634 | note d2 = conjunctD2[OF this,rule_format] | |
| 3635 | def d3 \<equiv> "\<lambda>x. if x \<le> t then d1 x \<inter> d2 x else d1 x" | |
| 3636 | have "gauge d3" using d2(1) d1(1) unfolding d3_def gauge_def by auto | |
| 3637 | from fine_division_exists[OF this, of a t] guess p . note p=this | |
| 3638 | note p'=tagged_division_ofD[OF this(1)] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3639 | have pt:"\<forall>(x,k)\<in>p. x \<le> t" proof safe case goal1 from p'(2,3)[OF this] show ?case by auto qed | 
| 35751 | 3640 | with p(2) have "d2 fine p" unfolding fine_def d3_def apply safe apply(erule_tac x="(a,b)" in ballE)+ by auto | 
| 3641 | note d2_fin = d2(2)[OF conjI[OF p(1) this]] | |
| 3642 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3643 |     have *:"{a..c} \<inter> {x. x $$0 \<le> t} = {a..t}" "{a..c} \<inter> {x. x$$0 \<ge> t} = {t..c}"
 | 
| 35751 | 3644 | using assms(2-3) as by(auto simp add:field_simps) | 
| 3645 |     have "p \<union> {(c, {t..c})} tagged_division_of {a..c} \<and> d1 fine p \<union> {(c, {t..c})}" apply rule
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3646 | apply(rule tagged_division_union_interval[of _ _ _ 0 "t"]) unfolding * apply(rule p) | 
| 35751 | 3647 | apply(rule tagged_division_of_self) unfolding fine_def | 
| 3648 | proof safe fix x k y assume "(x,k)\<in>p" "y\<in>k" thus "y\<in>d1 x" | |
| 3649 | using p(2) pt unfolding fine_def d3_def apply- apply(erule_tac x="(x,k)" in ballE)+ by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3650 |     next fix x assume "x\<in>{t..c}" hence "dist c x < k" unfolding dist_real_def
 | 
| 35751 | 3651 | using as(1) by(auto simp add:field_simps) | 
| 3652 | thus "x \<in> d1 c" using k(2) unfolding d_def by auto | |
| 3653 | qed(insert as(2), auto) note d1_fin = d1(2)[OF this] | |
| 3654 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3655 |     have *:"integral{a..c} f - integral {a..t} f = -(((c - t) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)) -
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3656 |         integral {a..c} f) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - integral {a..t} f) + (c - t) *\<^sub>R f c" 
 | 
| 35751 | 3657 | "e = (e/3 + e/3) + e/3" by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3658 |     have **:"(\<Sum>(x, k)\<in>p \<union> {(c, {t..c})}. content k *\<^sub>R f x) = (c - t) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)"
 | 
| 35751 | 3659 |     proof- have **:"\<And>x F. F \<union> {x} = insert x F" by auto
 | 
| 3660 |       have "(c, {t..c}) \<notin> p" proof safe case goal1 from p'(2-3)[OF this]
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3661 |         have "c \<in> {a..t}" by auto thus False using `t<c` by auto
 | 
| 35751 | 3662 | qed thus ?thesis unfolding ** apply- apply(subst setsum_insert) apply(rule p') | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3663 | unfolding split_conv defer apply(subst content_real) using as(2) by auto qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3664 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3665 | have ***:"c - w < t \<and> t < c" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3666 | proof- have "c - k < t" using `k>0` as(1) by(auto simp add:field_simps) | 
| 35751 | 3667 | moreover have "k \<le> w" apply(rule ccontr) using k(2) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3668 | unfolding subset_eq apply(erule_tac x="c + ((k + w)/2)" in ballE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3669 | unfolding d_def using `k>0` `w>0` by(auto simp add:field_simps not_le not_less dist_real_def) | 
| 35751 | 3670 | ultimately show ?thesis using `t<c` by(auto simp add:field_simps) qed | 
| 3671 | ||
| 3672 | show ?thesis unfolding *(1) apply(subst *(2)) apply(rule norm_triangle_lt add_strict_mono)+ | |
| 3673 | unfolding norm_minus_cancel apply(rule d1_fin[unfolded **]) apply(rule d2_fin) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3674 | using w(2)[OF ***] unfolding norm_scaleR by(auto simp add:field_simps) qed qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3675 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3676 | lemma indefinite_integral_continuous_right: fixes f::"real \<Rightarrow> 'a::banach" | 
| 35751 | 3677 |   assumes "f integrable_on {a..b}" "a \<le> c" "c < b" "0 < e"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3678 |   obtains d where "0 < d" "\<forall>t. c \<le> t \<and> t < c + d \<longrightarrow> norm(integral{a..c} f - integral{a..t} f) < e"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3679 | proof- have *:"(\<lambda>x. f (- x)) integrable_on {- b..- a}" "- b < - c" "- c \<le> - a" using assms by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3680 | from indefinite_integral_continuous_left[OF * `e>0`] guess d . note d = this let ?d = "min d (b - c)" | 
| 35751 | 3681 | show ?thesis apply(rule that[of "?d"]) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3682 | proof safe show "0 < ?d" using d(1) assms(3) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3683 | fix t::"real" assume as:"c \<le> t" "t < c + ?d" | 
| 35751 | 3684 |     have *:"integral{a..c} f = integral{a..b} f - integral{c..b} f"
 | 
| 36350 | 3685 |       "integral{a..t} f = integral{a..b} f - integral{t..b} f" unfolding algebra_simps
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3686 | apply(rule_tac[!] integral_combine) using assms as by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3687 | have "(- c) - d < (- t) \<and> - t \<le> - c" using as by auto note d(2)[rule_format,OF this] | 
| 35751 | 3688 |     thus "norm (integral {a..c} f - integral {a..t} f) < e" unfolding * 
 | 
| 36350 | 3689 | unfolding integral_reflect apply-apply(subst norm_minus_commute) by(auto simp add:algebra_simps) qed qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3690 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3691 | lemma indefinite_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach" | 
| 35751 | 3692 |   assumes "f integrable_on {a..b}" shows  "continuous_on {a..b} (\<lambda>x. integral {a..x} f)"
 | 
| 36359 | 3693 | proof(unfold continuous_on_iff, safe)  fix x e assume as:"x\<in>{a..b}" "0<(e::real)"
 | 
| 35751 | 3694 |   let ?thesis = "\<exists>d>0. \<forall>x'\<in>{a..b}. dist x' x < d \<longrightarrow> dist (integral {a..x'} f) (integral {a..x} f) < e"
 | 
| 3695 |   { presume *:"a<b \<Longrightarrow> ?thesis"
 | |
| 3696 | show ?thesis apply(cases,rule *,assumption) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38656diff
changeset | 3697 |     proof- case goal1 hence "{a..b} = {x}" using as(1) apply-apply(rule set_eqI)
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3698 | unfolding atLeastAtMost_iff by(auto simp only:field_simps not_less DIM_real) | 
| 35751 | 3699 | thus ?case using `e>0` by auto | 
| 3700 | qed } assume "a<b" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3701 | have "(x=a \<or> x=b) \<or> (a<x \<and> x<b)" using as(1) by (auto simp add:) | 
| 35751 | 3702 | thus ?thesis apply-apply(erule disjE)+ | 
| 3703 | proof- assume "x=a" have "a \<le> a" by auto | |
| 3704 | from indefinite_integral_continuous_right[OF assms(1) this `a<b` `e>0`] guess d . note d=this | |
| 3705 | show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3706 | unfolding `x=a` dist_norm apply(rule d(2)[rule_format]) by auto | 
| 35751 | 3707 | next assume "x=b" have "b \<le> b" by auto | 
| 3708 | from indefinite_integral_continuous_left[OF assms(1) `a<b` this `e>0`] guess d . note d=this | |
| 3709 | show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3710 | unfolding `x=b` dist_norm apply(rule d(2)[rule_format]) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3711 | next assume "a<x \<and> x<b" hence xl:"a<x" "x\<le>b" and xr:"a\<le>x" "x<b" by(auto simp add: ) | 
| 35751 | 3712 | from indefinite_integral_continuous_left [OF assms(1) xl `e>0`] guess d1 . note d1=this | 
| 3713 | from indefinite_integral_continuous_right[OF assms(1) xr `e>0`] guess d2 . note d2=this | |
| 3714 | show ?thesis apply(rule_tac x="min d1 d2" in exI) | |
| 3715 | proof safe show "0 < min d1 d2" using d1 d2 by auto | |
| 3716 |       fix y assume "y\<in>{a..b}" "dist y x < min d1 d2"
 | |
| 3717 |       thus "dist (integral {a..y} f) (integral {a..x} f) < e" apply-apply(subst dist_commute)
 | |
| 36587 | 3718 | apply(cases "y < x") unfolding dist_norm apply(rule d1(2)[rule_format]) defer | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3719 | apply(rule d2(2)[rule_format]) unfolding not_less by(auto simp add:field_simps) | 
| 35751 | 3720 | qed qed qed | 
| 3721 | ||
| 3722 | subsection {* This doesn't directly involve integration, but that gives an easy proof. *}
 | |
| 3723 | ||
| 3724 | lemma has_derivative_zero_unique_strong_interval: fixes f::"real \<Rightarrow> 'a::banach" | |
| 3725 |   assumes "finite k" "continuous_on {a..b} f" "f a = y"
 | |
| 3726 |   "\<forall>x\<in>({a..b} - k). (f has_derivative (\<lambda>h. 0)) (at x within {a..b})" "x \<in> {a..b}"
 | |
| 3727 | shows "f x = y" | |
| 3728 | proof- have ab:"a\<le>b" using assms by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3729 | have *:"a\<le>x" using assms(5) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3730 |   have "((\<lambda>x. 0\<Colon>'a) has_integral f x - f a) {a..x}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3731 | apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1) *]) | 
| 35751 | 3732 | apply(rule continuous_on_subset[OF assms(2)]) defer | 
| 3733 | apply safe unfolding has_vector_derivative_def apply(subst has_derivative_within_open[THEN sym]) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3734 |     apply assumption apply(rule open_interval) apply(rule has_derivative_within_subset[where s="{a..b}"])
 | 
| 35751 | 3735 | using assms(4) assms(5) by auto note this[unfolded *] | 
| 3736 | note has_integral_unique[OF has_integral_0 this] | |
| 3737 | thus ?thesis unfolding assms by auto qed | |
| 3738 | ||
| 3739 | subsection {* Generalize a bit to any convex set. *}
 | |
| 3740 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3741 | lemma has_derivative_zero_unique_strong_convex: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" | 
| 35751 | 3742 | assumes "convex s" "finite k" "continuous_on s f" "c \<in> s" "f c = y" | 
| 3743 | "\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x \<in> s" | |
| 3744 | shows "f x = y" | |
| 3745 | proof- { presume *:"x \<noteq> c \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
 | |
| 3746 | unfolding assms(5)[THEN sym] by auto } assume "x\<noteq>c" | |
| 3747 | note conv = assms(1)[unfolded convex_alt,rule_format] | |
| 3748 |   have as1:"continuous_on {0..1} (f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x))"
 | |
| 3749 | apply(rule continuous_on_intros)+ apply(rule continuous_on_subset[OF assms(3)]) | |
| 3750 | apply safe apply(rule conv) using assms(4,7) by auto | |
| 3751 | have *:"\<And>t xa. (1 - t) *\<^sub>R c + t *\<^sub>R x = (1 - xa) *\<^sub>R c + xa *\<^sub>R x \<Longrightarrow> t = xa" | |
| 3752 | proof- case goal1 hence "(t - xa) *\<^sub>R x = (t - xa) *\<^sub>R c" | |
| 36350 | 3753 | unfolding scaleR_simps by(auto simp add:algebra_simps) | 
| 35751 | 3754 | thus ?case using `x\<noteq>c` by auto qed | 
| 3755 |   have as2:"finite {t. ((1 - t) *\<^sub>R c + t *\<^sub>R x) \<in> k}" using assms(2) 
 | |
| 3756 | apply(rule finite_surj[where f="\<lambda>z. SOME t. (1-t) *\<^sub>R c + t *\<^sub>R x = z"]) | |
| 3757 | apply safe unfolding image_iff apply rule defer apply assumption | |
| 3758 | apply(rule sym) apply(rule some_equality) defer apply(drule *) by auto | |
| 3759 | have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x)) 1 = y" | |
| 3760 | apply(rule has_derivative_zero_unique_strong_interval[OF as2 as1, of ]) | |
| 3761 | unfolding o_def using assms(5) defer apply-apply(rule) | |
| 3762 |   proof- fix t assume as:"t\<in>{0..1} - {t. (1 - t) *\<^sub>R c + t *\<^sub>R x \<in> k}"
 | |
| 3763 | have *:"c - t *\<^sub>R c + t *\<^sub>R x \<in> s - k" apply safe apply(rule conv[unfolded scaleR_simps]) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36359diff
changeset | 3764 | using `x\<in>s` `c\<in>s` as by(auto simp add: algebra_simps) | 
| 35751 | 3765 |     have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x) has_derivative (\<lambda>x. 0) \<circ> (\<lambda>z. (0 - z *\<^sub>R c) + z *\<^sub>R x)) (at t within {0..1})"
 | 
| 3766 | apply(rule diff_chain_within) apply(rule has_derivative_add) | |
| 3767 | unfolding scaleR_simps apply(rule has_derivative_sub) apply(rule has_derivative_const) | |
| 3768 | apply(rule has_derivative_vmul_within,rule has_derivative_id)+ | |
| 3769 | apply(rule has_derivative_within_subset,rule assms(6)[rule_format]) | |
| 3770 | apply(rule *) apply safe apply(rule conv[unfolded scaleR_simps]) using `x\<in>s` `c\<in>s` by auto | |
| 3771 |     thus "((\<lambda>xa. f ((1 - xa) *\<^sub>R c + xa *\<^sub>R x)) has_derivative (\<lambda>h. 0)) (at t within {0..1})" unfolding o_def .
 | |
| 3772 | qed auto thus ?thesis by auto qed | |
| 3773 | ||
| 3774 | subsection {* Also to any open connected set with finite set of exceptions. Could 
 | |
| 3775 | generalize to locally convex set with limpt-free set of exceptions. *} | |
| 3776 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3777 | lemma has_derivative_zero_unique_strong_connected: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" | 
| 35751 | 3778 | assumes "connected s" "open s" "finite k" "continuous_on s f" "c \<in> s" "f c = y" | 
| 3779 | "\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x\<in>s" | |
| 3780 | shows "f x = y" | |
| 3781 | proof- have "{x \<in> s. f x \<in> {y}} = {} \<or> {x \<in> s. f x \<in> {y}} = s"
 | |
| 3782 | apply(rule assms(1)[unfolded connected_clopen,rule_format]) apply rule defer | |
| 3783 | apply(rule continuous_closed_in_preimage[OF assms(4) closed_sing]) | |
| 3784 | apply(rule open_openin_trans[OF assms(2)]) unfolding open_contains_ball | |
| 3785 | proof safe fix x assume "x\<in>s" | |
| 3786 | from assms(2)[unfolded open_contains_ball,rule_format,OF this] guess e .. note e=conjunctD2[OF this] | |
| 3787 |     show "\<exists>e>0. ball x e \<subseteq> {xa \<in> s. f xa \<in> {f x}}" apply(rule,rule,rule e)
 | |
| 3788 | proof safe fix y assume y:"y \<in> ball x e" thus "y\<in>s" using e by auto | |
| 3789 | show "f y = f x" apply(rule has_derivative_zero_unique_strong_convex[OF convex_ball]) | |
| 3790 | apply(rule assms) apply(rule continuous_on_subset,rule assms) apply(rule e)+ | |
| 3791 | apply(subst centre_in_ball,rule e,rule) apply safe | |
| 3792 | apply(rule has_derivative_within_subset) apply(rule assms(7)[rule_format]) | |
| 3793 | using y e by auto qed qed | |
| 3794 | thus ?thesis using `x\<in>s` `f c = y` `c\<in>s` by auto qed | |
| 3795 | ||
| 3796 | subsection {* Integrating characteristic function of an interval. *}
 | |
| 3797 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3798 | lemma has_integral_restrict_open_subinterval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" | 
| 35751 | 3799 |   assumes "(f has_integral i) {c..d}" "{c..d} \<subseteq> {a..b}"
 | 
| 3800 |   shows "((\<lambda>x. if x \<in> {c<..<d} then f x else 0) has_integral i) {a..b}"
 | |
| 3801 | proof- def g \<equiv> "\<lambda>x. if x \<in>{c<..<d} then f x else 0"
 | |
| 3802 |   { presume *:"{c..d}\<noteq>{} \<Longrightarrow> ?thesis"
 | |
| 3803 | show ?thesis apply(cases,rule *,assumption) | |
| 3804 |     proof- case goal1 hence *:"{c<..<d} = {}" using interval_open_subset_closed by auto 
 | |
| 3805 | show ?thesis using assms(1) unfolding * using goal1 by auto | |
| 3806 |     qed } assume "{c..d}\<noteq>{}"
 | |
| 3807 | from partial_division_extend_1[OF assms(2) this] guess p . note p=this | |
| 3808 | note mon = monoidal_lifted[OF monoidal_monoid] | |
| 3809 | note operat = operative_division[OF this operative_integral p(1), THEN sym] | |
| 3810 |   let ?P = "(if g integrable_on {a..b} then Some (integral {a..b} g) else None) = Some i"
 | |
| 3811 |   { presume "?P" hence "g integrable_on {a..b} \<and> integral {a..b} g = i"
 | |
| 3812 | apply- apply(cases,subst(asm) if_P,assumption) by auto | |
| 3813 | thus ?thesis using integrable_integral unfolding g_def by auto } | |
| 3814 | ||
| 3815 | note iterate_eq_neutral[OF mon,unfolded neutral_lifted[OF monoidal_monoid]] | |
| 3816 | note * = this[unfolded neutral_monoid] | |
| 3817 |   have iterate:"iterate (lifted op +) (p - {{c..d}})
 | |
| 3818 | (\<lambda>i. if g integrable_on i then Some (integral i g) else None) = Some 0" | |
| 3819 | proof(rule *,rule) case goal1 hence "x\<in>p" by auto note div = division_ofD(2-5)[OF p(1) this] | |
| 3820 | from div(3) guess u v apply-by(erule exE)+ note uv=this | |
| 3821 |     have "interior x \<inter> interior {c..d} = {}" using div(4)[OF p(2)] goal1 by auto
 | |
| 3822 | hence "(g has_integral 0) x" unfolding uv apply-apply(rule has_integral_spike_interior[where f="\<lambda>x. 0"]) | |
| 3823 | unfolding g_def interior_closed_interval by auto thus ?case by auto | |
| 3824 | qed | |
| 3825 | ||
| 3826 |   have *:"p = insert {c..d} (p - {{c..d}})" using p by auto
 | |
| 3827 |   have **:"g integrable_on {c..d}" apply(rule integrable_spike_interior[where f=f])
 | |
| 3828 | unfolding g_def defer apply(rule has_integral_integrable) using assms(1) by auto | |
| 3829 |   moreover have "integral {c..d} g = i" apply(rule has_integral_unique[OF _ assms(1)])
 | |
| 3830 | apply(rule has_integral_spike_interior[where f=g]) defer | |
| 3831 | apply(rule integrable_integral[OF **]) unfolding g_def by auto | |
| 3832 | ultimately show ?P unfolding operat apply- apply(subst *) apply(subst iterate_insert) apply rule+ | |
| 3833 | unfolding iterate defer apply(subst if_not_P) defer using p by auto qed | |
| 3834 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3835 | lemma has_integral_restrict_closed_subinterval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" | 
| 35751 | 3836 |   assumes "(f has_integral i) ({c..d})" "{c..d} \<subseteq> {a..b}" 
 | 
| 3837 |   shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b}"
 | |
| 3838 | proof- note has_integral_restrict_open_subinterval[OF assms] | |
| 3839 | note * = has_integral_spike[OF negligible_frontier_interval _ this] | |
| 3840 | show ?thesis apply(rule *[of c d]) using interval_open_subset_closed[of c d] by auto qed | |
| 3841 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3842 | lemma has_integral_restrict_closed_subintervals_eq: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" assumes "{c..d} \<subseteq> {a..b}" 
 | 
| 35751 | 3843 |   shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b} \<longleftrightarrow> (f has_integral i) {c..d}" (is "?l = ?r")
 | 
| 3844 | proof(cases "{c..d} = {}") case False let ?g = "\<lambda>x. if x \<in> {c..d} then f x else 0"
 | |
| 3845 | show ?thesis apply rule defer apply(rule has_integral_restrict_closed_subinterval[OF _ assms]) | |
| 3846 |   proof assumption assume ?l hence "?g integrable_on {c..d}"
 | |
| 3847 | apply-apply(rule integrable_subinterval[OF _ assms]) by auto | |
| 3848 |     hence *:"f integrable_on {c..d}"apply-apply(rule integrable_eq) by auto
 | |
| 3849 |     hence "i = integral {c..d} f" apply-apply(rule has_integral_unique)
 | |
| 3850 | apply(rule `?l`) apply(rule has_integral_restrict_closed_subinterval[OF _ assms]) by auto | |
| 3851 | thus ?r using * by auto qed qed auto | |
| 3852 | ||
| 3853 | subsection {* Hence we can apply the limit process uniformly to all integrals. *}
 | |
| 3854 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3855 | lemma has_integral': fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows | 
| 35751 | 3856 |  "(f has_integral i) s \<longleftrightarrow> (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | 
| 3857 |   \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then f(x) else 0) has_integral z) {a..b} \<and> norm(z - i) < e))" (is "?l \<longleftrightarrow> (\<forall>e>0. ?r e)")
 | |
| 3858 | proof- { presume *:"\<exists>a b. s = {a..b} \<Longrightarrow> ?thesis"
 | |
| 3859 | show ?thesis apply(cases,rule *,assumption) | |
| 3860 | apply(subst has_integral_alt) by auto } | |
| 3861 |   assume "\<exists>a b. s = {a..b}" then guess a b apply-by(erule exE)+ note s=this
 | |
| 3862 | from bounded_interval[of a b, THEN conjunct1, unfolded bounded_pos] guess B .. | |
| 3863 | note B = conjunctD2[OF this,rule_format] show ?thesis apply safe | |
| 3864 | proof- fix e assume ?l "e>(0::real)" | |
| 3865 | show "?r e" apply(rule_tac x="B+1" in exI) apply safe defer apply(rule_tac x=i in exI) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3866 |     proof fix c d assume as:"ball 0 (B+1) \<subseteq> {c..d::'n::ordered_euclidean_space}"
 | 
| 35751 | 3867 |       thus "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) {c..d}" unfolding s
 | 
| 3868 | apply-apply(rule has_integral_restrict_closed_subinterval) apply(rule `?l`[unfolded s]) | |
| 3869 | apply safe apply(drule B(2)[rule_format]) unfolding subset_eq apply(erule_tac x=x in ballE) | |
| 36587 | 3870 | by(auto simp add:dist_norm) | 
| 35751 | 3871 | qed(insert B `e>0`, auto) | 
| 3872 | next assume as:"\<forall>e>0. ?r e" | |
| 3873 | from this[rule_format,OF zero_less_one] guess C .. note C=conjunctD2[OF this,rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3874 | def c \<equiv> "(\<chi>\<chi> i. - max B C)::'n::ordered_euclidean_space" and d \<equiv> "(\<chi>\<chi> i. max B C)::'n::ordered_euclidean_space" | 
| 35751 | 3875 |     have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
 | 
| 3876 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def | |
| 3877 | by(auto simp add:field_simps) qed | |
| 36587 | 3878 |     have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball dist_norm 
 | 
| 35751 | 3879 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed | 
| 3880 |     from C(2)[OF this] have "\<exists>y. (f has_integral y) {a..b}"
 | |
| 3881 | unfolding has_integral_restrict_closed_subintervals_eq[OF c_d,THEN sym] unfolding s by auto | |
| 3882 | then guess y .. note y=this | |
| 3883 | ||
| 3884 | have "y = i" proof(rule ccontr) assume "y\<noteq>i" hence "0 < norm (y - i)" by auto | |
| 3885 | from as[rule_format,OF this] guess C .. note C=conjunctD2[OF this,rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3886 | def c \<equiv> "(\<chi>\<chi> i. - max B C)::'n::ordered_euclidean_space" and d \<equiv> "(\<chi>\<chi> i. max B C)::'n::ordered_euclidean_space" | 
| 35751 | 3887 |       have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
 | 
| 3888 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def | |
| 3889 | by(auto simp add:field_simps) qed | |
| 36587 | 3890 |       have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball dist_norm 
 | 
| 35751 | 3891 | proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed | 
| 3892 | note C(2)[OF this] then guess z .. note z = conjunctD2[OF this, unfolded s] | |
| 3893 | note this[unfolded has_integral_restrict_closed_subintervals_eq[OF c_d]] | |
| 3894 | hence "z = y" "norm (z - i) < norm (y - i)" apply- apply(rule has_integral_unique[OF _ y(1)]) . | |
| 3895 | thus False by auto qed | |
| 3896 | thus ?l using y unfolding s by auto qed qed | |
