author | kleing |
Tue, 13 May 2003 08:59:21 +0200 | |
changeset 14024 | 213dcc39358f |
parent 13975 | c8e9a89883ce |
child 14254 | 342634f38451 |
permissions | -rw-r--r-- |
13813 | 1 |
(* |
2 |
Title: HOL/Algebra/Group.thy |
|
3 |
Id: $Id$ |
|
4 |
Author: Clemens Ballarin, started 4 February 2003 |
|
5 |
||
6 |
Based on work by Florian Kammueller, L C Paulson and Markus Wenzel. |
|
7 |
*) |
|
8 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13944
diff
changeset
|
9 |
header {* Groups *} |
13813 | 10 |
|
13835
12b2ffbe543a
Change to meta simplifier: congruence rules may now have frees as head of term.
ballarin
parents:
13817
diff
changeset
|
11 |
theory Group = FuncSet: |
13813 | 12 |
|
13936 | 13 |
section {* From Magmas to Groups *} |
14 |
||
13813 | 15 |
text {* |
16 |
Definitions follow Jacobson, Basic Algebra I, Freeman, 1985; with |
|
17 |
the exception of \emph{magma} which, following Bourbaki, is a set |
|
18 |
together with a binary, closed operation. |
|
19 |
*} |
|
20 |
||
21 |
subsection {* Definitions *} |
|
22 |
||
13817 | 23 |
record 'a semigroup = |
13813 | 24 |
carrier :: "'a set" |
25 |
mult :: "['a, 'a] => 'a" (infixl "\<otimes>\<index>" 70) |
|
26 |
||
13817 | 27 |
record 'a monoid = "'a semigroup" + |
13813 | 28 |
one :: 'a ("\<one>\<index>") |
13817 | 29 |
|
13936 | 30 |
constdefs |
31 |
m_inv :: "[('a, 'm) monoid_scheme, 'a] => 'a" ("inv\<index> _" [81] 80) |
|
32 |
"m_inv G x == (THE y. y \<in> carrier G & |
|
33 |
mult G x y = one G & mult G y x = one G)" |
|
34 |
||
35 |
Units :: "('a, 'm) monoid_scheme => 'a set" |
|
36 |
"Units G == {y. y \<in> carrier G & |
|
37 |
(EX x : carrier G. mult G x y = one G & mult G y x = one G)}" |
|
38 |
||
39 |
consts |
|
40 |
pow :: "[('a, 'm) monoid_scheme, 'a, 'b::number] => 'a" (infixr "'(^')\<index>" 75) |
|
41 |
||
42 |
defs (overloaded) |
|
43 |
nat_pow_def: "pow G a n == nat_rec (one G) (%u b. mult G b a) n" |
|
44 |
int_pow_def: "pow G a z == |
|
45 |
let p = nat_rec (one G) (%u b. mult G b a) |
|
46 |
in if neg z then m_inv G (p (nat (-z))) else p (nat z)" |
|
13813 | 47 |
|
48 |
locale magma = struct G + |
|
49 |
assumes m_closed [intro, simp]: |
|
50 |
"[| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" |
|
51 |
||
52 |
locale semigroup = magma + |
|
53 |
assumes m_assoc: |
|
54 |
"[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
13936 | 55 |
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" |
13813 | 56 |
|
13936 | 57 |
locale monoid = semigroup + |
13813 | 58 |
assumes one_closed [intro, simp]: "\<one> \<in> carrier G" |
59 |
and l_one [simp]: "x \<in> carrier G ==> \<one> \<otimes> x = x" |
|
13936 | 60 |
and r_one [simp]: "x \<in> carrier G ==> x \<otimes> \<one> = x" |
13817 | 61 |
|
13936 | 62 |
lemma monoidI: |
63 |
assumes m_closed: |
|
64 |
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G" |
|
65 |
and one_closed: "one G \<in> carrier G" |
|
66 |
and m_assoc: |
|
67 |
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
68 |
mult G (mult G x y) z = mult G x (mult G y z)" |
|
69 |
and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x" |
|
70 |
and r_one: "!!x. x \<in> carrier G ==> mult G x (one G) = x" |
|
71 |
shows "monoid G" |
|
72 |
by (fast intro!: monoid.intro magma.intro semigroup_axioms.intro |
|
73 |
semigroup.intro monoid_axioms.intro |
|
74 |
intro: prems) |
|
75 |
||
76 |
lemma (in monoid) Units_closed [dest]: |
|
77 |
"x \<in> Units G ==> x \<in> carrier G" |
|
78 |
by (unfold Units_def) fast |
|
79 |
||
80 |
lemma (in monoid) inv_unique: |
|
81 |
assumes eq: "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>" |
|
82 |
and G: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G" |
|
83 |
shows "y = y'" |
|
84 |
proof - |
|
85 |
from G eq have "y = y \<otimes> (x \<otimes> y')" by simp |
|
86 |
also from G have "... = (y \<otimes> x) \<otimes> y'" by (simp add: m_assoc) |
|
87 |
also from G eq have "... = y'" by simp |
|
88 |
