13020
|
1 |
|
|
2 |
header {* \section{Examples} *}
|
|
3 |
|
|
4 |
theory RG_Examples = RG_Syntax:
|
|
5 |
|
|
6 |
lemmas definitions [simp]= stable_def Pre_def Rely_def Guar_def Post_def Com_def
|
|
7 |
|
|
8 |
subsection {* Set Elements of an Array to Zero *}
|
|
9 |
|
|
10 |
lemma le_less_trans2: "\<lbrakk>(j::nat)<k; i\<le> j\<rbrakk> \<Longrightarrow> i<k"
|
|
11 |
by simp
|
|
12 |
|
|
13 |
lemma add_le_less_mono: "\<lbrakk> (a::nat) < c; b\<le>d \<rbrakk> \<Longrightarrow> a + b < c + d"
|
|
14 |
by simp
|
|
15 |
|
|
16 |
record Example1 =
|
|
17 |
A :: "nat list"
|
|
18 |
|
|
19 |
lemma Example1:
|
|
20 |
"\<turnstile> COBEGIN
|
|
21 |
SCHEME [0 \<le> i < n]
|
|
22 |
(\<acute>A := \<acute>A [i := 0],
|
|
23 |
\<lbrace> n < length \<acute>A \<rbrace>,
|
|
24 |
\<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> \<ordmasculine>A ! i = \<ordfeminine>A ! i \<rbrace>,
|
|
25 |
\<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> (\<forall>j<n. i \<noteq> j \<longrightarrow> \<ordmasculine>A ! j = \<ordfeminine>A ! j) \<rbrace>,
|
|
26 |
\<lbrace> \<acute>A ! i = 0 \<rbrace>)
|
|
27 |
COEND
|
|
28 |
SAT [\<lbrace> n < length \<acute>A \<rbrace>, \<lbrace> \<ordmasculine>A = \<ordfeminine>A \<rbrace>, \<lbrace> True \<rbrace>, \<lbrace> \<forall>i < n. \<acute>A ! i = 0 \<rbrace>]"
|
|
29 |
apply(rule Parallel)
|
|
30 |
apply simp
|
|
31 |
apply clarify
|
|
32 |
apply simp
|
|
33 |
apply(erule disjE)
|
|
34 |
apply simp
|
|
35 |
apply clarify
|
|
36 |
apply simp
|
|
37 |
apply auto
|
|
38 |
apply(rule Basic)
|
|
39 |
apply auto
|
|
40 |
done
|
|
41 |
|
|
42 |
lemma Example1_parameterized:
|
|
43 |
"k < t \<Longrightarrow>
|
|
44 |
\<turnstile> COBEGIN
|
|
45 |
SCHEME [k*n\<le>i<(Suc k)*n] (\<acute>A:=\<acute>A[i:=0],
|
|
46 |
\<lbrace>t*n < length \<acute>A\<rbrace>,
|
|
47 |
\<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> \<ordmasculine>A!i = \<ordfeminine>A!i\<rbrace>,
|
|
48 |
\<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>j<length \<ordmasculine>A . i\<noteq>j \<longrightarrow> \<ordmasculine>A!j = \<ordfeminine>A!j)\<rbrace>,
|
|
49 |
\<lbrace>\<acute>A!i=0\<rbrace>)
|
|
50 |
COEND
|
|
51 |
SAT [\<lbrace>t*n < length \<acute>A\<rbrace>,
|
|
52 |
\<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>i<n. \<ordmasculine>A!(k*n+i)=\<ordfeminine>A!(k*n+i))\<rbrace>,
|
|
53 |
\<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and>
|
|
54 |
(\<forall>i<length \<ordmasculine>A . (i<k*n \<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i) \<and> ((Suc k)*n \<le> i\<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i))\<rbrace>,
|
|
55 |
\<lbrace>\<forall>i<n. \<acute>A!(k*n+i) = 0\<rbrace>]"
|
|
56 |
apply(rule Parallel)
|
|
57 |
apply simp
|
|
58 |
apply clarify
|
|
59 |
apply simp
|
|
60 |
apply(erule disjE)
|
|
61 |
apply clarify
|
|
62 |
apply simp
|
|
63 |
apply clarify
