author | kleing |
Tue, 13 May 2003 08:59:21 +0200 | |
changeset 14024 | 213dcc39358f |
parent 13510 | 0a0f37f9c031 |
child 14046 | 6616e6c53d48 |
permissions | -rw-r--r-- |
12197 | 1 |
(* Title: ZF/UNITY/GenPrefix.ML |
2 |
ID: $Id$ |
|
3 |
Author: Sidi O Ehmety, Cambridge University Computer Laboratory |
|
4 |
Copyright 2001 University of Cambridge |
|
5 |
||
6 |
Charpentier's Generalized Prefix Relation |
|
7 |
<xs,ys>:gen_prefix(r) |
|
8 |
if ys = xs' @ zs where length(xs) = length(xs') |
|
9 |
and corresponding elements of xs, xs' are pairwise related by r |
|
10 |
||
11 |
Based on Lex/Prefix |
|
12 |
*) |
|
13 |
||
14 |
Goalw [refl_def] |
|
15 |
"[| refl(A, r); x:A |] ==> <x,x>:r"; |
|
16 |
by Auto_tac; |
|
17 |
qed "reflD"; |
|
18 |
||
19 |
(*** preliminary lemmas ***) |
|
20 |
||
21 |
Goal "xs:list(A) ==> <[], xs>:gen_prefix(A, r)"; |
|
22 |
by (dtac (rotate_prems 1 gen_prefix.append) 1); |
|
23 |
by (rtac gen_prefix.Nil 1); |
|
24 |
by Auto_tac; |
|
25 |
qed "Nil_gen_prefix"; |
|
26 |
Addsimps [Nil_gen_prefix]; |
|
27 |
||
28 |
||
29 |
Goal "<xs,ys>:gen_prefix(A, r) ==> length(xs) le length(ys)"; |
|
30 |
by (etac gen_prefix.induct 1); |
|
31 |
by (subgoal_tac "ys:list(A)" 3); |
|
32 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD] |
|
33 |
addIs [le_trans], |
|
34 |
simpset() addsimps [length_app])); |
|
35 |
qed "gen_prefix_length_le"; |
|
36 |
||
37 |
||
38 |
Goal "[| <xs', ys'>:gen_prefix(A, r) |] \ |
|
39 |
\ ==> (ALL x xs. x:A --> xs'= Cons(x,xs) --> \ |
|
40 |
\ (EX y ys. y:A & ys' = Cons(y,ys) &\ |
|
41 |
\ <x,y>:r & <xs, ys>:gen_prefix(A, r)))"; |
|
42 |
by (etac gen_prefix.induct 1); |
|
43 |
by (force_tac (claset() addIs [gen_prefix.append], |
|
44 |
simpset()) 3); |
|
45 |
by (REPEAT(Asm_simp_tac 1)); |
|
46 |
val lemma = result(); |
|
47 |
||
48 |
(*As usual converting it to an elimination rule is tiresome*) |
|
49 |
val major::prems = |
|
50 |
Goal "[| <Cons(x,xs), zs>:gen_prefix(A, r); \ |
|
51 |
\ !!y ys. [|zs = Cons(y, ys); y:A; x:A; <x,y>:r; \ |
|
52 |
\ <xs,ys>:gen_prefix(A, r) |] ==> P \ |
|
53 |
\ |] ==> P"; |
|
54 |
by (cut_facts_tac [major] 1); |
|
55 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1); |
|
56 |
by (Clarify_tac 1); |
|
57 |
by (etac ConsE 1); |
|
58 |
by (cut_facts_tac [major RS lemma] 1); |
|
59 |
by (Full_simp_tac 1); |
|
60 |
by (dtac mp 1); |
|
61 |
by (Asm_simp_tac 1); |
|
62 |
by (REPEAT (eresolve_tac [exE, conjE] 1)); |
|
63 |
by (REPEAT (ares_tac prems 1)); |
|
64 |
qed "Cons_gen_prefixE"; |
|
65 |
AddSEs [Cons_gen_prefixE]; |
|
66 |
||
67 |
Goal |
|
68 |
"(<Cons(x,xs),Cons(y,ys)>:gen_prefix(A, r)) \ |
|
69 |
\ <-> (x:A & y:A & <x,y>:r & <xs,ys>:gen_prefix(A, r))"; |
|
70 |
by (auto_tac (claset() addIs [gen_prefix.prepend], simpset())); |
|
71 |
qed"Cons_gen_prefix_Cons"; |
|
72 |
AddIffs [Cons_gen_prefix_Cons]; |
|
73 |
||
74 |
(** Monotonicity of gen_prefix **) |
|
75 |
||
76 |
Goal "r<=s ==> gen_prefix(A, r) <= gen_prefix(A, s)"; |
|
77 |
by (Clarify_tac 1); |
|
78 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1); |
|
79 |
by (Clarify_tac 1); |
|
80 |
by (etac rev_mp 1); |
|
81 |
by (etac gen_prefix.induct 1); |
|
82 |
by (auto_tac (claset() addIs |
|
83 |