finally show ?thesis . |
|
89 |
qed |
|
90 |
||
13940 | 91 |
lemma (in monoid) Units_one_closed [intro, simp]: |
92 |
"\<one> \<in> Units G" |
|
93 |
by (unfold Units_def) auto |
|
94 |
||
13936 | 95 |
lemma (in monoid) Units_inv_closed [intro, simp]: |
96 |
"x \<in> Units G ==> inv x \<in> carrier G" |
|
13943 | 97 |
apply (unfold Units_def m_inv_def, auto) |
13936 | 98 |
apply (rule theI2, fast) |
13943 | 99 |
apply (fast intro: inv_unique, fast) |
13936 | 100 |
done |
101 |
||
102 |
lemma (in monoid) Units_l_inv: |
|
103 |
"x \<in> Units G ==> inv x \<otimes> x = \<one>" |
|
13943 | 104 |
apply (unfold Units_def m_inv_def, auto) |
13936 | 105 |
apply (rule theI2, fast) |
13943 | 106 |
apply (fast intro: inv_unique, fast) |
13936 | 107 |
done |
108 |
||
109 |
lemma (in monoid) Units_r_inv: |
|
110 |
"x \<in> Units G ==> x \<otimes> inv x = \<one>" |
|
13943 | 111 |
apply (unfold Units_def m_inv_def, auto) |
13936 | 112 |
apply (rule theI2, fast) |
13943 | 113 |
apply (fast intro: inv_unique, fast) |
13936 | 114 |
done |
115 |
||
116 |
lemma (in monoid) Units_inv_Units [intro, simp]: |
|
117 |
"x \<in> Units G ==> inv x \<in> Units G" |
|
118 |
proof - |
|
119 |
assume x: "x \<in> Units G" |
|
120 |
show "inv x \<in> Units G" |
|
121 |
by (auto simp add: Units_def |
|
122 |
intro: Units_l_inv Units_r_inv x Units_closed [OF x]) |
|
123 |
qed |
|
124 |
||
125 |
lemma (in monoid) Units_l_cancel [simp]: |
|
126 |
"[| x \<in> Units G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
127 |
(x \<otimes> y = x \<otimes> z) = (y = z)" |
|
128 |
proof |
|
129 |
assume eq: "x \<otimes> y = x \<otimes> z" |
|
130 |
and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G" |
|
131 |
then have "(inv x \<otimes> x) \<otimes> y = (inv x \<otimes> x) \<otimes> z" |
|
132 |
by (simp add: m_assoc Units_closed) |
|
133 |
with G show "y = z" by (simp add: Units_l_inv) |
|
134 |
next |
|
135 |
assume eq: "y = z" |
|
136 |
and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G" |
|
137 |
then show "x \<otimes> y = x \<otimes> z" by simp |
|
138 |
qed |
|
139 |
||
140 |
lemma (in monoid) Units_inv_inv [simp]: |
|
141 |
"x \<in> Units G ==> inv (inv x) = x" |
|
142 |
proof - |
|
143 |
assume x: "x \<in> Units G" |
|
144 |
then have "inv x \<otimes> inv (inv x) = inv x \<otimes> x" |
|
145 |
by (simp add: Units_l_inv Units_r_inv) |
|
146 |
with x show ?thesis by (simp add: Units_closed) |
|
147 |
qed |
|
148 |
||
149 |
lemma (in monoid) inv_inj_on_Units: |
|
150 |
"inj_on (m_inv G) (Units G)" |
|
151 |
proof (rule inj_onI) |
|
152 |
fix x y |
|
153 |
assume G: "x \<in> Units G" "y \<in> Units G" and eq: "inv x = inv y" |
|
154 |
then have "inv (inv x) = inv (inv y)" by simp |
|
155 |
with G show "x = y" by simp |
|
156 |
qed |
|
157 |
||
13940 | 158 |
lemma (in monoid) Units_inv_comm: |
159 |
assumes inv: "x \<otimes> y = \<one>" |
|
160 |
and G: "x \<in> Units G" "y \<in> Units G" |
|
161 |
shows "y \<otimes> x = \<one>" |
|
162 |
proof - |
|
163 |
from G have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by (auto simp add: inv Units_closed) |
|
164 |
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed) |
|
165 |
qed |
|
166 |
||
13936 | 167 |
text {* Power *} |
168 |
||
169 |
lemma (in monoid) nat_pow_closed [intro, simp]: |
|
170 |
"x \<in> carrier G ==> x (^) (n::nat) \<in> carrier G" |
|
171 |
by (induct n) (simp_all add: nat_pow_def) |
|
172 |
||
173 |
lemma (in monoid) nat_pow_0 [simp]: |
|
174 |
"x (^) (0::nat) = \<one>" |
|
175 |
by (simp add: nat_pow_def) |
|
176 |
||
177 |
lemma (in monoid) nat_pow_Suc [simp]: |
|
178 |
"x (^) (Suc n) = x (^) n \<otimes> x" |
|
179 |
by (simp add: nat_pow_def) |
|
180 |
||
181 |
lemma (in monoid) nat_pow_one [simp]: |
|
182 |
"\<one> (^) (n::nat) = \<one>" |
|
183 |
by (induct n) simp_all |
|
184 |
||
185 |
lemma (in monoid) nat_pow_mult: |
|
186 |
"x \<in> carrier G ==> x (^) (n::nat) \<otimes> x (^) m = x (^) (n + m)" |
|
187 |