|
|
64 |
apply simp
|
|
65 |
apply clarify
|
|
66 |
apply simp
|
|
67 |
apply(erule_tac x="k*n +i" in allE)
|
|
68 |
apply(subgoal_tac "k*n+i <length (A b)")
|
|
69 |
apply force
|
|
70 |
apply(erule le_less_trans2)
|
|
71 |
apply(case_tac t,simp+)
|
|
72 |
apply (simp add:add_commute)
|
|
73 |
apply(rule add_le_mono)
|
|
74 |
apply simp
|
|
75 |
apply simp
|
|
76 |
apply simp
|
|
77 |
apply clarify
|
|
78 |
apply(rotate_tac -1)
|
|
79 |
apply force
|
|
80 |
apply force
|
|
81 |
apply force
|
|
82 |
apply simp
|
|
83 |
apply clarify
|
|
84 |
apply(rule Basic)
|
|
85 |
apply simp
|
|
86 |
apply clarify
|
|
87 |
apply (subgoal_tac "k*n+i< length (A x)")
|
|
88 |
apply simp
|
|
89 |
apply(erule le_less_trans2)
|
|
90 |
apply(case_tac t,simp+)
|
|
91 |
apply (simp add:add_commute)
|
|
92 |
apply(rule add_le_mono)
|
|
93 |
apply simp
|
|
94 |
apply simp
|
|
95 |
apply force+
|
|
96 |
done
|
|
97 |
|
|
98 |
subsection {* Increment a Variable in Parallel *}
|
|
99 |
|
|
100 |
subsubsection {* Two components *}
|
|
101 |
|
|
102 |
record Example2 =
|
|
103 |
x :: nat
|
|
104 |
c_0 :: nat
|
|
105 |
c_1 :: nat
|
|
106 |
|
|
107 |
lemma Example2:
|
|
108 |
"\<turnstile> COBEGIN
|
|
109 |
(\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_0:=\<acute>c_0 + 1 \<rangle>,
|
|
110 |
\<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_0=0\<rbrace>,
|
|
111 |
\<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and>
|
|
112 |
(\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1
|
|
113 |
\<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
|
|
114 |
\<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and>
|
|
115 |
(\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1
|
|
116 |
\<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
|
|
117 |
\<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_0=1 \<rbrace>)
|
|
118 |
\<parallel>
|
|
119 |
(\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_1:=\<acute>c_1+1 \<rangle>,
|
|
120 |
\<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=0 \<rbrace>,
|
|
121 |
\<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and>
|
|
122 |
(\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1
|
|
123 |
\<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
|
|
124 |
\<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and>
|
|
125 |
(\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1
|
|
126 |
\<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
|
|
127 |
\<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=1\<rbrace>)
|
|
128 |
COEND
|
|
129 |
SAT [\<lbrace>\<acute>x=0 \<and> \<acute>c_0=0 \<and> \<acute>c_1=0\<rbrace>,
|
|
130 |
\<lbrace>\<ordmasculine>x=\<ordfeminine>x \<and> \<ordmasculine>c_0= \<ordfeminine>c_0 \<and> \<ordmasculine>c_1=\<ordfeminine>c_1\<rbrace>,
|
|
131 |
\<lbrace>True\<rbrace>,
|
|
132 |
\<lbrace>\<acute>x=2\<rbrace>]"