[gen_prefix.append], simpset())); |
|
84 |
qed "gen_prefix_mono2"; |
|
85 |
||
86 |
Goal "A<=B ==>gen_prefix(A, r) <= gen_prefix(B, r)"; |
|
87 |
by (Clarify_tac 1); |
|
88 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1); |
|
89 |
by (Clarify_tac 1); |
|
90 |
by (etac rev_mp 1); |
|
91 |
by (eres_inst_tac [("P", "y:list(A)")] rev_mp 1); |
|
92 |
by (eres_inst_tac [("P", "xa:list(A)")] rev_mp 1); |
|
93 |
by (etac gen_prefix.induct 1); |
|
94 |
by (Asm_simp_tac 1); |
|
95 |
by (Clarify_tac 1); |
|
96 |
by (REPEAT(etac ConsE 1)); |
|
97 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD] |
|
98 |
addIs [gen_prefix.append, list_mono RS subsetD], |
|
99 |
simpset())); |
|
100 |
qed "gen_prefix_mono1"; |
|
101 |
||
102 |
Goal "[| A <= B; r <= s |] ==> gen_prefix(A, r) <= gen_prefix(B, s)"; |
|
103 |
by (rtac subset_trans 1); |
|
104 |
by (rtac gen_prefix_mono1 1); |
|
105 |
by (rtac gen_prefix_mono2 2); |
|
106 |
by Auto_tac; |
|
107 |
qed "gen_prefix_mono"; |
|
108 |
||
109 |
(*** gen_prefix order ***) |
|
110 |
||
111 |
(* reflexivity *) |
|
112 |
Goalw [refl_def] "refl(A, r) ==> refl(list(A), gen_prefix(A, r))"; |
|
113 |
by Auto_tac; |
|
114 |
by (induct_tac "x" 1); |
|
115 |
by Auto_tac; |
|
116 |
qed "refl_gen_prefix"; |
|
117 |
Addsimps [refl_gen_prefix RS reflD]; |
|
118 |
||
119 |
(* Transitivity *) |
|
120 |
(* A lemma for proving gen_prefix_trans_comp *) |
|
121 |
||
122 |
Goal "xs:list(A) ==> \ |
|
123 |
\ ALL zs. <xs @ ys, zs>:gen_prefix(A, r) --> <xs, zs>: gen_prefix(A, r)"; |
|
124 |
by (etac list.induct 1); |
|
125 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD], simpset())); |
|
126 |
qed_spec_mp "append_gen_prefix"; |
|
127 |
||
128 |
(* Lemma proving transitivity and more*) |
|
129 |
||
130 |
Goal "<x, y>: gen_prefix(A, r) ==> \ |
|
131 |
\ (ALL z:list(A). <y,z>:gen_prefix(A, s)--><x, z>:gen_prefix(A, s O r))"; |
|
132 |
by (etac gen_prefix.induct 1); |
|
133 |
by (auto_tac (claset() addEs [ConsE], simpset() addsimps [Nil_gen_prefix])); |
|
134 |
by (subgoal_tac "ys:list(A)" 1); |
|
135 |
by (blast_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]) 2); |
|
136 |
by (dres_inst_tac [("xs", "ys"), ("r", "s")] append_gen_prefix 1); |
|
137 |
by Auto_tac; |
|
138 |
qed_spec_mp "gen_prefix_trans_comp"; |
|
139 |
||
140 |
Goal "trans(r) ==> r O r <= r"; |
|
141 |
by (auto_tac (claset() addDs [transD], simpset())); |
|
142 |
qed "trans_comp_subset"; |
|
143 |
||
144 |
Goal "trans(r) ==> trans(gen_prefix(A,r))"; |
|
145 |
by (simp_tac (simpset() addsimps [trans_def]) 1); |
|
146 |
by (Clarify_tac 1); |
|
147 |
by (rtac (impOfSubs (trans_comp_subset RS gen_prefix_mono2)) 1); |
|
148 |
by (assume_tac 2); |
|
149 |
by (rtac gen_prefix_trans_comp 1); |
|
150 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD], simpset())); |
|
151 |
qed_spec_mp "trans_gen_prefix"; |
|
152 |
||
153 |
Goal |
|
154 |
"trans(r) ==> trans[list(A)](gen_prefix(A, r))"; |
|
155 |
by (dres_inst_tac [("A", "A")] trans_gen_prefix 1); |
|
156 |
by (rewrite_goal_tac [trans_def, trans_on_def] 1); |
|
157 |
by (Blast_tac 1); |
|
158 |
qed "trans_on_gen_prefix"; |
|
159 |
||
160 |
Goalw [prefix_def] |
|
161 |
"[| <x,y>:prefix(A); <y, z>:gen_prefix(A, r); r<=A*A |] \ |
