src/HOL/HoareParallel/RG_Examples.thy
author wenzelm
Fri, 08 Mar 2002 16:24:06 +0100
changeset 13049 ce180e5b7fa0
parent 13020 791e3b4c4039
child 13099 4bb592cdde0e
permissions -rw-r--r--
tuned;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     1
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     2
header {* \section{Examples} *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     3
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     4
theory RG_Examples = RG_Syntax:
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     5
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     6
lemmas definitions [simp]= stable_def Pre_def Rely_def Guar_def Post_def Com_def 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     7
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     8
subsection {* Set Elements of an Array to Zero *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     9
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    10
lemma le_less_trans2: "\<lbrakk>(j::nat)<k; i\<le> j\<rbrakk> \<Longrightarrow> i<k"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    11
by simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    12
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    13
lemma add_le_less_mono: "\<lbrakk> (a::nat) < c; b\<le>d \<rbrakk> \<Longrightarrow> a + b < c + d"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    14
by simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    15
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    16
record Example1 =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    17
  A :: "nat list"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    18
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    19
lemma Example1: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    20
 "\<turnstile> COBEGIN
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    21
      SCHEME [0 \<le> i < n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    22
     (\<acute>A := \<acute>A [i := 0], 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    23
     \<lbrace> n < length \<acute>A \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    24
     \<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> \<ordmasculine>A ! i = \<ordfeminine>A ! i \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    25
     \<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> (\<forall>j<n. i \<noteq> j \<longrightarrow> \<ordmasculine>A ! j = \<ordfeminine>A ! j) \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    26
     \<lbrace> \<acute>A ! i = 0 \<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    27
    COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    28
 SAT [\<lbrace> n < length \<acute>A \<rbrace>, \<lbrace> \<ordmasculine>A = \<ordfeminine>A \<rbrace>, \<lbrace> True \<rbrace>, \<lbrace> \<forall>i < n. \<acute>A ! i = 0 \<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    29
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    30
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    31
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    32
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    33
    apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    34
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    35
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    36
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    37
   apply auto
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    38
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    39
apply auto
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    40
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    41
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    42
lemma Example1_parameterized: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    43
"k < t \<Longrightarrow>
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    44
  \<turnstile> COBEGIN 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    45
    SCHEME [k*n\<le>i<(Suc k)*n] (\<acute>A:=\<acute>A[i:=0], 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    46
   \<lbrace>t*n < length \<acute>A\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    47
   \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> \<ordmasculine>A!i = \<ordfeminine>A!i\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    48
   \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>j<length \<ordmasculine>A . i\<noteq>j \<longrightarrow> \<ordmasculine>A!j = \<ordfeminine>A!j)\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    49
   \<lbrace>\<acute>A!i=0\<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    50
   COEND  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    51
 SAT [\<lbrace>t*n < length \<acute>A\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    52
      \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>i<n. \<ordmasculine>A!(k*n+i)=\<ordfeminine>A!(k*n+i))\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    53
      \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    54
      (\<forall>i<length \<ordmasculine>A . (i<k*n \<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i) \<and> ((Suc k)*n \<le> i\<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i))\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    55
      \<lbrace>\<forall>i<n. \<acute>A!(k*n+i) = 0\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    56
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    57
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    58
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    59
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    60
    apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    61
     apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    62
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    63
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    64
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    65
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    66
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    67
    apply(erule_tac x="k*n +i" in allE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    68
    apply(subgoal_tac "k*n+i <length (A b)")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    69
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    70
    apply(erule le_less_trans2) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    71
    apply(case_tac t,simp+)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    72
    apply (simp add:add_commute)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    73
    apply(rule add_le_mono)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    74
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    75
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    76
   apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    77
   apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    78
   apply(rotate_tac -1)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    79
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    80
  apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    81
 apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    82
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    83
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    84
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    85
   apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    86
   apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    87
   apply (subgoal_tac "k*n+i< length (A x)")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    88
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    89
   apply(erule le_less_trans2)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    90
   apply(case_tac t,simp+)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    91
   apply (simp add:add_commute)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    92
   apply(rule add_le_mono)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    93
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    94
   apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    95
  apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    96
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    97
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    98
subsection {* Increment a Variable in Parallel *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    99
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   100
subsubsection {* Two components *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   101
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   102