| 3897 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3898 | (*lemma has_integral_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3899 | "((\<lambda>x. vec1 (f x)) has_integral vec1 i) s \<longleftrightarrow> (f has_integral i) s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3900 | unfolding has_integral'[unfolded has_integral] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3901 | proof case goal1 thus ?case apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3902 | apply(erule_tac x=e in allE,safe) apply(rule_tac x=B in exI,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3903 | apply(erule_tac x=a in allE, erule_tac x=b in allE,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3904 | apply(rule_tac x="dest_vec1 z" in exI,safe) apply(erule_tac x=ea in allE,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3905 | apply(rule_tac x=d in exI,safe) apply(erule_tac x=p in allE,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3906 | apply(subst(asm)(2) norm_vector_1) unfolding split_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3907 | unfolding setsum_component Cart_nth.diff cond_value_iff[of dest_vec1] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3908 | Cart_nth.scaleR vec1_dest_vec1 zero_index apply assumption | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3909 | apply(subst(asm)(2) norm_vector_1) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3910 | next case goal2 thus ?case apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3911 | apply(erule_tac x=e in allE,safe) apply(rule_tac x=B in exI,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3912 | apply(erule_tac x=a in allE, erule_tac x=b in allE,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3913 | apply(rule_tac x="vec1 z" in exI,safe) apply(erule_tac x=ea in allE,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3914 | apply(rule_tac x=d in exI,safe) apply(erule_tac x=p in allE,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3915 | apply(subst norm_vector_1) unfolding split_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3916 | unfolding setsum_component Cart_nth.diff cond_value_iff[of dest_vec1] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3917 | Cart_nth.scaleR vec1_dest_vec1 zero_index apply assumption | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3918 | apply(subst norm_vector_1) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3919 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3920 | lemma integral_trans[simp]: assumes "(f::'n::ordered_euclidean_space \<Rightarrow> real) integrable_on s" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3921 | shows "integral s (\<lambda>x. vec1 (f x)) = vec1 (integral s f)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3922 | apply(rule integral_unique) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3923 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3924 | lemma integrable_on_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3925 | "(\<lambda>x. vec1 (f x)) integrable_on s \<longleftrightarrow> (f integrable_on s)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3926 | unfolding integrable_on_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3927 | apply(subst(2) vec1_dest_vec1(1)[THEN sym]) unfolding has_integral_trans | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3928 | apply safe defer apply(rule_tac x="vec1 y" in exI) by auto *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3929 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3930 | lemma has_integral_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3931 | assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. (f x) \<le> (g x)" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3932 | shows "i \<le> j" using has_integral_component_le[OF assms(1-2), of 0] using assms(3) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3933 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3934 | lemma integral_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3935 | assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3936 | shows "integral s f \<le> integral s g" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3937 | using has_integral_le[OF assms(1,2)[unfolded has_integral_integral] assms(3)] . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3938 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3939 | lemma has_integral_nonneg: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3940 | assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3941 | using has_integral_component_nonneg[of "f" "i" s 0] | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3942 | unfolding o_def using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3943 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3944 | lemma integral_nonneg: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3945 | assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3946 | using has_integral_nonneg[OF assms(1)[unfolded has_integral_integral] assms(2)] . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 3947 | |
| 35751 | 3948 | subsection {* Hence a general restriction property. *}
 | 
| 3949 | ||
| 3950 | lemma has_integral_restrict[simp]: assumes "s \<subseteq> t" shows | |
| 3951 | "((\<lambda>x. if x \<in> s then f x else (0::'a::banach)) has_integral i) t \<longleftrightarrow> (f has_integral i) s" | |
| 3952 | proof- have *:"\<And>x. (if x \<in> t then if x \<in> s then f x else 0 else 0) = (if x\<in>s then f x else 0)" using assms by auto | |
| 3953 | show ?thesis apply(subst(2) has_integral') apply(subst has_integral') unfolding * by rule qed | |
| 3954 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3955 | lemma has_integral_restrict_univ: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows | 
| 35751 | 3956 | "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) UNIV \<longleftrightarrow> (f has_integral i) s" by auto | 
| 3957 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3958 | lemma has_integral_on_superset: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 3959 | assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "(f has_integral i) s" | 
| 3960 | shows "(f has_integral i) t" | |
| 3961 | proof- have "(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. if x \<in> t then f x else 0)" | |
| 3962 | apply(rule) using assms(1-2) by auto | |
| 3963 | thus ?thesis apply- using assms(3) apply(subst has_integral_restrict_univ[THEN sym]) | |
| 3964 | apply- apply(subst(asm) has_integral_restrict_univ[THEN sym]) by auto qed | |
| 3965 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3966 | lemma integrable_on_superset: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 3967 | assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "f integrable_on s" | 
| 3968 | shows "f integrable_on t" | |
| 3969 | using assms unfolding integrable_on_def by(auto intro:has_integral_on_superset) | |
| 3970 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3971 | lemma integral_restrict_univ[intro]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 3972 | shows "f integrable_on s \<Longrightarrow> integral UNIV (\<lambda>x. if x \<in> s then f x else 0) = integral s f" | 
| 3973 | apply(rule integral_unique) unfolding has_integral_restrict_univ by auto | |
| 3974 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3975 | lemma integrable_restrict_univ: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows | 
| 35751 | 3976 | "(\<lambda>x. if x \<in> s then f x else 0) integrable_on UNIV \<longleftrightarrow> f integrable_on s" | 
| 3977 | unfolding integrable_on_def by auto | |
| 3978 | ||
| 3979 | lemma negligible_on_intervals: "negligible s \<longleftrightarrow> (\<forall>a b. negligible(s \<inter> {a..b}))" (is "?l = ?r")
 | |
| 3980 | proof assume ?r show ?l unfolding negligible_def | |
| 3981 | proof safe case goal1 show ?case apply(rule has_integral_negligible[OF `?r`[rule_format,of a b]]) | |
| 3982 | unfolding indicator_def by auto qed qed auto | |
| 3983 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3984 | lemma has_integral_spike_set_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 3985 | assumes "negligible((s - t) \<union> (t - s))" shows "((f has_integral y) s \<longleftrightarrow> (f has_integral y) t)" | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36359diff
changeset | 3986 | unfolding has_integral_restrict_univ[THEN sym,of f] apply(rule has_integral_spike_eq[OF assms]) by (safe, auto split: split_if_asm) | 
| 35751 | 3987 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3988 | lemma has_integral_spike_set[dest]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 3989 | assumes "negligible((s - t) \<union> (t - s))" "(f has_integral y) s" | 
| 3990 | shows "(f has_integral y) t" | |
| 3991 | using assms has_integral_spike_set_eq by auto | |
| 3992 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3993 | lemma integrable_spike_set[dest]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 3994 | assumes "negligible((s - t) \<union> (t - s))" "f integrable_on s" | 
| 3995 | shows "f integrable_on t" using assms(2) unfolding integrable_on_def | |
| 3996 | unfolding has_integral_spike_set_eq[OF assms(1)] . | |
| 3997 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 3998 | lemma integrable_spike_set_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 3999 | assumes "negligible((s - t) \<union> (t - s))" | 
| 4000 | shows "(f integrable_on s \<longleftrightarrow> f integrable_on t)" | |
| 4001 | apply(rule,rule_tac[!] integrable_spike_set) using assms by auto | |
| 4002 | ||
| 4003 | (*lemma integral_spike_set: | |
| 4004 | "\<forall>f:real^M->real^N g s t. | |
| 4005 | negligible(s DIFF t \<union> t DIFF s) | |
| 4006 | \<longrightarrow> integral s f = integral t f" | |
| 4007 | qed REPEAT STRIP_TAC THEN REWRITE_TAC[integral] THEN | |
| 4008 | AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN | |
| 4009 | ASM_MESON_TAC[]);; | |
| 4010 | ||
| 4011 | lemma has_integral_interior: | |
| 4012 | "\<forall>f:real^M->real^N y s. | |
| 4013 | negligible(frontier s) | |
| 4014 | \<longrightarrow> ((f has_integral y) (interior s) \<longleftrightarrow> (f has_integral y) s)" | |
| 4015 | qed REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN | |
| 4016 | FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] | |
| 4017 | NEGLIGIBLE_SUBSET)) THEN | |
| 4018 | REWRITE_TAC[frontier] THEN | |
| 4019 | MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN | |
| 4020 | MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN | |
| 4021 | SET_TAC[]);; | |
| 4022 | ||
| 4023 | lemma has_integral_closure: | |
| 4024 | "\<forall>f:real^M->real^N y s. | |
| 4025 | negligible(frontier s) | |
| 4026 | \<longrightarrow> ((f has_integral y) (closure s) \<longleftrightarrow> (f has_integral y) s)" | |
| 4027 | qed REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN | |
| 4028 | FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] | |
| 4029 | NEGLIGIBLE_SUBSET)) THEN | |
| 4030 | REWRITE_TAC[frontier] THEN | |
| 4031 | MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN | |
| 4032 | MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN | |
| 4033 | SET_TAC[]);;*) | |
| 4034 | ||
| 4035 | subsection {* More lemmas that are useful later. *}
 | |
| 4036 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4037 | lemma has_integral_subset_component_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4038 | assumes "s \<subseteq> t" "(f has_integral i) s" "(f has_integral j) t" "\<forall>x\<in>t. 0 \<le> f(x)$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4039 | shows "i$$k \<le> j$$k" | 
| 35751 | 4040 | proof- note has_integral_restrict_univ[THEN sym, of f] | 
| 4041 | note assms(2-3)[unfolded this] note * = has_integral_component_le[OF this] | |
| 4042 | show ?thesis apply(rule *) using assms(1,4) by auto qed | |
| 4043 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4044 | lemma has_integral_subset_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4045 | assumes "s \<subseteq> t" "(f has_integral i) s" "(f has_integral j) t" "\<forall>x\<in>t. 0 \<le> f(x)" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4046 | shows "i \<le> j" using has_integral_subset_component_le[OF assms(1), of "f" "i" "j" 0] using assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4047 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4048 | lemma integral_subset_component_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4049 | assumes "s \<subseteq> t" "f integrable_on s" "f integrable_on t" "\<forall>x \<in> t. 0 \<le> f(x)$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4050 | shows "(integral s f)$$k \<le> (integral t f)$$k" | 
| 35751 | 4051 | apply(rule has_integral_subset_component_le) using assms by auto | 
| 4052 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4053 | lemma integral_subset_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4054 | assumes "s \<subseteq> t" "f integrable_on s" "f integrable_on t" "\<forall>x \<in> t. 0 \<le> f(x)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4055 | shows "(integral s f) \<le> (integral t f)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4056 | apply(rule has_integral_subset_le) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4057 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4058 | lemma has_integral_alt': fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 35751 | 4059 |   shows "(f has_integral i) s \<longleftrightarrow> (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}) \<and>
 | 
| 4060 |   (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e)" (is "?l = ?r")
 | |
| 4061 | proof assume ?r | |
| 4062 | show ?l apply- apply(subst has_integral') | |
| 4063 | proof safe case goal1 from `?r`[THEN conjunct2,rule_format,OF this] guess B .. note B=conjunctD2[OF this] | |
| 4064 | show ?case apply(rule,rule,rule B,safe) | |
| 4065 |       apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then f x else 0)" in exI)
 | |
| 4066 | apply(drule B(2)[rule_format]) using integrable_integral[OF `?r`[THEN conjunct1,rule_format]] by auto | |
| 4067 | qed next | |
| 4068 | assume ?l note as = this[unfolded has_integral'[of f],rule_format] | |
| 4069 | let ?f = "\<lambda>x. if x \<in> s then f x else 0" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4070 | show ?r proof safe fix a b::"'n::ordered_euclidean_space" | 
| 35751 | 4071 | from as[OF zero_less_one] guess B .. note B=conjunctD2[OF this,rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4072 | let ?a = "(\<chi>\<chi> i. min (a$$i) (-B))::'n::ordered_euclidean_space" and ?b = "(\<chi>\<chi> i. max (b$$i) B)::'n::ordered_euclidean_space" | 
| 35751 | 4073 |     show "?f integrable_on {a..b}" apply(rule integrable_subinterval[of _ ?a ?b])
 | 
| 36587 | 4074 |     proof- have "ball 0 B \<subseteq> {?a..?b}" apply safe unfolding mem_ball mem_interval dist_norm
 | 
| 35751 | 4075 | proof case goal1 thus ?case using component_le_norm[of x i] by(auto simp add:field_simps) qed | 
| 4076 | from B(2)[OF this] guess z .. note conjunct1[OF this] | |
| 4077 |       thus "?f integrable_on {?a..?b}" unfolding integrable_on_def by auto
 | |
| 4078 |       show "{a..b} \<subseteq> {?a..?b}" apply safe unfolding mem_interval apply(rule,erule_tac x=i in allE) by auto qed
 | |
| 4079 | ||
| 4080 | fix e::real assume "e>0" from as[OF this] guess B .. note B=conjunctD2[OF this,rule_format] | |
| 4081 |     show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow>
 | |
| 4082 |                     norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e"
 | |
| 4083 | proof(rule,rule,rule B,safe) case goal1 from B(2)[OF this] guess z .. note z=conjunctD2[OF this] | |
| 4084 | from integral_unique[OF this(1)] show ?case using z(2) by auto qed qed qed | |
| 4085 | ||
| 35752 | 4086 | |
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4087 | subsection {* Continuity of the integral (for a 1-dimensional interval). *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4088 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4089 | lemma integrable_alt: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4090 | "f integrable_on s \<longleftrightarrow> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4091 |           (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}) \<and>
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4092 |           (\<forall>e>0. \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> {a..b} \<and> ball 0 B \<subseteq> {c..d}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4093 |   \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) -
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4094 |           integral {c..d}  (\<lambda>x. if x \<in> s then f x else 0)) < e)" (is "?l = ?r")
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4095 | proof assume ?l then guess y unfolding integrable_on_def .. note this[unfolded has_integral_alt'[of f]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4096 | note y=conjunctD2[OF this,rule_format] show ?r apply safe apply(rule y) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4097 | proof- case goal1 hence "e/2 > 0" by auto from y(2)[OF this] guess B .. note B=conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4098 | show ?case apply(rule,rule,rule B) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4099 | proof safe case goal1 show ?case apply(rule norm_triangle_half_l) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4100 | using B(2)[OF goal1(1)] B(2)[OF goal1(2)] by auto qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4101 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4102 | next assume ?r note as = conjunctD2[OF this,rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4103 |   have "Cauchy (\<lambda>n. integral ({(\<chi>\<chi> i. - real n)::'n .. (\<chi>\<chi> i. real n)}) (\<lambda>x. if x \<in> s then f x else 0))"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4104 | proof(unfold Cauchy_def,safe) case goal1 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4105 | from as(2)[OF this] guess B .. note B = conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4106 | from real_arch_simple[of B] guess N .. note N = this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4107 |     { fix n assume n:"n \<ge> N" have "ball 0 B \<subseteq> {(\<chi>\<chi> i. - real n)::'n..\<chi>\<chi> i. real n}" apply safe
 | 
| 36587 | 4108 | unfolding mem_ball mem_interval dist_norm | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4109 | proof case goal1 thus ?case using component_le_norm[of x i] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4110 | using n N by(auto simp add:field_simps) qed } | 
| 36587 | 4111 | thus ?case apply-apply(rule_tac x=N in exI) apply safe unfolding dist_norm apply(rule B(2)) by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4112 | qed from this[unfolded convergent_eq_cauchy[THEN sym]] guess i .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4113 | note i = this[unfolded Lim_sequentially, rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4114 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4115 | show ?l unfolding integrable_on_def has_integral_alt'[of f] apply(rule_tac x=i in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4116 | apply safe apply(rule as(1)[unfolded integrable_on_def]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4117 | proof- case goal1 hence *:"e/2 > 0" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4118 | from i[OF this] guess N .. note N =this[rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4119 | from as(2)[OF *] guess B .. note B=conjunctD2[OF this,rule_format] let ?B = "max (real N) B" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4120 | show ?case apply(rule_tac x="?B" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4121 | proof safe show "0 < ?B" using B(1) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4122 |       fix a b assume ab:"ball 0 ?B \<subseteq> {a..b::'n::ordered_euclidean_space}"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4123 | from real_arch_simple[of ?B] guess n .. note n=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4124 |       show "norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4125 | apply(rule norm_triangle_half_l) apply(rule B(2)) defer apply(subst norm_minus_commute) | 
| 36587 | 4126 | apply(rule N[unfolded dist_norm, of n]) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4127 | proof safe show "N \<le> n" using n by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4128 | fix x::"'n::ordered_euclidean_space" assume x:"x \<in> ball 0 B" hence "x\<in> ball 0 ?B" by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4129 |         thus "x\<in>{a..b}" using ab by blast 
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4130 |         show "x\<in>{\<chi>\<chi> i. - real n..\<chi>\<chi> i. real n}" using x unfolding mem_interval mem_ball dist_norm apply-
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4131 | proof case goal1 thus ?case using component_le_norm[of x i] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4132 | using n by(auto simp add:field_simps) qed qed qed qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4133 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4134 | lemma integrable_altD: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4135 | assumes "f integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4136 |   shows "\<And>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4137 |   "\<And>e. e>0 \<Longrightarrow> \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> {a..b} \<and> ball 0 B \<subseteq> {c..d}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4138 |   \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - integral {c..d}  (\<lambda>x. if x \<in> s then f x else 0)) < e"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4139 | using assms[unfolded integrable_alt[of f]] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4140 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4141 | lemma integrable_on_subinterval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4142 |   assumes "f integrable_on s" "{a..b} \<subseteq> s" shows "f integrable_on {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4143 | apply(rule integrable_eq) defer apply(rule integrable_altD(1)[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4144 | using assms(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4145 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4146 | subsection {* A straddling criterion for integrability. *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4147 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4148 | lemma integrable_straddle_interval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4149 |   assumes "\<forall>e>0. \<exists>g  h i j. (g has_integral i) ({a..b}) \<and> (h has_integral j) ({a..b}) \<and>
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4150 |   norm(i - j) < e \<and> (\<forall>x\<in>{a..b}. (g x) \<le> (f x) \<and> (f x) \<le>(h x))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4151 |   shows "f integrable_on {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4152 | proof(subst integrable_cauchy,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4153 | case goal1 hence e:"e/3 > 0" by auto note assms[rule_format,OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4154 | then guess g h i j apply- by(erule exE conjE)+ note obt = this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4155 | from obt(1)[unfolded has_integral[of g], rule_format, OF e] guess d1 .. note d1=conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4156 | from obt(2)[unfolded has_integral[of h], rule_format, OF e] guess d2 .. note d2=conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4157 | show ?case apply(rule_tac x="\<lambda>x. d1 x \<inter> d2 x" in exI) apply(rule conjI gauge_inter d1 d2)+ unfolding fine_inter | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4158 | proof safe have **:"\<And>i j g1 g2 h1 h2 f1 f2. g1 - h2 \<le> f1 - f2 \<Longrightarrow> f1 - f2 \<le> h1 - g2 \<Longrightarrow> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4159 | abs(i - j) < e / 3 \<Longrightarrow> abs(g2 - i) < e / 3 \<Longrightarrow> abs(g1 - i) < e / 3 \<Longrightarrow> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4160 | abs(h2 - j) < e / 3 \<Longrightarrow> abs(h1 - j) < e / 3 \<Longrightarrow> abs(f1 - f2) < e" using `e>0` by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4161 | case goal1 note tagged_division_ofD(2-4) note * = this[OF goal1(1)] this[OF goal1(4)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4162 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4163 | have "(\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R g x) \<ge> 0" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4164 | "0 \<le> (\<Sum>(x, k)\<in>p2. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4165 | "(\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R g x) \<ge> 0" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4166 | "0 \<le> (\<Sum>(x, k)\<in>p1. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4167 | unfolding setsum_subtractf[THEN sym] apply- apply(rule_tac[!] setsum_nonneg) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4168 | apply safe unfolding real_scaleR_def mult.diff_right[THEN sym] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4169 | apply(rule_tac[!] mult_nonneg_nonneg) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4170 | proof- fix a b assume ab:"(a,b) \<in> p1" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4171 | show "0 \<le> content b" using *(3)[OF ab] apply safe using content_pos_le . thus "0 \<le> content b" . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4172 | show "0 \<le> f a - g a" "0 \<le> h a - f a" using *(1-2)[OF ab] using obt(4)[rule_format,of a] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4173 | next fix a b assume ab:"(a,b) \<in> p2" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4174 | show "0 \<le> content b" using *(6)[OF ab] apply safe using content_pos_le . thus "0 \<le> content b" . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4175 | show "0 \<le> f a - g a" "0 \<le> h a - f a" using *(4-5)[OF ab] using obt(4)[rule_format,of a] by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4176 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4177 | thus ?case apply- unfolding real_norm_def apply(rule **) defer defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4178 | unfolding real_norm_def[THEN sym] apply(rule obt(3)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4179 | apply(rule d1(2)[OF conjI[OF goal1(4,5)]]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4180 | apply(rule d1(2)[OF conjI[OF goal1(1,2)]]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4181 | apply(rule d2(2)[OF conjI[OF goal1(4,6)]]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4182 | apply(rule d2(2)[OF conjI[OF goal1(1,3)]]) by auto qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4183 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4184 | lemma integrable_straddle: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4185 | assumes "\<forall>e>0. \<exists>g h i j. (g has_integral i) s \<and> (h has_integral j) s \<and> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4186 | norm(i - j) < e \<and> (\<forall>x\<in>s. (g x) \<le>(f x) \<and>(f x) \<le>(h x))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4187 | shows "f integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4188 | proof- have "\<And>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4189 | proof(rule integrable_straddle_interval,safe) case goal1 hence *:"e/4 > 0" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4190 | from assms[rule_format,OF this] guess g h i j apply-by(erule exE conjE)+ note obt=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4191 | note obt(1)[unfolded has_integral_alt'[of g]] note conjunctD2[OF this, rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4192 | note g = this(1) and this(2)[OF *] from this(2) guess B1 .. note B1 = conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4193 | note obt(2)[unfolded has_integral_alt'[of h]] note conjunctD2[OF this, rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4194 | note h = this(1) and this(2)[OF *] from this(2) guess B2 .. note B2 = conjunctD2[OF this,rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4195 | def c \<equiv> "(\<chi>\<chi> i. min (a$$i) (- (max B1 B2)))::'n" and d \<equiv> "(\<chi>\<chi> i. max (b$$i) (max B1 B2))::'n" | 