|
162 |
\ ==> <x, z>:gen_prefix(A, r)"; |
|
163 |
by (res_inst_tac [("P", "%r. <x,z>:gen_prefix(A, r)")] |
|
164 |
(right_comp_id RS subst) 1); |
|
165 |
by (REPEAT(blast_tac (claset() addDs [gen_prefix_trans_comp, |
|
166 |
gen_prefix.dom_subset RS subsetD]) 1)); |
|
167 |
qed_spec_mp "prefix_gen_prefix_trans"; |
|
168 |
||
169 |
||
170 |
Goalw [prefix_def] |
|
171 |
"[| <x,y>:gen_prefix(A,r); <y, z>:prefix(A); r<=A*A |] \ |
|
172 |
\ ==> <x, z>:gen_prefix(A, r)"; |
|
173 |
by (res_inst_tac [("P", "%r. <x,z>:gen_prefix(A, r)")] (left_comp_id RS subst) 1); |
|
174 |
by (REPEAT(blast_tac (claset() addDs [gen_prefix_trans_comp, |
|
175 |
gen_prefix.dom_subset RS subsetD]) 1)); |
|
176 |
qed_spec_mp "gen_prefix_prefix_trans"; |
|
177 |
||
178 |
(** Antisymmetry **) |
|
179 |
||
180 |
Goal "n:nat ==> ALL b:nat. n #+ b le n --> b = 0"; |
|
181 |
by (induct_tac "n" 1); |
|
182 |
by Auto_tac; |
|
183 |
qed_spec_mp "nat_le_lemma"; |
|
184 |
||
185 |
Goal "antisym(r) ==> antisym(gen_prefix(A, r))"; |
|
186 |
by (simp_tac (simpset() addsimps [antisym_def]) 1); |
|
187 |
by (rtac (impI RS allI RS allI) 1); |
|
188 |
by (etac gen_prefix.induct 1); |
|
189 |
by (full_simp_tac (simpset() addsimps [antisym_def]) 2); |
|
190 |
by (Blast_tac 2); |
|
191 |
by (Blast_tac 1); |
|
192 |
(*append case is hardest*) |
|
193 |
by (Clarify_tac 1); |
|
194 |
by (subgoal_tac "length(zs) = 0" 1); |
|
195 |
by (subgoal_tac "ys:list(A)" 1); |
|
196 |
by (blast_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]) 2); |
|
197 |
by (dres_inst_tac [("psi", "<ys @ zs, xs>:gen_prefix(A,r)")] asm_rl 1); |
|
198 |
by (Asm_full_simp_tac 1); |
|
199 |
by (subgoal_tac "length(ys @ zs) = length(ys) #+ length(zs) &ys:list(A)&xs:list(A)" 1); |
|
200 |
by (blast_tac (claset() addIs [length_app] |
|
201 |
addDs [gen_prefix.dom_subset RS subsetD]) 2); |
|
202 |
by (REPEAT (dtac gen_prefix_length_le 1)); |
|
203 |
by (Clarify_tac 1); |
|
204 |
by (Asm_full_simp_tac 1); |
|
205 |
by (dres_inst_tac [("j", "length(xs)")] le_trans 1); |
|
206 |
by (Blast_tac 1); |
|
207 |
by (auto_tac (claset() addIs [nat_le_lemma], simpset())); |
|
208 |
qed_spec_mp "antisym_gen_prefix"; |
|
209 |
||
210 |
(*** recursion equations ***) |
|
211 |
||
212 |
Goal "xs:list(A) ==> <xs, []>:gen_prefix(A,r) <-> (xs = [])"; |
|
213 |
by (induct_tac "xs" 1); |
|
214 |
by Auto_tac; |
|
215 |
qed "gen_prefix_Nil"; |
|
216 |
Addsimps [gen_prefix_Nil]; |
|
217 |
||
218 |
Goalw [refl_def] |
|
219 |
"[| refl(A, r); xs:list(A) |] ==> \ |
|
220 |
\ <xs@ys, xs@zs>: gen_prefix(A, r) <-> <ys,zs>:gen_prefix(A, r)"; |
|
221 |
by (induct_tac "xs" 1); |
|
222 |
by (ALLGOALS Asm_simp_tac); |
|
223 |
qed "same_gen_prefix_gen_prefix"; |
|
224 |
Addsimps [same_gen_prefix_gen_prefix]; |
|
225 |
||
226 |
Goal "[| xs:list(A); ys:list(A); y:A |] ==> \ |
|
227 |
\ <xs, Cons(y,ys)> : gen_prefix(A,r) <-> \ |
|
228 |
\ (xs=[] | (EX z zs. xs=Cons(z,zs) & z:A & <z,y>:r & <zs,ys>:gen_prefix(A,r)))"; |
|
229 |
by (induct_tac "xs" 1); |
|
230 |
by Auto_tac; |
|
231 |
qed "gen_prefix_Cons"; |
|
232 |
||
233 |
Goal "[| refl(A,r); <xs,ys>:gen_prefix(A, r); zs:list(A) |] \ |
|
234 |
\ ==> <xs@zs, take(length(xs), ys) @ zs> : gen_prefix(A, r)"; |
|