by (induct m) (simp_all add: m_assoc [THEN sym]) |
|
188 |
||
189 |
lemma (in monoid) nat_pow_pow: |
|
190 |
"x \<in> carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)" |
|
191 |
by (induct m) (simp, simp add: nat_pow_mult add_commute) |
|
192 |
||
193 |
text {* |
|
194 |
A group is a monoid all of whose elements are invertible. |
|
195 |
*} |
|
196 |
||
197 |
locale group = monoid + |
|
198 |
assumes Units: "carrier G <= Units G" |
|
199 |
||
200 |
theorem groupI: |
|
201 |
assumes m_closed [simp]: |
|
202 |
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G" |
|
203 |
and one_closed [simp]: "one G \<in> carrier G" |
|
204 |
and m_assoc: |
|
205 |
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
206 |
mult G (mult G x y) z = mult G x (mult G y z)" |
|
207 |
and l_one [simp]: "!!x. x \<in> carrier G ==> mult G (one G) x = x" |
|
208 |
and l_inv_ex: "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G" |
|
209 |
shows "group G" |
|
210 |
proof - |
|
211 |
have l_cancel [simp]: |
|
212 |
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
213 |
(mult G x y = mult G x z) = (y = z)" |
|
214 |
proof |
|
215 |
fix x y z |
|
216 |
assume eq: "mult G x y = mult G x z" |
|
217 |
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
218 |
with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G" |
|
219 |
and l_inv: "mult G x_inv x = one G" by fast |
|
220 |
from G eq xG have "mult G (mult G x_inv x) y = mult G (mult G x_inv x) z" |
|
221 |
by (simp add: m_assoc) |
|
222 |
with G show "y = z" by (simp add: l_inv) |
|
223 |
next |
|
224 |
fix x y z |
|
225 |
assume eq: "y = z" |
|
226 |
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
227 |
then show "mult G x y = mult G x z" by simp |
|
228 |
qed |
|
229 |
have r_one: |
|
230 |
"!!x. x \<in> carrier G ==> mult G x (one G) = x" |
|
231 |
proof - |
|
232 |
fix x |
|
233 |
assume x: "x \<in> carrier G" |
|
234 |
with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G" |
|
235 |
and l_inv: "mult G x_inv x = one G" by fast |
|
236 |
from x xG have "mult G x_inv (mult G x (one G)) = mult G x_inv x" |
|
237 |
by (simp add: m_assoc [symmetric] l_inv) |
|
238 |
with x xG show "mult G x (one G) = x" by simp |
|
239 |
qed |
|
240 |
have inv_ex: |
|
241 |
"!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G & |
|
242 |
mult G x y = one G" |
|
243 |
proof - |
|
244 |
fix x |
|
245 |
assume x: "x \<in> carrier G" |
|
246 |
with l_inv_ex obtain y where y: "y \<in> carrier G" |
|
247 |
and l_inv: "mult G y x = one G" by fast |
|
248 |
from x y have "mult G y (mult G x y) = mult G y (one G)" |
|
249 |
by (simp add: m_assoc [symmetric] l_inv r_one) |
|
250 |
with x y have r_inv: "mult G x y = one G" |
|
251 |
by simp |
|
252 |
from x y show "EX y : carrier G. mult G y x = one G & |
|
253 |
mult G x y = one G" |
|
254 |
by (fast intro: l_inv r_inv) |
|
255 |
qed |
|
256 |
then have carrier_subset_Units: "carrier G <= Units G" |
|
257 |
by (unfold Units_def) fast |
|
258 |
show ?thesis |
|
259 |
by (fast intro!: group.intro magma.intro semigroup_axioms.intro |
|
260 |
semigroup.intro monoid_axioms.intro group_axioms.intro |
|
261 |
carrier_subset_Units intro: prems r_one) |
|
262 |
qed |
|
263 |
||
264 |
lemma (in monoid) monoid_groupI: |
|
265 |
assumes l_inv_ex: |
|
266 |
"!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G" |
|
267 |
shows "group G" |
|
268 |
by (rule groupI) (auto intro: m_assoc l_inv_ex) |
|
269 |
||
270 |
lemma (in group) Units_eq [simp]: |
|
271 |
"Units G = carrier G" |
|
272 |
proof |
|
273 |
show "Units G <= carrier G" by fast |
|
274 |
next |
|
275 |
show "carrier G <= Units G" by (rule Units) |
|
276 |
qed |
|
277 |
||
278 |
lemma (in group) inv_closed [intro, simp]: |
|
279 |
"x \<in> carrier G ==> inv x \<in> carrier G" |
|
280 |
using Units_inv_closed by simp |
|
281 |
||
282 |
lemma (in group) l_inv: |
|
283 |
"x \<in> carrier G ==> inv x \<otimes> x = \<one>" |
|
284 |