| 36587 | 4196 |     have *:"ball 0 B1 \<subseteq> {c..d}" "ball 0 B2 \<subseteq> {c..d}" apply safe unfolding mem_ball mem_interval dist_norm
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4197 | proof(rule_tac[!] allI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4198 | case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto next | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4199 | case goal2 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4200 | have **:"\<And>ch cg ag ah::real. norm(ah - ag) \<le> norm(ch - cg) \<Longrightarrow> norm(cg - i) < e / 4 \<Longrightarrow> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4201 | norm(ch - j) < e / 4 \<Longrightarrow> norm(ag - ah) < e" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4202 | using obt(3) unfolding real_norm_def by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4203 | show ?case apply(rule_tac x="\<lambda>x. if x \<in> s then g x else 0" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4204 | apply(rule_tac x="\<lambda>x. if x \<in> s then h x else 0" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4205 |       apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then g x else 0)" in exI)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4206 |       apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then h x else 0)" in exI)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4207 | apply safe apply(rule_tac[1-2] integrable_integral,rule g,rule h) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4208 | apply(rule **[OF _ B1(2)[OF *(1)] B2(2)[OF *(2)]]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4209 | proof- have *:"\<And>x f g. (if x \<in> s then f x else 0) - (if x \<in> s then g x else 0) = | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4210 | (if x \<in> s then f x - g x else (0::real))" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4211 | note ** = abs_of_nonneg[OF integral_nonneg[OF integrable_sub, OF h g]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4212 |       show " norm (integral {a..b} (\<lambda>x. if x \<in> s then h x else 0) -
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4213 |                    integral {a..b} (\<lambda>x. if x \<in> s then g x else 0))
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4214 |            \<le> norm (integral {c..d} (\<lambda>x. if x \<in> s then h x else 0) -
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4215 |                    integral {c..d} (\<lambda>x. if x \<in> s then g x else 0))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4216 | unfolding integral_sub[OF h g,THEN sym] real_norm_def apply(subst **) defer apply(subst **) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4217 | apply(rule has_integral_subset_le) defer apply(rule integrable_integral integrable_sub h g)+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4218 |       proof safe fix x assume "x\<in>{a..b}" thus "x\<in>{c..d}" unfolding mem_interval c_def d_def
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4219 | apply - apply rule apply(erule_tac x=i in allE) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4220 | qed(insert obt(4), auto) qed(insert obt(4), auto) qed note interv = this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4221 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4222 | show ?thesis unfolding integrable_alt[of f] apply safe apply(rule interv) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4223 | proof- case goal1 hence *:"e/3 > 0" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4224 | from assms[rule_format,OF this] guess g h i j apply-by(erule exE conjE)+ note obt=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4225 | note obt(1)[unfolded has_integral_alt'[of g]] note conjunctD2[OF this, rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4226 | note g = this(1) and this(2)[OF *] from this(2) guess B1 .. note B1 = conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4227 | note obt(2)[unfolded has_integral_alt'[of h]] note conjunctD2[OF this, rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4228 | note h = this(1) and this(2)[OF *] from this(2) guess B2 .. note B2 = conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4229 | show ?case apply(rule_tac x="max B1 B2" in exI) apply safe apply(rule min_max.less_supI1,rule B1) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4230 |     proof- fix a b c d::"'n::ordered_euclidean_space" assume as:"ball 0 (max B1 B2) \<subseteq> {a..b}" "ball 0 (max B1 B2) \<subseteq> {c..d}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4231 | have **:"ball 0 B1 \<subseteq> ball (0::'n::ordered_euclidean_space) (max B1 B2)" "ball 0 B2 \<subseteq> ball (0::'n::ordered_euclidean_space) (max B1 B2)" by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4232 | have *:"\<And>ga gc ha hc fa fc::real. abs(ga - i) < e / 3 \<and> abs(gc - i) < e / 3 \<and> abs(ha - j) < e / 3 \<and> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4233 | abs(hc - j) < e / 3 \<and> abs(i - j) < e / 3 \<and> ga \<le> fa \<and> fa \<le> ha \<and> gc \<le> fc \<and> fc \<le> hc\<Longrightarrow> abs(fa - fc) < e" by smt | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4234 |       show "norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - integral {c..d} (\<lambda>x. if x \<in> s then f x else 0)) < e"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4235 | unfolding real_norm_def apply(rule *, safe) unfolding real_norm_def[THEN sym] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4236 | apply(rule B1(2),rule order_trans,rule **,rule as(1)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4237 | apply(rule B1(2),rule order_trans,rule **,rule as(2)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4238 | apply(rule B2(2),rule order_trans,rule **,rule as(1)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4239 | apply(rule B2(2),rule order_trans,rule **,rule as(2)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4240 | apply(rule obt) apply(rule_tac[!] integral_le) using obt | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4241 | by(auto intro!: h g interv) qed qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4242 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4243 | subsection {* Adding integrals over several sets. *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4244 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4245 | lemma has_integral_union: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4246 | assumes "(f has_integral i) s" "(f has_integral j) t" "negligible(s \<inter> t)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4247 | shows "(f has_integral (i + j)) (s \<union> t)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4248 | proof- note * = has_integral_restrict_univ[THEN sym, of f] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4249 | show ?thesis unfolding * apply(rule has_integral_spike[OF assms(3)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4250 | defer apply(rule has_integral_add[OF assms(1-2)[unfolded *]]) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4251 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4252 | lemma has_integral_unions: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4253 | assumes "finite t" "\<forall>s\<in>t. (f has_integral (i s)) s" "\<forall>s\<in>t. \<forall>s'\<in>t. ~(s = s') \<longrightarrow> negligible(s \<inter> s')" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4254 | shows "(f has_integral (setsum i t)) (\<Union>t)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4255 | proof- note * = has_integral_restrict_univ[THEN sym, of f] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4256 |   have **:"negligible (\<Union>((\<lambda>(a,b). a \<inter> b) ` {(a,b). a \<in> t \<and> b \<in> {y. y \<in> t \<and> ~(a = y)}}))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4257 | apply(rule negligible_unions) apply(rule finite_imageI) apply(rule finite_subset[of _ "t \<times> t"]) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4258 | apply(rule finite_cartesian_product[OF assms(1,1)]) using assms(3) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4259 | note assms(2)[unfolded *] note has_integral_setsum[OF assms(1) this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4260 | thus ?thesis unfolding * apply-apply(rule has_integral_spike[OF **]) defer apply assumption | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4261 | proof safe case goal1 thus ?case | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4262 | proof(cases "x\<in>\<Union>t") case True then guess s unfolding Union_iff .. note s=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4263 | hence *:"\<forall>b\<in>t. x \<in> b \<longleftrightarrow> b = s" using goal1(3) by blast | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4264 | show ?thesis unfolding if_P[OF True] apply(rule trans) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4265 | apply(rule setsum_cong2) apply(subst *, assumption) apply(rule refl) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4266 | unfolding setsum_delta[OF assms(1)] using s by auto qed auto qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4267 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4268 | subsection {* In particular adding integrals over a division, maybe not of an interval. *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4269 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4270 | lemma has_integral_combine_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4271 | assumes "d division_of s" "\<forall>k\<in>d. (f has_integral (i k)) k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4272 | shows "(f has_integral (setsum i d)) s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4273 | proof- note d = division_ofD[OF assms(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4274 | show ?thesis unfolding d(6)[THEN sym] apply(rule has_integral_unions) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4275 | apply(rule d assms)+ apply(rule,rule,rule) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4276 | proof- case goal1 from d(4)[OF this(1)] d(4)[OF this(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4277 | guess a c b d apply-by(erule exE)+ note obt=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4278 | from d(5)[OF goal1] show ?case unfolding obt interior_closed_interval | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4279 |       apply-apply(rule negligible_subset[of "({a..b}-{a<..<b}) \<union> ({c..d}-{c<..<d})"])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4280 | apply(rule negligible_union negligible_frontier_interval)+ by auto qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4281 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4282 | lemma integral_combine_division_bottomup: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4283 | assumes "d division_of s" "\<forall>k\<in>d. f integrable_on k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4284 | shows "integral s f = setsum (\<lambda>i. integral i f) d" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4285 | apply(rule integral_unique) apply(rule has_integral_combine_division[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4286 | using assms(2) unfolding has_integral_integral . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4287 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4288 | lemma has_integral_combine_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4289 | assumes "f integrable_on s" "d division_of k" "k \<subseteq> s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4290 | shows "(f has_integral (setsum (\<lambda>i. integral i f) d)) k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4291 | apply(rule has_integral_combine_division[OF assms(2)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4292 | apply safe unfolding has_integral_integral[THEN sym] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4293 | proof- case goal1 from division_ofD(2,4)[OF assms(2) this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4294 | show ?case apply safe apply(rule integrable_on_subinterval) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4295 | apply(rule assms) using assms(3) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4296 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4297 | lemma integral_combine_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4298 | assumes "f integrable_on s" "d division_of s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4299 | shows "integral s f = setsum (\<lambda>i. integral i f) d" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4300 | apply(rule integral_unique,rule has_integral_combine_division_topdown) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4301 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4302 | lemma integrable_combine_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4303 | assumes "d division_of s" "\<forall>i\<in>d. f integrable_on i" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4304 | shows "f integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4305 | using assms(2) unfolding integrable_on_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4306 | by(metis has_integral_combine_division[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4307 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4308 | lemma integrable_on_subdivision: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4309 | assumes "d division_of i" "f integrable_on s" "i \<subseteq> s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4310 | shows "f integrable_on i" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4311 | apply(rule integrable_combine_division assms)+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4312 | proof safe case goal1 note division_ofD(2,4)[OF assms(1) this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4313 | thus ?case apply safe apply(rule integrable_on_subinterval[OF assms(2)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4314 | using assms(3) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4315 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4316 | subsection {* Also tagged divisions. *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4317 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4318 | lemma has_integral_combine_tagged_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4319 | assumes "p tagged_division_of s" "\<forall>(x,k) \<in> p. (f has_integral (i k)) k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4320 | shows "(f has_integral (setsum (\<lambda>(x,k). i k) p)) s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4321 | proof- have *:"(f has_integral (setsum (\<lambda>k. integral k f) (snd ` p))) s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4322 | apply(rule has_integral_combine_division) apply(rule division_of_tagged_division[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4323 | using assms(2) unfolding has_integral_integral[THEN sym] by(safe,auto) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4324 | thus ?thesis apply- apply(rule subst[where P="\<lambda>i. (f has_integral i) s"]) defer apply assumption | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4325 | apply(rule trans[of _ "setsum (\<lambda>(x,k). integral k f) p"]) apply(subst eq_commute) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4326 | apply(rule setsum_over_tagged_division_lemma[OF assms(1)]) apply(rule integral_null,assumption) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4327 | apply(rule setsum_cong2) using assms(2) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4328 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4329 | lemma integral_combine_tagged_division_bottomup: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4330 |   assumes "p tagged_division_of {a..b}" "\<forall>(x,k)\<in>p. f integrable_on k"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4331 |   shows "integral {a..b} f = setsum (\<lambda>(x,k). integral k f) p"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4332 | apply(rule integral_unique) apply(rule has_integral_combine_tagged_division[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4333 | using assms(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4334 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4335 | lemma has_integral_combine_tagged_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4336 |   assumes "f integrable_on {a..b}" "p tagged_division_of {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4337 |   shows "(f has_integral (setsum (\<lambda>(x,k). integral k f) p)) {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4338 | apply(rule has_integral_combine_tagged_division[OF assms(2)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4339 | proof safe case goal1 note tagged_division_ofD(3-4)[OF assms(2) this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4340 | thus ?case using integrable_subinterval[OF assms(1)] by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4341 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4342 | lemma integral_combine_tagged_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4343 |   assumes "f integrable_on {a..b}" "p tagged_division_of {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4344 |   shows "integral {a..b} f = setsum (\<lambda>(x,k). integral k f) p"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4345 | apply(rule integral_unique,rule has_integral_combine_tagged_division_topdown) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4346 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4347 | subsection {* Henstock's lemma. *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4348 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4349 | lemma henstock_lemma_part1: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4350 |   assumes "f integrable_on {a..b}" "0 < e" "gauge d"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4351 |   "(\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - integral({a..b}) f) < e)"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4352 |   and p:"p tagged_partial_division_of {a..b}" "d fine p"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4353 | shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x - integral k f) p) \<le> e" (is "?x \<le> e") | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4354 | proof-  { presume "\<And>k. 0<k \<Longrightarrow> ?x \<le> e + k" thus ?thesis by arith }
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4355 | fix k::real assume k:"k>0" note p' = tagged_partial_division_ofD[OF p(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4356 |   have "\<Union>snd ` p \<subseteq> {a..b}" using p'(3) by fastsimp
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4357 | note partial_division_of_tagged_division[OF p(1)] this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4358 | from partial_division_extend_interval[OF this] guess q . note q=this and q' = division_ofD[OF this(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4359 |   def r \<equiv> "q - snd ` p" have "snd ` p \<inter> r = {}" unfolding r_def by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4360 | have r:"finite r" using q' unfolding r_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4361 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4362 | have "\<forall>i\<in>r. \<exists>p. p tagged_division_of i \<and> d fine p \<and> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4363 | norm(setsum (\<lambda>(x,j). content j *\<^sub>R f x) p - integral i f) < k / (real (card r) + 1)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4364 | proof safe case goal1 hence i:"i \<in> q" unfolding r_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4365 | from q'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4366 | have *:"k / (real (card r) + 1) > 0" apply(rule divide_pos_pos,rule k) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4367 |     have "f integrable_on {u..v}" apply(rule integrable_subinterval[OF assms(1)])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4368 | using q'(2)[OF i] unfolding uv by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4369 | note integrable_integral[OF this, unfolded has_integral[of f]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4370 | from this[rule_format,OF *] guess dd .. note dd=conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4371 | note gauge_inter[OF `gauge d` dd(1)] from fine_division_exists[OF this,of u v] guess qq . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4372 | thus ?case apply(rule_tac x=qq in exI) using dd(2)[of qq] unfolding fine_inter uv by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4373 | from bchoice[OF this] guess qq .. note qq=this[rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4374 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4375 |   let ?p = "p \<union> \<Union>qq ` r" have "norm ((\<Sum>(x, k)\<in>?p. content k *\<^sub>R f x) - integral {a..b} f) < e"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4376 | apply(rule assms(4)[rule_format]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4377 | proof show "d fine ?p" apply(rule fine_union,rule p) apply(rule fine_unions) using qq by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4378 | note * = tagged_partial_division_of_union_self[OF p(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4379 | have "p \<union> \<Union>qq ` r tagged_division_of \<Union>snd ` p \<union> \<Union>r" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4380 | proof(rule tagged_division_union[OF * tagged_division_unions]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4381 | show "finite r" by fact case goal2 thus ?case using qq by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4382 | next case goal3 thus ?case apply(rule,rule,rule) apply(rule q'(5)) unfolding r_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4383 | next case goal4 thus ?case apply(rule inter_interior_unions_intervals) apply(fact,rule) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4384 | apply(rule,rule q') defer apply(rule,subst Int_commute) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4385 | apply(rule inter_interior_unions_intervals) apply(rule finite_imageI,rule p',rule) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4386 | apply(rule,rule q') using q(1) p' unfolding r_def by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4387 |     moreover have "\<Union>snd ` p \<union> \<Union>r = {a..b}" "{qq i |i. i \<in> r} = qq ` r"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4388 | unfolding Union_Un_distrib[THEN sym] r_def using q by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4389 |     ultimately show "?p tagged_division_of {a..b}" by fastsimp qed