235 |
by (etac gen_prefix.induct 1); |
|
236 |
by (Asm_simp_tac 1); |
|
237 |
by (ALLGOALS(forward_tac [gen_prefix.dom_subset RS subsetD])); |
|
238 |
by Auto_tac; |
|
239 |
by (ftac gen_prefix_length_le 1); |
|
240 |
by (subgoal_tac "take(length(xs), ys):list(A)" 1); |
|
241 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps |
|
242 |
[diff_is_0_iff RS iffD2, take_type ]))); |
|
243 |
qed "gen_prefix_take_append"; |
|
244 |
||
245 |
Goal "[| refl(A, r); <xs,ys>:gen_prefix(A,r); \ |
|
246 |
\ length(xs) = length(ys); zs:list(A) |] \ |
|
247 |
\ ==> <xs@zs, ys @ zs> : gen_prefix(A, r)"; |
|
248 |
by (dres_inst_tac [("zs", "zs")] gen_prefix_take_append 1); |
|
249 |
by (REPEAT(assume_tac 1)); |
|
250 |
by (subgoal_tac "take(length(xs), ys)=ys" 1); |
|
251 |
by (auto_tac (claset() addSIs [take_all] |
|
252 |
addDs [gen_prefix.dom_subset RS subsetD], |
|
253 |
simpset())); |
|
254 |
qed "gen_prefix_append_both"; |
|
255 |
||
256 |
(*NOT suitable for rewriting since [y] has the form y#ys*) |
|
257 |
Goal "xs:list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys"; |
|
258 |
by (auto_tac (claset(), simpset() addsimps [app_assoc])); |
|
259 |
qed "append_cons_conv"; |
|
260 |
||
261 |
Goal "[| <xs,ys>:gen_prefix(A, r); refl(A, r) |] \ |
|
262 |
\ ==> length(xs) < length(ys) --> \ |
|
263 |
\ <xs @ [nth(length(xs), ys)], ys>:gen_prefix(A, r)"; |
|
264 |
by (etac gen_prefix.induct 1); |
|
265 |
by (Blast_tac 1); |
|
266 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1); |
|
267 |
by (Clarify_tac 1); |
|
268 |
by (ALLGOALS(asm_full_simp_tac (simpset() addsimps [length_type]))); |
|
269 |
(* Append case is hardest *) |
|
270 |
by (forward_tac [gen_prefix_length_le RS (le_iff RS iffD1) ] 1); |
|
271 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1); |
|
272 |
by (Clarify_tac 1); |
|
273 |
by (subgoal_tac "length(xs):nat&length(ys):nat &length(zs):nat" 1); |
|
274 |
by (blast_tac (claset() addIs [length_type]) 2); |
|
275 |
by (Clarify_tac 1); |
|
276 |
by (ALLGOALS (asm_full_simp_tac (simpset() |
|
277 |
addsimps [nth_append, length_type, length_app]))); |
|
278 |
by (Clarify_tac 1); |
|
279 |
by (rtac conjI 1); |
|
280 |
by (blast_tac (claset() addIs [gen_prefix.append]) 1); |
|
281 |
by (thin_tac "length(xs) < length(ys) -->?u" 1); |
|
282 |
by (case_tac "zs=[]" 1); |
|
283 |
by (auto_tac (claset(), simpset() addsimps [neq_Nil_iff])); |
|
284 |
by (res_inst_tac [("P1", "%x. <?u(x), ?v>:?w")] (nat_diff_split RS iffD2) 1); |
|
285 |
by Auto_tac; |
|
286 |
by (stac append_cons_conv 1); |
|
287 |
by (rtac gen_prefix.append 2); |
|
288 |
by (auto_tac (claset() addEs [ConsE], |
|
289 |
simpset() addsimps [gen_prefix_append_both])); |
|
290 |
val lemma = result() RS mp; |
|
291 |
||
292 |
Goal "[| <xs,ys>: gen_prefix(A, r); length(xs) < length(ys); refl(A, r) |] \ |
|
293 |
\ ==> <xs @ [nth(length(xs), ys)], ys>:gen_prefix(A, r)"; |
|
294 |
by (blast_tac (claset() addIs [lemma]) 1); |
|
295 |
qed "append_one_gen_prefix"; |
|
296 |
||
297 |
||
298 |
(** Proving the equivalence with Charpentier's definition **) |
|
299 |
||
300 |
Goal "xs:list(A) ==> \ |
|
301 |
\ ALL ys:list(A). ALL i:nat. i < length(xs) \ |
|
302 |