using Units_l_inv by simp |
|
13813 | 285 |
|
286 |
subsection {* Cancellation Laws and Basic Properties *} |
|
287 |
||
288 |
lemma (in group) l_cancel [simp]: |
|
289 |
"[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
290 |
(x \<otimes> y = x \<otimes> z) = (y = z)" |
|
13936 | 291 |
using Units_l_inv by simp |
13940 | 292 |
|
13813 | 293 |
lemma (in group) r_inv: |
294 |
"x \<in> carrier G ==> x \<otimes> inv x = \<one>" |
|
295 |
proof - |
|
296 |
assume x: "x \<in> carrier G" |
|
297 |
then have "inv x \<otimes> (x \<otimes> inv x) = inv x \<otimes> \<one>" |
|
298 |
by (simp add: m_assoc [symmetric] l_inv) |
|
299 |
with x show ?thesis by (simp del: r_one) |
|
300 |
qed |
|
301 |
||
302 |
lemma (in group) r_cancel [simp]: |
|
303 |
"[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
304 |
(y \<otimes> x = z \<otimes> x) = (y = z)" |
|
305 |
proof |
|
306 |
assume eq: "y \<otimes> x = z \<otimes> x" |
|
307 |
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
308 |
then have "y \<otimes> (x \<otimes> inv x) = z \<otimes> (x \<otimes> inv x)" |
|
309 |
by (simp add: m_assoc [symmetric]) |
|
310 |
with G show "y = z" by (simp add: r_inv) |
|
311 |
next |
|
312 |
assume eq: "y = z" |
|
313 |
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
314 |
then show "y \<otimes> x = z \<otimes> x" by simp |
|
315 |
qed |
|
316 |
||
13854
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
317 |
lemma (in group) inv_one [simp]: |
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
318 |
"inv \<one> = \<one>" |
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
319 |
proof - |
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
320 |
have "inv \<one> = \<one> \<otimes> (inv \<one>)" by simp |
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
321 |
moreover have "... = \<one>" by (simp add: r_inv) |
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
322 |
finally show ?thesis . |
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
323 |
qed |
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
324 |
|
13813 | 325 |
lemma (in group) inv_inv [simp]: |
326 |
"x \<in> carrier G ==> inv (inv x) = x" |
|
13936 | 327 |
using Units_inv_inv by simp |
328 |
||
329 |
lemma (in group) inv_inj: |
|
330 |
"inj_on (m_inv G) (carrier G)" |
|
331 |
using inv_inj_on_Units by simp |
|
13813 | 332 |
|
13854
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
333 |
lemma (in group) inv_mult_group: |
13813 | 334 |
"[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x" |
335 |
proof - |
|
336 |
assume G: "x \<in> carrier G" "y \<in> carrier G" |
|
337 |
then have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)" |
|
338 |
by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv) |
|
339 |
with G show ?thesis by simp |
|
340 |
qed |
|
341 |
||
13940 | 342 |
lemma (in group) inv_comm: |
343 |
"[| x \<otimes> y = \<one>; x \<in> carrier G; y \<in> carrier G |] ==> y \<otimes> x = \<one>" |
|
344 |
by (rule Units_inv_comm) auto |
|
345 |
||
13944 | 346 |
lemma (in group) inv_equality: |
13943 | 347 |
"[|y \<otimes> x = \<one>; x \<in> carrier G; y \<in> carrier G|] ==> inv x = y" |
348 |
apply (simp add: m_inv_def) |
|
349 |
apply (rule the_equality) |
|
350 |
apply (simp add: inv_comm [of y x]) |
|
351 |
apply (rule r_cancel [THEN iffD1], auto) |
|
352 |
done |
|
353 |
||
13936 | 354 |
text {* Power *} |
355 |
||
356 |
lemma (in group) int_pow_def2: |
|
357 |
"a (^) (z::int) = (if neg z then inv (a (^) (nat (-z))) else a (^) (nat z))" |
|
358 |
by (simp add: int_pow_def nat_pow_def Let_def) |
|
359 |
||
360 |
lemma (in group) int_pow_0 [simp]: |
|
361 |
"x (^) (0::int) = \<one>" |
|
362 |
by (simp add: int_pow_def2) |
|
363 |
||
364 |
lemma (in group) int_pow_one [simp]: |
|
365 |
"\<one> (^) (z::int) = \<one>" |
|
366 |
by (simp add: int_pow_def2) |
|
367 |
||
13813 | 368 |
subsection {* Substructures *} |
369 |
||
370 |
locale submagma = var H + struct G + |