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4390 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4391 | hence "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>\<Union>qq ` r. content k *\<^sub>R f x) - | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4392 |     integral {a..b} f) < e" apply(subst setsum_Un_zero[THEN sym]) apply(rule p') prefer 3 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4393 | apply assumption apply rule apply(rule finite_imageI,rule r) apply safe apply(drule qq) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4394 | proof- fix x l k assume as:"(x,l)\<in>p" "(x,l)\<in>qq k" "k\<in>r" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4395 | note qq[OF this(3)] note tagged_division_ofD(3,4)[OF conjunct1[OF this] as(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4396 | from this(2) guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4397 | have "l\<in>snd ` p" unfolding image_iff apply(rule_tac x="(x,l)" in bexI) using as by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4398 | hence "l\<in>q" "k\<in>q" "l\<noteq>k" using as(1,3) q(1) unfolding r_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4399 |     note q'(5)[OF this] hence "interior l = {}" using subset_interior[OF `l \<subseteq> k`] by blast
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4400 | thus "content l *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[THEN sym] by auto qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4401 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4402 | hence "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + setsum (setsum (\<lambda>(x, k). content k *\<^sub>R f x)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4403 |     (qq ` r) - integral {a..b} f) < e" apply(subst(asm) setsum_UNION_zero)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4404 | prefer 4 apply assumption apply(rule finite_imageI,fact) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4405 | unfolding split_paired_all split_conv image_iff defer apply(erule bexE)+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4406 | proof- fix x m k l T1 T2 assume "(x,m)\<in>T1" "(x,m)\<in>T2" "T1\<noteq>T2" "k\<in>r" "l\<in>r" "T1 = qq k" "T2 = qq l" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4407 | note as = this(1-5)[unfolded this(6-)] note kl = tagged_division_ofD(3,4)[OF qq[THEN conjunct1]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4408 | from this(2)[OF as(4,1)] guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4409 |     have *:"interior (k \<inter> l) = {}" unfolding interior_inter apply(rule q')
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4410 | using as unfolding r_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4411 |     have "interior m = {}" unfolding subset_empty[THEN sym] unfolding *[THEN sym]
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4412 | apply(rule subset_interior) using kl(1)[OF as(4,1)] kl(1)[OF as(5,2)] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4413 | thus "content m *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[THEN sym] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4414 | qed(insert qq, auto) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4415 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4416 | hence **:"norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + setsum (setsum (\<lambda>(x, k). content k *\<^sub>R f x) \<circ> qq) r - | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4417 |     integral {a..b} f) < e" apply(subst(asm) setsum_reindex_nonzero) apply fact
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4418 | apply(rule setsum_0',rule) unfolding split_paired_all split_conv defer apply assumption | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4419 | proof- fix k l x m assume as:"k\<in>r" "l\<in>r" "k\<noteq>l" "qq k = qq l" "(x,m)\<in>qq k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4420 | note tagged_division_ofD(6)[OF qq[THEN conjunct1]] from this[OF as(1)] this[OF as(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4421 | show "content m *\<^sub>R f x = 0" using as(3) unfolding as by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4422 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4423 | have *:"\<And>ir ip i cr cp. norm((cp + cr) - i) < e \<Longrightarrow> norm(cr - ir) < k \<Longrightarrow> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4424 | ip + ir = i \<Longrightarrow> norm(cp - ip) \<le> e + k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4425 | proof- case goal1 thus ?case using norm_triangle_le[of "cp + cr - i" "- (cr - ir)"] | 
| 36350 | 4426 | unfolding goal1(3)[THEN sym] norm_minus_cancel by(auto simp add:algebra_simps) qed | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4427 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4428 | have "?x = norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p. integral k f))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4429 | unfolding split_def setsum_subtractf .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4430 | also have "... \<le> e + k" apply(rule *[OF **, where ir="setsum (\<lambda>k. integral k f) r"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4431 | proof- case goal2 have *:"(\<Sum>(x, k)\<in>p. integral k f) = (\<Sum>k\<in>snd ` p. integral k f)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4432 | apply(subst setsum_reindex_nonzero) apply fact | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4433 | unfolding split_paired_all snd_conv split_def o_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4434 | proof- fix x l y m assume as:"(x,l)\<in>p" "(y,m)\<in>p" "(x,l)\<noteq>(y,m)" "l = m" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4435 | from p'(4)[OF as(1)] guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4436 | show "integral l f = 0" unfolding uv apply(rule integral_unique) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4437 | apply(rule has_integral_null) unfolding content_eq_0_interior | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4438 | using p'(5)[OF as(1-3)] unfolding uv as(4)[THEN sym] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4439 | qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4440 | show ?case unfolding integral_combine_division_topdown[OF assms(1) q(2)] * r_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4441 | apply(rule setsum_Un_disjoint'[THEN sym]) using q(1) q'(1) p'(1) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4442 | next case goal1 have *:"k * real (card r) / (1 + real (card r)) < k" using k by(auto simp add:field_simps) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4443 | show ?case apply(rule le_less_trans[of _ "setsum (\<lambda>x. k / (real (card r) + 1)) r"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4444 | unfolding setsum_subtractf[THEN sym] apply(rule setsum_norm_le,fact) | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 4445 | apply rule apply(drule qq) defer unfolding divide_inverse setsum_left_distrib[THEN sym] | 
| 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 4446 | unfolding divide_inverse[THEN sym] using * by(auto simp add:field_simps real_eq_of_nat) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4447 | qed finally show "?x \<le> e + k" . qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4448 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4449 | lemma henstock_lemma_part2: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4450 |   assumes "f integrable_on {a..b}" "0 < e" "gauge d"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4451 |   "\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p -
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4452 |           integral({a..b}) f) < e"    "p tagged_partial_division_of {a..b}" "d fine p"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4453 |   shows "setsum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p \<le> 2 * real (DIM('n)) * e"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4454 | unfolding split_def apply(rule setsum_norm_allsubsets_bound) defer | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4455 | apply(rule henstock_lemma_part1[unfolded split_def,OF assms(1-3)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4456 | apply safe apply(rule assms[rule_format,unfolded split_def]) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4457 | apply(rule tagged_partial_division_subset,rule assms,assumption) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4458 | apply(rule fine_subset,assumption,rule assms) using assms(5) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4459 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4460 | lemma henstock_lemma: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4461 |   assumes "f integrable_on {a..b}" "e>0"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4462 | obtains d where "gauge d" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4463 |   "\<forall>p. p tagged_partial_division_of {a..b} \<and> d fine p
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4464 | \<longrightarrow> setsum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p < e" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4465 | proof- have *:"e / (2 * (real DIM('n) + 1)) > 0" apply(rule divide_pos_pos) using assms(2) by auto
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4466 | from integrable_integral[OF assms(1),unfolded has_integral[of f],rule_format,OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4467 | guess d .. note d = conjunctD2[OF this] show thesis apply(rule that,rule d) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4468 | proof safe case goal1 note * = henstock_lemma_part2[OF assms(1) * d this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4469 | show ?case apply(rule le_less_trans[OF *]) using `e>0` by(auto simp add:field_simps) qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4470 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4471 | subsection {* monotone convergence (bounded interval first). *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4472 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4473 | lemma monotone_convergence_interval: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4474 |   assumes "\<forall>k. (f k) integrable_on {a..b}"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4475 |   "\<forall>k. \<forall>x\<in>{a..b}.(f k x) \<le> (f (Suc k) x)"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4476 |   "\<forall>x\<in>{a..b}. ((\<lambda>k. f k x) ---> g x) sequentially"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4477 |   "bounded {integral {a..b} (f k) | k . k \<in> UNIV}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4478 |   shows "g integrable_on {a..b} \<and> ((\<lambda>k. integral ({a..b}) (f k)) ---> integral ({a..b}) g) sequentially"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4479 | proof(case_tac[!] "content {a..b} = 0") assume as:"content {a..b} = 0"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4480 | show ?thesis using integrable_on_null[OF as] unfolding integral_null[OF as] using Lim_const by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4481 | next assume ab:"content {a..b} \<noteq> 0"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4482 |   have fg:"\<forall>x\<in>{a..b}. \<forall> k. (f k x) $$ 0 \<le> (g x) $$ 0"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4483 | proof safe case goal1 note assms(3)[rule_format,OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4484 | note * = Lim_component_ge[OF this trivial_limit_sequentially] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4485 | show ?case apply(rule *) unfolding eventually_sequentially | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4486 | apply(rule_tac x=k in exI) apply- apply(rule transitive_stepwise_le) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4487 | using assms(2)[rule_format,OF goal1] by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4488 |   have "\<exists>i. ((\<lambda>k. integral ({a..b}) (f k)) ---> i) sequentially"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4489 | apply(rule bounded_increasing_convergent) defer | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4490 | apply rule apply(rule integral_le) apply safe | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4491 | apply(rule assms(1-2)[rule_format])+ using assms(4) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4492 | then guess i .. note i=this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4493 |   have i':"\<And>k. (integral({a..b}) (f k)) \<le> i$$0"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4494 | apply(rule Lim_component_ge,rule i) apply(rule trivial_limit_sequentially) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4495 | unfolding eventually_sequentially apply(rule_tac x=k in exI) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4496 | apply(rule transitive_stepwise_le) prefer 3 unfolding Eucl_real_simps apply(rule integral_le) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4497 | apply(rule assms(1-2)[rule_format])+ using assms(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4498 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4499 |   have "(g has_integral i) {a..b}" unfolding has_integral
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4500 | proof safe case goal1 note e=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4501 |     hence "\<forall>k. (\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4502 |              norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f k x) - integral {a..b} (f k)) < e / 2 ^ (k + 2)))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4503 | apply-apply(rule,rule assms(1)[unfolded has_integral_integral has_integral,rule_format]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4504 | apply(rule divide_pos_pos) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4505 | from choice[OF this] guess c .. note c=conjunctD2[OF this[rule_format],rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4506 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4507 |     have "\<exists>r. \<forall>k\<ge>r. 0 \<le> i$$0 - (integral {a..b} (f k)) \<and> i$$0 - (integral {a..b} (f k)) < e / 4"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4508 | proof- case goal1 have "e/4 > 0" using e by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4509 | from i[unfolded Lim_sequentially,rule_format,OF this] guess r .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4510 | thus ?case apply(rule_tac x=r in exI) apply rule | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4511 | apply(erule_tac x=k in allE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4512 | proof- case goal1 thus ?case using i'[of k] unfolding dist_real_def by auto qed qed | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4513 | then guess r .. note r=conjunctD2[OF this[rule_format]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4514 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4515 |     have "\<forall>x\<in>{a..b}. \<exists>n\<ge>r. \<forall>k\<ge>n. 0 \<le> (g x)$$0 - (f k x)$$0 \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4516 |            (g x)$$0 - (f k x)$$0 < e / (4 * content({a..b}))"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4517 |     proof case goal1 have "e / (4 * content {a..b}) > 0" apply(rule divide_pos_pos,fact)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4518 | using ab content_pos_le[of a b] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4519 | from assms(3)[rule_format,OF goal1,unfolded Lim_sequentially,rule_format,OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4520 | guess n .. note n=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4521 | thus ?case apply(rule_tac x="n + r" in exI) apply safe apply(erule_tac[2-3] x=k in allE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4522 | unfolding dist_real_def using fg[rule_format,OF goal1] by(auto simp add:field_simps) qed | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4523 | from bchoice[OF this] guess m .. note m=conjunctD2[OF this[rule_format],rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4524 | def d \<equiv> "\<lambda>x. c (m x) x" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4525 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4526 | show ?case apply(rule_tac x=d in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4527 | proof safe show "gauge d" using c(1) unfolding gauge_def d_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4528 |     next fix p assume p:"p tagged_division_of {a..b}" "d fine p"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4529 | note p'=tagged_division_ofD[OF p(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4530 | have "\<exists>a. \<forall>x\<in>p. m (fst x) \<le> a" by(rule upper_bound_finite_set,fact) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4531 | then guess s .. note s=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4532 | have *:"\<forall>a b c d. norm(a - b) \<le> e / 4 \<and> norm(b - c) < e / 2 \<and> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4533 | norm(c - d) < e / 4 \<longrightarrow> norm(a - d) < e" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4534 | proof safe case goal1 thus ?case using norm_triangle_lt[of "a - b" "b - c" "3* e/4"] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4535 | norm_triangle_lt[of "a - b + (b - c)" "c - d" e] unfolding norm_minus_cancel | 
| 36350 | 4536 | by(auto simp add:algebra_simps) qed | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4537 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - i) < e" apply(rule *[rule_format,where | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4538 | b="\<Sum>(x, k)\<in>p. content k *\<^sub>R f (m x) x" and c="\<Sum>(x, k)\<in>p. integral k (f (m x))"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4539 | proof safe case goal1 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4540 |          show ?case apply(rule order_trans[of _ "\<Sum>(x, k)\<in>p. content k * (e / (4 * content {a..b}))"])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4541 | unfolding setsum_subtractf[THEN sym] apply(rule order_trans,rule setsum_norm[OF p'(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4542 | apply(rule setsum_mono) unfolding split_paired_all split_conv | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4543 | unfolding split_def setsum_left_distrib[THEN sym] scaleR.diff_right[THEN sym] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4544 | unfolding additive_content_tagged_division[OF p(1), unfolded split_def] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4545 |          proof- fix x k assume xk:"(x,k) \<in> p" hence x:"x\<in>{a..b}" using p'(2-3)[OF xk] by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4546 | from p'(4)[OF xk] guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4547 |            show " norm (content k *\<^sub>R (g x - f (m x) x)) \<le> content k * (e / (4 * content {a..b}))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4548 | unfolding norm_scaleR uv unfolding abs_of_nonneg[OF content_pos_le] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4549 | apply(rule mult_left_mono) using m(2)[OF x,of "m x"] by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4550 | qed(insert ab,auto) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4551 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4552 | next case goal2 show ?case apply(rule le_less_trans[of _ "norm (\<Sum>j = 0..s. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4553 |            \<Sum>(x, k)\<in>{xk\<in>p. m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x)))"])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4554 | apply(subst setsum_group) apply fact apply(rule finite_atLeastAtMost) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4555 | apply(subst split_def)+ unfolding setsum_subtractf apply rule | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4556 |          proof- show "norm (\<Sum>j = 0..s. \<Sum>(x, k)\<in>{xk \<in> p.
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4557 | m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x))) < e / 2" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4558 |              apply(rule le_less_trans[of _ "setsum (\<lambda>i. e / 2^(i+2)) {0..s}"])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4559 | apply(rule setsum_norm_le[OF finite_atLeastAtMost]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4560 | proof show "(\<Sum>i = 0..s. e / 2 ^ (i + 2)) < e / 2" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 4561 | unfolding power_add divide_inverse inverse_mult_distrib | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4562 | unfolding setsum_right_distrib[THEN sym] setsum_left_distrib[THEN sym] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4563 | unfolding power_inverse sum_gp apply(rule mult_strict_left_mono[OF _ e]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4564 | unfolding power2_eq_square by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4565 |              fix t assume "t\<in>{0..s}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4566 |              show "norm (\<Sum>(x, k)\<in>{xk \<in> p. m (fst xk) = t}. content k *\<^sub>R f (m x) x -
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4567 | integral k (f (m x))) \<le> e / 2 ^ (t + 2)"apply(rule order_trans[of _ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4568 |                "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f t x - integral k (f t)) {xk \<in> p. m (fst xk) = t})"])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4569 | apply(rule eq_refl) apply(rule arg_cong[where f=norm]) apply(rule setsum_cong2) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4570 | apply(rule henstock_lemma_part1) apply(rule assms(1)[rule_format]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4571 | apply(rule divide_pos_pos,rule e) defer apply safe apply(rule c)+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4572 | apply rule apply assumption+ apply(rule tagged_partial_division_subset[of p]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4573 | apply(rule p(1)[unfolded tagged_division_of_def,THEN conjunct1]) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4574 | unfolding fine_def apply safe apply(drule p(2)[unfolded fine_def,rule_format]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4575 | unfolding d_def by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4576 | qed(insert s, auto) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4577 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4578 | next case goal3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4579 | note comb = integral_combine_tagged_division_topdown[OF assms(1)[rule_format] p(1)] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4580 | have *:"\<And>sr sx ss ks kr::real. kr = sr \<longrightarrow> ks = ss \<longrightarrow> ks \<le> i \<and> sr \<le> sx \<and> sx \<le> ss \<and> 0 \<le> i$$0 - kr$$0 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4581 | \<and> i$$0 - kr$$0 < e/4 \<longrightarrow> abs(sx - i) < e/4" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4582 | show ?case unfolding real_norm_def apply(rule *[rule_format],safe) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4583 | apply(rule comb[of r],rule comb[of s]) apply(rule i'[unfolded Eucl_real_simps]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4584 | apply(rule_tac[1-2] setsum_mono) unfolding split_paired_all split_conv | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4585 | apply(rule_tac[1-2] integral_le[OF ]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4586 |          proof safe show "0 \<le> i$$0 - (integral {a..b} (f r))$$0" using r(1) by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4587 |            show "i$$0 - (integral {a..b} (f r))$$0 < e / 4" using r(2) by auto
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4588 | fix x k assume xk:"(x,k)\<in>p" from p'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4589 | show "f r integrable_on k" "f s integrable_on k" "f (m x) integrable_on k" "f (m x) integrable_on k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4590 | unfolding uv apply(rule_tac[!] integrable_on_subinterval[OF assms(1)[rule_format]]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4591 | using p'(3)[OF xk] unfolding uv by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4592 |            fix y assume "y\<in>k" hence "y\<in>{a..b}" using p'(3)[OF xk] by auto
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4593 | hence *:"\<And>m. \<forall>n\<ge>m. (f m y) \<le> (f n y)" apply-apply(rule transitive_stepwise_le) using assms(2) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4594 | show "(f r y) \<le> (f (m x) y)" "(f (m x) y) \<le> (f s y)" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4595 | apply(rule_tac[!] *[rule_format]) using s[rule_format,OF xk] m(1)[of x] p'(2-3)[OF xk] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4596 | qed qed qed qed note * = this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4597 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4598 |    have "integral {a..b} g = i" apply(rule integral_unique) using * .