\ --> <xs, ys>: gen_prefix(A, r) --> <nth(i, xs), nth(i, ys)>:r"; |
|
303 |
by (induct_tac "xs" 1); |
|
304 |
by (ALLGOALS(Clarify_tac)); |
|
305 |
by (ALLGOALS(Asm_full_simp_tac)); |
|
306 |
by (etac natE 1); |
|
307 |
by (ALLGOALS(Asm_full_simp_tac)); |
|
308 |
qed_spec_mp "gen_prefix_imp_nth"; |
|
309 |
||
310 |
Goal "xs:list(A) ==> \ |
|
311 |
\ ALL ys:list(A). length(xs) le length(ys) \ |
|
312 |
\ --> (ALL i:nat. i < length(xs)--> <nth(i, xs), nth(i,ys)>:r) \ |
|
313 |
\ --> <xs, ys> : gen_prefix(A, r)"; |
|
314 |
by (induct_tac "xs" 1); |
|
315 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [lt_succ_eq_0_disj]))); |
|
316 |
by (Clarify_tac 1); |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
317 |
by (eres_inst_tac [("a","ys")] list.elim 1); |
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
318 |
by (ALLGOALS Asm_full_simp_tac); |
12197 | 319 |
by (Clarify_tac 1); |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
320 |
by (rename_tac "zs" 1); |
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
321 |
by (dres_inst_tac [("x", "zs")] bspec 1); |
12197 | 322 |
by (ALLGOALS(Clarify_tac)); |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
323 |
(*Faster than Auto_tac*) |
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
324 |
by (rtac conjI 1); |
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
325 |
by (REPEAT (Force_tac 1)); |
12197 | 326 |
qed_spec_mp "nth_imp_gen_prefix"; |
327 |
||
328 |
Goal "(<xs,ys>: gen_prefix(A,r)) <-> \ |
|
329 |
\ (xs:list(A) & ys:list(A) & length(xs) le length(ys) & \ |
|
330 |
\ (ALL i:nat. i < length(xs) --> <nth(i,xs), nth(i, ys)>: r))"; |
|
331 |
by (rtac iffI 1); |
|
332 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1); |
|
12484 | 333 |
by (ftac gen_prefix_length_le 1); |
12197 | 334 |
by (ALLGOALS(Clarify_tac)); |
335 |
by (rtac nth_imp_gen_prefix 2); |
|
336 |
by (dtac (rotate_prems 4 gen_prefix_imp_nth) 1); |
|
337 |
by Auto_tac; |
|
338 |
qed "gen_prefix_iff_nth"; |
|
339 |
||
340 |
(** prefix is a partial order: **) |
|
341 |
||
342 |
Goalw [prefix_def] |
|
343 |
"refl(list(A), prefix(A))"; |
|
344 |
by (rtac refl_gen_prefix 1); |
|
345 |
by (auto_tac (claset(), simpset() addsimps [refl_def])); |
|
346 |
qed "refl_prefix"; |
|
347 |
Addsimps [refl_prefix RS reflD]; |
|
348 |
||
349 |
Goalw [prefix_def] "trans(prefix(A))"; |
|
350 |
by (rtac trans_gen_prefix 1); |
|
351 |
by (auto_tac (claset(), simpset() addsimps [trans_def])); |
|
352 |
qed "trans_prefix"; |
|
353 |
||
354 |
bind_thm("prefix_trans", trans_prefix RS transD); |
|
355 |
||
356 |
Goalw [prefix_def] "trans[list(A)](prefix(A))"; |
|
357 |
by (rtac trans_on_gen_prefix 1); |
|
358 |
by (auto_tac (claset(), simpset() addsimps [trans_def])); |
|
359 |
qed "trans_on_prefix"; |
|
360 |
||
361 |
bind_thm("prefix_trans_on", trans_on_prefix RS trans_onD); |
|
362 |
||
363 |
(* Monotonicity of "set" operator WRT prefix *) |
|
364 |
||
365 |
Goalw [prefix_def] |
|
366 |
"<xs,ys>:prefix(A) ==> set_of_list(xs) <= set_of_list(ys)"; |
|
367 |
by (etac gen_prefix.induct 1); |
|
368 |
by (subgoal_tac "xs:list(A)&ys:list(A)" 3); |
|
369 |
by (blast_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]) 4); |
|
370 |