|
371 |
assumes subset [intro, simp]: "H \<subseteq> carrier G" |
|
372 |
and m_closed [intro, simp]: "[| x \<in> H; y \<in> H |] ==> x \<otimes> y \<in> H" |
|
373 |
||
374 |
declare (in submagma) magma.intro [intro] semigroup.intro [intro] |
|
13936 | 375 |
semigroup_axioms.intro [intro] |
13813 | 376 |
(* |
377 |
alternative definition of submagma |
|
378 |
||
379 |
locale submagma = var H + struct G + |
|
380 |
assumes subset [intro, simp]: "carrier H \<subseteq> carrier G" |
|
381 |
and m_equal [simp]: "mult H = mult G" |
|
382 |
and m_closed [intro, simp]: |
|
383 |
"[| x \<in> carrier H; y \<in> carrier H |] ==> x \<otimes> y \<in> carrier H" |
|
384 |
*) |
|
385 |
||
386 |
lemma submagma_imp_subset: |
|
387 |
"submagma H G ==> H \<subseteq> carrier G" |
|
388 |
by (rule submagma.subset) |
|
389 |
||
390 |
lemma (in submagma) subsetD [dest, simp]: |
|
391 |
"x \<in> H ==> x \<in> carrier G" |
|
392 |
using subset by blast |
|
393 |
||
394 |
lemma (in submagma) magmaI [intro]: |
|
395 |
includes magma G |
|
396 |
shows "magma (G(| carrier := H |))" |
|
397 |
by rule simp |
|
398 |
||
399 |
lemma (in submagma) semigroup_axiomsI [intro]: |
|
400 |
includes semigroup G |
|
401 |
shows "semigroup_axioms (G(| carrier := H |))" |
|
402 |
by rule (simp add: m_assoc) |
|
403 |
||
404 |
lemma (in submagma) semigroupI [intro]: |
|
405 |
includes semigroup G |
|
406 |
shows "semigroup (G(| carrier := H |))" |
|
407 |
using prems by fast |
|
408 |
||
409 |
locale subgroup = submagma H G + |
|
410 |
assumes one_closed [intro, simp]: "\<one> \<in> H" |
|
411 |
and m_inv_closed [intro, simp]: "x \<in> H ==> inv x \<in> H" |
|
412 |
||
413 |
declare (in subgroup) group.intro [intro] |
|
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13944
diff
changeset
|
414 |
|
13813 | 415 |
lemma (in subgroup) group_axiomsI [intro]: |
416 |
includes group G |
|
417 |
shows "group_axioms (G(| carrier := H |))" |
|
13936 | 418 |
by rule (auto intro: l_inv r_inv simp add: Units_def) |
13813 | 419 |
|
420 |
lemma (in subgroup) groupI [intro]: |
|
421 |
includes group G |
|
422 |
shows "group (G(| carrier := H |))" |
|
13936 | 423 |
by (rule groupI) (auto intro: m_assoc l_inv) |
13813 | 424 |
|
425 |
text {* |
|
426 |
Since @{term H} is nonempty, it contains some element @{term x}. Since |
|
427 |
it is closed under inverse, it contains @{text "inv x"}. Since |
|
428 |
it is closed under product, it contains @{text "x \<otimes> inv x = \<one>"}. |
|
429 |
*} |
|
430 |
||
431 |
lemma (in group) one_in_subset: |
|
432 |
"[| H \<subseteq> carrier G; H \<noteq> {}; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<otimes> b \<in> H |] |
|
433 |
==> \<one> \<in> H" |
|
434 |
by (force simp add: l_inv) |
|
435 |
||
436 |
text {* A characterization of subgroups: closed, non-empty subset. *} |
|
437 |
||
438 |
lemma (in group) subgroupI: |
|
439 |
assumes subset: "H \<subseteq> carrier G" and non_empty: "H \<noteq> {}" |
|
440 |
and inv: "!!a. a \<in> H ==> inv a \<in> H" |
|
441 |
and mult: "!!a b. [|a \<in> H; b \<in> H|] ==> a \<otimes> b \<in> H" |
|
442 |
shows "subgroup H G" |
|
443 |
proof |
|
444 |
from subset and mult show "submagma H G" .. |
|
445 |
next |
|
446 |
have "\<one> \<in> H" by (rule one_in_subset) (auto simp only: prems) |
|
447 |
with inv show "subgroup_axioms H G" |
|
448 |
by (intro subgroup_axioms.intro) simp_all |
|
449 |
qed |
|
450 |
||
451 |
text {* |
|
452 |
Repeat facts of submagmas for subgroups. Necessary??? |
|
453 |
*} |
|
454 |
||
455 |
lemma (in subgroup) subset: |
|
456 |
"H \<subseteq> carrier G" |
|
457 |
.. |
|
458 |
||
459 |
lemma (in subgroup) m_closed: |
|
460 |
"[| x \<in> H; y \<in> H |] ==> x \<otimes> y \<in> H" |
|
461 |
.. |
|
462 |
||
463 |
declare magma.m_closed [simp] |
|
464 |
||
13936 | 465 |
declare monoid.one_closed [iff] group.inv_closed [simp] |
466 |
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp] |
|
