13957
|
1 |
(* Title: Complex.ML
|
|
2 |
Author: Jacques D. Fleuriot
|
|
3 |
Copyright: 2001 University of Edinburgh
|
|
4 |
Description: Complex numbers
|
|
5 |
*)
|
|
6 |
|
|
7 |
Goal "inj Rep_complex";
|
|
8 |
by (rtac inj_inverseI 1);
|
|
9 |
by (rtac Rep_complex_inverse 1);
|
|
10 |
qed "inj_Rep_complex";
|
|
11 |
|
|
12 |
Goal "inj Abs_complex";
|
|
13 |
by (rtac inj_inverseI 1);
|
|
14 |
by (rtac Abs_complex_inverse 1);
|
|
15 |
by (simp_tac (simpset() addsimps [complex_def]) 1);
|
|
16 |
qed "inj_Abs_complex";
|
|
17 |
Addsimps [inj_Abs_complex RS injD];
|
|
18 |
|
|
19 |
Goal "(Abs_complex x = Abs_complex y) = (x = y)";
|
|
20 |
by (auto_tac (claset() addDs [inj_Abs_complex RS injD],simpset()));
|
|
21 |
qed "Abs_complex_cancel_iff";
|
|
22 |
Addsimps [Abs_complex_cancel_iff];
|
|
23 |
|
|
24 |
Goalw [complex_def] "(x,y) : complex";
|
|
25 |
by (Auto_tac);
|
|
26 |
qed "pair_mem_complex";
|
|
27 |
Addsimps [pair_mem_complex];
|
|
28 |
|
|
29 |
Goal "Rep_complex (Abs_complex (x,y)) = (x,y)";
|
|
30 |
by (simp_tac (simpset() addsimps [Abs_complex_inverse]) 1);
|
|
31 |
qed "Abs_complex_inverse2";
|
|
32 |
Addsimps [Abs_complex_inverse2];
|
|
33 |
|
|
34 |
val [prem] = goal Complex.thy
|
|
35 |
"(!!x y. z = Abs_complex(x,y) ==> P) ==> P";
|
|
36 |
by (res_inst_tac [("p","Rep_complex z")] PairE 1);
|
|
37 |
by (dres_inst_tac [("f","Abs_complex")] arg_cong 1);
|
|
38 |
by (res_inst_tac [("x","x"),("y","y")] prem 1);
|
|
39 |
by (asm_full_simp_tac (simpset() addsimps [Rep_complex_inverse]) 1);
|
|
40 |
qed "eq_Abs_complex";
|
|
41 |
|
|
42 |
Goalw [Re_def] "Re(Abs_complex(x,y)) = x";
|
|
43 |
by (Simp_tac 1);
|
|
44 |
qed "Re";
|
|
45 |
Addsimps [Re];
|
|
46 |
|
|
47 |
Goalw [Im_def] "Im(Abs_complex(x,y)) = y";
|
|
48 |
by (Simp_tac 1);
|
|
49 |
qed "Im";
|
|
50 |
Addsimps [Im];
|
|
51 |
|
|
52 |
Goal "Abs_complex(Re(z),Im(z)) = z";
|
|
53 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
54 |
by (Asm_simp_tac 1);
|
|
55 |
qed "Abs_complex_cancel";
|
|
56 |
Addsimps [Abs_complex_cancel];
|
|
57 |
|
|
58 |
Goal "(w=z) = (Re(w) = Re(z) & Im(w) = Im(z))";
|
|
59 |
by (res_inst_tac [("z","w")] eq_Abs_complex 1);
|
|
60 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
61 |
by (auto_tac (claset() addDs [inj_Abs_complex RS injD],simpset()));
|
|
62 |
qed "complex_Re_Im_cancel_iff";
|
|
63 |
|
|
64 |
Goalw [complex_zero_def] "Re 0 = 0";
|
|
65 |
by (Simp_tac 1);
|
|
66 |
qed "complex_Re_zero";
|
|
67 |
|
|
68 |
Goalw [complex_zero_def] "Im 0 = 0";
|
|
69 |
by (Simp_tac 1);
|
|
70 |
qed "complex_Im_zero";
|
|
71 |
Addsimps [complex_Re_zero,complex_Im_zero];
|
|
72 |
|
|
73 |
Goalw [complex_one_def] "Re 1 = 1";
|
|
74 |
by (Simp_tac 1);
|
|
75 |
qed "complex_Re_one";
|
|
76 |
Addsimps [complex_Re_one];
|
|
77 |
|
|
78 |
Goalw [complex_one_def] "Im 1 = 0";
|
|
79 |
by (Simp_tac 1);
|
|
80 |
qed "complex_Im_one";
|
|
81 |
Addsimps [complex_Im_one];
|
|
82 |
|
|
83 |
Goalw [i_def] "Re(ii) = 0";
|
|
84 |
by Auto_tac;
|
|
85 |
qed "complex_Re_i";
|
|
86 |
Addsimps [complex_Re_i];
|
|
87 |
|
|
88 |
Goalw [i_def] "Im(ii) = 1";
|
|
89 |
by Auto_tac;
|
|
90 |
qed "complex_Im_i";
|
|
91 |
Addsimps [complex_Im_i];
|
|
92 |
|
|
93 |
Goalw [complex_of_real_def] "Re(complex_of_real 0) = 0";
|
|
94 |
by (Simp_tac 1);
|
|
95 |
qed "Re_complex_of_real_zero";
|
|
96 |
Addsimps [Re_complex_of_real_zero];
|
|
97 |
|
|
98 |
Goalw [complex_of_real_def] "Im(complex_of_real 0) = 0";
|
|
99 |
by (Simp_tac 1);
|
|
100 |
qed "Im_complex_of_real_zero";
|
|
101 |
Addsimps [Im_complex_of_real_zero];
|
|
102 |
|
|
103 |
Goalw [complex_of_real_def] "Re(complex_of_real 1) = 1";
|
|
104 |
by (Simp_tac 1);
|
|
105 |
qed "Re_complex_of_real_one";
|
|
106 |
Addsimps [Re_complex_of_real_one];
|
|
107 |
|
|
108 |
Goalw [complex_of_real_def] "Im(complex_of_real 1) = 0";
|
|
109 |
by (Simp_tac 1);
|
|
110 |
qed "Im_complex_of_real_one";
|
|
111 |
Addsimps [Im_complex_of_real_one];
|
|
112 |
|
|
113 |
Goalw [complex_of_real_def] "Re(complex_of_real z) = z";
|
|
114 |
by Auto_tac;
|
|
115 |
qed "Re_complex_of_real";
|
|
116 |
Addsimps [Re_complex_of_real];
|
|
117 |
|
|
118 |
Goalw [complex_of_real_def] "Im(complex_of_real z) = 0";
|
|
119 |
by Auto_tac;
|
|
120 |
qed "Im_complex_of_real";
|
|
121 |
Addsimps [Im_complex_of_real];
|
|
122 |
|
|
123 |
(*** negation ***)
|
|
124 |
|
|
125 |
Goalw [complex_minus_def] "- Abs_complex(x,y) = Abs_complex(-x,-y)";
|
|
126 |
by (Simp_tac 1);
|
|
127 |
qed "complex_minus";
|
|
128 |
|
|
129 |
Goalw [Re_def] "Re (-z) = - Re z";
|
|
130 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
131 |
by (auto_tac (claset(),simpset() addsimps [complex_minus]));
|
|
132 |
qed "complex_Re_minus";
|
|
133 |
|
|
134 |
Goalw [Im_def] "Im (-z) = - Im z";
|
|
135 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
136 |
by (auto_tac (claset(),simpset() addsimps [complex_minus]));
|
|
137 |
qed "complex_Im_minus";
|
|
138 |
|
|
139 |
Goalw [complex_minus_def] "- (- z) = (z::complex)";
|
|
140 |
by (Simp_tac 1);
|
|
141 |
qed "complex_minus_minus";
|
|
142 |
Addsimps [complex_minus_minus];
|
|
143 |
|
|
144 |
Goal "inj(%r::complex. -r)";
|
|
145 |
by (rtac injI 1);
|
|
146 |
by (dres_inst_tac [("f","uminus")] arg_cong 1);
|
|
147 |
by (Asm_full_simp_tac 1);
|
|
148 |
qed "inj_complex_minus";
|
|
149 |
|
|
150 |
Goalw [complex_zero_def] "-(0::complex) = 0";
|
|
151 |
by (simp_tac (simpset() addsimps [complex_minus]) 1);
|
|
152 |
qed "complex_minus_zero";
|
|
153 |
Addsimps [complex_minus_zero];
|
|
154 |
|
|
155 |
Goal "(-x = 0) = (x = (0::complex))";
|
|
156 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
157 |
by (auto_tac (claset() addDs [inj_Abs_complex RS injD],simpset()
|
|
158 |
addsimps [complex_zero_def,complex_minus]));
|
|
159 |
qed "complex_minus_zero_iff";
|
|
160 |
Addsimps [complex_minus_zero_iff];
|
|
161 |
|
|
162 |
Goal "(0 = -x) = (x = (0::real))";
|
|
163 |
by (auto_tac (claset() addDs [sym],simpset()));
|
|
164 |
qed "complex_minus_zero_iff2";
|
|
165 |
Addsimps [complex_minus_zero_iff2];
|
|
166 |
|
|
167 |
Goal "(-x ~= 0) = (x ~= (0::complex))";
|
|
168 |
by Auto_tac;
|
|
169 |
qed "complex_minus_not_zero_iff";
|
|
170 |
|
|
171 |
(*** addition ***)
|
|
172 |
|
|
173 |
Goalw [complex_add_def]
|
|
174 |
"Abs_complex(x1,y1) + Abs_complex(x2,y2) = Abs_complex(x1+x2,y1+y2)";
|
|
175 |
by (Simp_tac 1);
|
|
176 |
qed "complex_add";
|
|
177 |
|
|
178 |
Goalw [Re_def] "Re(x + y) = Re(x) + Re(y)";
|
|
179 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
180 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
181 |
by (auto_tac (claset(),simpset() addsimps [complex_add]));
|
|
182 |
qed "complex_Re_add";
|
|
183 |
|
|
184 |
Goalw [Im_def] "Im(x + y) = Im(x) + Im(y)";
|
|
185 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
186 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
187 |
by (auto_tac (claset(),simpset() addsimps [complex_add]));
|
|
188 |
qed "complex_Im_add";
|
|
189 |
|
|
190 |
Goalw [complex_add_def] "(u::complex) + v = v + u";
|
|
191 |
by (simp_tac (simpset() addsimps [real_add_commute]) 1);
|
|
192 |
qed "complex_add_commute";
|
|
193 |
|
|
194 |
Goalw [complex_add_def] "((u::complex) + v) + w = u + (v + w)";
|
|
195 |
by (simp_tac (simpset() addsimps [real_add_assoc]) 1);
|
|
196 |
qed "complex_add_assoc";
|
|
197 |
|
|
198 |
Goalw [complex_add_def] "(x::complex) + (y + z) = y + (x + z)";
|
|
199 |
by (simp_tac (simpset() addsimps [real_add_left_commute]) 1);
|
|
200 |
qed "complex_add_left_commute";
|
|
201 |
|
|
202 |
val complex_add_ac = [complex_add_assoc,complex_add_commute,
|
|
203 |
complex_add_left_commute];
|
|
204 |
|
|
205 |
Goalw [complex_add_def,complex_zero_def] "(0::complex) + z = z";
|
|
206 |
by (Simp_tac 1);
|
|
207 |
qed "complex_add_zero_left";
|
|
208 |
Addsimps [complex_add_zero_left];
|
|
209 |
|
|
210 |
Goalw [complex_add_def,complex_zero_def] "z + (0::complex) = z";
|
|
211 |
by (Simp_tac 1);
|
|
212 |
qed "complex_add_zero_right";
|
|
213 |
Addsimps [complex_add_zero_right];
|
|
214 |
|
|
215 |
Goalw [complex_add_def,complex_minus_def,complex_zero_def]
|
|
216 |
"z + -z = (0::complex)";
|
|
217 |
by (Simp_tac 1);
|
|
218 |
qed "complex_add_minus_right_zero";
|
|
219 |
Addsimps [complex_add_minus_right_zero];
|
|
220 |
|
|
221 |
Goalw [complex_add_def,complex_minus_def,complex_zero_def]
|
|
222 |
"-z + z = (0::complex)";
|
|
223 |
by (Simp_tac 1);
|
|
224 |
qed "complex_add_minus_left_zero";
|
|
225 |
Addsimps [complex_add_minus_left_zero];
|
|
226 |
|
|
227 |
Goal "z + (- z + w) = (w::complex)";
|
|
228 |
by (simp_tac (simpset() addsimps [complex_add_assoc RS sym]) 1);
|
|
229 |
qed "complex_add_minus_cancel";
|
|
230 |
|
|
231 |
Goal "(-z) + (z + w) = (w::complex)";