record Example2 =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   103
  x  :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   104
  c_0 :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   105
  c_1 :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   106
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   107
lemma Example2: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   108
 "\<turnstile>  COBEGIN
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   109
    (\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_0:=\<acute>c_0 + 1 \<rangle>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   110
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1  \<and> \<acute>c_0=0\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   111
     \<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   112
        (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   113
        \<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   114
     \<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   115
         (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   116
         \<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   117
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_0=1 \<rbrace>)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   118
  \<parallel>
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   119
      (\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_1:=\<acute>c_1+1 \<rangle>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   120
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=0 \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   121
     \<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   122
        (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   123
        \<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   124
     \<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   125
         (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   126
        \<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   127
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=1\<rbrace>)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   128
 COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   129
 SAT [\<lbrace>\<acute>x=0 \<and> \<acute>c_0=0 \<and> \<acute>c_1=0\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   130
      \<lbrace>\<ordmasculine>x=\<ordfeminine>x \<and>  \<ordmasculine>c_0= \<ordfeminine>c_0 \<and> \<ordmasculine>c_1=\<ordfeminine>c_1\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   131
      \<lbrace>True\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   132
      \<lbrace>\<acute>x=2\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   133
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   134
   apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   135
   apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   136
   apply(case_tac i)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   137
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   138
    apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   139
     apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   140
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   141
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   142
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   143
    apply(case_tac j,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   144
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   145
   apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   146
   apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   147
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   148
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   149
   apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   150
   apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   151
   apply(case_tac j,simp,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   152
  apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   153
  apply(case_tac i,simp,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   154
 apply clarify   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   155
 apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   156
 apply(erule_tac x=0 in all_dupE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   157
 apply(erule_tac x=1 in allE,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   158
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   159
apply(case_tac i,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   160
 apply(rule Await)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   161
  apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   162
 apply(clarify)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   163
 apply(rule Seq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   164
  prefer 2
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   165
  apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   166
   apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   167
  apply(rule subset_refl)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   168
 apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   169
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   170
 apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   171
 apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   172
apply(rule Await)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   173
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   174
apply(clarify)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   175
apply(rule Seq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   176
 prefer 2
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   177
 apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   178
  apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   179
 apply(rule subset_refl)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   180
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   181
apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   182
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   183
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   184
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   185
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   186
subsubsection {* Parameterized *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   187
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   188
lemma Example2_lemma1: "j<n \<Longrightarrow> (\<Sum>i<n. b i) = (0::nat) \<Longrightarrow> b j = 0 "
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   189
apply(induct n)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   190
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   191
apply(force simp add: less_Suc_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   192
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   193
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   194
lemma Example2_lemma2_aux: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   195
 "j<n \<Longrightarrow> (\<Sum>i<n. (b i::nat)) = (\<Sum>i<j. b i) + b j + (\<Sum>i<n-(Suc j) . b (Suc j + i))"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   196
apply(induct n)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   197
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   198
apply(simp add:less_Suc_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   199
 apply(auto)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   200
apply(subgoal_tac "n - j = Suc(n- Suc j)")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   201
  apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   202
apply arith
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   203
done 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   204
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   205
lemma Example2_lemma2_aux2: "j\<le> s \<Longrightarrow> (\<Sum>i<j. (b (s:=t)) i) = (\<Sum>i<j. b i)"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   206
apply(induct j)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   207
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   208
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   209
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   210
lemma Example2_lemma2: "\<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i< n. b i)=(\<Sum>i< n. (b (j:=1)) i)"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   211
apply(frule_tac b="(b (j:=1))" in Example2_lemma2_aux)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   212
apply(erule_tac  t="Summation (b(j := 1)) n" in ssubst)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   213