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4599 | thus ?thesis using i * by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4600 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4601 | lemma monotone_convergence_increasing: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4602 | assumes "\<forall>k. (f k) integrable_on s" "\<forall>k. \<forall>x\<in>s. (f k x) \<le> (f (Suc k) x)" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4603 |   "\<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially" "bounded {integral s (f k)| k. True}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4604 | shows "g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4605 | proof- have lem:"\<And>f::nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real. \<And> g s. \<forall>k.\<forall>x\<in>s. 0 \<le> (f k x) \<Longrightarrow> \<forall>k. (f k) integrable_on s \<Longrightarrow> | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4606 | \<forall>k. \<forall>x\<in>s. (f k x) \<le> (f (Suc k) x) \<Longrightarrow> \<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially \<Longrightarrow> | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4607 |     bounded {integral s (f k)| k. True} \<Longrightarrow> g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4608 | proof- case goal1 note assms=this[rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4609 | have "\<forall>x\<in>s. \<forall>k. (f k x)$$0 \<le> (g x)$$0" apply safe apply(rule Lim_component_ge) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4610 | apply(rule goal1(4)[rule_format],assumption) apply(rule trivial_limit_sequentially) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4611 | unfolding eventually_sequentially apply(rule_tac x=k in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4612 | apply(rule transitive_stepwise_le) using goal1(3) by auto note fg=this[rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4613 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4614 | have "\<exists>i. ((\<lambda>k. integral s (f k)) ---> i) sequentially" apply(rule bounded_increasing_convergent) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4615 | apply(rule goal1(5)) apply(rule,rule integral_le) apply(rule goal1(2)[rule_format])+ | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4616 | using goal1(3) by auto then guess i .. note i=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4617 | have "\<And>k. \<forall>x\<in>s. \<forall>n\<ge>k. f k x \<le> f n x" apply(rule,rule transitive_stepwise_le) using goal1(3) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4618 | hence i':"\<forall>k. (integral s (f k))$$0 \<le> i$$0" apply-apply(rule,rule Lim_component_ge) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4619 | apply(rule i,rule trivial_limit_sequentially) unfolding eventually_sequentially | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4620 | apply(rule_tac x=k in exI,safe) apply(rule integral_component_le) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4621 | apply(rule goal1(2)[rule_format])+ by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4622 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4623 | note int = assms(2)[unfolded integrable_alt[of _ s],THEN conjunct1,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4624 | have ifif:"\<And>k t. (\<lambda>x. if x \<in> t then if x \<in> s then f k x else 0 else 0) = | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4625 | (\<lambda>x. if x \<in> t\<inter>s then f k x else 0)" apply(rule ext) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4626 |     have int':"\<And>k a b. f k integrable_on {a..b} \<inter> s" apply(subst integrable_restrict_univ[THEN sym])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4627 | apply(subst ifif[THEN sym]) apply(subst integrable_restrict_univ) using int . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4628 |     have "\<And>a b. (\<lambda>x. if x \<in> s then g x else 0) integrable_on {a..b} \<and>
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4629 |       ((\<lambda>k. integral {a..b} (\<lambda>x. if x \<in> s then f k x else 0)) --->
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4630 |       integral {a..b} (\<lambda>x. if x \<in> s then g x else 0)) sequentially"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4631 | proof(rule monotone_convergence_interval,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4632 | case goal1 show ?case using int . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4633 | next case goal2 thus ?case apply-apply(cases "x\<in>s") using assms(3) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4634 | next case goal3 thus ?case apply-apply(cases "x\<in>s") using assms(4) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4635 | next case goal4 note * = integral_nonneg | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4636 |       have "\<And>k. norm (integral {a..b} (\<lambda>x. if x \<in> s then f k x else 0)) \<le> norm (integral s (f k))"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4637 | unfolding real_norm_def apply(subst abs_of_nonneg) apply(rule *[OF int]) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4638 | apply(safe,case_tac "x\<in>s") apply(drule assms(1)) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4639 | apply(subst abs_of_nonneg) apply(rule *[OF assms(2) goal1(1)[THEN spec]]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4640 | apply(subst integral_restrict_univ[THEN sym,OF int]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4641 | unfolding ifif unfolding integral_restrict_univ[OF int'] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4642 | apply(rule integral_subset_le[OF _ int' assms(2)]) using assms(1) by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4643 | thus ?case using assms(5) unfolding bounded_iff apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4644 | apply(rule_tac x=aa in exI,safe) apply(erule_tac x="integral s (f k)" in ballE) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4645 | apply(rule order_trans) apply assumption by auto qed note g = conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4646 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4647 | have "(g has_integral i) s" unfolding has_integral_alt' apply safe apply(rule g(1)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4648 | proof- case goal1 hence "e/4>0" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4649 | from i[unfolded Lim_sequentially,rule_format,OF this] guess N .. note N=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4650 | note assms(2)[of N,unfolded has_integral_integral has_integral_alt'[of "f N"]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4651 | from this[THEN conjunct2,rule_format,OF `e/4>0`] guess B .. note B=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4652 | show ?case apply(rule,rule,rule B,safe) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4653 |       proof- fix a b::"'n::ordered_euclidean_space" assume ab:"ball 0 B \<subseteq> {a..b}"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4654 | from `e>0` have "e/2>0" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4655 | from g(2)[unfolded Lim_sequentially,of a b,rule_format,OF this] guess M .. note M=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4656 |         have **:"norm (integral {a..b} (\<lambda>x. if x \<in> s then f N x else 0) - i) < e/2"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4657 | apply(rule norm_triangle_half_l) using B(2)[rule_format,OF ab] N[rule_format,of N] | 
| 36587 | 4658 | unfolding dist_norm apply-defer apply(subst norm_minus_commute) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4659 | have *:"\<And>f1 f2 g. abs(f1 - i) < e / 2 \<longrightarrow> abs(f2 - g) < e / 2 \<longrightarrow> f1 \<le> f2 \<longrightarrow> f2 \<le> i | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4660 | \<longrightarrow> abs(g - i) < e" unfolding Eucl_real_simps by arith | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4661 |         show "norm (integral {a..b} (\<lambda>x. if x \<in> s then g x else 0) - i) < e" 
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4662 | unfolding real_norm_def apply(rule *[rule_format]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4663 | apply(rule **[unfolded real_norm_def]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4664 | apply(rule M[rule_format,of "M + N",unfolded dist_real_def]) apply(rule le_add1) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4665 | apply(rule integral_le[OF int int]) defer | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4666 | apply(rule order_trans[OF _ i'[rule_format,of "M + N",unfolded Eucl_real_simps]]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4667 | proof safe case goal2 have "\<And>m. x\<in>s \<Longrightarrow> \<forall>n\<ge>m. (f m x)$$0 \<le> (f n x)$$0" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4668 | apply(rule transitive_stepwise_le) using assms(3) by auto thus ?case by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4669 | next case goal1 show ?case apply(subst integral_restrict_univ[THEN sym,OF int]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4670 | unfolding ifif integral_restrict_univ[OF int'] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4671 | apply(rule integral_subset_le[OF _ int']) using assms by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4672 | qed qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4673 | thus ?case apply safe defer apply(drule integral_unique) using i by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4674 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4675 | have sub:"\<And>k. integral s (\<lambda>x. f k x - f 0 x) = integral s (f k) - integral s (f 0)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4676 | apply(subst integral_sub) apply(rule assms(1)[rule_format])+ by rule | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4677 | have "\<And>x m. x\<in>s \<Longrightarrow> \<forall>n\<ge>m. (f m x) \<le> (f n x)" apply(rule transitive_stepwise_le) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4678 | using assms(2) by auto note * = this[rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4679 | have "(\<lambda>x. g x - f 0 x) integrable_on s \<and>((\<lambda>k. integral s (\<lambda>x. f (Suc k) x - f 0 x)) ---> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4680 | integral s (\<lambda>x. g x - f 0 x)) sequentially" apply(rule lem,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4681 | proof- case goal1 thus ?case using *[of x 0 "Suc k"] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4682 | next case goal2 thus ?case apply(rule integrable_sub) using assms(1) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4683 | next case goal3 thus ?case using *[of x "Suc k" "Suc (Suc k)"] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4684 | next case goal4 thus ?case apply-apply(rule Lim_sub) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4685 | using seq_offset[OF assms(3)[rule_format],of x 1] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4686 | next case goal5 thus ?case using assms(4) unfolding bounded_iff | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4687 | apply safe apply(rule_tac x="a + norm (integral s (\<lambda>x. f 0 x))" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4688 | apply safe apply(erule_tac x="integral s (\<lambda>x. f (Suc k) x)" in ballE) unfolding sub | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4689 | apply(rule order_trans[OF norm_triangle_ineq4]) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4690 | note conjunctD2[OF this] note Lim_add[OF this(2) Lim_const[of "integral s (f 0)"]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4691 | integrable_add[OF this(1) assms(1)[rule_format,of 0]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4692 | thus ?thesis unfolding sub apply-apply rule defer apply(subst(asm) integral_sub) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4693 | using assms(1) apply auto apply(rule seq_offset_rev[where k=1]) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4694 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4695 | lemma monotone_convergence_decreasing: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4696 | assumes "\<forall>k. (f k) integrable_on s" "\<forall>k. \<forall>x\<in>s. (f (Suc k) x) \<le> (f k x)" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4697 |   "\<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially" "bounded {integral s (f k)| k. True}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4698 | shows "g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4699 | proof- note assm = assms[rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4700 |   have *:"{integral s (\<lambda>x. - f k x) |k. True} = op *\<^sub>R -1 ` {integral s (f k)| k. True}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4701 | apply safe unfolding image_iff apply(rule_tac x="integral s (f k)" in bexI) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4702 | apply(rule_tac x=k in exI) unfolding integral_neg[OF assm(1)] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4703 | have "(\<lambda>x. - g x) integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. - f k x)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4704 | ---> integral s (\<lambda>x. - g x)) sequentially" apply(rule monotone_convergence_increasing) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4705 | apply(safe,rule integrable_neg) apply(rule assm) defer apply(rule Lim_neg) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4706 | apply(rule assm,assumption) unfolding * apply(rule bounded_scaling) using assm by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4707 | note * = conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4708 | show ?thesis apply rule using integrable_neg[OF *(1)] defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4709 | using Lim_neg[OF *(2)] apply- unfolding integral_neg[OF assm(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4710 | unfolding integral_neg[OF *(1),THEN sym] by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4711 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4712 | subsection {* absolute integrability (this is the same as Lebesgue integrability). *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4713 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4714 | definition absolutely_integrable_on (infixr "absolutely'_integrable'_on" 46) where | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4715 | "f absolutely_integrable_on s \<longleftrightarrow> f integrable_on s \<and> (\<lambda>x. (norm(f x))) integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4716 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4717 | lemma absolutely_integrable_onI[intro?]: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4718 | "f integrable_on s \<Longrightarrow> (\<lambda>x. (norm(f x))) integrable_on s \<Longrightarrow> f absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4719 | unfolding absolutely_integrable_on_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4720 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4721 | lemma absolutely_integrable_onD[dest]: assumes "f absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4722 | shows "f integrable_on s" "(\<lambda>x. (norm(f x))) integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4723 | using assms unfolding absolutely_integrable_on_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4724 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4725 | (*lemma absolutely_integrable_on_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4726 | "(vec1 o f) absolutely_integrable_on s \<longleftrightarrow> f absolutely_integrable_on s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4727 | unfolding absolutely_integrable_on_def o_def by auto*) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4728 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4729 | lemma integral_norm_bound_integral: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4730 | assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. norm(f x) \<le> g x" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4731 | shows "norm(integral s f) \<le> (integral s g)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4732 | proof- have *:"\<And>x y. (\<forall>e::real. 0 < e \<longrightarrow> x < y + e) \<longrightarrow> x \<le> y" apply(safe,rule ccontr) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4733 | apply(erule_tac x="x - y" in allE) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4734 | have "\<And>e sg dsa dia ig. norm(sg) \<le> dsa \<longrightarrow> abs(dsa - dia) < e / 2 \<longrightarrow> norm(sg - ig) < e / 2 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4735 | \<longrightarrow> norm(ig) < dia + e" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4736 | proof safe case goal1 show ?case apply(rule le_less_trans[OF norm_triangle_sub[of ig sg]]) | 
| 36844 | 4737 | apply(subst real_sum_of_halves[of e,THEN sym]) unfolding add_assoc[symmetric] | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4738 | apply(rule add_le_less_mono) defer apply(subst norm_minus_commute,rule goal1) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4739 | apply(rule order_trans[OF goal1(1)]) using goal1(2) by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4740 | qed note norm=this[rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4741 |   have lem:"\<And>f::'n::ordered_euclidean_space \<Rightarrow> 'a. \<And> g a b. f integrable_on {a..b} \<Longrightarrow> g integrable_on {a..b} \<Longrightarrow>
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4742 |     \<forall>x\<in>{a..b}. norm(f x) \<le> (g x) \<Longrightarrow> norm(integral({a..b}) f) \<le> (integral({a..b}) g)"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4743 | proof(rule *[rule_format]) case goal1 hence *:"e/2>0" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4744 | from integrable_integral[OF goal1(1),unfolded has_integral[of f],rule_format,OF *] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4745 | guess d1 .. note d1 = conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4746 | from integrable_integral[OF goal1(2),unfolded has_integral[of g],rule_format,OF *] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4747 | guess d2 .. note d2 = conjunctD2[OF this,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4748 | note gauge_inter[OF d1(1) d2(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4749 | from fine_division_exists[OF this, of a b] guess p . note p=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4750 | show ?case apply(rule norm) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4751 | apply(rule d2(2)[OF conjI[OF p(1)],unfolded real_norm_def]) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4752 | apply(rule d1(2)[OF conjI[OF p(1)]]) defer apply(rule setsum_norm_le) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4753 | proof safe fix x k assume "(x,k)\<in>p" note as = tagged_division_ofD(2-4)[OF p(1) this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4754 | from this(3) guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4755 | show "norm (content k *\<^sub>R f x) \<le> content k *\<^sub>R g x" unfolding uv norm_scaleR | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4756 | unfolding abs_of_nonneg[OF content_pos_le] real_scaleR_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4757 | apply(rule mult_left_mono) using goal1(3) as by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4758 | qed(insert p[unfolded fine_inter],auto) qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4759 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4760 |   { presume "\<And>e. 0 < e \<Longrightarrow> norm (integral s f) < integral s g + e" 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4761 | thus ?thesis apply-apply(rule *[rule_format]) by auto } | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4762 | fix e::real assume "e>0" hence e:"e/2 > 0" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4763 | note assms(1)[unfolded integrable_alt[of f]] note f=this[THEN conjunct1,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4764 | note assms(2)[unfolded integrable_alt[of g]] note g=this[THEN conjunct1,rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4765 | from integrable_integral[OF assms(1),unfolded has_integral'[of f],rule_format,OF e] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4766 | guess B1 .. note B1=conjunctD2[OF this[rule_format],rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4767 | from integrable_integral[OF assms(2),unfolded has_integral'[of g],rule_format,OF e] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4768 | guess B2 .. note B2=conjunctD2[OF this[rule_format],rule_format] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4769 | from bounded_subset_closed_interval[OF bounded_ball, of "0::'n::ordered_euclidean_space" "max B1 B2"] | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4770 | guess a b apply-by(erule exE)+ note ab=this[unfolded ball_max_Un] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4771 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4772 |   have "ball 0 B1 \<subseteq> {a..b}" using ab by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4773 | from B1(2)[OF this] guess z .. note z=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4774 |   have "ball 0 B2 \<subseteq> {a..b}" using ab by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4775 | from B2(2)[OF this] guess w .. note w=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4776 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4777 | show "norm (integral s f) < integral s g + e" apply(rule norm) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4778 | apply(rule lem[OF f g, of a b]) unfolding integral_unique[OF z(1)] integral_unique[OF w(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4779 | defer apply(rule w(2)[unfolded real_norm_def],rule z(2)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4780 | apply safe apply(case_tac "x\<in>s") unfolding if_P apply(rule assms(3)[rule_format]) by auto qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4781 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4782 | lemma integral_norm_bound_integral_component: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4783 | fixes g::"'n => 'b::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4784 | assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. norm(f x) \<le> (g x)$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4785 | shows "norm(integral s f) \<le> (integral s g)$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4786 | proof- have "norm (integral s f) \<le> integral s ((\<lambda>x. x $$ k) o g)" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4787 | apply(rule integral_norm_bound_integral[OF assms(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4788 | apply(rule integrable_linear[OF assms(2)],rule) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4789 | unfolding o_def by(rule assms) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4790 | thus ?thesis unfolding o_def integral_component_eq[OF assms(2)] . qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4791 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4792 | lemma has_integral_norm_bound_integral_component: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4793 | fixes g::"'n => 'b::ordered_euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4794 | assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. norm(f x) \<le> (g x)$$k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4795 | shows "norm(i) \<le> j$$k" using integral_norm_bound_integral_component[of f s g k] | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4796 | unfolding integral_unique[OF assms(1)] integral_unique[OF assms(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4797 | using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4798 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4799 | lemma absolutely_integrable_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4800 | assumes "f absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4801 | shows "norm(integral s f) \<le> integral s (\<lambda>x. norm(f x))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4802 | apply(rule integral_norm_bound_integral) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4803 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4804 | lemma absolutely_integrable_0[intro]: "(\<lambda>x. 0) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4805 | unfolding absolutely_integrable_on_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4806 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4807 | lemma absolutely_integrable_cmul[intro]: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4808 | "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4809 | unfolding absolutely_integrable_on_def using integrable_cmul[of f s c] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4810 | using integrable_cmul[of "\<lambda>x. norm (f x)" s "abs c"] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4811 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4812 | lemma absolutely_integrable_neg[intro]: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4813 | "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4814 | apply(drule absolutely_integrable_cmul[where c="-1"]) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4815 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4816 | lemma absolutely_integrable_norm[intro]: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4817 | "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. norm(f x)) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4818 | unfolding absolutely_integrable_on_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4819 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4820 | lemma absolutely_integrable_abs[intro]: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4821 | "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. abs(f x::real)) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4822 | apply(drule absolutely_integrable_norm) unfolding real_norm_def . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4823 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4824 | lemma absolutely_integrable_on_subinterval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4825 |   "f absolutely_integrable_on s \<Longrightarrow> {a..b} \<subseteq> s \<Longrightarrow> f absolutely_integrable_on {a..b}" 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4826 | unfolding absolutely_integrable_on_def by(meson integrable_on_subinterval) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4827 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4828 | lemma absolutely_integrable_bounded_variation: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4829 | assumes "f absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4830 | obtains B where "\<forall>d. d division_of (\<Union>d) \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4831 | apply(rule that[of "integral UNIV (\<lambda>x. norm (f x))"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4832 | proof safe case goal1 note d = division_ofD[OF this(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4833 | have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>i\<in>d. integral i (\<lambda>x. norm (f x)))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4834 | apply(rule setsum_mono,rule absolutely_integrable_le) apply(drule d(4),safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4835 | apply(rule absolutely_integrable_on_subinterval[OF assms]) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4836 | also have "... \<le> integral (\<Union>d) (\<lambda>x. norm (f x))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4837 | apply(subst integral_combine_division_topdown[OF _ goal1(2)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4838 | using integrable_on_subdivision[OF goal1(2)] using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4839 | also have "... \<le> integral UNIV (\<lambda>x. norm (f x))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4840 | apply(rule integral_subset_le) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4841 | using integrable_on_subdivision[OF goal1(2)] using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4842 | finally show ?case . qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4843 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4844 | lemma helplemma: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4845 | assumes "setsum (\<lambda>x. norm(f x - g x)) s < e" "finite s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4846 | shows "abs(setsum (\<lambda>x. norm(f x)) s - setsum (\<lambda>x. norm(g x)) s) < e" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4847 | unfolding setsum_subtractf[THEN sym] apply(rule le_less_trans[OF setsum_abs]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4848 | apply(rule le_less_trans[OF _ assms(1)]) apply(rule setsum_mono) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4849 | using norm_triangle_ineq3 . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4850 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4851 | lemma bounded_variation_absolutely_integrable_interval: | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4852 |   fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assumes "f integrable_on {a..b}"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4853 |   "\<forall>d. d division_of {a..b} \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4854 |   shows "f absolutely_integrable_on {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4855 | proof- let ?S = "(\<lambda>d. setsum (\<lambda>k. norm(integral k f)) d) ` {d. d division_of {a..b} }" def i \<equiv> "Sup ?S"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4856 | have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4857 | apply(rule elementary_interval) defer apply(rule_tac x=B in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4858 | apply(rule setleI) using assms(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4859 | show ?thesis apply(rule,rule assms) apply rule apply(subst has_integral[of _ i]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4860 | proof safe case goal1 hence "i - e / 2 \<notin> Collect (isUb UNIV (setsum (\<lambda>k. norm (integral k f)) ` | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4861 |         {d. d division_of {a..b}}))" using isLub_ubs[OF i,rule_format]