|
|
232 |
by (simp_tac (simpset() addsimps [complex_add_assoc RS sym]) 1);
|
|
233 |
qed "complex_minus_add_cancel";
|
|
234 |
|
|
235 |
Addsimps [complex_add_minus_cancel, complex_minus_add_cancel];
|
|
236 |
|
|
237 |
Goal "x + y = (0::complex) ==> x = -y";
|
|
238 |
by (auto_tac (claset(),simpset() addsimps [complex_Re_Im_cancel_iff,
|
|
239 |
complex_Re_add,complex_Im_add,complex_Re_minus,complex_Im_minus]));
|
|
240 |
qed "complex_add_minus_eq_minus";
|
|
241 |
|
|
242 |
Goal "-(x + y) = -x + -(y::complex)";
|
|
243 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
244 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
245 |
by (auto_tac (claset(),simpset() addsimps [complex_minus,complex_add]));
|
|
246 |
qed "complex_minus_add_distrib";
|
|
247 |
Addsimps [complex_minus_add_distrib];
|
|
248 |
|
|
249 |
Goal "((x::complex) + y = x + z) = (y = z)";
|
|
250 |
by (Step_tac 1);
|
|
251 |
by (dres_inst_tac [("f","%t.-x + t")] arg_cong 1);
|
|
252 |
by (asm_full_simp_tac (simpset() addsimps [complex_add_assoc RS sym]) 1);
|
|
253 |
qed "complex_add_left_cancel";
|
|
254 |
AddIffs [complex_add_left_cancel];
|
|
255 |
|
|
256 |
Goal "(y + (x::complex)= z + x) = (y = z)";
|
|
257 |
by (simp_tac (simpset() addsimps [complex_add_commute]) 1);
|
|
258 |
qed "complex_add_right_cancel";
|
|
259 |
Addsimps [complex_add_right_cancel];
|
|
260 |
|
|
261 |
Goal "((x::complex) = y) = (0 = x + - y)";
|
|
262 |
by (Step_tac 1);
|
|
263 |
by (res_inst_tac [("x1","-y")]
|
|
264 |
(complex_add_right_cancel RS iffD1) 2);
|
|
265 |
by (Auto_tac);
|
|
266 |
qed "complex_eq_minus_iff";
|
|
267 |
|
|
268 |
Goal "((x::complex) = y) = (x + - y = 0)";
|
|
269 |
by (Step_tac 1);
|
|
270 |
by (res_inst_tac [("x1","-y")]
|
|
271 |
(complex_add_right_cancel RS iffD1) 2);
|
|
272 |
by (Auto_tac);
|
|
273 |
qed "complex_eq_minus_iff2";
|
|
274 |
|
|
275 |
Goal "(0::complex) - x = -x";
|
|
276 |
by (simp_tac (simpset() addsimps [complex_diff_def]) 1);
|
|
277 |
qed "complex_diff_0";
|
|
278 |
|
|
279 |
Goal "x - (0::complex) = x";
|
|
280 |
by (simp_tac (simpset() addsimps [complex_diff_def]) 1);
|
|
281 |
qed "complex_diff_0_right";
|
|
282 |
|
|
283 |
Goal "x - x = (0::complex)";
|
|
284 |
by (simp_tac (simpset() addsimps [complex_diff_def]) 1);
|
|
285 |
qed "complex_diff_self";
|
|
286 |
|
|
287 |
Addsimps [complex_diff_0, complex_diff_0_right, complex_diff_self];
|
|
288 |
|
|
289 |
Goalw [complex_diff_def]
|
|
290 |
"Abs_complex(x1,y1) - Abs_complex(x2,y2) = Abs_complex(x1-x2,y1-y2)";
|
|
291 |
by (simp_tac (simpset() addsimps [complex_add,complex_minus]) 1);
|
|
292 |
qed "complex_diff";
|
|
293 |
|
|
294 |
Goal "((x::complex) - y = z) = (x = z + y)";
|
|
295 |
by (auto_tac (claset(),simpset() addsimps [complex_diff_def,complex_add_assoc]));
|
|
296 |
qed "complex_diff_eq_eq";
|
|
297 |
|
|
298 |
(*** complex multiplication ***)
|
|
299 |
|
|
300 |
Goalw [complex_mult_def]
|
|
301 |
"Abs_complex(x1,y1) * Abs_complex(x2,y2) = \
|
|
302 |
\ Abs_complex(x1*x2 - y1*y2,x1*y2 + y1*x2)";
|
|
303 |
by (Simp_tac 1);
|
|
304 |
qed "complex_mult";
|
|
305 |
|
|
306 |
Goalw [complex_mult_def] "(w::complex) * z = z * w";
|
|
307 |
by (simp_tac (simpset() addsimps [real_mult_commute,real_add_commute]) 1);
|
|
308 |
qed "complex_mult_commute";
|
|
309 |
|
|
310 |
Goalw [complex_mult_def] "((u::complex) * v) * w = u * (v * w)";
|
|
311 |
by (simp_tac (simpset() addsimps [complex_Re_Im_cancel_iff,
|
|
312 |
real_mult_assoc,real_diff_mult_distrib2,
|
|
313 |
real_add_mult_distrib2,real_diff_mult_distrib,
|
|
314 |
real_add_mult_distrib,real_mult_left_commute]) 1);
|
|
315 |
qed "complex_mult_assoc";
|
|
316 |
|
|
317 |
Goalw [complex_mult_def] "(x::complex) * (y * z) = y * (x * z)";
|
|
318 |
by (simp_tac (simpset() addsimps [complex_Re_Im_cancel_iff,
|
|
319 |
real_mult_left_commute,real_diff_mult_distrib2,
|
|
320 |
real_add_mult_distrib2]) 1);
|
|
321 |
qed "complex_mult_left_commute";
|
|
322 |
|
|
323 |
val complex_mult_ac = [complex_mult_assoc,complex_mult_commute,
|
|
324 |
complex_mult_left_commute];
|
|
325 |
|
|
326 |
Goalw [complex_one_def] "(1::complex) * z = z";
|
|
327 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
328 |
by (asm_simp_tac (simpset() addsimps [complex_mult]) 1);
|
|
329 |
qed "complex_mult_one_left";
|
|
330 |
Addsimps [complex_mult_one_left];
|
|
331 |
|
|
332 |
Goal "z * (1::complex) = z";
|
|
333 |
by (simp_tac (simpset() addsimps [complex_mult_commute]) 1);
|
|
334 |
qed "complex_mult_one_right";
|
|
335 |
Addsimps [complex_mult_one_right];
|
|
336 |
|
|
337 |
Goalw [complex_zero_def] "(0::complex) * z = 0";
|
|
338 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
339 |
by (asm_simp_tac (simpset() addsimps [complex_mult]) 1);
|
|
340 |
qed "complex_mult_zero_left";
|
|
341 |
Addsimps [complex_mult_zero_left];
|
|
342 |
|
|
343 |
Goal "z * 0 = (0::complex)";
|
|
344 |
by (simp_tac (simpset() addsimps [complex_mult_commute]) 1);
|
|
345 |
qed "complex_mult_zero_right";
|
|
346 |
Addsimps [complex_mult_zero_right];
|
|
347 |
|
|
348 |
Goalw [complex_divide_def] "0 / z = (0::complex)";
|
|
349 |
by Auto_tac;
|
|
350 |
qed "complex_divide_zero";
|
|
351 |
Addsimps [complex_divide_zero];
|
|
352 |
|
|
353 |
Goal "-(x * y) = -x * (y::complex)";
|
|
354 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
355 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
356 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_minus,
|
|
357 |
real_diff_def]));
|
|
358 |
qed "complex_minus_mult_eq1";
|
|
359 |
|
|
360 |
Goal "-(x * y) = x * -(y::complex)";
|
|
361 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
362 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
363 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_minus,
|
|
364 |
real_diff_def]));
|
|
365 |
qed "complex_minus_mult_eq2";
|
|
366 |
|
|
367 |
Addsimps [ complex_minus_mult_eq1 RS sym, complex_minus_mult_eq2 RS sym];
|
|
368 |
|
|
369 |
Goal "-(1::complex) * z = -z";
|
|
370 |
by (Simp_tac 1);
|
|
371 |
qed "complex_mult_minus_one";
|
|
372 |
Addsimps [complex_mult_minus_one];
|
|
373 |
|
|
374 |
Goal "z * -(1::complex) = -z";
|
|
375 |
by (stac complex_mult_commute 1);
|
|
376 |
by (Simp_tac 1);
|
|
377 |
qed "complex_mult_minus_one_right";
|
|
378 |
Addsimps [complex_mult_minus_one_right];
|
|
379 |
|
|
380 |
Goal "-x * -y = x * (y::complex)";
|
|
381 |
by (Simp_tac 1);
|
|
382 |
qed "complex_minus_mult_cancel";
|
|
383 |
Addsimps [complex_minus_mult_cancel];
|
|
384 |
|
|
385 |
Goal "-x * y = x * -(y::complex)";
|
|
386 |
by (Simp_tac 1);
|
|
387 |
qed "complex_minus_mult_commute";
|
|
388 |
|
|
389 |
qed_goal "complex_add_assoc_cong" thy
|
|
390 |
"!!z. (z::complex) + v = z' + v' ==> z + (v + w) = z' + (v' + w)"
|
|
391 |
(fn _ => [(asm_simp_tac (simpset() addsimps [complex_add_assoc RS sym]) 1)]);
|
|
392 |
|
|
393 |
qed_goal "complex_add_assoc_swap" thy "(z::complex) + (v + w) = v + (z + w)"
|
|
394 |
(fn _ => [(REPEAT (ares_tac [complex_add_commute RS complex_add_assoc_cong] 1))]);
|
|
395 |
|
|
396 |
Goal "((z1::complex) + z2) * w = (z1 * w) + (z2 * w)";
|
|
397 |
by (res_inst_tac [("z","z1")] eq_Abs_complex 1);
|
|
398 |
by (res_inst_tac [("z","z2")] eq_Abs_complex 1);
|
|
399 |
by (res_inst_tac [("z","w")] eq_Abs_complex 1);
|
|
400 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add,
|
|
401 |
real_add_mult_distrib,real_diff_def] @ real_add_ac));
|
|
402 |
qed "complex_add_mult_distrib";
|
|
403 |
|
|
404 |
Goal "(w::complex) * (z1 + z2) = (w * z1) + (w * z2)";
|
|
405 |
by (res_inst_tac [("z1","z1 + z2")] (complex_mult_commute RS ssubst) 1);
|
|
406 |
by (simp_tac (simpset() addsimps [complex_add_mult_distrib]) 1);
|
|
407 |
by (simp_tac (simpset() addsimps [complex_mult_commute]) 1);
|
|
408 |
qed "complex_add_mult_distrib2";
|
|
409 |
|
|
410 |
Goalw [complex_zero_def,complex_one_def] "(0::complex) ~= 1";
|
|
411 |
by (simp_tac (simpset() addsimps [complex_Re_Im_cancel_iff]) 1);
|
|
412 |
qed "complex_zero_not_eq_one";
|
|
413 |
Addsimps [complex_zero_not_eq_one];
|
|
414 |
Addsimps [complex_zero_not_eq_one RS not_sym];
|
|
415 |
|
|
416 |
(*** inverse ***)
|
|
417 |
Goalw [complex_inverse_def] "inverse (Abs_complex(x,y)) = \
|
|
418 |
\ Abs_complex(x/(x ^ 2 + y ^ 2),-y/(x ^ 2 + y ^ 2))";
|
|
419 |
by (Simp_tac 1);
|
|
420 |
qed "complex_inverse";
|
|
421 |
|
|
422 |
Goalw [complex_inverse_def,complex_zero_def] "inverse 0 = (0::complex)";
|
|
423 |
by Auto_tac;
|
|
424 |
qed "COMPLEX_INVERSE_ZERO";
|
|
425 |
|
|
426 |
Goal "a / (0::complex) = 0";
|
|
427 |
by (simp_tac (simpset() addsimps [complex_divide_def, COMPLEX_INVERSE_ZERO]) 1);
|
|
428 |
qed "COMPLEX_DIVISION_BY_ZERO"; (*NOT for adding to default simpset*)