apply(frule_tac b=b in Example2_lemma2_aux)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   214
apply(erule_tac  t="Summation b n" in ssubst)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   215
apply(subgoal_tac "Suc (Summation b j + b j + (\<Sum>i<n - Suc j. b (Suc j + i)))=(Summation b j + Suc (b j) + (\<Sum>i<n - Suc j. b (Suc j + i)))")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   216
 apply(rotate_tac -1)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   217
 apply(erule ssubst)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   218
 apply(subgoal_tac "j\<le>j")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   219
  apply(drule_tac b="b" and t=1 in Example2_lemma2_aux2)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   220
  apply(rotate_tac -1)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   221
  apply(erule ssubst)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   222
apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   223
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   224
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   225
lemma Example2_lemma2_Suc0: "\<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i< n. b i)=(\<Sum>i< n. (b (j:=Suc 0)) i)"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   226
by(simp add:Example2_lemma2)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   227
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   228
lemma Example2_lemma3: "\<forall>i< n. b i = 1 \<Longrightarrow> (\<Sum>i<n. b i)= n"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   229
apply (induct n)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   230
apply auto
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   231
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   232
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   233
record Example2_parameterized =   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   234
  C :: "nat \<Rightarrow> nat"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   235
  y  :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   236
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   237
lemma Example2_parameterized: "0<n \<Longrightarrow> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   238
  \<turnstile> COBEGIN SCHEME  [0\<le>i<n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   239
     (\<langle> \<acute>y:=\<acute>y+1;; \<acute>C:=\<acute>C (i:=1) \<rangle>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   240
     \<lbrace>\<acute>y=(\<Sum>i<n. \<acute>C i) \<and> \<acute>C i=0\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   241
     \<lbrace>\<ordmasculine>C i = \<ordfeminine>C i \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   242
      (\<ordmasculine>y=(\<Sum>i<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i<n. \<ordfeminine>C i))\<rbrace>,  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   243
     \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>C j = \<ordfeminine>C j) \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   244
       (\<ordmasculine>y=(\<Sum>i<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i<n. \<ordfeminine>C i))\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   245
     \<lbrace>\<acute>y=(\<Sum>i<n. \<acute>C i) \<and> \<acute>C i=1\<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   246
    COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   247
 SAT [\<lbrace>\<acute>y=0 \<and> (\<Sum>i<n. \<acute>C i)=0 \<rbrace>, \<lbrace>\<ordmasculine>C=\<ordfeminine>C \<and> \<ordmasculine>y=\<ordfeminine>y\<rbrace>, \<lbrace>True\<rbrace>, \<lbrace>\<acute>y=n\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   248
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   249
apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   250
apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   251
apply(force elim:Example2_lemma1)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   252
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   253
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   254
apply(force intro:Example2_lemma3)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   255
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   256
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   257
apply(rule Await)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   258
apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   259
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   260
apply(rule Seq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   261
prefer 2
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   262
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   263
apply(rule subset_refl)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   264
apply simp+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   265
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   266
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   267
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   268
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   269
apply(force elim:Example2_lemma2_Suc0)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   270
apply simp+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   271
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   272
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   273
subsection {* Find Least Element *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   274
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   275
text {* A previous lemma: *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   276
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   277
lemma mod_aux :"\<lbrakk>i < (n::nat); a mod n = i;  j < a + n; j mod n = i; a < j\<rbrakk> \<Longrightarrow> False"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   278
apply(subgoal_tac "a=a div n*n + a mod n" )
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   279
 prefer 2 apply (simp (no_asm_use) only: mod_div_equality [symmetric])
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   280
apply(subgoal_tac "j=j div n*n + j mod n")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   281
 prefer 2 apply (simp (no_asm_use) only: mod_div_equality [symmetric])
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   282
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   283
apply(subgoal_tac "a div n*n < j div n*n")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   284
prefer 2 apply arith
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   285
apply(subgoal_tac "j div n*n < (a div n + 1)*n")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   286
prefer 2 apply simp 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   287
apply (simp only:mult_less_cancel2)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   288
apply arith
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   289
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   290
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   291
record Example3 =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   292
  X :: "nat \<Rightarrow> nat"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   293
  Y :: "nat \<Rightarrow> nat"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   294
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   295
lemma Example3: "m mod n=0 \<Longrightarrow> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   296
 \<turnstile> COBEGIN 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   297
 SCHEME [0\<le>i<n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   298
 (WHILE (\<forall>j<n. \<acute>X i < \<acute>Y j)  DO 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   299
   IF P(B!(\<acute>X i)) THEN \<acute>Y:=\<acute>Y (i:=\<acute>X i) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   300
   ELSE \<acute>X:= \<acute>X (i:=(\<acute>X i)+ n) FI 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   301
  OD,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   302
 \<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   303
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y j \<le> \<ordmasculine>Y j) \<and> \<ordmasculine>X i = \<ordfeminine>X i \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   304
   \<ordmasculine>Y i = \<ordfeminine>Y i\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   305
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X j = \<ordfeminine>X j \<and> \<ordmasculine>Y j = \<ordfeminine>Y j) \<and>   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   306
   \<ordfeminine>Y i \<le> \<ordmasculine>Y i\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   307