by (auto_tac (claset(), simpset() addsimps [set_of_list_append])); |
|
371 |
qed "set_of_list_prefix_mono"; |
|
372 |
||
373 |
(** recursion equations **) |
|
374 |
||
375 |
Goalw [prefix_def] "xs:list(A) ==> <[],xs>:prefix(A)"; |
|
376 |
by (asm_simp_tac (simpset() addsimps [Nil_gen_prefix]) 1); |
|
377 |
qed "Nil_prefix"; |
|
378 |
Addsimps[Nil_prefix]; |
|
379 |
||
380 |
||
381 |
Goalw [prefix_def] "<xs, []>:prefix(A) <-> (xs = [])"; |
|
382 |
by Auto_tac; |
|
383 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1); |
|
384 |
by (dres_inst_tac [("psi", "<xs, []>:gen_prefix(A, id(A))")] asm_rl 1); |
|
385 |
by (asm_full_simp_tac (simpset() addsimps [gen_prefix_Nil]) 1); |
|
386 |
qed "prefix_Nil"; |
|
387 |
AddIffs [prefix_Nil]; |
|
388 |
||
389 |
Goalw [prefix_def] |
|
390 |
"<Cons(x,xs), Cons(y,ys)>:prefix(A) <-> (x=y & <xs,ys>:prefix(A) & y:A)"; |
|
391 |
by Auto_tac; |
|
392 |
qed"Cons_prefix_Cons"; |
|
393 |
AddIffs [Cons_prefix_Cons]; |
|
394 |
||
395 |
Goalw [prefix_def] |
|
396 |
"xs:list(A)==> <xs@ys,xs@zs>:prefix(A) <-> (<ys,zs>:prefix(A))"; |
|
397 |
by (subgoal_tac "refl(A,id(A))" 1); |
|
398 |
by (Asm_simp_tac 1); |
|
399 |
by (auto_tac (claset(), simpset() addsimps[refl_def])); |
|
400 |
qed "same_prefix_prefix"; |
|
401 |
Addsimps [same_prefix_prefix]; |
|
402 |
||
403 |
Goal "xs:list(A) ==> <xs@ys,xs>:prefix(A) <-> (<ys,[]>:prefix(A))"; |
|
404 |
by (res_inst_tac [("P", "%x. <?u, x>:?v <-> ?w(x)")] (app_right_Nil RS subst) 1); |
|
405 |
by (rtac same_prefix_prefix 2); |
|
406 |
by Auto_tac; |
|
407 |
qed "same_prefix_prefix_Nil"; |
|
408 |
Addsimps [same_prefix_prefix_Nil]; |
|
409 |
||
410 |
Goalw [prefix_def] |
|
411 |
"[| <xs,ys>:prefix(A); zs:list(A) |] ==> <xs,ys@zs>:prefix(A)"; |
|
412 |
by (etac gen_prefix.append 1); |
|
413 |
by (assume_tac 1); |
|
414 |
qed "prefix_appendI"; |
|
415 |
Addsimps [prefix_appendI]; |
|
416 |
||
417 |
Goalw [prefix_def] |
|
418 |
"[| xs:list(A); ys:list(A); y:A |] ==> \ |
|
419 |
\ <xs,Cons(y,ys)>:prefix(A) <-> \ |
|
420 |
\ (xs=[] | (EX zs. xs=Cons(y,zs) & <zs,ys>:prefix(A)))"; |
|
421 |
by (auto_tac (claset(), simpset() addsimps [gen_prefix_Cons])); |
|
422 |
qed "prefix_Cons"; |
|
423 |
||
424 |
Goalw [prefix_def] |
|
425 |
"[| <xs,ys>:prefix(A); length(xs) < length(ys) |] \ |
|
426 |
\ ==> <xs @ [nth(length(xs),ys)], ys>:prefix(A)"; |
|
427 |
by (subgoal_tac "refl(A, id(A))" 1); |
|
428 |
by (asm_simp_tac (simpset() addsimps [append_one_gen_prefix]) 1); |
|
429 |
by (auto_tac (claset(), simpset() addsimps [refl_def])); |
|
430 |
qed "append_one_prefix"; |
|
431 |
||
432 |
Goalw [prefix_def] |
|
433 |
"<xs,ys>:prefix(A) ==> length(xs) le length(ys)"; |
|
434 |
by (blast_tac (claset() addDs [gen_prefix_length_le]) 1); |
|
435 |
qed "prefix_length_le"; |
|
436 |
||
437 |
Goalw [prefix_def] |
|
438 |
"<xs,ys>:prefix(A) ==> xs~=ys --> length(xs) < length(ys)"; |
|
439 |
by (etac gen_prefix.induct 1); |
|
440 |
by (Clarify_tac 1); |
|
441 |
by (ALLGOALS(subgoal_tac "ys:list(A)&xs:list(A)")); |
|
442 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD], |
|
443 |
simpset() addsimps [length_app, length_type])); |
|
444 |
by (subgoal_tac "length(zs)=0" 1); |
|
445 |
by (dtac not_lt_imp_le 2); |
|
446 |