|
|
429 |
|
|
430 |
fun complex_div_undefined_case_tac s i =
|
|
431 |
case_tac s i THEN
|
|
432 |
asm_simp_tac (simpset() addsimps [COMPLEX_DIVISION_BY_ZERO, COMPLEX_INVERSE_ZERO]) i;
|
|
433 |
|
|
434 |
(*REMOVE?:
|
|
435 |
lemmas:replace previous versions to accommodate new behaviour of simplification
|
|
436 |
Goal "x ^ 2 + y ^ 2 = 0 ==> x = (0::real)";
|
|
437 |
by (auto_tac (claset() addIs [real_sum_squares_cancel],
|
|
438 |
simpset() addsimps [CLAIM "2 = Suc(Suc 0)"]));
|
|
439 |
qed "real_sum_squares_cancel";
|
|
440 |
|
|
441 |
Goal "x ^ 2 + y ^ 2 = 0 ==> y = (0::real)";
|
|
442 |
by (auto_tac (claset() addIs [real_sum_squares_cancel2],
|
|
443 |
simpset() addsimps [CLAIM "2 = Suc(Suc 0)"]));
|
|
444 |
qed "real_sum_squares_cancel2";
|
|
445 |
*)
|
|
446 |
|
|
447 |
Goal "z ~= (0::complex) ==> inverse(z) * z = 1";
|
|
448 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
449 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_inverse,
|
|
450 |
complex_one_def,complex_zero_def,real_add_divide_distrib RS sym,
|
|
451 |
realpow_two_eq_mult] @ real_mult_ac));
|
|
452 |
by (dres_inst_tac [("y","y")] real_sum_squares_not_zero 1);
|
|
453 |
by (dres_inst_tac [("x","x")] real_sum_squares_not_zero2 2);
|
|
454 |
by Auto_tac;
|
|
455 |
qed "complex_mult_inv_left";
|
|
456 |
Addsimps [complex_mult_inv_left];
|
|
457 |
|
|
458 |
Goal "z ~= (0::complex) ==> z * inverse(z) = 1";
|
|
459 |
by (auto_tac (claset() addIs [complex_mult_commute RS subst],simpset()));
|
|
460 |
qed "complex_mult_inv_right";
|
|
461 |
Addsimps [complex_mult_inv_right];
|
|
462 |
|
|
463 |
Goal "(c::complex) ~= 0 ==> (c*a=c*b) = (a=b)";
|
|
464 |
by Auto_tac;
|
|
465 |
by (dres_inst_tac [("f","%x. x*inverse c")] arg_cong 1);
|
|
466 |
by (asm_full_simp_tac (simpset() addsimps complex_mult_ac) 1);
|
|
467 |
qed "complex_mult_left_cancel";
|
|
468 |
|
|
469 |
Goal "(c::complex) ~= 0 ==> (a*c=b*c) = (a=b)";
|
|
470 |
by (Step_tac 1);
|
|
471 |
by (dres_inst_tac [("f","%x. x*inverse c")] arg_cong 1);
|
|
472 |
by (asm_full_simp_tac (simpset() addsimps complex_mult_ac) 1);
|
|
473 |
qed "complex_mult_right_cancel";
|
|
474 |
|
|
475 |
Goal "z ~= 0 ==> inverse(z::complex) ~= 0";
|
|
476 |
by (Step_tac 1);
|
|
477 |
by (ftac (complex_mult_right_cancel RS iffD2) 1);
|
|
478 |
by (thin_tac "inverse z = 0" 2);
|
|
479 |
by (assume_tac 1 THEN Auto_tac);
|
|
480 |
qed "complex_inverse_not_zero";
|
|
481 |
Addsimps [complex_inverse_not_zero];
|
|
482 |
|
|
483 |
Goal "!!x. [| x ~= 0; y ~= (0::complex) |] ==> x * y ~= 0";
|
|
484 |
by (Step_tac 1);
|
|
485 |
by (dres_inst_tac [("f","%z. inverse x*z")] arg_cong 1);
|
|
486 |
by (asm_full_simp_tac (simpset() addsimps [complex_mult_assoc RS sym]) 1);
|
|
487 |
qed "complex_mult_not_zero";
|
|
488 |
|
|
489 |
bind_thm ("complex_mult_not_zeroE",complex_mult_not_zero RS notE);
|
|
490 |
|
|
491 |
Goal "inverse(inverse (x::complex)) = x";
|
|
492 |
by (complex_div_undefined_case_tac "x = 0" 1);
|
|
493 |
by (res_inst_tac [("c1","inverse x")] (complex_mult_right_cancel RS iffD1) 1);
|
|
494 |
by (etac complex_inverse_not_zero 1);
|
|
495 |
by (auto_tac (claset() addDs [complex_inverse_not_zero],simpset()));
|
|
496 |
qed "complex_inverse_inverse";
|
|
497 |
Addsimps [complex_inverse_inverse];
|
|
498 |
|
|
499 |
Goalw [complex_one_def] "inverse(1::complex) = 1";
|
|
500 |
by (simp_tac (simpset() addsimps [complex_inverse,realpow_num_two]) 1);
|
|
501 |
qed "complex_inverse_one";
|
|
502 |
Addsimps [complex_inverse_one];
|
|
503 |
|
|
504 |
Goal "inverse(-x) = -inverse(x::complex)";
|
|
505 |
by (complex_div_undefined_case_tac "x = 0" 1);
|
|
506 |
by (res_inst_tac [("c1","-x")] (complex_mult_right_cancel RS iffD1) 1);
|
|
507 |
by (stac complex_mult_inv_left 2);
|
|
508 |
by Auto_tac;
|
|
509 |
qed "complex_minus_inverse";
|
|
510 |
|
|
511 |
Goal "inverse(x*y) = inverse x * inverse (y::complex)";
|
|
512 |
by (complex_div_undefined_case_tac "x = 0" 1);
|
|
513 |
by (complex_div_undefined_case_tac "y = 0" 1);
|
|
514 |
by (res_inst_tac [("c1","x*y")] (complex_mult_left_cancel RS iffD1) 1);
|
|
515 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_not_zero]
|
|
516 |
@ complex_mult_ac));
|
|
517 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_not_zero,
|
|
518 |
complex_mult_assoc RS sym]));
|
|
519 |
qed "complex_inverse_distrib";
|
|
520 |
|
|
521 |
|
|
522 |
(*** division ***)
|
|
523 |
|
|
524 |
(*adding some of these theorems to simpset as for reals:
|
|
525 |
not 100% convinced for some*)
|
|
526 |
|
|
527 |
Goal "(x::complex) * (y/z) = (x*y)/z";
|
|
528 |
by (simp_tac (simpset() addsimps [complex_divide_def, complex_mult_assoc]) 1);
|
|
529 |
qed "complex_times_divide1_eq";
|
|
530 |
|
|
531 |
Goal "(y/z) * (x::complex) = (y*x)/z";
|
|
532 |
by (simp_tac (simpset() addsimps [complex_divide_def]@complex_mult_ac) 1);
|
|
533 |
qed "complex_times_divide2_eq";
|
|
534 |
|
|
535 |
Addsimps [complex_times_divide1_eq, complex_times_divide2_eq];
|
|
536 |
|
|
537 |
Goal "(x::complex) / (y/z) = (x*z)/y";
|
|
538 |
by (simp_tac (simpset() addsimps [complex_divide_def, complex_inverse_distrib]@
|
|
539 |
complex_mult_ac) 1);
|
|
540 |
qed "complex_divide_divide1_eq";
|
|
541 |
|
|
542 |
Goal "((x::complex) / y) / z = x/(y*z)";
|
|
543 |
by (simp_tac (simpset() addsimps [complex_divide_def, complex_inverse_distrib,
|
|
544 |
complex_mult_assoc]) 1);
|
|
545 |
qed "complex_divide_divide2_eq";
|
|
546 |
|
|
547 |
Addsimps [complex_divide_divide1_eq, complex_divide_divide2_eq];
|
|
548 |
|
|
549 |
(** As with multiplication, pull minus signs OUT of the / operator **)
|
|
550 |
|
|
551 |
Goal "(-x) / (y::complex) = - (x/y)";
|
|
552 |
by (simp_tac (simpset() addsimps [complex_divide_def]) 1);
|
|
553 |
qed "complex_minus_divide_eq";
|
|
554 |
Addsimps [complex_minus_divide_eq];
|
|
555 |
|
|
556 |
Goal "(x / -(y::complex)) = - (x/y)";
|
|
557 |
by (simp_tac (simpset() addsimps [complex_divide_def, complex_minus_inverse]) 1);
|
|
558 |
qed "complex_divide_minus_eq";
|
|
559 |
Addsimps [complex_divide_minus_eq];
|
|
560 |
|
|
561 |
Goal "(x+y)/(z::complex) = x/z + y/z";
|
|
562 |
by (simp_tac (simpset() addsimps [complex_divide_def, complex_add_mult_distrib]) 1);
|
|
563 |
qed "complex_add_divide_distrib";
|
|
564 |
|
|
565 |
(*---------------------------------------------------------------------------*)
|
|
566 |
(* Embedding properties for complex_of_real map *)
|
|
567 |
(*---------------------------------------------------------------------------*)
|
|
568 |
|
|
569 |
Goal "inj complex_of_real";
|
|
570 |
by (rtac injI 1);
|
|
571 |
by (auto_tac (claset() addDs [inj_Abs_complex RS injD],
|
|
572 |
simpset() addsimps [complex_of_real_def]));
|
|
573 |
qed "inj_complex_of_real";
|
|
574 |
|
|
575 |
Goalw [complex_one_def,complex_of_real_def]
|
|
576 |
"complex_of_real 1 = 1";
|
|
577 |
by (rtac refl 1);
|
|
578 |
qed "complex_of_real_one";
|
|
579 |
Addsimps [complex_of_real_one];
|
|
580 |
|
|
581 |
Goalw [complex_zero_def,complex_of_real_def]
|
|
582 |
"complex_of_real 0 = 0";
|
|
583 |
by (rtac refl 1);
|
|
584 |
qed "complex_of_real_zero";
|
|
585 |
Addsimps [complex_of_real_zero];
|
|
586 |
|
|
587 |
Goal "(complex_of_real x = complex_of_real y) = (x = y)";
|
|
588 |
by (auto_tac (claset() addDs [inj_complex_of_real RS injD],simpset()));
|
|
589 |
qed "complex_of_real_eq_iff";
|
|
590 |
AddIffs [complex_of_real_eq_iff];
|
|
591 |
|
|
592 |
Goal "complex_of_real(-x) = - complex_of_real x";
|
|
593 |
by (simp_tac (simpset() addsimps [complex_of_real_def,complex_minus]) 1);
|
|
594 |
qed "complex_of_real_minus";
|
|
595 |
|
|
596 |
Goal "complex_of_real(inverse x) = inverse(complex_of_real x)";
|
|
597 |
by (real_div_undefined_case_tac "x=0" 1);
|
|
598 |
by (simp_tac (simpset() addsimps [DIVISION_BY_ZERO,COMPLEX_INVERSE_ZERO]) 1);
|
|
599 |
by (auto_tac (claset(),simpset() addsimps [complex_inverse,
|
|
600 |
complex_of_real_def,realpow_num_two,real_divide_def,
|
|
601 |
real_inverse_distrib]));
|
|
602 |
qed "complex_of_real_inverse";
|
|
603 |
|
|
604 |
Goal "complex_of_real x + complex_of_real y = complex_of_real (x + y)";
|
|
605 |
by (simp_tac (simpset() addsimps [complex_add,complex_of_real_def]) 1);
|
|
606 |
qed "complex_of_real_add";
|
|
607 |
|
|
608 |
Goal "complex_of_real x - complex_of_real y = complex_of_real (x - y)";
|
|
609 |
by (simp_tac (simpset() addsimps [complex_of_real_minus RS sym,
|
|
610 |
complex_diff_def,complex_of_real_add]) 1);
|
|
611 |
qed "complex_of_real_diff";
|
|
612 |
|
|
613 |
Goal "complex_of_real x * complex_of_real y = complex_of_real (x * y)";
|
|
614 |
by (simp_tac (simpset() addsimps [complex_mult,complex_of_real_def]) 1);
|
|
615 |
qed "complex_of_real_mult";