13813 | 467 |
|
468 |
lemma subgroup_nonempty: |
|
469 |
"~ subgroup {} G" |
|
470 |
by (blast dest: subgroup.one_closed) |
|
471 |
||
472 |
lemma (in subgroup) finite_imp_card_positive: |
|
473 |
"finite (carrier G) ==> 0 < card H" |
|
474 |
proof (rule classical) |
|
475 |
have sub: "subgroup H G" using prems .. |
|
476 |
assume fin: "finite (carrier G)" |
|
477 |
and zero: "~ 0 < card H" |
|
478 |
then have "finite H" by (blast intro: finite_subset dest: subset) |
|
479 |
with zero sub have "subgroup {} G" by simp |
|
480 |
with subgroup_nonempty show ?thesis by contradiction |
|
481 |
qed |
|
482 |
||
13936 | 483 |
(* |
484 |
lemma (in monoid) Units_subgroup: |
|
485 |
"subgroup (Units G) G" |
|
486 |
*) |
|
487 |
||
13813 | 488 |
subsection {* Direct Products *} |
489 |
||
490 |
constdefs |
|
13817 | 491 |
DirProdSemigroup :: |
13854
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
492 |
"[('a, 'm) semigroup_scheme, ('b, 'n) semigroup_scheme] |
13817 | 493 |
=> ('a \<times> 'b) semigroup" |
494 |
(infixr "\<times>\<^sub>s" 80) |
|
495 |
"G \<times>\<^sub>s H == (| carrier = carrier G \<times> carrier H, |
|
496 |
mult = (%(xg, xh) (yg, yh). (mult G xg yg, mult H xh yh)) |)" |
|
497 |
||
13936 | 498 |
DirProdGroup :: |
13854
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
499 |
"[('a, 'm) monoid_scheme, ('b, 'n) monoid_scheme] => ('a \<times> 'b) monoid" |
13936 | 500 |
(infixr "\<times>\<^sub>g" 80) |
501 |
"G \<times>\<^sub>g H == (| carrier = carrier (G \<times>\<^sub>s H), |
|
13817 | 502 |
mult = mult (G \<times>\<^sub>s H), |
503 |
one = (one G, one H) |)" |
|
13813 | 504 |
|
13817 | 505 |
lemma DirProdSemigroup_magma: |
13813 | 506 |
includes magma G + magma H |
13817 | 507 |
shows "magma (G \<times>\<^sub>s H)" |
508 |
by rule (auto simp add: DirProdSemigroup_def) |
|
13813 | 509 |
|
13817 | 510 |
lemma DirProdSemigroup_semigroup_axioms: |
13813 | 511 |
includes semigroup G + semigroup H |
13817 | 512 |
shows "semigroup_axioms (G \<times>\<^sub>s H)" |
513 |
by rule (auto simp add: DirProdSemigroup_def G.m_assoc H.m_assoc) |
|
13813 | 514 |
|
13817 | 515 |
lemma DirProdSemigroup_semigroup: |
13813 | 516 |
includes semigroup G + semigroup H |
13817 | 517 |
shows "semigroup (G \<times>\<^sub>s H)" |
13813 | 518 |
using prems |
519 |
by (fast intro: semigroup.intro |
|
13817 | 520 |
DirProdSemigroup_magma DirProdSemigroup_semigroup_axioms) |
13813 | 521 |
|
522 |
lemma DirProdGroup_magma: |
|
523 |
includes magma G + magma H |
|
524 |
shows "magma (G \<times>\<^sub>g H)" |
|
13817 | 525 |
by rule |
13936 | 526 |
(auto simp add: DirProdGroup_def DirProdSemigroup_def) |
13813 | 527 |
|
528 |
lemma DirProdGroup_semigroup_axioms: |
|
529 |
includes semigroup G + semigroup H |
|
530 |
shows "semigroup_axioms (G \<times>\<^sub>g H)" |
|
531 |
by rule |
|
13936 | 532 |
(auto simp add: DirProdGroup_def DirProdSemigroup_def |
13817 | 533 |
G.m_assoc H.m_assoc) |
13813 | 534 |
|
535 |
lemma DirProdGroup_semigroup: |
|
536 |
includes semigroup G + semigroup H |
|
537 |
shows "semigroup (G \<times>\<^sub>g H)" |
|
538 |
using prems |
|
539 |
by (fast intro: semigroup.intro |
|
540 |
DirProdGroup_magma DirProdGroup_semigroup_axioms) |
|
541 |
||
542 |
(* ... and further lemmas for group ... *) |
|
543 |
||
13817 | 544 |
lemma DirProdGroup_group: |
13813 | 545 |
includes group G + group H |
546 |
shows "group (G \<times>\<^sub>g H)" |
|
13936 | 547 |
by (rule groupI) |
548 |
(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv |
|
549 |
simp add: DirProdGroup_def DirProdSemigroup_def) |
|
13813 | 550 |
|
13944 | 551 |
lemma carrier_DirProdGroup [simp]: |
552 |
"carrier (G \<times>\<^sub>g H) = carrier G \<times> carrier H" |
|
553 |
by (simp add: DirProdGroup_def DirProdSemigroup_def) |
|
554 |
||
555 |
lemma one_DirProdGroup [simp]: |
|
556 |
"one (G \<times>\<^sub>g H) = (one G, one H)" |
|
557 |
by (simp add: DirProdGroup_def DirProdSemigroup_def); |
|
558 |