by (res_inst_tac [("j", "length(ys)")] lt_trans2 5); |
|
447 |
by Auto_tac; |
|
448 |
val lemma = result(); |
|
449 |
||
450 |
Goalw [prefix_def] |
|
451 |
"prefix(A)<=list(A)*list(A)"; |
|
452 |
by (blast_tac (claset() addSIs [gen_prefix.dom_subset]) 1); |
|
453 |
qed "prefix_type"; |
|
454 |
||
455 |
Goalw [strict_prefix_def] |
|
456 |
"strict_prefix(A) <= list(A)*list(A)"; |
|
457 |
by (blast_tac (claset() addSIs [prefix_type RS subsetD]) 1); |
|
458 |
qed "strict_prefix_type"; |
|
459 |
||
460 |
Goalw [strict_prefix_def] |
|
461 |
"<xs,ys>:strict_prefix(A) ==> length(xs) < length(ys)"; |
|
462 |
by (resolve_tac [lemma RS mp] 1); |
|
463 |
by (auto_tac (claset() addDs [prefix_type RS subsetD], simpset())); |
|
464 |
qed "strict_prefix_length_lt"; |
|
465 |
||
466 |
(*Equivalence to the definition used in Lex/Prefix.thy*) |
|
467 |
Goalw [prefix_def] |
|
468 |
"<xs,zs>:prefix(A) <-> (EX ys:list(A). zs = xs@ys) & xs:list(A)"; |
|
469 |
by (auto_tac (claset(), |
|
470 |
simpset() addsimps [gen_prefix_iff_nth, |
|
471 |
nth_append, nth_type, app_type, length_app])); |
|
472 |
by (subgoal_tac "length(xs):nat&length(zs):nat & \ |
|
473 |
\ drop(length(xs), zs):list(A)" 1); |
|
474 |
by (res_inst_tac [("x", "drop(length(xs), zs)")] bexI 1); |
|
475 |
by (ALLGOALS(Clarify_tac)); |
|
476 |
by (asm_simp_tac (simpset() addsimps [length_type, drop_type]) 2); |
|
477 |
by (rtac nth_equalityI 1); |
|
478 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps |
|
479 |
[nth_append, app_type, drop_type, length_app, length_drop]))); |
|
480 |
by (rtac (nat_diff_split RS iffD2) 1); |
|
481 |
by (ALLGOALS(Asm_full_simp_tac)); |
|
482 |
by (Clarify_tac 1); |
|
483 |
by (dres_inst_tac [("i", "length(zs)")] leI 1); |
|
484 |
by (force_tac (claset(), simpset() addsimps [le_subset_iff]) 1); |
|
485 |
by Safe_tac; |
|
486 |
by (Blast_tac 1); |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
487 |
by (subgoal_tac "length(xs) #+ (i #- length(xs)) = i" 1); |
12484 | 488 |
by (stac nth_drop 1); |
12197 | 489 |
by (ALLGOALS(asm_simp_tac (simpset() addsimps [leI]))); |
490 |
by (rtac (nat_diff_split RS iffD2) 1); |
|
491 |
by Auto_tac; |
|
492 |
qed "prefix_iff"; |
|
493 |
||
494 |
Goal |
|
495 |
"[|xs:list(A); ys:list(A); y:A |] ==> \ |
|
496 |
\ <xs, ys@[y]>:prefix(A) <-> (xs = ys@[y] | <xs,ys>:prefix(A))"; |
|
497 |
by (simp_tac (simpset() addsimps [prefix_iff]) 1); |
|
498 |
by (rtac iffI 1); |
|
499 |
by (Clarify_tac 1); |
|
500 |
by (eres_inst_tac [("xs", "ysa")] rev_list_elim 1); |
|
501 |
by (Asm_full_simp_tac 1); |
|
502 |
by (dres_inst_tac [("psi", "ya:list(A)")] asm_rl 1); |
|
503 |
by (rotate_tac ~1 1); |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
504 |
by (asm_full_simp_tac (simpset() addsimps [app_type, app_assoc RS sym]) 1); |
12197 | 505 |
by (auto_tac (claset(), simpset() addsimps [app_assoc, app_type])); |
506 |
qed "prefix_snoc"; |
|
507 |
Addsimps [prefix_snoc]; |
|
508 |
||
509 |
||
510 |
Goal "zs:list(A) ==> ALL xs:list(A). ALL ys:list(A). \ |
|
511 |
\ (<xs, ys@zs>:prefix(A)) <-> \ |
|
512 |
\ (<xs,ys>:prefix(A) | (EX us. xs = ys@us & <us,zs>:prefix(A)))"; |
|
513 |
by (etac list_append_induct 1); |
|
514 |
by (Clarify_tac 2); |
|
515 |