|
|
616 |
|
|
617 |
Goalw [complex_divide_def]
|
|
618 |
"complex_of_real x / complex_of_real y = complex_of_real(x/y)";
|
|
619 |
by (real_div_undefined_case_tac "y=0" 1);
|
|
620 |
by (simp_tac (simpset() addsimps [rename_numerals DIVISION_BY_ZERO,
|
|
621 |
COMPLEX_INVERSE_ZERO]) 1);
|
|
622 |
by (asm_simp_tac (simpset() addsimps [complex_of_real_mult RS sym,
|
|
623 |
complex_of_real_inverse,real_divide_def]) 1);
|
|
624 |
qed "complex_of_real_divide";
|
|
625 |
|
|
626 |
Goal "complex_of_real (x ^ n) = (complex_of_real x) ^ n";
|
|
627 |
by (induct_tac "n" 1);
|
|
628 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_mult RS sym]));
|
|
629 |
qed "complex_of_real_pow";
|
|
630 |
|
|
631 |
Goalw [cmod_def] "cmod (Abs_complex(x,y)) = sqrt(x ^ 2 + y ^ 2)";
|
|
632 |
by (Simp_tac 1);
|
|
633 |
qed "complex_mod";
|
|
634 |
|
|
635 |
Goalw [cmod_def] "cmod(0) = 0";
|
|
636 |
by (Simp_tac 1);
|
|
637 |
qed "complex_mod_zero";
|
|
638 |
Addsimps [complex_mod_zero];
|
|
639 |
|
|
640 |
Goalw [cmod_def] "cmod(1) = 1";
|
|
641 |
by (simp_tac (simpset() addsimps [realpow_num_two]) 1);
|
|
642 |
qed "complex_mod_one";
|
|
643 |
Addsimps [complex_mod_one];
|
|
644 |
|
|
645 |
Goalw [complex_of_real_def] "cmod(complex_of_real x) = abs x";
|
|
646 |
by (simp_tac (simpset() addsimps [complex_mod,realpow_num_two]) 1);
|
|
647 |
qed "complex_mod_complex_of_real";
|
|
648 |
Addsimps [complex_mod_complex_of_real];
|
|
649 |
|
|
650 |
Goal "complex_of_real (abs x) = complex_of_real(cmod(complex_of_real x))";
|
|
651 |
by (Simp_tac 1);
|
|
652 |
qed "complex_of_real_abs";
|
|
653 |
|
|
654 |
(*---------------------------------------------------------------------------*)
|
|
655 |
(* conjugation is an automorphism *)
|
|
656 |
(*---------------------------------------------------------------------------*)
|
|
657 |
|
|
658 |
Goalw [cnj_def] "cnj (Abs_complex(x,y)) = Abs_complex(x,-y)";
|
|
659 |
by (Simp_tac 1);
|
|
660 |
qed "complex_cnj";
|
|
661 |
|
|
662 |
Goal "inj cnj";
|
|
663 |
by (rtac injI 1);
|
|
664 |
by (auto_tac (claset(),simpset() addsimps [cnj_def,
|
|
665 |
Abs_complex_cancel_iff,complex_Re_Im_cancel_iff]));
|
|
666 |
qed "inj_cnj";
|
|
667 |
|
|
668 |
Goal "(cnj x = cnj y) = (x = y)";
|
|
669 |
by (auto_tac (claset() addDs [inj_cnj RS injD],simpset()));
|
|
670 |
qed "complex_cnj_cancel_iff";
|
|
671 |
Addsimps [complex_cnj_cancel_iff];
|
|
672 |
|
|
673 |
Goalw [cnj_def] "cnj (cnj z) = z";
|
|
674 |
by (Simp_tac 1);
|
|
675 |
qed "complex_cnj_cnj";
|
|
676 |
Addsimps [complex_cnj_cnj];
|
|
677 |
|
|
678 |
Goalw [complex_of_real_def] "cnj (complex_of_real x) = complex_of_real x";
|
|
679 |
by (simp_tac (simpset() addsimps [complex_cnj]) 1);
|
|
680 |
qed "complex_cnj_complex_of_real";
|
|
681 |
Addsimps [complex_cnj_complex_of_real];
|
|
682 |
|
|
683 |
Goal "cmod (cnj z) = cmod z";
|
|
684 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
685 |
by (asm_simp_tac (simpset() addsimps [complex_cnj,complex_mod,realpow_num_two]) 1);
|
|
686 |
qed "complex_mod_cnj";
|
|
687 |
Addsimps [complex_mod_cnj];
|
|
688 |
|
|
689 |
Goalw [cnj_def] "cnj (-z) = - cnj z";
|
|
690 |
by (simp_tac (simpset() addsimps [complex_minus,
|
|
691 |
complex_Re_minus,complex_Im_minus]) 1);
|
|
692 |
qed "complex_cnj_minus";
|
|
693 |
|
|
694 |
Goal "cnj(inverse z) = inverse(cnj z)";
|
|
695 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
696 |
by (asm_simp_tac (simpset() addsimps [complex_cnj,complex_inverse,
|
|
697 |
realpow_num_two]) 1);
|
|
698 |
qed "complex_cnj_inverse";
|
|
699 |
|
|
700 |
Goal "cnj(w + z) = cnj(w) + cnj(z)";
|
|
701 |
by (res_inst_tac [("z","w")] eq_Abs_complex 1);
|
|
702 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
703 |
by (asm_simp_tac (simpset() addsimps [complex_cnj,complex_add]) 1);
|
|
704 |
qed "complex_cnj_add";
|
|
705 |
|
|
706 |
Goalw [complex_diff_def] "cnj(w - z) = cnj(w) - cnj(z)";
|
|
707 |
by (simp_tac (simpset() addsimps [complex_cnj_add,complex_cnj_minus]) 1);
|
|
708 |
qed "complex_cnj_diff";
|
|
709 |
|
|
710 |
Goal "cnj(w * z) = cnj(w) * cnj(z)";
|
|
711 |
by (res_inst_tac [("z","w")] eq_Abs_complex 1);
|
|
712 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
713 |
by (asm_simp_tac (simpset() addsimps [complex_cnj,complex_mult]) 1);
|
|
714 |
qed "complex_cnj_mult";
|
|
715 |
|
|
716 |
Goalw [complex_divide_def] "cnj(w / z) = (cnj w)/(cnj z)";
|
|
717 |
by (simp_tac (simpset() addsimps [complex_cnj_mult,complex_cnj_inverse]) 1);
|
|
718 |
qed "complex_cnj_divide";
|
|
719 |
|
|
720 |
Goalw [cnj_def,complex_one_def] "cnj 1 = 1";
|
|
721 |
by (Simp_tac 1);
|
|
722 |
qed "complex_cnj_one";
|
|
723 |
Addsimps [complex_cnj_one];
|
|
724 |
|
|
725 |
Goal "cnj(z ^ n) = cnj(z) ^ n";
|
|
726 |
by (induct_tac "n" 1);
|
|
727 |
by (auto_tac (claset(),simpset() addsimps [complex_cnj_mult]));
|
|
728 |
qed "complex_cnj_pow";
|
|
729 |
|
|
730 |
Goal "z + cnj z = complex_of_real (2 * Re(z))";
|
|
731 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
732 |
by (asm_simp_tac (simpset() addsimps [complex_add,complex_cnj,
|
|
733 |
complex_of_real_def]) 1);
|
|
734 |
qed "complex_add_cnj";
|
|
735 |
|
|
736 |
Goal "z - cnj z = complex_of_real (2 * Im(z)) * ii";
|
|
737 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
738 |
by (asm_simp_tac (simpset() addsimps [complex_add,complex_cnj,
|
|
739 |
complex_of_real_def,complex_diff_def,complex_minus,
|
|
740 |
i_def,complex_mult]) 1);
|
|
741 |
qed "complex_diff_cnj";
|
|
742 |
|
|
743 |
goalw Complex.thy [cnj_def,complex_zero_def]
|
|
744 |
"cnj 0 = 0";
|
|
745 |
by Auto_tac;
|
|
746 |
qed "complex_cnj_zero";
|
|
747 |
Addsimps [complex_cnj_zero];
|
|
748 |
|
|
749 |
goal Complex.thy "(cnj z = 0) = (z = 0)";
|
|
750 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
751 |
by (auto_tac (claset(),simpset() addsimps [complex_zero_def,
|
|
752 |
complex_cnj]));
|
|
753 |
qed "complex_cnj_zero_iff";
|
|
754 |
AddIffs [complex_cnj_zero_iff];
|
|
755 |
|
|
756 |
Goal "z * cnj z = complex_of_real (Re(z) ^ 2 + Im(z) ^ 2)";
|
|
757 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
758 |
by (auto_tac (claset(),simpset() addsimps [complex_cnj,complex_mult,
|
|
759 |
complex_of_real_def,realpow_num_two]));
|
|
760 |
qed "complex_mult_cnj";
|
|
761 |
|
|
762 |
(*---------------------------------------------------------------------------*)
|
|
763 |
(* algebra *)
|
|
764 |
(*---------------------------------------------------------------------------*)
|
|
765 |
|
|
766 |
Goal "(x*y = (0::complex)) = (x = 0 | y = 0)";
|
|
767 |
by Auto_tac;
|
|
768 |
by (auto_tac (claset() addIs [ccontr] addDs
|
|
769 |
[complex_mult_not_zero],simpset()));
|
|
770 |
qed "complex_mult_zero_iff";
|
|
771 |
AddIffs [complex_mult_zero_iff];
|
|
772 |
|
|
773 |
Goalw [complex_zero_def] "(x + y = x) = (y = (0::complex))";
|
|
774 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
775 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
776 |
by (auto_tac (claset(),simpset() addsimps [complex_add]));
|
|
777 |
qed "complex_add_left_cancel_zero";
|
|
778 |
Addsimps [complex_add_left_cancel_zero];
|
|
779 |
|
|
780 |
Goalw [complex_diff_def]
|
|
781 |
"((z1::complex) - z2) * w = (z1 * w) - (z2 * w)";
|
|
782 |
by (simp_tac (simpset() addsimps [complex_add_mult_distrib]) 1);
|
|
783 |
qed "complex_diff_mult_distrib";
|
|
784 |
|
|
785 |
Goalw [complex_diff_def]
|
|
786 |
"(w::complex) * (z1 - z2) = (w * z1) - (w * z2)";
|
|
787 |
by (simp_tac (simpset() addsimps [complex_add_mult_distrib2]) 1);
|
|
788 |
qed "complex_diff_mult_distrib2";
|
|
789 |
|
|
790 |
(*---------------------------------------------------------------------------*)
|
|
791 |
(* modulus *)
|
|
792 |
(*---------------------------------------------------------------------------*)
|
|
793 |
|
|
794 |
(*
|
|
795 |
Goal "[| sqrt(x) = 0; 0 <= x |] ==> x = 0";
|
|
796 |
by (auto_tac (claset() addIs [real_sqrt_eq_zero_cancel],
|
|
797 |
simpset()));
|
|
798 |
qed "real_sqrt_eq_zero_cancel2";
|
|
799 |
*)
|
|
800 |
|
|
801 |
Goal "(cmod x = 0) = (x = 0)";
|
|
802 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
803 |
by (auto_tac (claset() addIs
|
|
804 |
[real_sum_squares_cancel,real_sum_squares_cancel2],
|
|
805 |
simpset() addsimps [complex_mod,complex_zero_def,
|
|
806 |
realpow_num_two]));
|
|
807 |
qed "complex_mod_eq_zero_cancel";
|
|
808 |
Addsimps [complex_mod_eq_zero_cancel];
|
|
809 |
|
|
810 |
Goal "cmod (complex_of_real(real (n::nat))) = real n";
|
|
811 |
by (Simp_tac 1);
|
|
812 |
qed "complex_mod_complex_of_real_of_nat";
|
|
813 |
Addsimps [complex_mod_complex_of_real_of_nat];
|
|
814 |
|
|
815 |
Goal "cmod (-x) = cmod(x)";
|
|
816 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