 \<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i) \<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   308
 COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   309
 SAT [\<lbrace> \<forall>i<n. \<acute>X i=i \<and> \<acute>Y i=m+i \<rbrace>,\<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>,\<lbrace>True\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   310
  \<lbrace>\<forall>i<n. (\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   311
    (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i)\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   312
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   313
(*5*)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   314
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   315
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   316
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   317
apply(rule While)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   318
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   319
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   320
  apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   321
 apply(rule_tac "pre'"="\<lbrace> \<acute>X i mod n = i \<and> (\<forall>j. j<\<acute>X i \<longrightarrow> j mod n = i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i < n * q \<longrightarrow> P (B!(\<acute>Y i))) \<and> \<acute>X i<\<acute>Y i\<rbrace>" in Conseq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   322
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   323
    apply(rule subset_refl)+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   324
 apply(rule Cond)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   325
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   326
   apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   327
      apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   328
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   329
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   330
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   331
  apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   332
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   333
     apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   334
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   335
     apply(case_tac "X x (j mod n)\<le> j")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   336
      apply(drule le_imp_less_or_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   337
      apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   338
       apply(drule_tac j=j and n=n and i="j mod n" and a="X x (j mod n)" in mod_aux)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   339
        apply assumption+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   340
       apply simp+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   341
     apply(erule_tac x=j in allE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   342
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   343
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   344
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   345
    apply(rule conjI)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   346
     apply clarify  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   347
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   348
     apply(erule not_sym)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   349
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   350
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   351
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   352
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   353
text {* Same but with a list as auxiliary variable: *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   354
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   355
record Example3_list =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   356
  X :: "nat list"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   357
  Y :: "nat list"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   358
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   359
lemma Example3_list: "m mod n=0 \<Longrightarrow> \<turnstile> (COBEGIN SCHEME [0\<le>i<n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   360
 (WHILE (\<forall>j<n. \<acute>X!i < \<acute>Y!j)  DO 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   361
     IF P(B!(\<acute>X!i)) THEN \<acute>Y:=\<acute>Y[i:=\<acute>X!i] ELSE \<acute>X:= \<acute>X[i:=(\<acute>X!i)+ n] FI 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   362
  OD,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   363
 \<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   364
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y!j \<le> \<ordmasculine>Y!j) \<and> \<ordmasculine>X!i = \<ordfeminine>X!i \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   365
   \<ordmasculine>Y!i = \<ordfeminine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   366
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X!j = \<ordfeminine>X!j \<and> \<ordmasculine>Y!j = \<ordfeminine>Y!j) \<and>   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   367
   \<ordfeminine>Y!i \<le> \<ordmasculine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   368
 \<lbrace>(\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i) \<rbrace>) COEND)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   369
 SAT [\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<forall>i<n. \<acute>X!i=i \<and> \<acute>Y!i=m+i) \<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   370
      \<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   371
      \<lbrace>True\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   372
      \<lbrace>\<forall>i<n. (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   373
        (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i)\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   374
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   375
(*5*)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   376
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   377
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   378
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   379
apply(rule While)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   380
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   381
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   382
  apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   383
 apply(rule_tac "pre'"="\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> \<acute>X ! i mod n = i \<and> (\<forall>j. j < \<acute>X ! i \<longrightarrow> j mod n = i \<longrightarrow> \<not> P (B ! j)) \<and> (\<acute>Y ! i < n * q \<longrightarrow> P (B ! (\<acute>Y ! i))) \<and> \<acute>X!i<\<acute>Y!i\<rbrace>" in Conseq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   384
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   385
    apply(rule subset_refl)+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   386
 apply(rule Cond)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   387
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   388
   apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   389
      apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   390
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   391
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   392
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   393
  apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   394
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   395
     apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   396
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   397
     apply(rule allI)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   398
     apply(rule impI)+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   399
     apply(case_tac "X x ! i\<le> j")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   400
      apply(drule le_imp_less_or_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   401
      apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   402
       apply(drule_tac j=j and n=n and i=i and a="X x ! i" in mod_aux)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   403
        apply assumption+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   404
       apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   405
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   406
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   407
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   408
end