|
|
133 |
apply(rule Parallel)
|
|
134 |
apply simp_all
|
|
135 |
apply clarify
|
|
136 |
apply(case_tac i)
|
|
137 |
apply simp
|
|
138 |
apply(erule disjE)
|
|
139 |
apply clarify
|
|
140 |
apply simp
|
|
141 |
apply clarify
|
|
142 |
apply simp
|
|
143 |
apply(case_tac j,simp)
|
|
144 |
apply simp
|
|
145 |
apply simp
|
|
146 |
apply(erule disjE)
|
|
147 |
apply clarify
|
|
148 |
apply simp
|
|
149 |
apply clarify
|
|
150 |
apply simp
|
|
151 |
apply(case_tac j,simp,simp)
|
|
152 |
apply clarify
|
|
153 |
apply(case_tac i,simp,simp)
|
|
154 |
apply clarify
|
|
155 |
apply simp
|
|
156 |
apply(erule_tac x=0 in all_dupE)
|
|
157 |
apply(erule_tac x=1 in allE,simp)
|
|
158 |
apply clarify
|
|
159 |
apply(case_tac i,simp)
|
|
160 |
apply(rule Await)
|
|
161 |
apply simp_all
|
|
162 |
apply(clarify)
|
|
163 |
apply(rule Seq)
|
|
164 |
prefer 2
|
|
165 |
apply(rule Basic)
|
|
166 |
apply simp_all
|
|
167 |
apply(rule subset_refl)
|
|
168 |
apply(rule Basic)
|
|
169 |
apply simp_all
|
|
170 |
apply clarify
|
|
171 |
apply simp
|
|
172 |
apply(rule Await)
|
|
173 |
apply simp_all
|
|
174 |
apply(clarify)
|
|
175 |
apply(rule Seq)
|
|
176 |
prefer 2
|
|
177 |
apply(rule Basic)
|
|
178 |
apply simp_all
|
|
179 |
apply(rule subset_refl)
|
|
180 |
apply(rule Basic)
|
|
181 |
apply simp_all
|
|
182 |
apply clarify
|
|
183 |
apply simp
|
|
184 |
done
|
|
185 |
|
|
186 |
subsubsection {* Parameterized *}
|
|
187 |
|
|
188 |
lemma Example2_lemma1: "j<n \<Longrightarrow> (\<Sum>i<n. b i) = (0::nat) \<Longrightarrow> b j = 0 "
|
|
189 |
apply(induct n)
|
|
190 |
apply simp_all
|
|
191 |
apply(force simp add: less_Suc_eq)
|
|
192 |
done
|
|
193 |
|
|
194 |
lemma Example2_lemma2_aux:
|
|
195 |
"j<n \<Longrightarrow> (\<Sum>i<n. (b i::nat)) = (\<Sum>i<j. b i) + b j + (\<Sum>i<n-(Suc j) . b (Suc j + i))"
|
|
196 |
apply(induct n)
|
|
197 |
apply simp_all
|
|
198 |
apply(simp add:less_Suc_eq)
|
|
199 |
apply(auto)
|
|
200 |
apply(subgoal_tac "n - j = Suc(n- Suc j)")
|
|
201 |
apply simp
|
|
202 |
apply arith
|
|
203 |
done
|
|
204 |
|
|
205 |
lemma Example2_lemma2_aux2: "j\<le> s \<Longrightarrow> (\<Sum>i<j. (b (s:=t)) i) = (\<Sum>i<j. b i)"
|
|
206 |
apply(induct j)
|
|
207 |
apply simp_all
|
|
208 |
done
|
|
209 |
|
|
210 |
lemma Example2_lemma2: "\<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i< n. b i)=(\<Sum>i< n. (b (j:=1)) i)"
|
|
211 |
apply(frule_tac b="(b (j:=1))" in Example2_lemma2_aux)
|
|
212 |
apply(erule_tac t="Summation (b(j := 1)) n" in ssubst)
|
|
213 |
apply(frule_tac b=b in Example2_lemma2_aux)
|
|
214 |
apply(erule_tac t="Summation b n" in ssubst)
|
|
215 |
apply(subgoal_tac "Suc (Summation b j + b j + (\<Sum>i<n - Suc j. b (Suc j + i)))=(Summation b j + Suc (b j) + (\<Sum>i<n - Suc j. b (Suc j + i)))")
|
|
216 |
apply(rotate_tac -1)
|
|
217 |
apply(erule ssubst)
|
|
218 |
apply(subgoal_tac "j\<le>j")