817 |
by (asm_simp_tac (simpset() addsimps [complex_mod,complex_minus,
|
|
818 |
realpow_num_two]) 1);
|
|
819 |
qed "complex_mod_minus";
|
|
820 |
Addsimps [complex_mod_minus];
|
|
821 |
|
|
822 |
Goal "cmod(z * cnj(z)) = cmod(z) ^ 2";
|
|
823 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
824 |
by (asm_simp_tac (simpset() addsimps [complex_mod,complex_cnj,
|
|
825 |
complex_mult, CLAIM "0 ^ 2 = (0::real)"]) 1);
|
|
826 |
by (simp_tac (simpset() addsimps [realpow_two_eq_mult]) 1);
|
|
827 |
qed "complex_mod_mult_cnj";
|
|
828 |
|
|
829 |
Goalw [cmod_def] "cmod(Abs_complex(x,y)) ^ 2 = x ^ 2 + y ^ 2";
|
|
830 |
by Auto_tac;
|
|
831 |
qed "complex_mod_squared";
|
|
832 |
|
|
833 |
Goalw [cmod_def] "0 <= cmod x";
|
|
834 |
by (auto_tac (claset() addIs [real_sqrt_ge_zero],simpset()));
|
|
835 |
qed "complex_mod_ge_zero";
|
|
836 |
Addsimps [complex_mod_ge_zero];
|
|
837 |
|
|
838 |
Goal "abs(cmod x) = cmod x";
|
|
839 |
by (auto_tac (claset() addIs [abs_eqI1],simpset()));
|
|
840 |
qed "abs_cmod_cancel";
|
|
841 |
Addsimps [abs_cmod_cancel];
|
|
842 |
|
|
843 |
Goal "cmod(x*y) = cmod(x) * cmod(y)";
|
|
844 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
845 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
846 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,
|
|
847 |
complex_mod,real_sqrt_mult_distrib2 RS sym] delsimps [realpow_Suc]));
|
|
848 |
by (res_inst_tac [("n","1")] realpow_Suc_cancel_eq 1);
|
|
849 |
by (auto_tac (claset(),simpset() addsimps [realpow_num_two RS sym]
|
|
850 |
delsimps [realpow_Suc]));
|
|
851 |
by (auto_tac (claset(),simpset() addsimps [real_diff_def,realpow_num_two,
|
|
852 |
real_add_mult_distrib2,real_add_mult_distrib] @ real_add_ac @
|
|
853 |
real_mult_ac));
|
|
854 |
qed "complex_mod_mult";
|
|
855 |
|
|
856 |
Goal "cmod(x + y) ^ 2 = cmod(x) ^ 2 + cmod(y) ^ 2 + 2 * Re(x * cnj y)";
|
|
857 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
858 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
859 |
by (auto_tac (claset(),simpset() addsimps [complex_add,
|
|
860 |
complex_mod_squared,complex_mult,complex_cnj,real_diff_def]
|
|
861 |
delsimps [realpow_Suc]));
|
|
862 |
by (auto_tac (claset(),simpset() addsimps [real_add_mult_distrib2,
|
|
863 |
real_add_mult_distrib,realpow_num_two] @ real_mult_ac @ real_add_ac));
|
|
864 |
qed "complex_mod_add_squared_eq";
|
|
865 |
|
|
866 |
Goal "Re(x * cnj y) <= cmod(x * cnj y)";
|
|
867 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
868 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
869 |
by (auto_tac (claset(),simpset() addsimps [complex_mod,
|
|
870 |
complex_mult,complex_cnj,real_diff_def] delsimps [realpow_Suc]));
|
|
871 |
qed "complex_Re_mult_cnj_le_cmod";
|
|
872 |
Addsimps [complex_Re_mult_cnj_le_cmod];
|
|
873 |
|
|
874 |
Goal "Re(x * cnj y) <= cmod(x * y)";
|
|
875 |
by (cut_inst_tac [("x","x"),("y","y")] complex_Re_mult_cnj_le_cmod 1);
|
|
876 |
by (asm_full_simp_tac (simpset() addsimps [complex_mod_mult]) 1);
|
|
877 |
qed "complex_Re_mult_cnj_le_cmod2";
|
|
878 |
Addsimps [complex_Re_mult_cnj_le_cmod2];
|
|
879 |
|
|
880 |
Goal "((x::real) + y) ^ 2 = x ^ 2 + y ^ 2 + 2 * x * y";
|
|
881 |
by (simp_tac (simpset() addsimps [real_add_mult_distrib,
|
|
882 |
real_add_mult_distrib2,realpow_num_two]) 1);
|
|
883 |
qed "real_sum_squared_expand";
|
|
884 |
|
|
885 |
Goal "cmod (x + y) ^ 2 <= (cmod(x) + cmod(y)) ^ 2";
|
|
886 |
by (simp_tac (simpset() addsimps [real_sum_squared_expand,
|
|
887 |
complex_mod_add_squared_eq,real_mult_assoc,complex_mod_mult RS sym]) 1);
|
|
888 |
qed "complex_mod_triangle_squared";
|
|
889 |
Addsimps [complex_mod_triangle_squared];
|
|
890 |
|
|
891 |
Goal "- cmod x <= cmod x";
|
|
892 |
by (rtac (complex_mod_ge_zero RSN (2,real_le_trans)) 1);
|
|
893 |
by (Simp_tac 1);
|
|
894 |
qed "complex_mod_minus_le_complex_mod";
|
|
895 |
Addsimps [complex_mod_minus_le_complex_mod];
|
|
896 |
|
|
897 |
Goal "cmod (x + y) <= cmod(x) + cmod(y)";
|
|
898 |
by (res_inst_tac [("n","1")] realpow_increasing 1);
|
|
899 |
by (auto_tac (claset() addIs [(complex_mod_ge_zero RSN (2,real_le_trans))],
|
|
900 |
simpset() addsimps [realpow_num_two RS sym]));
|
|
901 |
qed "complex_mod_triangle_ineq";
|
|
902 |
Addsimps [complex_mod_triangle_ineq];
|
|
903 |
|
|
904 |
Goal "cmod(b + a) - cmod b <= cmod a";
|
|
905 |
by (cut_inst_tac [("x1","b"),("y1","a"),("z","-cmod b")]
|
|
906 |
(complex_mod_triangle_ineq RS real_add_le_mono1) 1);
|
|
907 |
by (Simp_tac 1);
|
|
908 |
qed "complex_mod_triangle_ineq2";
|
|
909 |
Addsimps [complex_mod_triangle_ineq2];
|
|
910 |
|
|
911 |
Goal "cmod (x - y) = cmod (y - x)";
|
|
912 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
913 |
by (res_inst_tac [("z","y")] eq_Abs_complex 1);
|
|
914 |
by (auto_tac (claset(),simpset() addsimps [complex_diff,
|
|
915 |
complex_mod,real_diff_mult_distrib2,realpow_num_two,
|
|
916 |
real_diff_mult_distrib] @ real_add_ac @ real_mult_ac));
|
|
917 |
qed "complex_mod_diff_commute";
|
|
918 |
|
|
919 |
Goal "[| cmod x < r; cmod y < s |] ==> cmod (x + y) < r + s";
|
|
920 |
by (auto_tac (claset() addIs [order_le_less_trans,
|
|
921 |
complex_mod_triangle_ineq],simpset()));
|
|
922 |
qed "complex_mod_add_less";
|
|
923 |
|
|
924 |
Goal "[| cmod x < r; cmod y < s |] ==> cmod (x * y) < r * s";
|
|
925 |
by (auto_tac (claset() addIs [real_mult_less_mono'],simpset()
|
|
926 |
addsimps [complex_mod_mult]));
|
|
927 |
qed "complex_mod_mult_less";
|
|
928 |
|
|
929 |
goal Complex.thy "cmod(a) - cmod(b) <= cmod(a + b)";
|
|
930 |
by (res_inst_tac [("R1.0","cmod(a)"),("R2.0","cmod(b)")]
|
|
931 |
real_linear_less2 1);
|
|
932 |
by Auto_tac;
|
|
933 |
by (dtac (ARITH_PROVE "a < b ==> a - (b::real) < 0") 1);
|
|
934 |
by (rtac real_le_trans 1 THEN rtac order_less_imp_le 1);
|
|
935 |
by Auto_tac;
|
|
936 |
by (dtac (ARITH_PROVE "a < b ==> 0 < (b::real) - a") 1);
|
|
937 |
by (rtac (ARITH_PROVE "a <= b + c ==> a - c <= (b::real)") 1);
|
|
938 |
by (rtac (complex_mod_minus RS subst) 1);
|
|
939 |
by (rtac real_le_trans 1);
|
|
940 |
by (rtac complex_mod_triangle_ineq 2);
|
|
941 |
by (auto_tac (claset(),simpset() addsimps complex_add_ac));
|
|
942 |
qed "complex_mod_diff_ineq";
|
|
943 |
Addsimps [complex_mod_diff_ineq];
|
|
944 |
|
|
945 |
Goal "Re z <= cmod z";
|
|
946 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
947 |
by (auto_tac (claset(),simpset() addsimps [complex_mod]
|
|
948 |
delsimps [realpow_Suc]));
|
|
949 |
qed "complex_Re_le_cmod";
|
|
950 |
Addsimps [complex_Re_le_cmod];
|
|
951 |
|
|
952 |
Goal "z ~= 0 ==> 0 < cmod z";
|
|
953 |
by (cut_inst_tac [("x","z")] complex_mod_ge_zero 1);
|
|
954 |
by (dtac order_le_imp_less_or_eq 1);
|
|
955 |
by Auto_tac;
|
|
956 |
qed "complex_mod_gt_zero";
|
|
957 |
|
|
958 |
|
|
959 |
(*---------------------------------------------------------------------------*)
|
|
960 |
(* a few more theorems *)
|
|
961 |
(*---------------------------------------------------------------------------*)
|
|
962 |
|
|
963 |
Goal "cmod(x ^ n) = cmod(x) ^ n";
|
|
964 |
by (induct_tac "n" 1);
|
|
965 |
by (auto_tac (claset(),simpset() addsimps [complex_mod_mult]));
|
|
966 |
qed "complex_mod_complexpow";
|
|
967 |
|
|
968 |
Goal "(-x::complex) ^ n = (if even n then (x ^ n) else -(x ^ n))";
|
|
969 |
by (induct_tac "n" 1);
|
|
970 |
by Auto_tac;
|
|
971 |
qed "complexpow_minus";
|
|
972 |
|
|
973 |
Goal "inverse (-x) = - inverse (x::complex)";
|
|
974 |
by (res_inst_tac [("z","x")] eq_Abs_complex 1);
|
|
975 |
by (asm_simp_tac (simpset() addsimps [complex_inverse,complex_minus,
|
|
976 |
realpow_num_two]) 1);
|
|
977 |
qed "complex_inverse_minus";
|
|
978 |
|
|
979 |
Goalw [complex_divide_def] "x / (1::complex) = x";
|
|
980 |
by (Simp_tac 1);
|
|
981 |
qed "complex_divide_one";
|
|
982 |
Addsimps [complex_divide_one];
|
|
983 |
|
|
984 |
Goal "cmod(inverse x) = inverse(cmod x)";
|
|
985 |
by (complex_div_undefined_case_tac "x=0" 1);
|
|
986 |
by (res_inst_tac [("c1","cmod x")] (real_mult_left_cancel RS iffD1) 1);
|
|
987 |
by (auto_tac (claset(),simpset() addsimps [complex_mod_mult RS sym]));
|
|
988 |
qed "complex_mod_inverse";
|
|
989 |
|
|
990 |
Goalw [complex_divide_def,real_divide_def]
|
|
991 |
"cmod(x/y) = cmod(x)/(cmod y)";
|
|
992 |
by (auto_tac (claset(),simpset() addsimps [complex_mod_mult,
|
|
993 |
complex_mod_inverse]));
|
|
994 |
qed "complex_mod_divide";
|
|
995 |
|
|
996 |
Goalw [complex_divide_def]
|
|
997 |
"inverse(x/y) = y/(x::complex)";
|
|
998 |
by (auto_tac (claset(),simpset() addsimps [complex_inverse_distrib,
|
|
999 |
complex_mult_commute]));
|
|
1000 |
qed "complex_inverse_divide";
|
|
1001 |
Addsimps [complex_inverse_divide];
|
|
1002 |
|
|
1003 |
Goal "((r::complex) * s) ^ n = (r ^ n) * (s ^ n)";