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4862 | unfolding setge_def ubs_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4863 |     hence " \<exists>y. y division_of {a..b} \<and> i - e / 2 < (\<Sum>k\<in>y. norm (integral k f))"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 4864 | unfolding mem_Collect_eq isUb_def setle_def by(simp add:not_le) then guess d .. note d=conjunctD2[OF this] | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4865 | note d' = division_ofD[OF this(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4866 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4867 |     have "\<forall>x. \<exists>e>0. \<forall>i\<in>d. x \<notin> i \<longrightarrow> ball x e \<inter> i = {}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4868 |     proof case goal1 have "\<exists>da>0. \<forall>xa\<in>\<Union>{i \<in> d. x \<notin> i}. da \<le> dist x xa"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4869 | apply(rule separate_point_closed) apply(rule closed_Union) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4870 | apply(rule finite_subset[OF _ d'(1)]) apply safe apply(drule d'(4)) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4871 | thus ?case apply safe apply(rule_tac x=da in exI,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4872 | apply(erule_tac x=xa in ballE) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4873 | qed from choice[OF this] guess k .. note k=conjunctD2[OF this[rule_format],rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4874 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4875 | have "e/2 > 0" using goal1 by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4876 | from henstock_lemma[OF assms(1) this] guess g . note g=this[rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4877 | let ?g = "\<lambda>x. g x \<inter> ball x (k x)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4878 | show ?case apply(rule_tac x="?g" in exI) apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4879 | proof- show "gauge ?g" using g(1) unfolding gauge_def using k(1) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4880 |       fix p assume "p tagged_division_of {a..b}" "?g fine p"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4881 | note p = this(1) conjunctD2[OF this(2)[unfolded fine_inter]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4882 | note p' = tagged_division_ofD[OF p(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4883 |       def p' \<equiv> "{(x,k) | x k. \<exists>i l. x \<in> i \<and> i \<in> d \<and> (x,l) \<in> p \<and> k = i \<inter> l}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4884 | have gp':"g fine p'" using p(2) unfolding p'_def fine_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4885 |       have p'':"p' tagged_division_of {a..b}" apply(rule tagged_division_ofI)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4886 | proof- show "finite p'" apply(rule finite_subset[of _ "(\<lambda>(k,(x,l)). (x,k \<inter> l)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4887 |           ` {(k,xl) | k xl. k \<in> d \<and> xl \<in> p}"]) unfolding p'_def 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4888 | defer apply(rule finite_imageI,rule finite_product_dependent[OF d'(1) p'(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4889 | apply safe unfolding image_iff apply(rule_tac x="(i,x,l)" in bexI) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4890 | fix x k assume "(x,k)\<in>p'" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4891 | hence "\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> k = i \<inter> l" unfolding p'_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4892 | then guess i l apply-by(erule exE)+ note il=conjunctD4[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4893 |         show "x\<in>k" "k\<subseteq>{a..b}" using p'(2-3)[OF il(3)] il by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4894 |         show "\<exists>a b. k = {a..b}" unfolding il using p'(4)[OF il(3)] d'(4)[OF il(2)]
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4895 | apply safe unfolding inter_interval by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4896 | next fix x1 k1 assume "(x1,k1)\<in>p'" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4897 | hence "\<exists>i l. x1 \<in> i \<and> i \<in> d \<and> (x1, l) \<in> p \<and> k1 = i \<inter> l" unfolding p'_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4898 | then guess i1 l1 apply-by(erule exE)+ note il1=conjunctD4[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4899 | fix x2 k2 assume "(x2,k2)\<in>p'" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4900 | hence "\<exists>i l. x2 \<in> i \<and> i \<in> d \<and> (x2, l) \<in> p \<and> k2 = i \<inter> l" unfolding p'_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4901 | then guess i2 l2 apply-by(erule exE)+ note il2=conjunctD4[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4902 | assume "(x1, k1) \<noteq> (x2, k2)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4903 |         hence "interior(i1) \<inter> interior(i2) = {} \<or> interior(l1) \<inter> interior(l2) = {}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4904 | using d'(5)[OF il1(2) il2(2)] p'(5)[OF il1(3) il2(3)] unfolding il1 il2 by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4905 |         thus "interior k1 \<inter> interior k2 = {}" unfolding il1 il2 by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4906 |       next have *:"\<forall>(x, X) \<in> p'. X \<subseteq> {a..b}" unfolding p'_def using d' by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4907 |         show "\<Union>{k. \<exists>x. (x, k) \<in> p'} = {a..b}" apply rule apply(rule Union_least)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4908 | unfolding mem_Collect_eq apply(erule exE) apply(drule *[rule_format]) apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4909 |         proof- fix y assume y:"y\<in>{a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4910 | hence "\<exists>x l. (x, l) \<in> p \<and> y\<in>l" unfolding p'(6)[THEN sym] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4911 | then guess x l apply-by(erule exE)+ note xl=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4912 | hence "\<exists>k. k\<in>d \<and> y\<in>k" using y unfolding d'(6)[THEN sym] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4913 | then guess i .. note i = conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4914 | have "x\<in>i" using fineD[OF p(3) xl(1)] using k(2)[OF i(1), of x] using i(2) xl(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4915 |           thus "y\<in>\<Union>{k. \<exists>x. (x, k) \<in> p'}" unfolding p'_def Union_iff apply(rule_tac x="i \<inter> l" in bexI)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4916 | defer unfolding mem_Collect_eq apply(rule_tac x=x in exI)+ apply(rule_tac x="i\<inter>l" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4917 | apply safe apply(rule_tac x=i in exI) apply(rule_tac x=l in exI) using i xl by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4918 | qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4919 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4920 | hence "(\<Sum>(x, k)\<in>p'. norm (content k *\<^sub>R f x - integral k f)) < e / 2" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4921 | apply-apply(rule g(2)[rule_format]) unfolding tagged_division_of_def apply safe using gp' . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4922 | hence **:" \<bar>(\<Sum>(x,k)\<in>p'. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p'. norm (integral k f))\<bar> < e / 2" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4923 | unfolding split_def apply(rule helplemma) using p'' by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4924 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4925 |       have p'alt:"p' = {(x,(i \<inter> l)) | x i l. (x,l) \<in> p \<and> i \<in> d \<and> ~(i \<inter> l = {})}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4926 | proof safe case goal2 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4927 | have "x\<in>i" using fineD[OF p(3) goal2(1)] k(2)[OF goal2(2), of x] goal2(4-) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4928 | hence "(x, i \<inter> l) \<in> p'" unfolding p'_def apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4929 | apply(rule_tac x=x in exI,rule_tac x="i\<inter>l" in exI) apply safe using goal2 by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4930 | thus ?case using goal2(3) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4931 | next fix x k assume "(x,k)\<in>p'" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4932 | hence "\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> k = i \<inter> l" unfolding p'_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4933 | then guess i l apply-by(erule exE)+ note il=conjunctD4[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4934 |         thus "\<exists>y i l. (x, k) = (y, i \<inter> l) \<and> (y, l) \<in> p \<and> i \<in> d \<and> i \<inter> l \<noteq> {}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4935 | apply(rule_tac x=x in exI,rule_tac x=i in exI,rule_tac x=l in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4936 | using p'(2)[OF il(3)] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4937 | qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4938 | have sum_p':"(\<Sum>(x, k)\<in>p'. norm (integral k f)) = (\<Sum>k\<in>snd ` p'. norm (integral k f))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4939 | apply(subst setsum_over_tagged_division_lemma[OF p'',of "\<lambda>k. norm (integral k f)"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4940 | unfolding norm_eq_zero apply(rule integral_null,assumption) .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4941 | note snd_p = division_ofD[OF division_of_tagged_division[OF p(1)]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4942 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4943 | have *:"\<And>sni sni' sf sf'. abs(sf' - sni') < e / 2 \<longrightarrow> i - e / 2 < sni \<and> sni' \<le> i \<and> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4944 | sni \<le> sni' \<and> sf' = sf \<longrightarrow> abs(sf - i) < e" by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4945 | show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) - i) < e" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4946 | unfolding real_norm_def apply(rule *[rule_format,OF **],safe) apply(rule d(2)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4947 | proof- case goal1 show ?case unfolding sum_p' | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4948 | apply(rule isLubD2[OF i]) using division_of_tagged_division[OF p''] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4949 |       next case goal2 have *:"{k \<inter> l | k l. k \<in> d \<and> l \<in> snd ` p} =
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4950 |           (\<lambda>(k,l). k \<inter> l) ` {(k,l)|k l. k \<in> d \<and> l \<in> snd ` p}" by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4951 | have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>i\<in>d. \<Sum>l\<in>snd ` p. norm (integral (i \<inter> l) f))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4952 | proof(rule setsum_mono) case goal1 note k=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4953 | from d'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4954 |           def d' \<equiv> "{{u..v} \<inter> l |l. l \<in> snd ` p \<and>  ~({u..v} \<inter> l = {})}" note uvab = d'(2)[OF k[unfolded uv]]
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4955 |           have "d' division_of {u..v}" apply(subst d'_def) apply(rule division_inter_1) 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4956 | apply(rule division_of_tagged_division[OF p(1)]) using uvab . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4957 | hence "norm (integral k f) \<le> setsum (\<lambda>k. norm (integral k f)) d'" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4958 | unfolding uv apply(subst integral_combine_division_topdown[of _ _ d']) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4959 | apply(rule integrable_on_subinterval[OF assms(1) uvab]) apply assumption | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4960 | apply(rule setsum_norm_le) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4961 |           also have "... = (\<Sum>k\<in>{k \<inter> l |l. l \<in> snd ` p}. norm (integral k f))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4962 | apply(rule setsum_mono_zero_left) apply(subst simple_image) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4963 | apply(rule finite_imageI)+ apply fact unfolding d'_def uv apply blast | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4964 |           proof case goal1 hence "i \<in> {{u..v} \<inter> l |l. l \<in> snd ` p}" by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4965 | from this[unfolded mem_Collect_eq] guess l .. note l=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4966 |             hence "{u..v} \<inter> l = {}" using goal1 by auto thus ?case using l by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4967 | qed also have "... = (\<Sum>l\<in>snd ` p. norm (integral (k \<inter> l) f))" unfolding simple_image | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4968 | apply(rule setsum_reindex_nonzero[unfolded o_def])apply(rule finite_imageI,rule p') | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4969 | proof- case goal1 have "interior (k \<inter> l) \<subseteq> interior (l \<inter> y)" apply(subst(2) interior_inter) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4970 | apply(rule Int_greatest) defer apply(subst goal1(4)) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4971 |             hence *:"interior (k \<inter> l) = {}" using snd_p(5)[OF goal1(1-3)] by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4972 | from d'(4)[OF k] snd_p(4)[OF goal1(1)] guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4973 | show ?case using * unfolding uv inter_interval content_eq_0_interior[THEN sym] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4974 | qed finally show ?case . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4975 |         qed also have "... = (\<Sum>(i,l)\<in>{(i, l) |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral (i\<inter>l) f))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4976 | apply(subst sum_sum_product[THEN sym],fact) using p'(1) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4977 |         also have "... = (\<Sum>x\<in>{(i, l) |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral (split op \<inter> x) f))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4978 | unfolding split_def .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4979 |         also have "... = (\<Sum>k\<in>{i \<inter> l |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral k f))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4980 | unfolding * apply(rule setsum_reindex_nonzero[THEN sym,unfolded o_def]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4981 | apply(rule finite_product_dependent) apply(fact,rule finite_imageI,rule p') | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4982 | unfolding split_paired_all mem_Collect_eq split_conv o_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4983 | proof- note * = division_ofD(4,5)[OF division_of_tagged_division,OF p(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4984 | fix l1 l2 k1 k2 assume as:"(l1, k1) \<noteq> (l2, k2)" "l1 \<inter> k1 = l2 \<inter> k2" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4985 | "\<exists>i l. (l1, k1) = (i, l) \<and> i \<in> d \<and> l \<in> snd ` p" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4986 | "\<exists>i l. (l2, k2) = (i, l) \<and> i \<in> d \<and> l \<in> snd ` p" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4987 | hence "l1 \<in> d" "k1 \<in> snd ` p" by auto from d'(4)[OF this(1)] *(1)[OF this(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4988 | guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4989 | have "l1 \<noteq> l2 \<or> k1 \<noteq> k2" using as by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4990 |           hence "(interior(k1) \<inter> interior(k2) = {} \<or> interior(l1) \<inter> interior(l2) = {})" apply-
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4991 | apply(erule disjE) apply(rule disjI2) apply(rule d'(5)) prefer 4 apply(rule disjI1) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4992 | apply(rule *) using as by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4993 | moreover have "interior(l1 \<inter> k1) = interior(l2 \<inter> k2)" using as(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4994 |           ultimately have "interior(l1 \<inter> k1) = {}" by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4995 | thus "norm (integral (l1 \<inter> k1) f) = 0" unfolding uv inter_interval | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4996 | unfolding content_eq_0_interior[THEN sym] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4997 | qed also have "... = (\<Sum>(x, k)\<in>p'. norm (integral k f))" unfolding sum_p' | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4998 | apply(rule setsum_mono_zero_right) apply(subst *) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 4999 | apply(rule finite_imageI[OF finite_product_dependent]) apply fact | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5000 | apply(rule finite_imageI[OF p'(1)]) apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5001 |         proof- case goal2 have "ia \<inter> b = {}" using goal2 unfolding p'alt image_iff Bex_def not_ex
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5002 | apply(erule_tac x="(a,ia\<inter>b)" in allE) by auto thus ?case by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5003 | next case goal1 thus ?case unfolding p'_def apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5004 | apply(rule_tac x=i in exI,rule_tac x=l in exI) unfolding snd_conv image_iff | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5005 | apply safe apply(rule_tac x="(a,l)" in bexI) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5006 | qed finally show ?case . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5007 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5008 | next case goal3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5009 |         let ?S = "{(x, i \<inter> l) |x i l. (x, l) \<in> p \<and> i \<in> d}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5010 |         have Sigma_alt:"\<And>s t. s \<times> t = {(i, j) |i j. i \<in> s \<and> j \<in> t}" by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5011 |         have *:"?S = (\<lambda>(xl,i). (fst xl, snd xl \<inter> i)) ` (p \<times> d)" (*{(xl,i)|xl i. xl\<in>p \<and> i\<in>d}"**)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5012 | apply safe unfolding image_iff apply(rule_tac x="((x,l),i)" in bexI) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5013 | note pdfin = finite_cartesian_product[OF p'(1) d'(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5014 | have "(\<Sum>(x, k)\<in>p'. norm (content k *\<^sub>R f x)) = (\<Sum>(x, k)\<in>?S. \<bar>content k\<bar> * norm (f x))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5015 | unfolding norm_scaleR apply(rule setsum_mono_zero_left) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5016 | apply(subst *, rule finite_imageI) apply fact unfolding p'alt apply blast | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5017 | apply safe apply(rule_tac x=x in exI,rule_tac x=i in exI,rule_tac x=l in exI) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5018 | also have "... = (\<Sum>((x,l),i)\<in>p \<times> d. \<bar>content (l \<inter> i)\<bar> * norm (f x))" unfolding * | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5019 | apply(subst setsum_reindex_nonzero,fact) unfolding split_paired_all | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5020 | unfolding o_def split_def snd_conv fst_conv mem_Sigma_iff Pair_eq apply(erule_tac conjE)+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5021 | proof- fix x1 l1 k1 x2 l2 k2 assume as:"(x1,l1)\<in>p" "(x2,l2)\<in>p" "k1\<in>d" "k2\<in>d" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5022 | "x1 = x2" "l1 \<inter> k1 = l2 \<inter> k2" "\<not> ((x1 = x2 \<and> l1 = l2) \<and> k1 = k2)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5023 | from d'(4)[OF as(3)] p'(4)[OF as(1)] guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5024 | from as have "l1 \<noteq> l2 \<or> k1 \<noteq> k2" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5025 |           hence "(interior(k1) \<inter> interior(k2) = {} \<or> interior(l1) \<inter> interior(l2) = {})" 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5026 | apply-apply(erule disjE) apply(rule disjI2) defer apply(rule disjI1) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5027 | apply(rule d'(5)[OF as(3-4)],assumption) apply(rule p'(5)[OF as(1-2)]) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5028 | moreover have "interior(l1 \<inter> k1) = interior(l2 \<inter> k2)" unfolding as .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5029 |           ultimately have "interior (l1 \<inter> k1) = {}" by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5030 | thus "\<bar>content (l1 \<inter> k1)\<bar> * norm (f x1) = 0" unfolding uv inter_interval | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5031 | unfolding content_eq_0_interior[THEN sym] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5032 | qed safe also have "... = (\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x))" unfolding Sigma_alt | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5033 | apply(subst sum_sum_product[THEN sym]) apply(rule p', rule,rule d') | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5034 | apply(rule setsum_cong2) unfolding split_paired_all split_conv | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5035 | proof- fix x l assume as:"(x,l)\<in>p" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5036 | note xl = p'(2-4)[OF this] from this(3) guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5037 |           have "(\<Sum>i\<in>d. \<bar>content (l \<inter> i)\<bar>) = (\<Sum>k\<in>d. content (k \<inter> {u..v}))"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5038 | apply(rule setsum_cong2) apply(drule d'(4),safe) apply(subst Int_commute) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5039 | unfolding inter_interval uv apply(subst abs_of_nonneg) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5040 |           also have "... = setsum content {k\<inter>{u..v}| k. k\<in>d}" unfolding simple_image
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5041 | apply(rule setsum_reindex_nonzero[unfolded o_def,THEN sym]) apply(rule d') | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5042 | proof- case goal1 from d'(4)[OF this(1)] d'(4)[OF this(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5043 | guess u1 v1 u2 v2 apply- by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5044 |             have "{} = interior ((k \<inter> y) \<inter> {u..v})" apply(subst interior_inter)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5045 | using d'(5)[OF goal1(1-3)] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5046 |             also have "... = interior (y \<inter> (k \<inter> {u..v}))" by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5047 |             also have "... = interior (k \<inter> {u..v})" unfolding goal1(4) by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5048 | finally show ?case unfolding uv inter_interval content_eq_0_interior .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5049 |           qed also have "... = setsum content {{u..v} \<inter> k |k. k \<in> d \<and> ~({u..v} \<inter> k = {})}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5050 | apply(rule setsum_mono_zero_right) unfolding simple_image | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5051 | apply(rule finite_imageI,rule d') apply blast apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5052 | apply(rule_tac x=k in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5053 | proof- case goal1 from d'(4)[OF this(1)] guess a b apply-by(erule exE)+ note ab=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5054 |             have "interior (k \<inter> {u..v}) \<noteq> {}" using goal1(2)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5055 | unfolding ab inter_interval content_eq_0_interior by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5056 |             thus ?case using goal1(1) using interior_subset[of "k \<inter> {u..v}"] by auto