|
|
219 |
apply(drule_tac b="b" and t=1 in Example2_lemma2_aux2)
|
|
220 |
apply(rotate_tac -1)
|
|
221 |
apply(erule ssubst)
|
|
222 |
apply simp_all
|
|
223 |
done
|
|
224 |
|
|
225 |
lemma Example2_lemma2_Suc0: "\<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i< n. b i)=(\<Sum>i< n. (b (j:=Suc 0)) i)"
|
|
226 |
by(simp add:Example2_lemma2)
|
|
227 |
|
|
228 |
lemma Example2_lemma3: "\<forall>i< n. b i = 1 \<Longrightarrow> (\<Sum>i<n. b i)= n"
|
|
229 |
apply (induct n)
|
|
230 |
apply auto
|
|
231 |
done
|
|
232 |
|
|
233 |
record Example2_parameterized =
|
|
234 |
C :: "nat \<Rightarrow> nat"
|
|
235 |
y :: nat
|
|
236 |
|
|
237 |
lemma Example2_parameterized: "0<n \<Longrightarrow>
|
|
238 |
\<turnstile> COBEGIN SCHEME [0\<le>i<n]
|
|
239 |
(\<langle> \<acute>y:=\<acute>y+1;; \<acute>C:=\<acute>C (i:=1) \<rangle>,
|
|
240 |
\<lbrace>\<acute>y=(\<Sum>i<n. \<acute>C i) \<and> \<acute>C i=0\<rbrace>,
|
|
241 |
\<lbrace>\<ordmasculine>C i = \<ordfeminine>C i \<and>
|
|
242 |
(\<ordmasculine>y=(\<Sum>i<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i<n. \<ordfeminine>C i))\<rbrace>,
|
|
243 |
\<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>C j = \<ordfeminine>C j) \<and>
|
|
244 |
(\<ordmasculine>y=(\<Sum>i<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i<n. \<ordfeminine>C i))\<rbrace>,
|
|
245 |
\<lbrace>\<acute>y=(\<Sum>i<n. \<acute>C i) \<and> \<acute>C i=1\<rbrace>)
|
|
246 |
COEND
|
|
247 |
SAT [\<lbrace>\<acute>y=0 \<and> (\<Sum>i<n. \<acute>C i)=0 \<rbrace>, \<lbrace>\<ordmasculine>C=\<ordfeminine>C \<and> \<ordmasculine>y=\<ordfeminine>y\<rbrace>, \<lbrace>True\<rbrace>, \<lbrace>\<acute>y=n\<rbrace>]"
|
|
248 |
apply(rule Parallel)
|
|
249 |
apply force
|
|
250 |
apply force
|
|
251 |
apply(force elim:Example2_lemma1)
|
|
252 |
apply clarify
|
|
253 |
apply simp
|
|
254 |
apply(force intro:Example2_lemma3)
|
|
255 |
apply clarify
|
|
256 |
apply simp
|
|
257 |
apply(rule Await)
|
|
258 |
apply simp_all
|
|
259 |
apply clarify
|
|
260 |
apply(rule Seq)
|
|
261 |
prefer 2
|
|
262 |
apply(rule Basic)
|
|
263 |
apply(rule subset_refl)
|
|
264 |
apply simp+
|
|
265 |
apply(rule Basic)
|
|
266 |
apply simp
|
|
267 |
apply clarify
|
|
268 |
apply simp
|
|
269 |
apply(force elim:Example2_lemma2_Suc0)
|
|
270 |
apply simp+
|
|
271 |
done
|
|
272 |
|
|
273 |
subsection {* Find Least Element *}
|
|
274 |
|
|
275 |
text {* A previous lemma: *}
|
|
276 |
|
|
277 |
lemma mod_aux :"\<lbrakk>i < (n::nat); a mod n = i; j < a + n; j mod n = i; a < j\<rbrakk> \<Longrightarrow> False"
|
|
278 |
apply(subgoal_tac "a=a div n*n + a mod n" )
|
|
279 |
prefer 2 apply (simp (no_asm_use) only: mod_div_equality [symmetric])
|
|
280 |
apply(subgoal_tac "j=j div n*n + j mod n")
|
|
281 |
prefer 2 apply (simp (no_asm_use) only: mod_div_equality [symmetric])
|
|
282 |
apply simp
|
|
283 |