|
|
1004 |
by (induct_tac "n" 1);
|
|
1005 |
by (auto_tac (claset(),simpset() addsimps complex_mult_ac));
|
|
1006 |
qed "complexpow_mult";
|
|
1007 |
|
|
1008 |
(*---------------------------------------------------------------------------*)
|
|
1009 |
(* More exponentiation *)
|
|
1010 |
(*---------------------------------------------------------------------------*)
|
|
1011 |
|
|
1012 |
Goal "(0::complex) ^ (Suc n) = 0";
|
|
1013 |
by (Auto_tac);
|
|
1014 |
qed "complexpow_zero";
|
|
1015 |
Addsimps [complexpow_zero];
|
|
1016 |
|
|
1017 |
Goal "r ~= (0::complex) --> r ^ n ~= 0";
|
|
1018 |
by (induct_tac "n" 1);
|
|
1019 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_not_zero]));
|
|
1020 |
qed_spec_mp "complexpow_not_zero";
|
|
1021 |
Addsimps [complexpow_not_zero];
|
|
1022 |
AddIs [complexpow_not_zero];
|
|
1023 |
|
|
1024 |
Goal "r ^ n = (0::complex) ==> r = 0";
|
|
1025 |
by (blast_tac (claset() addIs [ccontr]
|
|
1026 |
addDs [complexpow_not_zero]) 1);
|
|
1027 |
qed "complexpow_zero_zero";
|
|
1028 |
|
|
1029 |
Goalw [i_def] "ii ^ 2 = -(1::complex)";
|
|
1030 |
by (auto_tac (claset(),simpset() addsimps
|
|
1031 |
[complex_mult,complex_one_def,complex_minus,realpow_num_two]));
|
|
1032 |
qed "complexpow_i_squared";
|
|
1033 |
Addsimps [complexpow_i_squared];
|
|
1034 |
|
|
1035 |
Goalw [i_def,complex_zero_def] "ii ~= 0";
|
|
1036 |
by Auto_tac;
|
|
1037 |
qed "complex_i_not_zero";
|
|
1038 |
Addsimps [complex_i_not_zero];
|
|
1039 |
|
|
1040 |
Goal "x * y ~= (0::complex) ==> x ~= 0";
|
|
1041 |
by Auto_tac;
|
|
1042 |
qed "complex_mult_eq_zero_cancel1";
|
|
1043 |
|
|
1044 |
Goal "x * y ~= 0 ==> y ~= (0::complex)";
|
|
1045 |
by Auto_tac;
|
|
1046 |
qed "complex_mult_eq_zero_cancel2";
|
|
1047 |
|
|
1048 |
Goal "(x * y ~= 0) = (x ~= 0 & y ~= (0::complex))";
|
|
1049 |
by Auto_tac;
|
|
1050 |
qed "complex_mult_not_eq_zero_iff";
|
|
1051 |
AddIffs [complex_mult_not_eq_zero_iff];
|
|
1052 |
|
|
1053 |
Goal "inverse ((r::complex) ^ n) = (inverse r) ^ n";
|
|
1054 |
by (induct_tac "n" 1);
|
|
1055 |
by (auto_tac (claset(), simpset() addsimps [complex_inverse_distrib]));
|
|
1056 |
qed "complexpow_inverse";
|
|
1057 |
|
|
1058 |
(*---------------------------------------------------------------------------*)
|
|
1059 |
(* sgn *)
|
|
1060 |
(*---------------------------------------------------------------------------*)
|
|
1061 |
|
|
1062 |
Goalw [sgn_def] "sgn 0 = 0";
|
|
1063 |
by (Simp_tac 1);
|
|
1064 |
qed "sgn_zero";
|
|
1065 |
Addsimps[sgn_zero];
|
|
1066 |
|
|
1067 |
Goalw [sgn_def] "sgn 1 = 1";
|
|
1068 |
by (Simp_tac 1);
|
|
1069 |
qed "sgn_one";
|
|
1070 |
Addsimps [sgn_one];
|
|
1071 |
|
|
1072 |
Goalw [sgn_def] "sgn (-z) = - sgn(z)";
|
|
1073 |
by Auto_tac;
|
|
1074 |
qed "sgn_minus";
|
|
1075 |
|
|
1076 |
Goalw [sgn_def]
|
|
1077 |
"sgn z = z / complex_of_real (cmod z)";
|
|
1078 |
by (Simp_tac 1);
|
|
1079 |
qed "sgn_eq";
|
|
1080 |
|
|
1081 |
Goal "EX x y. z = complex_of_real(x) + ii * complex_of_real(y)";
|
|
1082 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1083 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_def,
|
|
1084 |
i_def,complex_mult,complex_add]));
|
|
1085 |
qed "complex_split";
|
|
1086 |
|
|
1087 |
Goal "Re(complex_of_real(x) + ii * complex_of_real(y)) = x";
|
|
1088 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_def,
|
|
1089 |
i_def,complex_mult,complex_add]));
|
|
1090 |
qed "Re_complex_i";
|
|
1091 |
Addsimps [Re_complex_i];
|
|
1092 |
|
|
1093 |
Goal "Im(complex_of_real(x) + ii * complex_of_real(y)) = y";
|
|
1094 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_def,
|
|
1095 |
i_def,complex_mult,complex_add]));
|
|
1096 |
qed "Im_complex_i";
|
|
1097 |
Addsimps [Im_complex_i];
|
|
1098 |
|
|
1099 |
Goalw [i_def,complex_of_real_def] "ii * ii = complex_of_real (-1)";
|
|
1100 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add]));
|
|
1101 |
qed "i_mult_eq";
|
|
1102 |
|
|
1103 |
Goalw [i_def,complex_one_def] "ii * ii = -(1::complex)";
|
|
1104 |
by (simp_tac (simpset() addsimps [complex_mult,complex_minus]) 1);
|
|
1105 |
qed "i_mult_eq2";
|
|
1106 |
Addsimps [i_mult_eq2];
|
|
1107 |
|
|
1108 |
Goal "cmod (complex_of_real(x) + ii * complex_of_real(y)) = \
|
|
1109 |
\ sqrt (x ^ 2 + y ^ 2)";
|
|
1110 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add,
|
|
1111 |
i_def,complex_of_real_def,cmod_def]));
|
|
1112 |
qed "cmod_i";
|
|
1113 |
|
|
1114 |
Goalw [complex_of_real_def,i_def]
|
|
1115 |
"complex_of_real xa + ii * complex_of_real ya = \
|
|
1116 |
\ complex_of_real xb + ii * complex_of_real yb \
|
|
1117 |
\ ==> xa = xb";
|
|
1118 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add]));
|
|
1119 |
qed "complex_eq_Re_eq";
|
|
1120 |
|
|
1121 |
Goalw [complex_of_real_def,i_def]
|
|
1122 |
"complex_of_real xa + ii * complex_of_real ya = \
|
|
1123 |
\ complex_of_real xb + ii * complex_of_real yb \
|
|
1124 |
\ ==> ya = yb";
|
|
1125 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add]));
|
|
1126 |
qed "complex_eq_Im_eq";
|
|
1127 |
|
|
1128 |
Goal "(complex_of_real xa + ii * complex_of_real ya = \
|
|
1129 |
\ complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))";
|
|
1130 |
by (auto_tac (claset() addIs [complex_eq_Im_eq,complex_eq_Re_eq],simpset()));
|
|
1131 |
qed "complex_eq_cancel_iff";
|
|
1132 |
AddIffs [complex_eq_cancel_iff];
|
|
1133 |
|
|
1134 |
Goal "(complex_of_real xa + complex_of_real ya * ii = \
|
|
1135 |
\ complex_of_real xb + complex_of_real yb * ii ) = ((xa = xb) & (ya = yb))";
|
|
1136 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_commute]));
|
|
1137 |
qed "complex_eq_cancel_iffA";
|
|
1138 |
AddIffs [complex_eq_cancel_iffA];
|
|
1139 |
|
|
1140 |
Goal "(complex_of_real xa + complex_of_real ya * ii = \
|
|
1141 |
\ complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))";
|
|
1142 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_commute]));
|
|
1143 |
qed "complex_eq_cancel_iffB";
|
|
1144 |
AddIffs [complex_eq_cancel_iffB];
|
|
1145 |
|
|
1146 |
Goal "(complex_of_real xa + ii * complex_of_real ya = \
|
|
1147 |
\ complex_of_real xb + complex_of_real yb * ii) = ((xa = xb) & (ya = yb))";
|
|
1148 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_commute]));
|
|
1149 |
qed "complex_eq_cancel_iffC";
|
|
1150 |
AddIffs [complex_eq_cancel_iffC];
|
|
1151 |
|
|
1152 |
Goal"(complex_of_real x + ii * complex_of_real y = \
|
|
1153 |
\ complex_of_real xa) = (x = xa & y = 0)";
|
|
1154 |
by (cut_inst_tac [("xa","x"),("ya","y"),("xb","xa"),("yb","0")]
|
|
1155 |
complex_eq_cancel_iff 1);
|
|
1156 |
by (asm_full_simp_tac (simpset() delsimps [complex_eq_cancel_iff]) 1);
|
|
1157 |
qed "complex_eq_cancel_iff2";
|
|
1158 |
Addsimps [complex_eq_cancel_iff2];
|
|
1159 |
|
|
1160 |
Goal"(complex_of_real x + complex_of_real y * ii = \
|
|
1161 |
\ complex_of_real xa) = (x = xa & y = 0)";
|
|
1162 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_commute]));
|
|
1163 |
qed "complex_eq_cancel_iff2a";
|
|
1164 |
Addsimps [complex_eq_cancel_iff2a];
|
|
1165 |
|
|
1166 |
Goal "(complex_of_real x + ii * complex_of_real y = \
|
|
1167 |
\ ii * complex_of_real ya) = (x = 0 & y = ya)";
|
|
1168 |
by (cut_inst_tac [("xa","x"),("ya","y"),("xb","0"),("yb","ya")]
|
|
1169 |
complex_eq_cancel_iff 1);
|
|
1170 |
by (asm_full_simp_tac (simpset() delsimps [complex_eq_cancel_iff]) 1);
|
|
1171 |
qed "complex_eq_cancel_iff3";
|
|
1172 |
Addsimps [complex_eq_cancel_iff3];
|
|
1173 |
|
|
1174 |
Goal "(complex_of_real x + complex_of_real y * ii = \
|
|
1175 |
\ ii * complex_of_real ya) = (x = 0 & y = ya)";
|
|
1176 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_commute]));
|
|
1177 |
qed "complex_eq_cancel_iff3a";
|
|
1178 |
Addsimps [complex_eq_cancel_iff3a];
|
|
1179 |
|
|
1180 |
Goalw [complex_of_real_def,i_def,complex_zero_def]
|
|
1181 |
"complex_of_real x + ii * complex_of_real y = 0 \
|
|
1182 |
\ ==> x = 0";
|
|
1183 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add]));
|
|
1184 |
qed "complex_split_Re_zero";
|
|
1185 |
|
|
1186 |
Goalw [complex_of_real_def,i_def,complex_zero_def]
|
|
1187 |
"complex_of_real x + ii * complex_of_real y = 0 \
|
|
1188 |
\ ==> y = 0";
|
|
1189 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add]));
|
|
1190 |
qed "complex_split_Im_zero";
|
|
1191 |
|
|
1192 |
Goalw [sgn_def,complex_divide_def]
|
|
1193 |
"Re(sgn z) = Re(z)/cmod z";
|
|
1194 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1195 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_inverse RS sym]));
|
|
1196 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_def,
|
|
1197 |
complex_mult,real_divide_def]));
|
|
1198 |
qed "Re_sgn";
|
|
1199 |
Addsimps [Re_sgn];