||
559 |
lemma mult_DirProdGroup [simp]: |
|
560 |
"mult (G \<times>\<^sub>g H) (g, h) (g', h') = (mult G g g', mult H h h')" |
|
561 |
by (simp add: DirProdGroup_def DirProdSemigroup_def) |
|
562 |
||
563 |
lemma inv_DirProdGroup [simp]: |
|
564 |
includes group G + group H |
|
565 |
assumes g: "g \<in> carrier G" |
|
566 |
and h: "h \<in> carrier H" |
|
567 |
shows "m_inv (G \<times>\<^sub>g H) (g, h) = (m_inv G g, m_inv H h)" |
|
568 |
apply (rule group.inv_equality [OF DirProdGroup_group]) |
|
569 |
apply (simp_all add: prems group_def group.l_inv) |
|
570 |
done |
|
571 |
||
13813 | 572 |
subsection {* Homomorphisms *} |
573 |
||
574 |
constdefs |
|
13817 | 575 |
hom :: "[('a, 'c) semigroup_scheme, ('b, 'd) semigroup_scheme] |
576 |
=> ('a => 'b)set" |
|
13813 | 577 |
"hom G H == |
578 |
{h. h \<in> carrier G -> carrier H & |
|
579 |
(\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (mult G x y) = mult H (h x) (h y))}" |
|
580 |
||
581 |
lemma (in semigroup) hom: |
|
582 |
includes semigroup G |
|
583 |
shows "semigroup (| carrier = hom G G, mult = op o |)" |
|
584 |
proof |
|
585 |
show "magma (| carrier = hom G G, mult = op o |)" |
|
586 |
by rule (simp add: Pi_def hom_def) |
|
587 |
next |
|
588 |
show "semigroup_axioms (| carrier = hom G G, mult = op o |)" |
|
589 |
by rule (simp add: o_assoc) |
|
590 |
qed |
|
591 |
||
592 |
lemma hom_mult: |
|
593 |
"[| h \<in> hom G H; x \<in> carrier G; y \<in> carrier G |] |
|
594 |
==> h (mult G x y) = mult H (h x) (h y)" |
|
595 |
by (simp add: hom_def) |
|
596 |
||
597 |
lemma hom_closed: |
|
598 |
"[| h \<in> hom G H; x \<in> carrier G |] ==> h x \<in> carrier H" |
|
599 |
by (auto simp add: hom_def funcset_mem) |
|
600 |
||
13943 | 601 |
lemma compose_hom: |
602 |
"[|group G; h \<in> hom G G; h' \<in> hom G G; h' \<in> carrier G -> carrier G|] |
|
603 |
==> compose (carrier G) h h' \<in> hom G G" |
|
604 |
apply (simp (no_asm_simp) add: hom_def) |
|
605 |
apply (intro conjI) |
|
606 |
apply (force simp add: funcset_compose hom_def) |
|
607 |
apply (simp add: compose_def group.axioms hom_mult funcset_mem) |
|
608 |
done |
|
609 |
||
13813 | 610 |
locale group_hom = group G + group H + var h + |
611 |
assumes homh: "h \<in> hom G H" |
|
612 |
notes hom_mult [simp] = hom_mult [OF homh] |
|
613 |
and hom_closed [simp] = hom_closed [OF homh] |
|
614 |
||
615 |
lemma (in group_hom) one_closed [simp]: |
|
616 |
"h \<one> \<in> carrier H" |
|
617 |
by simp |
|
618 |
||
619 |
lemma (in group_hom) hom_one [simp]: |
|
620 |
"h \<one> = \<one>\<^sub>2" |
|
621 |
proof - |
|
622 |
have "h \<one> \<otimes>\<^sub>2 \<one>\<^sub>2 = h \<one> \<otimes>\<^sub>2 h \<one>" |
|
623 |
by (simp add: hom_mult [symmetric] del: hom_mult) |
|
624 |
then show ?thesis by (simp del: r_one) |
|
625 |
qed |
|
626 |
||
627 |
lemma (in group_hom) inv_closed [simp]: |
|
628 |
"x \<in> carrier G ==> h (inv x) \<in> carrier H" |
|
629 |
by simp |
|
630 |
||
631 |
lemma (in group_hom) hom_inv [simp]: |
|
632 |
"x \<in> carrier G ==> h (inv x) = inv\<^sub>2 (h x)" |
|
633 |
proof - |
|
634 |
assume x: "x \<in> carrier G" |
|
635 |
then have "h x \<otimes>\<^sub>2 h (inv x) = \<one>\<^sub>2" |
|
636 |
by (simp add: hom_mult [symmetric] G.r_inv del: hom_mult) |
|
637 |
also from x have "... = h x \<otimes>\<^sub>2 inv\<^sub>2 (h x)" |
|
638 |
by (simp add: hom_mult [symmetric] H.r_inv del: hom_mult) |
|
639 |
finally have "h x \<otimes>\<^sub>2 h (inv x) = h x \<otimes>\<^sub>2 inv\<^sub>2 (h x)" . |
|
640 |
with x show ?thesis by simp |
|
641 |
qed |
|
642 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13944
diff
changeset
|
643 |
subsection {* Commutative Structures *} |
13936 | 644 |
|
645 |
text {* |
|
646 |
Naming convention: multiplicative structures that are commutative |
|
647 |
are called \emph{commutative}, additive structures are called |
|
648 |
\emph{Abelian}. |
|
649 |
*} |
|
13813 | 650 |
|
651 |
subsection {* Definition *} |