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5057 | qed finally show "(\<Sum>i\<in>d. \<bar>content (l \<inter> i)\<bar> * norm (f x)) = content l *\<^sub>R norm (f x)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5058 | unfolding setsum_left_distrib[THEN sym] real_scaleR_def apply - | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5059 | apply(subst(asm) additive_content_division[OF division_inter_1[OF d(1)]]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5060 | using xl(2)[unfolded uv] unfolding uv by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5061 | qed finally show ?case . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5062 | qed qed qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5063 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5064 | lemma bounded_variation_absolutely_integrable: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5065 | assumes "f integrable_on UNIV" "\<forall>d. d division_of (\<Union>d) \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5066 | shows "f absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5067 | proof(rule absolutely_integrable_onI,fact,rule) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5068 |   let ?S = "(\<lambda>d. setsum (\<lambda>k. norm(integral k f)) d) ` {d. d division_of  (\<Union>d)}" def i \<equiv> "Sup ?S"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5069 | have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5070 | apply(rule elementary_interval) defer apply(rule_tac x=B in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5071 | apply(rule setleI) using assms(2) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5072 |   have f_int:"\<And>a b. f absolutely_integrable_on {a..b}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5073 | apply(rule bounded_variation_absolutely_integrable_interval[where B=B]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5074 | apply(rule integrable_on_subinterval[OF assms(1)]) defer apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5075 | apply(rule assms(2)[rule_format]) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5076 | show "((\<lambda>x. norm (f x)) has_integral i) UNIV" apply(subst has_integral_alt',safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5077 | proof- case goal1 show ?case using f_int[of a b] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5078 |   next case goal2 have "\<exists>y\<in>setsum (\<lambda>k. norm (integral k f)) ` {d. d division_of \<Union>d}. \<not> y \<le> i - e"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5079 | proof(rule ccontr) case goal1 hence "i \<le> i - e" apply- | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5080 | apply(rule isLub_le_isUb[OF i]) apply(rule isUbI) unfolding setle_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5081 | thus False using goal2 by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5082 | qed then guess K .. note * = this[unfolded image_iff not_le] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5083 | from this(1) guess d .. note this[unfolded mem_Collect_eq] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5084 | note d = this(1) *(2)[unfolded this(2)] note d'=division_ofD[OF this(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5085 | have "bounded (\<Union>d)" by(rule elementary_bounded,fact) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5086 | from this[unfolded bounded_pos] guess K .. note K=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5087 | show ?case apply(rule_tac x="K + 1" in exI,safe) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5088 |     proof- fix a b assume ab:"ball 0 (K + 1) \<subseteq> {a..b::'n::ordered_euclidean_space}"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5089 | have *:"\<forall>s s1. i - e < s1 \<and> s1 \<le> s \<and> s < i + e \<longrightarrow> abs(s - i) < (e::real)" by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5090 |       show "norm (integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) - i) < e"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5091 | unfolding real_norm_def apply(rule *[rule_format],safe) apply(rule d(2)) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5092 | proof- case goal1 have "(\<Sum>k\<in>d. norm (integral k f)) \<le> setsum (\<lambda>k. integral k (\<lambda>x. norm (f x))) d" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5093 | apply(rule setsum_mono) apply(rule absolutely_integrable_le) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5094 | apply(drule d'(4),safe) by(rule f_int) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5095 | also have "... = integral (\<Union>d) (\<lambda>x. norm(f x))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5096 | apply(rule integral_combine_division_bottomup[THEN sym]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5097 | apply(rule d) unfolding forall_in_division[OF d(1)] using f_int by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5098 |         also have "... \<le> integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0)" 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5099 |         proof- case goal1 have "\<Union>d \<subseteq> {a..b}" apply rule apply(drule K(2)[rule_format]) 
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5100 | apply(rule ab[unfolded subset_eq,rule_format]) by(auto simp add:dist_norm) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5101 | thus ?case apply- apply(subst if_P,rule) apply(rule integral_subset_le) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5102 |             apply(rule integrable_on_subdivision[of _ _ _ "{a..b}"])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5103 | apply(rule d) using f_int[of a b] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5104 | qed finally show ?case . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5105 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5106 | next note f = absolutely_integrable_onD[OF f_int[of a b]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5107 | note * = this(2)[unfolded has_integral_integral has_integral[of "\<lambda>x. norm (f x)"],rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5108 | have "e/2>0" using `e>0` by auto from *[OF this] guess d1 .. note d1=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5109 | from henstock_lemma[OF f(1) `e/2>0`] guess d2 . note d2=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5110 | from fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] guess p . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5111 | note p=this(1) conjunctD2[OF this(2)[unfolded fine_inter]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5112 | have *:"\<And>sf sf' si di. sf' = sf \<longrightarrow> si \<le> i \<longrightarrow> abs(sf - si) < e / 2 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5113 | \<longrightarrow> abs(sf' - di) < e / 2 \<longrightarrow> di < i + e" by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5114 |         show "integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) < i + e" apply(subst if_P,rule)
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5115 | proof(rule *[rule_format]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5116 | show "\<bar>(\<Sum>(x,k)\<in>p. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p. norm (integral k f))\<bar> < e / 2" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5117 | unfolding split_def apply(rule helplemma) using d2(2)[rule_format,of p] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5118 | using p(1,3) unfolding tagged_division_of_def split_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5119 |           show "abs ((\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) - integral {a..b} (\<lambda>x. norm(f x))) < e / 2"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5120 | using d1(2)[rule_format,OF conjI[OF p(1,2)]] unfolding real_norm_def . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5121 | show "(\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) = (\<Sum>(x, k)\<in>p. norm (content k *\<^sub>R f x))" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5122 | apply(rule setsum_cong2) unfolding split_paired_all split_conv | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5123 | apply(drule tagged_division_ofD(4)[OF p(1)]) unfolding norm_scaleR | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5124 | apply(subst abs_of_nonneg) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5125 | show "(\<Sum>(x, k)\<in>p. norm (integral k f)) \<le> i" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5126 | apply(subst setsum_over_tagged_division_lemma[OF p(1)]) defer apply(rule isLubD2[OF i]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5127 | unfolding image_iff apply(rule_tac x="snd ` p" in bexI) unfolding mem_Collect_eq defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5128 |             apply(rule partial_division_of_tagged_division[of _ "{a..b}"])
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5129 | using p(1) unfolding tagged_division_of_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5130 | qed qed qed(insert K,auto) qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5131 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5132 | lemma absolutely_integrable_restrict_univ: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5133 | "(\<lambda>x. if x \<in> s then f x else (0::'a::banach)) absolutely_integrable_on UNIV \<longleftrightarrow> f absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5134 | unfolding absolutely_integrable_on_def if_distrib norm_zero integrable_restrict_univ .. | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5135 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5136 | lemma absolutely_integrable_add[intro]: fixes f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5137 | assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5138 | shows "(\<lambda>x. f(x) + g(x)) absolutely_integrable_on s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5139 | proof- let ?P = "\<And>f g::'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space. f absolutely_integrable_on UNIV \<Longrightarrow> | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5140 | g absolutely_integrable_on UNIV \<Longrightarrow> (\<lambda>x. f(x) + g(x)) absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5141 |   { presume as:"PROP ?P" note a = absolutely_integrable_restrict_univ[THEN sym]
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5142 | have *:"\<And>x. (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5143 | = (if x \<in> s then f x + g x else 0)" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5144 | show ?thesis apply(subst a) using as[OF assms[unfolded a[of f] a[of g]]] unfolding * . } | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5145 | fix f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assume assms:"f absolutely_integrable_on UNIV" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5146 | "g absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5147 | note absolutely_integrable_bounded_variation | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5148 | from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5149 | show "(\<lambda>x. f(x) + g(x)) absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5150 | apply(rule bounded_variation_absolutely_integrable[of _ "B1+B2"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5151 | apply(rule integrable_add) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5152 | proof safe case goal1 have "\<And>k. k \<in> d \<Longrightarrow> f integrable_on k \<and> g integrable_on k" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5153 | apply(drule division_ofD(4)[OF goal1]) apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5154 | apply(rule_tac[!] integrable_on_subinterval[of _ UNIV]) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5155 | hence "(\<Sum>k\<in>d. norm (integral k (\<lambda>x. f x + g x))) \<le> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5156 | (\<Sum>k\<in>d. norm (integral k f)) + (\<Sum>k\<in>d. norm (integral k g))" apply- | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5157 | unfolding setsum_addf[THEN sym] apply(rule setsum_mono) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5158 | apply(subst integral_add) prefer 3 apply(rule norm_triangle_ineq) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5159 | also have "... \<le> B1 + B2" using B(1)[OF goal1] B(2)[OF goal1] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5160 | finally show ?case . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5161 | qed(insert assms,auto) qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5162 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5163 | lemma absolutely_integrable_sub[intro]: fixes f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5164 | assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5165 | shows "(\<lambda>x. f(x) - g(x)) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5166 | using absolutely_integrable_add[OF assms(1) absolutely_integrable_neg[OF assms(2)]] | 
| 36350 | 5167 | unfolding algebra_simps . | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5168 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5169 | lemma absolutely_integrable_linear: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" and h::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5170 | assumes "f absolutely_integrable_on s" "bounded_linear h" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5171 | shows "(h o f) absolutely_integrable_on s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5172 | proof- { presume as:"\<And>f::'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space. \<And>h::'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space. 
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5173 | f absolutely_integrable_on UNIV \<Longrightarrow> bounded_linear h \<Longrightarrow> | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5174 | (h o f) absolutely_integrable_on UNIV" note a = absolutely_integrable_restrict_univ[THEN sym] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5175 | show ?thesis apply(subst a) using as[OF assms[unfolded a[of f] a[of g]]] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5176 | unfolding o_def if_distrib linear_simps[OF assms(2)] . } | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5177 | fix f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" and h::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5178 | assume assms:"f absolutely_integrable_on UNIV" "bounded_linear h" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5179 | from absolutely_integrable_bounded_variation[OF assms(1)] guess B . note B=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5180 | from bounded_linear.pos_bounded[OF assms(2)] guess b .. note b=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5181 | show "(h o f) absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5182 | apply(rule bounded_variation_absolutely_integrable[of _ "B * b"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5183 | apply(rule integrable_linear[OF _ assms(2)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5184 | proof safe case goal2 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5185 | have "(\<Sum>k\<in>d. norm (integral k (h \<circ> f))) \<le> setsum (\<lambda>k. norm(integral k f)) d * b" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5186 | unfolding setsum_left_distrib apply(rule setsum_mono) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5187 | proof- case goal1 from division_ofD(4)[OF goal2 this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5188 | guess u v apply-by(erule exE)+ note uv=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5189 | have *:"f integrable_on k" unfolding uv apply(rule integrable_on_subinterval[of _ UNIV]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5190 | using assms by auto note this[unfolded has_integral_integral] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5191 | note has_integral_linear[OF this assms(2)] integrable_linear[OF * assms(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5192 | note * = has_integral_unique[OF this(2)[unfolded has_integral_integral] this(1)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5193 | show ?case unfolding * using b by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5194 | qed also have "... \<le> B * b" apply(rule mult_right_mono) using B goal2 b by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5195 | finally show ?case . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5196 | qed(insert assms,auto) qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5197 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5198 | lemma absolutely_integrable_setsum: fixes f::"'a \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5199 | assumes "finite t" "\<And>a. a \<in> t \<Longrightarrow> (f a) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5200 | shows "(\<lambda>x. setsum (\<lambda>a. f a x) t) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5201 | using assms(1,2) apply induct defer apply(subst setsum.insert) apply assumption+ by(rule,auto) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5202 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5203 | lemma absolutely_integrable_vector_abs: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5204 | assumes "f absolutely_integrable_on s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5205 | shows "(\<lambda>x. (\<chi>\<chi> i. abs(f x$$i))::'c::ordered_euclidean_space) absolutely_integrable_on s" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5206 | proof- have *:"\<And>x. ((\<chi>\<chi> i. abs(f x$$i))::'c::ordered_euclidean_space) = (setsum (\<lambda>i. | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5207 | (((\<lambda>y. (\<chi>\<chi> j. if j = i then y else 0)) o | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5208 |     (((\<lambda>x. (norm((\<chi>\<chi> j. if j = i then x$$i else 0)::'c::ordered_euclidean_space))) o f))) x)) {..<DIM('c)})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5209 | unfolding euclidean_eq[where 'a='c] euclidean_component.setsum apply safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5210 | unfolding euclidean_lambda_beta' | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5211 | proof- case goal1 have *:"\<And>i xa. ((if i = xa then f x $$ xa else 0) * (if i = xa then f x $$ xa else 0)) = | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5212 | (if i = xa then (f x $$ xa) * (f x $$ xa) else 0)" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5213 |     have *:"\<And>xa. norm ((\<chi>\<chi> j. if j = xa then f x $$ xa else 0)::'c) = (if xa<DIM('c) then abs (f x $$ xa) else 0)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5214 | unfolding norm_eq_sqrt_inner euclidean_inner[where 'a='c] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5215 | by(auto simp add:setsum_delta[OF finite_lessThan] *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5216 |     have "\<bar>f x $$ i\<bar> = (setsum (\<lambda>k. if k = i then abs ((f x)$$i) else 0) {..<DIM('c)})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5217 | unfolding setsum_delta[OF finite_lessThan] using goal1 by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5218 |     also have "... = (\<Sum>xa<DIM('c). ((\<lambda>y. (\<chi>\<chi> j. if j = xa then y else 0)::'c) \<circ>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5219 | (\<lambda>x. (norm ((\<chi>\<chi> j. if j = xa then x $$ xa else 0)::'c))) \<circ> f) x $$ i)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5220 | unfolding o_def * apply(rule setsum_cong2) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5221 | unfolding euclidean_lambda_beta'[OF goal1 ] by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5222 | finally show ?case unfolding o_def . qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5223 | show ?thesis unfolding * apply(rule absolutely_integrable_setsum) apply(rule finite_lessThan) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5224 | apply(rule absolutely_integrable_linear) unfolding o_def apply(rule absolutely_integrable_norm) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5225 | apply(rule absolutely_integrable_linear[OF assms,unfolded o_def]) unfolding linear_linear | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5226 | apply(rule_tac[!] linearI) unfolding euclidean_eq[where 'a='c] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5227 | by(auto simp:euclidean_scaleR[where 'a=real,unfolded real_scaleR_def]) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5228 | qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5229 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5230 | lemma absolutely_integrable_max: fixes f g::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5231 | assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5232 | shows "(\<lambda>x. (\<chi>\<chi> i. max (f(x)$$i) (g(x)$$i))::'n::ordered_euclidean_space) absolutely_integrable_on s" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5233 | proof- have *:"\<And>x. (1 / 2) *\<^sub>R (((\<chi>\<chi> i. \<bar>(f x - g x) $$ i\<bar>)::'n) + (f x + g x)) = (\<chi>\<chi> i. max (f(x)$$i) (g(x)$$i))" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5234 | unfolding euclidean_eq[where 'a='n] by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5235 | note absolutely_integrable_sub[OF assms] absolutely_integrable_add[OF assms] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5236 | note absolutely_integrable_vector_abs[OF this(1)] this(2) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5237 | note absolutely_integrable_add[OF this] note absolutely_integrable_cmul[OF this,of "1/2"] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5238 | thus ?thesis unfolding * . qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5239 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5240 | lemma absolutely_integrable_min: fixes f g::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5241 | assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5242 | shows "(\<lambda>x. (\<chi>\<chi> i. min (f(x)$$i) (g(x)$$i))::'n::ordered_euclidean_space) absolutely_integrable_on s" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5243 | proof- have *:"\<And>x. (1 / 2) *\<^sub>R ((f x + g x) - ((\<chi>\<chi> i. \<bar>(f x - g x) $$ i\<bar>)::'n)) = (\<chi>\<chi> i. min (f(x)$$i) (g(x)$$i))" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5244 | unfolding euclidean_eq[where 'a='n] by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5245 | note absolutely_integrable_add[OF assms] absolutely_integrable_sub[OF assms] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5246 | note this(1) absolutely_integrable_vector_abs[OF this(2)] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5247 | note absolutely_integrable_sub[OF this] note absolutely_integrable_cmul[OF this,of "1/2"] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5248 | thus ?thesis unfolding * . qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5249 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5250 | lemma absolutely_integrable_abs_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5251 | shows "f absolutely_integrable_on s \<longleftrightarrow> f integrable_on s \<and> | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5252 | (\<lambda>x. (\<chi>\<chi> i. abs(f x$$i))::'m) integrable_on s" (is "?l = ?r") | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5253 | proof assume ?l thus ?r apply-apply rule defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5254 | apply(drule absolutely_integrable_vector_abs) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5255 | next assume ?r { presume lem:"\<And>f::'n \<Rightarrow> 'm. f integrable_on UNIV \<Longrightarrow>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5256 | (\<lambda>x. (\<chi>\<chi> i. abs(f(x)$$i))::'m) integrable_on UNIV \<Longrightarrow> f absolutely_integrable_on UNIV" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5257 | have *:"\<And>x. (\<chi>\<chi> i. \<bar>(if x \<in> s then f x else 0) $$ i\<bar>) = (if x\<in>s then (\<chi>\<chi> i. \<bar>f x $$ i\<bar>) else (0::'m))" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5258 | unfolding euclidean_eq[where 'a='m] by auto | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5259 | show ?l apply(subst absolutely_integrable_restrict_univ[THEN sym]) apply(rule lem) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5260 | unfolding integrable_restrict_univ * using `?r` by auto } | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5261 | fix f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assume assms:"f integrable_on UNIV" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5262 | "(\<lambda>x. (\<chi>\<chi> i. abs(f(x)$$i))::'m::ordered_euclidean_space) integrable_on UNIV" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5263 |   let ?B = "setsum (\<lambda>i. integral UNIV (\<lambda>x. (\<chi>\<chi> j. abs(f x$$j)) ::'m::ordered_euclidean_space) $$ i) {..<DIM('m)}"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5264 | show "f absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5265 | apply(rule bounded_variation_absolutely_integrable[OF assms(1), where B="?B"],safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5266 | proof- case goal1 note d=this and d'=division_ofD[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5267 | have "(\<Sum>k\<in>d. norm (integral k f)) \<le> | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5268 |       (\<Sum>k\<in>d. setsum (op $$ (integral k (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m))) {..<DIM('m)})" apply(rule setsum_mono)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5269 | apply(rule order_trans[OF norm_le_l1]) apply(rule setsum_mono) unfolding lessThan_iff | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5270 |     proof- fix k and i assume "k\<in>d" and i:"i<DIM('m)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5271 | from d'(4)[OF this(1)] guess a b apply-by(erule exE)+ note ab=this | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5272 | show "\<bar>integral k f $$ i\<bar> \<le> integral k (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ i" apply(rule abs_leI) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5273 | unfolding euclidean_component.minus[THEN sym] defer apply(subst integral_neg[THEN sym]) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5274 | defer apply(rule_tac[1-2] integral_component_le) apply(rule integrable_neg) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5275 | using integrable_on_subinterval[OF assms(1),of a b] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5276 | integrable_on_subinterval[OF assms(2),of a b] unfolding ab by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5277 |     qed also have "... \<le> setsum (op $$ (integral UNIV (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>))::'m)) {..<DIM('m)}"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5278 | apply(subst setsum_commute,rule setsum_mono) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5279 | proof- case goal1 have *:"(\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) integrable_on \<Union>d" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5280 | using integrable_on_subdivision[OF d assms(2)] by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5281 | have "(\<Sum>i\<in>d. integral i (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ j) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5282 | = integral (\<Union>d) (\<lambda>x. (\<chi>\<chi> j. abs(f x$$j)) ::'m::ordered_euclidean_space) $$ j" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5283 | unfolding euclidean_component.setsum[THEN sym] integral_combine_division_topdown[OF * d] .. | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5284 | also have "... \<le> integral UNIV (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ j" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5285 | apply(rule integral_subset_component_le) using assms * by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5286 | finally show ?case . | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5287 | qed finally show ?case . qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5288 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5289 | lemma nonnegative_absolutely_integrable: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 38656 | 5290 |   assumes "\<forall>x\<in>s. \<forall>i<DIM('m). 0 \<le> f(x)$$i" "f integrable_on s"