|
|
1200 |
|
|
1201 |
Goalw [sgn_def,complex_divide_def]
|
|
1202 |
"Im(sgn z) = Im(z)/cmod z";
|
|
1203 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1204 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_inverse RS sym]));
|
|
1205 |
by (auto_tac (claset(),simpset() addsimps [complex_of_real_def,
|
|
1206 |
complex_mult,real_divide_def]));
|
|
1207 |
qed "Im_sgn";
|
|
1208 |
Addsimps [Im_sgn];
|
|
1209 |
|
|
1210 |
Goalw [complex_of_real_def,i_def]
|
|
1211 |
"inverse(complex_of_real x + ii * complex_of_real y) = \
|
|
1212 |
\ complex_of_real(x/(x ^ 2 + y ^ 2)) - \
|
|
1213 |
\ ii * complex_of_real(y/(x ^ 2 + y ^ 2))";
|
|
1214 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,complex_add,
|
|
1215 |
complex_diff_def,complex_minus,complex_inverse,real_divide_def]));
|
|
1216 |
qed "complex_inverse_complex_split";
|
|
1217 |
|
|
1218 |
(*----------------------------------------------------------------------------*)
|
|
1219 |
(* Many of the theorems below need to be moved elsewhere e.g. Transc.ML. Also *)
|
|
1220 |
(* many of the theorems are not used - so should they be kept? *)
|
|
1221 |
(*----------------------------------------------------------------------------*)
|
|
1222 |
|
|
1223 |
Goalw [i_def,complex_of_real_def]
|
|
1224 |
"Re (ii * complex_of_real y) = 0";
|
|
1225 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1226 |
qed "Re_mult_i_eq";
|
|
1227 |
Addsimps [Re_mult_i_eq];
|
|
1228 |
|
|
1229 |
Goalw [i_def,complex_of_real_def]
|
|
1230 |
"Im (ii * complex_of_real y) = y";
|
|
1231 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1232 |
qed "Im_mult_i_eq";
|
|
1233 |
Addsimps [Im_mult_i_eq];
|
|
1234 |
|
|
1235 |
Goalw [i_def,complex_of_real_def]
|
|
1236 |
"cmod (ii * complex_of_real y) = abs y";
|
|
1237 |
by (auto_tac (claset(),simpset() addsimps [complex_mult,
|
|
1238 |
complex_mod,realpow_num_two]));
|
|
1239 |
qed "complex_mod_mult_i";
|
|
1240 |
Addsimps [complex_mod_mult_i];
|
|
1241 |
|
|
1242 |
Goalw [arg_def]
|
|
1243 |
"0 < y ==> cos (arg(ii * complex_of_real y)) = 0";
|
|
1244 |
by (auto_tac (claset(),simpset() addsimps [abs_eqI2]));
|
|
1245 |
by (res_inst_tac [("a","pi/2")] someI2 1);
|
|
1246 |
by Auto_tac;
|
|
1247 |
by (res_inst_tac [("R2.0","0")] real_less_trans 1);
|
|
1248 |
by Auto_tac;
|
|
1249 |
qed "cos_arg_i_mult_zero";
|
|
1250 |
Addsimps [cos_arg_i_mult_zero];
|
|
1251 |
|
|
1252 |
Goalw [arg_def]
|
|
1253 |
"y < 0 ==> cos (arg(ii * complex_of_real y)) = 0";
|
|
1254 |
by (auto_tac (claset(),simpset() addsimps [abs_minus_eqI2]));
|
|
1255 |
by (res_inst_tac [("a","- pi/2")] someI2 1);
|
|
1256 |
by Auto_tac;
|
|
1257 |
by (res_inst_tac [("j","0")] real_le_trans 1);
|
|
1258 |
by Auto_tac;
|
|
1259 |
qed "cos_arg_i_mult_zero2";
|
|
1260 |
Addsimps [cos_arg_i_mult_zero2];
|
|
1261 |
|
|
1262 |
Goalw [complex_zero_def,complex_of_real_def]
|
|
1263 |
"(complex_of_real y ~= 0) = (y ~= 0)";
|
|
1264 |
by Auto_tac;
|
|
1265 |
qed "complex_of_real_not_zero_iff";
|
|
1266 |
Addsimps [complex_of_real_not_zero_iff];
|
|
1267 |
|
|
1268 |
Goal "(complex_of_real y = 0) = (y = 0)";
|
|
1269 |
by Auto_tac;
|
|
1270 |
by (rtac ccontr 1 THEN dtac (complex_of_real_not_zero_iff RS iffD2) 1);
|
|
1271 |
by (Asm_full_simp_tac 1);
|
|
1272 |
qed "complex_of_real_zero_iff";
|
|
1273 |
Addsimps [complex_of_real_zero_iff];
|
|
1274 |
|
|
1275 |
Goal "y ~= 0 ==> cos (arg(ii * complex_of_real y)) = 0";
|
|
1276 |
by (cut_inst_tac [("R1.0","y"),("R2.0","0")] real_linear 1);
|
|
1277 |
by Auto_tac;
|
|
1278 |
qed "cos_arg_i_mult_zero3";
|
|
1279 |
Addsimps [cos_arg_i_mult_zero3];
|
|
1280 |
|
|
1281 |
(*---------------------------------------------------------------------------*)
|
|
1282 |
(* Finally! Polar form for complex numbers *)
|
|
1283 |
(*---------------------------------------------------------------------------*)
|
|
1284 |
|
|
1285 |
Goal "EX r a. z = complex_of_real r * \
|
|
1286 |
\ (complex_of_real(cos a) + ii * complex_of_real(sin a))";
|
|
1287 |
by (cut_inst_tac [("z","z")] complex_split 1);
|
|
1288 |
by (auto_tac (claset(),simpset() addsimps [polar_Ex,
|
|
1289 |
complex_add_mult_distrib2,complex_of_real_mult] @ complex_mult_ac));
|
|
1290 |
qed "complex_split_polar";
|
|
1291 |
|
|
1292 |
Goalw [rcis_def,cis_def] "EX r a. z = rcis r a";
|
|
1293 |
by (rtac complex_split_polar 1);
|
|
1294 |
qed "rcis_Ex";
|
|
1295 |
|
|
1296 |
Goal "Re(complex_of_real r * \
|
|
1297 |
\ (complex_of_real(cos a) + ii * complex_of_real(sin a))) = r * cos a";
|
|
1298 |
by (auto_tac (claset(),simpset() addsimps [complex_add_mult_distrib2,
|
|
1299 |
complex_of_real_mult] @ complex_mult_ac));
|
|
1300 |
qed "Re_complex_polar";
|
|
1301 |
Addsimps [Re_complex_polar];
|
|
1302 |
|
|
1303 |
Goalw [rcis_def,cis_def] "Re(rcis r a) = r * cos a";
|
|
1304 |
by Auto_tac;
|
|
1305 |
qed "Re_rcis";
|
|
1306 |
Addsimps [Re_rcis];
|
|
1307 |
|
|
1308 |
Goal "Im(complex_of_real r * \
|
|
1309 |
\ (complex_of_real(cos a) + ii * complex_of_real(sin a))) = r * sin a";
|
|
1310 |
by (auto_tac (claset(),simpset() addsimps [complex_add_mult_distrib2,
|
|
1311 |
complex_of_real_mult] @ complex_mult_ac));
|
|
1312 |
qed "Im_complex_polar";
|
|
1313 |
Addsimps [Im_complex_polar];
|
|
1314 |
|
|
1315 |
Goalw [rcis_def,cis_def] "Im(rcis r a) = r * sin a";
|
|
1316 |
by Auto_tac;
|
|
1317 |
qed "Im_rcis";
|
|
1318 |
Addsimps [Im_rcis];
|
|
1319 |
|
|
1320 |
Goal "cmod (complex_of_real r * \
|
|
1321 |
\ (complex_of_real(cos a) + ii * complex_of_real(sin a))) = abs r";
|
|
1322 |
by (auto_tac (claset(),simpset() addsimps [complex_add_mult_distrib2,
|
|
1323 |
cmod_i,complex_of_real_mult,real_add_mult_distrib2
|
|
1324 |
RS sym,realpow_mult] @ complex_mult_ac@ real_mult_ac
|
|
1325 |
delsimps [realpow_Suc]));
|
|
1326 |
qed "complex_mod_complex_polar";
|
|
1327 |
Addsimps [complex_mod_complex_polar];
|
|
1328 |
|
|
1329 |
Goalw [rcis_def,cis_def] "cmod(rcis r a) = abs r";
|
|
1330 |
by Auto_tac;
|
|
1331 |
qed "complex_mod_rcis";
|
|
1332 |
Addsimps [complex_mod_rcis];
|
|
1333 |
|
|
1334 |
Goalw [cmod_def] "cmod z = sqrt (Re (z * cnj z))";
|
|
1335 |
by (rtac (real_sqrt_eq_iff RS iffD2) 1);
|
|
1336 |
by (auto_tac (claset(),simpset() addsimps [complex_mult_cnj]));
|
|
1337 |
qed "complex_mod_sqrt_Re_mult_cnj";
|
|
1338 |
|
|
1339 |
Goal "Re(cnj z) = Re z";
|
|
1340 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1341 |
by (auto_tac (claset(),simpset() addsimps [complex_cnj]));
|
|
1342 |
qed "complex_Re_cnj";
|
|
1343 |
Addsimps [complex_Re_cnj];
|
|
1344 |
|
|
1345 |
Goal "Im(cnj z) = - Im z";
|
|
1346 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1347 |
by (auto_tac (claset(),simpset() addsimps [complex_cnj]));
|
|
1348 |
qed "complex_Im_cnj";
|
|
1349 |
Addsimps [complex_Im_cnj];
|
|
1350 |
|
|
1351 |
Goal "Im (z * cnj z) = 0";
|
|
1352 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1353 |
by (auto_tac (claset(),simpset() addsimps [complex_cnj,complex_mult]));
|
|
1354 |
qed "complex_In_mult_cnj_zero";
|
|
1355 |
Addsimps [complex_In_mult_cnj_zero];
|
|
1356 |
|
|
1357 |
Goal "[| Im w = 0; Im z = 0 |] ==> Re(w * z) = Re(w) * Re(z)";
|
|
1358 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1359 |
by (res_inst_tac [("z","w")] eq_Abs_complex 1);
|
|
1360 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1361 |
qed "complex_Re_mult";
|
|
1362 |
|
|
1363 |
Goalw [complex_of_real_def] "Re (z * complex_of_real c) = Re(z) * c";
|
|
1364 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1365 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1366 |
qed "complex_Re_mult_complex_of_real";
|
|
1367 |
Addsimps [complex_Re_mult_complex_of_real];
|
|
1368 |
|
|
1369 |
Goalw [complex_of_real_def] "Im (z * complex_of_real c) = Im(z) * c";
|
|
1370 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1371 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1372 |
qed "complex_Im_mult_complex_of_real";
|
|
1373 |
Addsimps [complex_Im_mult_complex_of_real];
|
|
1374 |
|
|
1375 |
Goalw [complex_of_real_def] "Re (complex_of_real c * z) = c * Re(z)";
|
|
1376 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1377 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1378 |
qed "complex_Re_mult_complex_of_real2";
|
|
1379 |
Addsimps [complex_Re_mult_complex_of_real2];
|
|
1380 |
|
|
1381 |
Goalw [complex_of_real_def] "Im (complex_of_real c * z) = c * Im(z)";
|
|
1382 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1383 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1384 |
qed "complex_Im_mult_complex_of_real2";
|
|
1385 |
Addsimps [complex_Im_mult_complex_of_real2];
|
|
1386 |
|
|
1387 |
(*---------------------------------------------------------------------------*)
|
|