apply(subgoal_tac "a div n*n < j div n*n")
|
|
284 |
prefer 2 apply arith
|
|
285 |
apply(subgoal_tac "j div n*n < (a div n + 1)*n")
|
|
286 |
prefer 2 apply simp
|
|
287 |
apply (simp only:mult_less_cancel2)
|
|
288 |
apply arith
|
|
289 |
done
|
|
290 |
|
|
291 |
record Example3 =
|
|
292 |
X :: "nat \<Rightarrow> nat"
|
|
293 |
Y :: "nat \<Rightarrow> nat"
|
|
294 |
|
|
295 |
lemma Example3: "m mod n=0 \<Longrightarrow>
|
|
296 |
\<turnstile> COBEGIN
|
|
297 |
SCHEME [0\<le>i<n]
|
|
298 |
(WHILE (\<forall>j<n. \<acute>X i < \<acute>Y j) DO
|
|
299 |
IF P(B!(\<acute>X i)) THEN \<acute>Y:=\<acute>Y (i:=\<acute>X i)
|
|
300 |
ELSE \<acute>X:= \<acute>X (i:=(\<acute>X i)+ n) FI
|
|
301 |
OD,
|
|
302 |
\<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i)\<rbrace>,
|
|
303 |
\<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y j \<le> \<ordmasculine>Y j) \<and> \<ordmasculine>X i = \<ordfeminine>X i \<and>
|
|
304 |
\<ordmasculine>Y i = \<ordfeminine>Y i\<rbrace>,
|
|
305 |
\<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X j = \<ordfeminine>X j \<and> \<ordmasculine>Y j = \<ordfeminine>Y j) \<and>
|
|
306 |
\<ordfeminine>Y i \<le> \<ordmasculine>Y i\<rbrace>,
|
|
307 |
\<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i) \<rbrace>)
|
|
308 |
COEND
|
|
309 |
SAT [\<lbrace> \<forall>i<n. \<acute>X i=i \<and> \<acute>Y i=m+i \<rbrace>,\<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>,\<lbrace>True\<rbrace>,
|
|
310 |
\<lbrace>\<forall>i<n. (\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and>
|
|
311 |
(\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i)\<rbrace>]"
|
|
312 |
apply(rule Parallel)
|
|
313 |
(*5*)
|
|
314 |
apply force+
|
|
315 |
apply clarify
|
|
316 |
apply simp
|
|
317 |
apply(rule While)
|
|
318 |
apply force
|
|
319 |
apply force
|
|
320 |
apply force
|
|
321 |
apply(rule_tac "pre'"="\<lbrace> \<acute>X i mod n = i \<and> (\<forall>j. j<\<acute>X i \<longrightarrow> j mod n = i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i < n * q \<longrightarrow> P (B!(\<acute>Y i))) \<and> \<acute>X i<\<acute>Y i\<rbrace>" in Conseq)
|
|
322 |
apply force
|
|
323 |
apply(rule subset_refl)+
|
|
324 |
apply(rule Cond)
|
|
325 |
apply force
|
|
326 |
apply(rule Basic)
|
|
327 |
apply force
|
|
328 |
apply force
|
|
329 |
apply force
|
|
330 |
apply force
|
|
331 |
apply(rule Basic)
|
|
332 |
apply simp
|
|
333 |
apply clarify
|
|
334 |
apply simp
|
|
335 |
apply(case_tac "X x (j mod n)\<le> j")
|
|
336 |
apply(drule le_imp_less_or_eq)
|
|
337 |
apply(erule disjE)
|
|
338 |
apply(drule_tac j=j and n=n and i="j mod n" and a="X x (j mod n)" in mod_aux)
|
|
339 |
apply assumption+
|
|
340 |
apply simp+
|
|
341 |
apply(erule_tac x=j in allE)
|
|
342 |
apply force
|
|
343 |
apply simp
|
|
344 |
apply clarify
|
|
345 |
apply(rule conjI)
|
|
346 |
apply clarify
|
|
347 |
apply simp
|
|