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5291 | shows "f absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5292 | unfolding absolutely_integrable_abs_eq apply rule defer | 
| 38656 | 5293 | apply(rule integrable_eq[of _ f]) using assms apply-apply(subst euclidean_eq) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5294 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5295 | lemma absolutely_integrable_integrable_bound: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5296 | assumes "\<forall>x\<in>s. norm(f x) \<le> g x" "f integrable_on s" "g integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5297 | shows "f absolutely_integrable_on s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5298 | proof- { presume *:"\<And>f::'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space. \<And> g. \<forall>x. norm(f x) \<le> g x \<Longrightarrow> f integrable_on UNIV
 | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5299 | \<Longrightarrow> g integrable_on UNIV \<Longrightarrow> f absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5300 | show ?thesis apply(subst absolutely_integrable_restrict_univ[THEN sym]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5301 | apply(rule *[of _ "\<lambda>x. if x\<in>s then g x else 0"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5302 | using assms unfolding integrable_restrict_univ by auto } | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5303 | fix g and f :: "'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5304 | assume assms:"\<forall>x. norm(f x) \<le> g x" "f integrable_on UNIV" "g integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5305 | show "f absolutely_integrable_on UNIV" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5306 | apply(rule bounded_variation_absolutely_integrable[OF assms(2),where B="integral UNIV g"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5307 | proof safe case goal1 note d=this and d'=division_ofD[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5308 | have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>k\<in>d. integral k g)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5309 | apply(rule setsum_mono) apply(rule integral_norm_bound_integral) apply(drule_tac[!] d'(4),safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5310 | apply(rule_tac[1-2] integrable_on_subinterval) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5311 | also have "... = integral (\<Union>d) g" apply(rule integral_combine_division_bottomup[THEN sym]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5312 | apply(rule d,safe) apply(drule d'(4),safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5313 | apply(rule integrable_on_subinterval[OF assms(3)]) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5314 | also have "... \<le> integral UNIV g" apply(rule integral_subset_le) defer | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5315 | apply(rule integrable_on_subdivision[OF d,of _ UNIV]) prefer 4 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5316 | apply(rule,rule_tac y="norm (f x)" in order_trans) using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5317 | finally show ?case . qed qed | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5318 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5319 | lemma absolutely_integrable_integrable_bound_real: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5320 | assumes "\<forall>x\<in>s. norm(f x) \<le> g x" "f integrable_on s" "g integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5321 | shows "f absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5322 | apply(rule absolutely_integrable_integrable_bound[where g=g]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5323 | using assms unfolding o_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5324 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5325 | lemma absolutely_integrable_absolutely_integrable_bound: | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5326 | fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" and g::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5327 | assumes "\<forall>x\<in>s. norm(f x) \<le> norm(g x)" "f integrable_on s" "g absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5328 | shows "f absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5329 | apply(rule absolutely_integrable_integrable_bound[of s f "\<lambda>x. norm (g x)"]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5330 | using assms by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5331 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5332 | lemma absolutely_integrable_inf_real: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5333 |   assumes "finite k" "k \<noteq> {}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5334 | "\<forall>i\<in>k. (\<lambda>x. (fs x i)::real) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5335 | shows "(\<lambda>x. (Inf ((fs x) ` k))) absolutely_integrable_on s" using assms | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5336 | proof induct case (insert a k) let ?P = " (\<lambda>x. if fs x ` k = {} then fs x a
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5337 | else min (fs x a) (Inf (fs x ` k))) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5338 | show ?case unfolding image_insert | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5339 | apply(subst Inf_insert_finite) apply(rule finite_imageI[OF insert(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5340 |   proof(cases "k={}") case True
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5341 | thus ?P apply(subst if_P) defer apply(rule insert(5)[rule_format]) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5342 | next case False thus ?P apply(subst if_not_P) defer | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5343 | apply(rule absolutely_integrable_min[where 'n=real,unfolded Eucl_real_simps]) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5344 | defer apply(rule insert(3)[OF False]) using insert(5) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5345 | qed qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5346 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5347 | lemma absolutely_integrable_sup_real: | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5348 |   assumes "finite k" "k \<noteq> {}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5349 | "\<forall>i\<in>k. (\<lambda>x. (fs x i)::real) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5350 | shows "(\<lambda>x. (Sup ((fs x) ` k))) absolutely_integrable_on s" using assms | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5351 | proof induct case (insert a k) let ?P = " (\<lambda>x. if fs x ` k = {} then fs x a
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5352 | else max (fs x a) (Sup (fs x ` k))) absolutely_integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5353 | show ?case unfolding image_insert | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5354 | apply(subst Sup_insert_finite) apply(rule finite_imageI[OF insert(1)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5355 |   proof(cases "k={}") case True
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5356 | thus ?P apply(subst if_P) defer apply(rule insert(5)[rule_format]) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5357 | next case False thus ?P apply(subst if_not_P) defer | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5358 | apply(rule absolutely_integrable_max[where 'n=real,unfolded Eucl_real_simps]) | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5359 | defer apply(rule insert(3)[OF False]) using insert(5) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5360 | qed qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5361 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5362 | subsection {* Dominated convergence. *}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5363 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5364 | lemma dominated_convergence: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real" | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5365 | assumes "\<And>k. (f k) integrable_on s" "h integrable_on s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5366 | "\<And>k. \<forall>x \<in> s. norm(f k x) \<le> (h x)" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5367 | "\<forall>x \<in> s. ((\<lambda>k. f k x) ---> g x) sequentially" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5368 | shows "g integrable_on s" "((\<lambda>k. integral s (f k)) ---> integral s g) sequentially" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5369 | proof- have "\<And>m. (\<lambda>x. Inf {f j x |j. m \<le> j}) integrable_on s \<and>
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5370 |     ((\<lambda>k. integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}})) --->
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5371 |     integral s (\<lambda>x. Inf {f j x |j. m \<le> j}))sequentially"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5372 | proof(rule monotone_convergence_decreasing,safe) fix m::nat | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5373 |     show "bounded {integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}}) |k. True}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5374 | unfolding bounded_iff apply(rule_tac x="integral s h" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5375 | proof safe fix k::nat | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5376 |       show "norm (integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}})) \<le> integral s h"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5377 | apply(rule integral_norm_bound_integral) unfolding simple_image | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5378 | apply(rule absolutely_integrable_onD) apply(rule absolutely_integrable_inf_real) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5379 | prefer 5 unfolding real_norm_def apply(rule) apply(rule Inf_abs_ge) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5380 | prefer 5 apply rule apply(rule_tac g=h in absolutely_integrable_integrable_bound_real) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5381 | using assms unfolding real_norm_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5382 |     qed fix k::nat show "(\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}}) integrable_on s"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5383 | unfolding simple_image apply(rule absolutely_integrable_onD) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5384 | apply(rule absolutely_integrable_inf_real) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5385 | using absolutely_integrable_integrable_bound_real[OF assms(3,1,2)] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5386 |     fix x assume x:"x\<in>s" show "Inf {f j x |j. j \<in> {m..m + Suc k}}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5387 |       \<le> Inf {f j x |j. j \<in> {m..m + k}}" apply(rule Inf_ge) unfolding setge_def
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5388 | defer apply rule apply(subst Inf_finite_le_iff) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5389 | apply(rule_tac x=xa in bexI) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5390 |     let ?S = "{f j x| j.  m \<le> j}" def i \<equiv> "Inf ?S"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5391 |     show "((\<lambda>k. Inf {f j x |j. j \<in> {m..m + k}}) ---> i) sequentially"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5392 | unfolding Lim_sequentially | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5393 | proof safe case goal1 note e=this have i:"isGlb UNIV ?S i" unfolding i_def apply(rule Inf) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5394 | defer apply(rule_tac x="- h x - 1" in exI) unfolding setge_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5395 | proof safe case goal1 thus ?case using assms(3)[rule_format,OF x, of j] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5396 | qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5397 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5398 | have "\<exists>y\<in>?S. \<not> y \<ge> i + e" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5399 | proof(rule ccontr) case goal1 hence "i \<ge> i + e" apply- | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5400 | apply(rule isGlb_le_isLb[OF i]) apply(rule isLbI) unfolding setge_def by fastsimp+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5401 | thus False using e by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5402 | qed then guess y .. note y=this[unfolded not_le] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5403 | from this(1)[unfolded mem_Collect_eq] guess N .. note N=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5404 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5405 | show ?case apply(rule_tac x=N in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5406 | proof safe case goal1 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5407 | have *:"\<And>y ix. y < i + e \<longrightarrow> i \<le> ix \<longrightarrow> ix \<le> y \<longrightarrow> abs(ix - i) < e" by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5408 | show ?case unfolding dist_real_def apply(rule *[rule_format,OF y(2)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5409 | unfolding i_def apply(rule real_le_inf_subset) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5410 | apply(rule,rule isGlbD1[OF i]) prefer 3 apply(subst Inf_finite_le_iff) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5411 | prefer 3 apply(rule_tac x=y in bexI) using N goal1 by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5412 | qed qed qed note dec1 = conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5413 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5414 |   have "\<And>m. (\<lambda>x. Sup {f j x |j. m \<le> j}) integrable_on s \<and>
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5415 |     ((\<lambda>k. integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}})) --->
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5416 |     integral s (\<lambda>x. Sup {f j x |j. m \<le> j})) sequentially"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5417 | proof(rule monotone_convergence_increasing,safe) fix m::nat | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5418 |     show "bounded {integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}}) |k. True}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5419 | unfolding bounded_iff apply(rule_tac x="integral s h" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5420 | proof safe fix k::nat | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5421 |       show "norm (integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}})) \<le> integral s h"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5422 | apply(rule integral_norm_bound_integral) unfolding simple_image | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5423 | apply(rule absolutely_integrable_onD) apply(rule absolutely_integrable_sup_real) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5424 | prefer 5 unfolding real_norm_def apply(rule) apply(rule Sup_abs_le) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5425 | prefer 5 apply rule apply(rule_tac g=h in absolutely_integrable_integrable_bound_real) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5426 | using assms unfolding real_norm_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5427 |     qed fix k::nat show "(\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}}) integrable_on s"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5428 | unfolding simple_image apply(rule absolutely_integrable_onD) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5429 | apply(rule absolutely_integrable_sup_real) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5430 | using absolutely_integrable_integrable_bound_real[OF assms(3,1,2)] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5431 |     fix x assume x:"x\<in>s" show "Sup {f j x |j. j \<in> {m..m + Suc k}}
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5432 |       \<ge> Sup {f j x |j. j \<in> {m..m + k}}" apply(rule Sup_le) unfolding setle_def
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5433 | defer apply rule apply(subst Sup_finite_ge_iff) prefer 3 apply(rule_tac x=y in bexI) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5434 |     let ?S = "{f j x| j.  m \<le> j}" def i \<equiv> "Sup ?S"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5435 |     show "((\<lambda>k. Sup {f j x |j. j \<in> {m..m + k}}) ---> i) sequentially"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5436 | unfolding Lim_sequentially | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5437 | proof safe case goal1 note e=this have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5438 | defer apply(rule_tac x="h x" in exI) unfolding setle_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5439 | proof safe case goal1 thus ?case using assms(3)[rule_format,OF x, of j] by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5440 | qed auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5441 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5442 | have "\<exists>y\<in>?S. \<not> y \<le> i - e" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5443 | proof(rule ccontr) case goal1 hence "i \<le> i - e" apply- | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5444 | apply(rule isLub_le_isUb[OF i]) apply(rule isUbI) unfolding setle_def by fastsimp+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5445 | thus False using e by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5446 | qed then guess y .. note y=this[unfolded not_le] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5447 | from this(1)[unfolded mem_Collect_eq] guess N .. note N=conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5448 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5449 | show ?case apply(rule_tac x=N in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5450 | proof safe case goal1 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5451 | have *:"\<And>y ix. i - e < y \<longrightarrow> ix \<le> i \<longrightarrow> y \<le> ix \<longrightarrow> abs(ix - i) < e" by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5452 | show ?case unfolding dist_real_def apply(rule *[rule_format,OF y(2)]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5453 | unfolding i_def apply(rule real_ge_sup_subset) prefer 3 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5454 | apply(rule,rule isLubD1[OF i]) prefer 3 apply(subst Sup_finite_ge_iff) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5455 | prefer 3 apply(rule_tac x=y in bexI) using N goal1 by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5456 | qed qed qed note inc1 = conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5457 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5458 |   have "g integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. Inf {f j x |j. k \<le> j})) ---> integral s g) sequentially"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5459 | apply(rule monotone_convergence_increasing,safe) apply fact | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5460 |   proof- show "bounded {integral s (\<lambda>x. Inf {f j x |j. k \<le> j}) |k. True}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5461 | unfolding bounded_iff apply(rule_tac x="integral s h" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5462 | proof safe fix k::nat | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5463 |       show "norm (integral s (\<lambda>x. Inf {f j x |j. k \<le> j})) \<le> integral s h"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5464 | apply(rule integral_norm_bound_integral) apply fact+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5465 | unfolding real_norm_def apply(rule) apply(rule Inf_abs_ge) using assms(3) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5466 | qed fix k::nat and x assume x:"x\<in>s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5467 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5468 | have *:"\<And>x y::real. x \<ge> - y \<Longrightarrow> - x \<le> y" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5469 |     show "Inf {f j x |j. k \<le> j} \<le> Inf {f j x |j. Suc k \<le> j}" apply-
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5470 | apply(rule real_le_inf_subset) prefer 3 unfolding setge_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5471 | apply(rule_tac x="- h x" in exI) apply safe apply(rule *) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5472 | using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5473 |     show "((\<lambda>k. Inf {f j x |j. k \<le> j}) ---> g x) sequentially" unfolding Lim_sequentially
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5474 | proof safe case goal1 hence "0<e/2" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5475 | from assms(4)[unfolded Lim_sequentially,rule_format,OF x this] guess N .. note N=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5476 | show ?case apply(rule_tac x=N in exI,safe) unfolding dist_real_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5477 | apply(rule le_less_trans[of _ "e/2"]) apply(rule Inf_asclose) apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5478 | defer apply(rule less_imp_le) using N goal1 unfolding dist_real_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5479 | qed qed note inc2 = conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5480 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5481 |   have "g integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. Sup {f j x |j. k \<le> j})) ---> integral s g) sequentially"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36899diff
changeset | 5482 | apply(rule monotone_convergence_decreasing,safe) apply fact | 
| 36243 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5483 |   proof- show "bounded {integral s (\<lambda>x. Sup {f j x |j. k \<le> j}) |k. True}"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5484 | unfolding bounded_iff apply(rule_tac x="integral s h" in exI) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5485 | proof safe fix k::nat | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5486 |       show "norm (integral s (\<lambda>x. Sup {f j x |j. k \<le> j})) \<le> integral s h"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5487 | apply(rule integral_norm_bound_integral) apply fact+ | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5488 | unfolding real_norm_def apply(rule) apply(rule Sup_abs_le) using assms(3) by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5489 | qed fix k::nat and x assume x:"x\<in>s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5490 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5491 |     show "Sup {f j x |j. k \<le> j} \<ge> Sup {f j x |j. Suc k \<le> j}" apply-
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5492 | apply(rule real_ge_sup_subset) prefer 3 unfolding setle_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5493 | apply(rule_tac x="h x" in exI) apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5494 | using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5495 |     show "((\<lambda>k. Sup {f j x |j. k \<le> j}) ---> g x) sequentially" unfolding Lim_sequentially
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5496 | proof safe case goal1 hence "0<e/2" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5497 | from assms(4)[unfolded Lim_sequentially,rule_format,OF x this] guess N .. note N=this | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5498 | show ?case apply(rule_tac x=N in exI,safe) unfolding dist_real_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5499 | apply(rule le_less_trans[of _ "e/2"]) apply(rule Sup_asclose) apply safe | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5500 | defer apply(rule less_imp_le) using N goal1 unfolding dist_real_def by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5501 | qed qed note dec2 = conjunctD2[OF this] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5502 | |
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5503 | show "g integrable_on s" by fact | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5504 | show "((\<lambda>k. integral s (f k)) ---> integral s g) sequentially" unfolding Lim_sequentially | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5505 | proof safe case goal1 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5506 | from inc2(2)[unfolded Lim_sequentially,rule_format,OF goal1] guess N1 .. note N1=this[unfolded dist_real_def] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5507 | from dec2(2)[unfolded Lim_sequentially,rule_format,OF goal1] guess N2 .. note N2=this[unfolded dist_real_def] | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5508 | show ?case apply(rule_tac x="N1+N2" in exI,safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5509 | proof- fix n assume n:"n \<ge> N1 + N2" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5510 | have *:"\<And>i0 i i1 g. \<bar>i0 - g\<bar> < e \<longrightarrow> \<bar>i1 - g\<bar> < e \<longrightarrow> i0 \<le> i \<longrightarrow> i \<le> i1 \<longrightarrow> \<bar>i - g\<bar> < e" by arith | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5511 | show "dist (integral s (f n)) (integral s g) < e" unfolding dist_real_def | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5512 | apply(rule *[rule_format,OF N1[rule_format] N2[rule_format], of n n]) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5513 |       proof- show "integral s (\<lambda>x. Inf {f j x |j. n \<le> j}) \<le> integral s (f n)"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5514 | proof(rule integral_le[OF dec1(1) assms(1)],safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5515 | fix x assume x:"x \<in> s" have *:"\<And>x y::real. x \<ge> - y \<Longrightarrow> - x \<le> y" by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5516 |           show "Inf {f j x |j. n \<le> j} \<le> f n x" apply(rule Inf_lower[where z="- h x"]) defer
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5517 | apply(rule *) using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5518 |         qed show "integral s (f n) \<le> integral s (\<lambda>x. Sup {f j x |j. n \<le> j})"
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5519 | proof(rule integral_le[OF assms(1) inc1(1)],safe) | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5520 | fix x assume x:"x \<in> s" | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5521 |           show "f n x \<le> Sup {f j x |j. n \<le> j}" apply(rule Sup_upper[where z="h x"]) defer
 | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5522 | using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto | 
| 
027ae62681be
Translated remaining theorems about integration from HOL light.
 himmelma parents: 
36081diff
changeset | 5523 | qed qed(insert n,auto) qed qed qed | 
| 35752 | 5524 | |
| 5525 | declare [[smt_certificates=""]] | |
| 36244 
009b0ee1b838
Only use provided SMT-certificates in HOL-Multivariate_Analysis.
 hoelzl parents: 
36243diff
changeset | 5526 | declare [[smt_fixed=false]] | 
| 35752 | 5527 | |
| 35173 
9b24bfca8044
Renamed Multivariate-Analysis/Integration to Multivariate-Analysis/Integration_MV to avoid name clash with Integration.
 hoelzl parents: 
35172diff
changeset | 5528 | end |