|
652 |
||
13936 | 653 |
locale comm_semigroup = semigroup + |
13813 | 654 |
assumes m_comm: "[| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" |
655 |
||
13936 | 656 |
lemma (in comm_semigroup) m_lcomm: |
13813 | 657 |
"[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
658 |
x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)" |
|
659 |
proof - |
|
660 |
assume xyz: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
661 |
from xyz have "x \<otimes> (y \<otimes> z) = (x \<otimes> y) \<otimes> z" by (simp add: m_assoc) |
|
662 |
also from xyz have "... = (y \<otimes> x) \<otimes> z" by (simp add: m_comm) |
|
663 |
also from xyz have "... = y \<otimes> (x \<otimes> z)" by (simp add: m_assoc) |
|
664 |
finally show ?thesis . |
|
665 |
qed |
|
666 |
||
13936 | 667 |
lemmas (in comm_semigroup) m_ac = m_assoc m_comm m_lcomm |
668 |
||
669 |
locale comm_monoid = comm_semigroup + monoid |
|
13813 | 670 |
|
13936 | 671 |
lemma comm_monoidI: |
672 |
assumes m_closed: |
|
673 |
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G" |
|
674 |
and one_closed: "one G \<in> carrier G" |
|
675 |
and m_assoc: |
|
676 |
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
677 |
mult G (mult G x y) z = mult G x (mult G y z)" |
|
678 |
and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x" |
|
679 |
and m_comm: |
|
680 |
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x" |
|
681 |
shows "comm_monoid G" |
|
682 |
using l_one |
|
683 |
by (auto intro!: comm_monoid.intro magma.intro semigroup_axioms.intro |
|
684 |
comm_semigroup_axioms.intro monoid_axioms.intro |
|
685 |
intro: prems simp: m_closed one_closed m_comm) |
|
13817 | 686 |
|
13936 | 687 |
lemma (in monoid) monoid_comm_monoidI: |
688 |
assumes m_comm: |
|
689 |
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x" |
|
690 |
shows "comm_monoid G" |
|
691 |
by (rule comm_monoidI) (auto intro: m_assoc m_comm) |
|
692 |
(* |
|
693 |
lemma (in comm_monoid) r_one [simp]: |
|
13817 | 694 |
"x \<in> carrier G ==> x \<otimes> \<one> = x" |
695 |
proof - |
|
696 |
assume G: "x \<in> carrier G" |
|
697 |
then have "x \<otimes> \<one> = \<one> \<otimes> x" by (simp add: m_comm) |
|
698 |
also from G have "... = x" by simp |
|
699 |
finally show ?thesis . |
|
700 |
qed |
|
13936 | 701 |
*) |
13817 | 702 |
|
13936 | 703 |
lemma (in comm_monoid) nat_pow_distr: |
704 |
"[| x \<in> carrier G; y \<in> carrier G |] ==> |
|
705 |
(x \<otimes> y) (^) (n::nat) = x (^) n \<otimes> y (^) n" |
|
706 |
by (induct n) (simp, simp add: m_ac) |
|
707 |
||
708 |
locale comm_group = comm_monoid + group |
|
709 |
||
710 |
lemma (in group) group_comm_groupI: |
|
711 |
assumes m_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> |
|
712 |
mult G x y = mult G y x" |
|
713 |
shows "comm_group G" |
|
714 |
by (fast intro: comm_group.intro comm_semigroup_axioms.intro |
|
715 |
group.axioms prems) |
|
13817 | 716 |
|
13936 | 717 |
lemma comm_groupI: |
718 |
assumes m_closed: |
|
719 |
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G" |
|
720 |
and one_closed: "one G \<in> carrier G" |
|
721 |
and m_assoc: |
|
722 |
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> |
|
723 |
mult G (mult G x y) z = mult G x (mult G y z)" |
|
724 |
and m_comm: |
|
725 |
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x" |
|
726 |
and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x" |
|
727 |
and l_inv_ex: "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G" |
|
728 |
shows "comm_group G" |
|
729 |
by (fast intro: group.group_comm_groupI groupI prems) |
|
730 |
||
731 |
lemma (in comm_group) inv_mult: |
|
13854
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
732 |
"[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y" |
13936 | 733 |
by (simp add: m_ac inv_mult_group) |
13854
91c9ab25fece
First distributed version of Group and Ring theory.
ballarin
parents:
13835
diff
changeset
|
734 |
|
13813 | 735 |
end |