348 |
apply(erule not_sym)
|
|
349 |
apply force
|
|
350 |
apply force+
|
|
351 |
done
|
|
352 |
|
|
353 |
text {* Same but with a list as auxiliary variable: *}
|
|
354 |
|
|
355 |
record Example3_list =
|
|
356 |
X :: "nat list"
|
|
357 |
Y :: "nat list"
|
|
358 |
|
|
359 |
lemma Example3_list: "m mod n=0 \<Longrightarrow> \<turnstile> (COBEGIN SCHEME [0\<le>i<n]
|
|
360 |
(WHILE (\<forall>j<n. \<acute>X!i < \<acute>Y!j) DO
|
|
361 |
IF P(B!(\<acute>X!i)) THEN \<acute>Y:=\<acute>Y[i:=\<acute>X!i] ELSE \<acute>X:= \<acute>X[i:=(\<acute>X!i)+ n] FI
|
|
362 |
OD,
|
|
363 |
\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i)\<rbrace>,
|
|
364 |
\<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y!j \<le> \<ordmasculine>Y!j) \<and> \<ordmasculine>X!i = \<ordfeminine>X!i \<and>
|
|
365 |
\<ordmasculine>Y!i = \<ordfeminine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>,
|
|
366 |
\<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X!j = \<ordfeminine>X!j \<and> \<ordmasculine>Y!j = \<ordfeminine>Y!j) \<and>
|
|
367 |
\<ordfeminine>Y!i \<le> \<ordmasculine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>,
|
|
368 |
\<lbrace>(\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i) \<rbrace>) COEND)
|
|
369 |
SAT [\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<forall>i<n. \<acute>X!i=i \<and> \<acute>Y!i=m+i) \<rbrace>,
|
|
370 |
\<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>,
|
|
371 |
\<lbrace>True\<rbrace>,
|
|
372 |
\<lbrace>\<forall>i<n. (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and>
|
|
373 |
(\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i)\<rbrace>]"
|
|
374 |
apply(rule Parallel)
|
|
375 |
(*5*)
|
|
376 |
apply force+
|
|
377 |
apply clarify
|
|
378 |
apply simp
|
|
379 |
apply(rule While)
|
|
380 |
apply force
|
|
381 |
apply force
|
|
382 |
apply force
|
|
383 |
apply(rule_tac "pre'"="\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> \<acute>X ! i mod n = i \<and> (\<forall>j. j < \<acute>X ! i \<longrightarrow> j mod n = i \<longrightarrow> \<not> P (B ! j)) \<and> (\<acute>Y ! i < n * q \<longrightarrow> P (B ! (\<acute>Y ! i))) \<and> \<acute>X!i<\<acute>Y!i\<rbrace>" in Conseq)
|
|
384 |
apply force
|
|
385 |
apply(rule subset_refl)+
|
|
386 |
apply(rule Cond)
|
|
387 |
apply force
|
|
388 |
apply(rule Basic)
|
|
389 |
apply force
|
|
390 |
apply force
|
|
391 |
apply force
|
|
392 |
apply force
|
|
393 |
apply(rule Basic)
|
|
394 |
apply simp
|
|
395 |
apply clarify
|
|
396 |
apply simp
|
|
397 |
apply(rule allI)
|
|
398 |
apply(rule impI)+
|
|
399 |
apply(case_tac "X x ! i\<le> j")
|
|
400 |
apply(drule le_imp_less_or_eq)
|
|
401 |
apply(erule disjE)
|
|
402 |
apply(drule_tac j=j and n=n and i=i and a="X x ! i" in mod_aux)
|
|
403 |
apply assumption+
|
|
404 |
apply simp
|
|
405 |
apply force+
|
|
406 |
done
|
|
407 |
|
|
408 |
end |