1388 |
(* (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b) *)
|
|
1389 |
(*---------------------------------------------------------------------------*)
|
|
1390 |
|
|
1391 |
Goalw [rcis_def] "cis a = rcis 1 a";
|
|
1392 |
by (Simp_tac 1);
|
|
1393 |
qed "cis_rcis_eq";
|
|
1394 |
|
|
1395 |
Goalw [rcis_def,cis_def]
|
|
1396 |
"rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)";
|
|
1397 |
by (auto_tac (claset(),simpset() addsimps [cos_add,sin_add,
|
|
1398 |
complex_add_mult_distrib2,complex_add_mult_distrib]
|
|
1399 |
@ complex_mult_ac @ complex_add_ac));
|
|
1400 |
by (auto_tac (claset(),simpset() addsimps [complex_add_mult_distrib2 RS sym,
|
|
1401 |
complex_mult_assoc RS sym,complex_of_real_mult,complex_of_real_add,
|
|
1402 |
complex_add_assoc RS sym,i_mult_eq] delsimps [i_mult_eq2]));
|
|
1403 |
by (auto_tac (claset(),simpset() addsimps complex_add_ac));
|
|
1404 |
by (auto_tac (claset(),simpset() addsimps [complex_add_assoc RS sym,
|
|
1405 |
complex_of_real_add,real_add_mult_distrib2,
|
|
1406 |
real_diff_def] @ real_mult_ac @ real_add_ac));
|
|
1407 |
qed "rcis_mult";
|
|
1408 |
|
|
1409 |
Goal "cis a * cis b = cis (a + b)";
|
|
1410 |
by (simp_tac (simpset() addsimps [cis_rcis_eq,rcis_mult]) 1);
|
|
1411 |
qed "cis_mult";
|
|
1412 |
|
|
1413 |
Goalw [cis_def] "cis 0 = 1";
|
|
1414 |
by Auto_tac;
|
|
1415 |
qed "cis_zero";
|
|
1416 |
Addsimps [cis_zero];
|
|
1417 |
|
|
1418 |
Goalw [cis_def] "cis 0 = complex_of_real 1";
|
|
1419 |
by Auto_tac;
|
|
1420 |
qed "cis_zero2";
|
|
1421 |
Addsimps [cis_zero2];
|
|
1422 |
|
|
1423 |
Goalw [rcis_def] "rcis 0 a = 0";
|
|
1424 |
by (Simp_tac 1);
|
|
1425 |
qed "rcis_zero_mod";
|
|
1426 |
Addsimps [rcis_zero_mod];
|
|
1427 |
|
|
1428 |
Goalw [rcis_def] "rcis r 0 = complex_of_real r";
|
|
1429 |
by (Simp_tac 1);
|
|
1430 |
qed "rcis_zero_arg";
|
|
1431 |
Addsimps [rcis_zero_arg];
|
|
1432 |
|
|
1433 |
Goalw [complex_of_real_def,complex_one_def]
|
|
1434 |
"complex_of_real (-(1::real)) = -(1::complex)";
|
|
1435 |
by (simp_tac (simpset() addsimps [complex_minus]) 1);
|
|
1436 |
qed "complex_of_real_minus_one";
|
|
1437 |
|
|
1438 |
Goal "ii * (ii * x) = - x";
|
|
1439 |
by (simp_tac (simpset() addsimps [complex_mult_assoc RS sym]) 1);
|
|
1440 |
qed "complex_i_mult_minus";
|
|
1441 |
Addsimps [complex_i_mult_minus];
|
|
1442 |
|
|
1443 |
Goal "ii * ii * x = - x";
|
|
1444 |
by (Simp_tac 1);
|
|
1445 |
qed "complex_i_mult_minus2";
|
|
1446 |
Addsimps [complex_i_mult_minus2];
|
|
1447 |
|
|
1448 |
Goalw [cis_def]
|
|
1449 |
"cis (real (Suc n) * a) = cis a * cis (real n * a)";
|
|
1450 |
by (auto_tac (claset(),simpset() addsimps [real_of_nat_Suc,
|
|
1451 |
real_add_mult_distrib,cos_add,sin_add,complex_add_mult_distrib,
|
|
1452 |
complex_add_mult_distrib2,complex_of_real_add,complex_of_real_mult]
|
|
1453 |
@ complex_mult_ac @ complex_add_ac));
|
|
1454 |
by (auto_tac (claset(),simpset() addsimps [complex_add_mult_distrib2 RS sym,
|
|
1455 |
complex_mult_assoc RS sym,i_mult_eq,complex_of_real_mult,
|
|
1456 |
complex_of_real_add,complex_add_assoc RS sym,complex_of_real_minus
|
|
1457 |
RS sym,real_diff_def] @ real_mult_ac delsimps [i_mult_eq2]));
|
|
1458 |
qed "cis_real_of_nat_Suc_mult";
|
|
1459 |
|
|
1460 |
Goal "(cis a) ^ n = cis (real n * a)";
|
|
1461 |
by (induct_tac "n" 1);
|
|
1462 |
by (auto_tac (claset(),simpset() addsimps [cis_real_of_nat_Suc_mult]));
|
|
1463 |
qed "DeMoivre";
|
|
1464 |
|
|
1465 |
Goalw [rcis_def]
|
|
1466 |
"(rcis r a) ^ n = rcis (r ^ n) (real n * a)";
|
|
1467 |
by (auto_tac (claset(),simpset() addsimps [complexpow_mult,
|
|
1468 |
DeMoivre,complex_of_real_pow]));
|
|
1469 |
qed "DeMoivre2";
|
|
1470 |
|
|
1471 |
Goalw [cis_def] "inverse(cis a) = cis (-a)";
|
|
1472 |
by (auto_tac (claset(),simpset() addsimps [complex_inverse_complex_split,
|
|
1473 |
complex_of_real_minus,complex_diff_def]));
|
|
1474 |
qed "cis_inverse";
|
|
1475 |
Addsimps [cis_inverse];
|
|
1476 |
|
|
1477 |
Goal "inverse(rcis r a) = rcis (1/r) (-a)";
|
|
1478 |
by (real_div_undefined_case_tac "r=0" 1);
|
|
1479 |
by (simp_tac (simpset() addsimps [rename_numerals DIVISION_BY_ZERO,
|
|
1480 |
COMPLEX_INVERSE_ZERO]) 1);
|
|
1481 |
by (auto_tac (claset(),simpset() addsimps [complex_inverse_complex_split,
|
|
1482 |
complex_add_mult_distrib2,complex_of_real_mult,rcis_def,cis_def,
|
|
1483 |
realpow_num_two] @ complex_mult_ac @ real_mult_ac));
|
|
1484 |
by (auto_tac (claset(),simpset() addsimps [real_add_mult_distrib2 RS sym,
|
|
1485 |
complex_of_real_minus,complex_diff_def]));
|
|
1486 |
qed "rcis_inverse";
|
|
1487 |
|
|
1488 |
Goalw [complex_divide_def] "cis a / cis b = cis (a - b)";
|
|
1489 |
by (auto_tac (claset(),simpset() addsimps [cis_mult,real_diff_def]));
|
|
1490 |
qed "cis_divide";
|
|
1491 |
|
|
1492 |
Goalw [complex_divide_def]
|
|
1493 |
"rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)";
|
|
1494 |
by (real_div_undefined_case_tac "r2=0" 1);
|
|
1495 |
by (simp_tac (simpset() addsimps [rename_numerals DIVISION_BY_ZERO,
|
|
1496 |
COMPLEX_INVERSE_ZERO]) 1);
|
|
1497 |
by (auto_tac (claset(),simpset() addsimps [rcis_inverse,rcis_mult,
|
|
1498 |
real_diff_def]));
|
|
1499 |
qed "rcis_divide";
|
|
1500 |
|
|
1501 |
Goalw [cis_def] "Re(cis a) = cos a";
|
|
1502 |
by Auto_tac;
|
|
1503 |
qed "Re_cis";
|
|
1504 |
Addsimps [Re_cis];
|
|
1505 |
|
|
1506 |
Goalw [cis_def] "Im(cis a) = sin a";
|
|
1507 |
by Auto_tac;
|
|
1508 |
qed "Im_cis";
|
|
1509 |
Addsimps [Im_cis];
|
|
1510 |
|
|
1511 |
Goal "cos (real n * a) = Re(cis a ^ n)";
|
|
1512 |
by (auto_tac (claset(),simpset() addsimps [DeMoivre]));
|
|
1513 |
qed "cos_n_Re_cis_pow_n";
|
|
1514 |
|
|
1515 |
Goal "sin (real n * a) = Im(cis a ^ n)";
|
|
1516 |
by (auto_tac (claset(),simpset() addsimps [DeMoivre]));
|
|
1517 |
qed "sin_n_Im_cis_pow_n";
|
|
1518 |
|
|
1519 |
Goalw [expi_def,cis_def]
|
|
1520 |
"expi (ii * complex_of_real y) = \
|
|
1521 |
\ complex_of_real (cos y) + ii * complex_of_real (sin y)";
|
|
1522 |
by Auto_tac;
|
|
1523 |
qed "expi_Im_split";
|
|
1524 |
|
|
1525 |
Goalw [expi_def]
|
|
1526 |
"expi (ii * complex_of_real y) = cis y";
|
|
1527 |
by Auto_tac;
|
|
1528 |
qed "expi_Im_cis";
|
|
1529 |
|
|
1530 |
Goalw [expi_def] "expi(a + b) = expi(a) * expi(b)";
|
|
1531 |
by (auto_tac (claset(),simpset() addsimps [complex_Re_add,exp_add,
|
|
1532 |
complex_Im_add,cis_mult RS sym,complex_of_real_mult] @
|
|
1533 |
complex_mult_ac));
|
|
1534 |
qed "expi_add";
|
|
1535 |
|
|
1536 |
Goalw [expi_def]
|
|
1537 |
"expi(complex_of_real x + ii * complex_of_real y) = \
|
|
1538 |
\ complex_of_real (exp(x)) * cis y";
|
|
1539 |
by Auto_tac;
|
|
1540 |
qed "expi_complex_split";
|
|
1541 |
|
|
1542 |
Goalw [expi_def] "expi (0::complex) = 1";
|
|
1543 |
by Auto_tac;
|
|
1544 |
qed "expi_zero";
|
|
1545 |
Addsimps [expi_zero];
|
|
1546 |
|
|
1547 |
goal Complex.thy
|
|
1548 |
"Re (w * z) = Re w * Re z - Im w * Im z";
|
|
1549 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1550 |
by (res_inst_tac [("z","w")] eq_Abs_complex 1);
|
|
1551 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1552 |
qed "complex_Re_mult_eq";
|
|
1553 |
|
|
1554 |
goal Complex.thy
|
|
1555 |
"Im (w * z) = Re w * Im z + Im w * Re z";
|
|
1556 |
by (res_inst_tac [("z","z")] eq_Abs_complex 1);
|
|
1557 |
by (res_inst_tac [("z","w")] eq_Abs_complex 1);
|
|
1558 |
by (auto_tac (claset(),simpset() addsimps [complex_mult]));
|
|
1559 |
qed "complex_Im_mult_eq";
|
|
1560 |
|
|
1561 |
goal Complex.thy
|
|
1562 |
"EX a r. z = complex_of_real r * expi a";
|
|
1563 |
by (cut_inst_tac [("z","z")] rcis_Ex 1);
|
|
1564 |
by (auto_tac (claset(),simpset() addsimps [expi_def,rcis_def,
|
|
1565 |
complex_mult_assoc RS sym,complex_of_real_mult]));
|
|
1566 |
by (res_inst_tac [("x","ii * complex_of_real a")] exI 1);
|
|
1567 |
by Auto_tac;
|
|
1568 |
qed "complex_expi_Ex";
|
|
1569 |
|
|
1570 |
|
|
1571 |
(****
|
|
1572 |
Goal "[| - pi < a; a <= pi |] ==> (-pi < a & a <= 0) | (0 <= a & a <= pi)";
|
|
1573 |
by Auto_tac;
|
|
1574 |
qed "lemma_split_interval";
|
|
1575 |
|
|
1576 |
Goalw [arg_def]
|
|
1577 |
"[| r ~= 0; - pi < a; a <= pi |] \
|
|
1578 |
\ ==> arg(complex_of_real r * \
|
|
1579 |
\ (complex_of_real(cos a) + ii * complex_of_real(sin a))) = a";
|
|
1580 |
by Auto_tac;
|
|
1581 |
by (cut_inst_tac [("R1.0","0"),("R2.0","r")] real_linear 1);
|
|
1582 |
by (auto_tac (claset(),simpset() addsimps (map (full_rename_numerals thy)
|
|
1583 |
[rabs_eqI2,rabs_minus_eqI2,real_minus_rinv]) @ [real_divide_def,
|
|
1584 |
real_minus_mult_eq2 RS sym] @ real_mult_ac));
|
|
1585 |
by (auto_tac (claset(),simpset() addsimps [real_mult_assoc RS sym]));
|
|
1586 |
by (dtac lemma_split_interval 1 THEN Step_tac 1);
|
|
1587 |
****)
|
|
1588 |
|