by (rtac iffI 2); |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
516 |
by (asm_full_simp_tac (simpset() addsimps [app_assoc RS sym]) 2); |
12197 | 517 |
by (etac disjE 2 THEN etac disjE 3); |
518 |
by (rtac disjI2 2); |
|
519 |
by (res_inst_tac [("x", "y @ [x]")] exI 2); |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12484
diff
changeset
|
520 |
by (asm_full_simp_tac (simpset() addsimps [app_assoc RS sym]) 2); |
12197 | 521 |
by (REPEAT(Force_tac 1)); |
522 |
qed_spec_mp "prefix_append_iff"; |
|
523 |
||
524 |
||
525 |
(*Although the prefix ordering is not linear, the prefixes of a list |
|
526 |
are linearly ordered.*) |
|
527 |
Goal "[| zs:list(A); xs:list(A); ys:list(A) |] \ |
|
528 |
\ ==> <xs, zs>:prefix(A) --> <ys,zs>:prefix(A) \ |
|
529 |
\ --><xs,ys>:prefix(A) | <ys,xs>:prefix(A)"; |
|
530 |
by (etac list_append_induct 1); |
|
531 |
by Auto_tac; |
|
532 |
qed_spec_mp "common_prefix_linear"; |
|
533 |
||
534 |
||
535 |
(*** pfixLe, pfixGe: properties inherited from the translations ***) |
|
536 |
||
537 |
||
538 |
||
539 |
(** pfixLe **) |
|
540 |
||
541 |
Goalw [refl_def, Le_def] "refl(nat,Le)"; |
|
542 |
by Auto_tac; |
|
543 |
qed "refl_Le"; |
|
544 |
AddIffs [refl_Le]; |
|
545 |
||
546 |
Goalw [antisym_def, Le_def] "antisym(Le)"; |
|
547 |
by (auto_tac (claset() addIs [le_anti_sym], simpset())); |
|
548 |
qed "antisym_Le"; |
|
549 |
AddIffs [antisym_Le]; |
|
550 |
||
551 |
Goalw [trans_def, Le_def] "trans(Le)"; |
|
552 |
by (auto_tac (claset() addIs [le_trans], simpset())); |
|
553 |
qed "trans_Le"; |
|
554 |
AddIffs [trans_Le]; |
|
555 |
||
556 |
Goal "x:list(nat) ==> x pfixLe x"; |
|
557 |
by (blast_tac (claset() addIs [refl_gen_prefix RS reflD]) 1); |
|
558 |
qed "pfixLe_refl"; |
|
559 |
Addsimps[pfixLe_refl]; |
|
560 |
||
561 |
Goal "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"; |
|
562 |
by (blast_tac (claset() addIs [trans_gen_prefix RS transD]) 1); |
|
563 |
qed "pfixLe_trans"; |
|
564 |
||
565 |
Goal "[| x pfixLe y; y pfixLe x |] ==> x = y"; |
|
566 |
by (blast_tac (claset() addIs [antisym_gen_prefix RS antisymE]) 1); |
|
567 |
qed "pfixLe_antisym"; |
|
568 |
||
569 |
||
570 |
Goalw [prefix_def, Le_def] |
|
571 |
"<xs,ys>:prefix(nat)==> xs pfixLe ys"; |
|
572 |
by (rtac (gen_prefix_mono RS subsetD) 1); |
|
573 |
by Auto_tac; |
|
574 |
qed "prefix_imp_pfixLe"; |
|
575 |
||
576 |
Goalw [refl_def, Ge_def] "refl(nat, Ge)"; |
|
577 |
by Auto_tac; |
|
578 |
qed "refl_Ge"; |
|
579 |
AddIffs [refl_Ge]; |
|
580 |
||
581 |
Goalw [antisym_def, Ge_def] "antisym(Ge)"; |
|
582 |
by (auto_tac (claset() addIs [le_anti_sym], simpset())); |
|
583 |
qed "antisym_Ge"; |
|
584 |
AddIffs [antisym_Ge]; |
|
585 |
||
586 |
Goalw [trans_def, Ge_def] "trans(Ge)"; |
|
587 |
by (auto_tac (claset() addIs [le_trans], simpset())); |
|
588 |
qed "trans_Ge"; |
|
589 |
AddIffs [trans_Ge]; |
|
590 |
||
591 |
Goal "x:list(nat) ==> x pfixGe x"; |
|
592 |
by (blast_tac (claset() addIs [refl_gen_prefix RS reflD]) 1); |
|
593 |
qed "pfixGe_refl"; |
|
594 |
Addsimps[pfixGe_refl]; |
|
595 |
||
596 |
Goal "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"; |
|
597 |
by (blast_tac (claset() addIs [trans_gen_prefix RS transD]) 1); |
|
598 |
qed "pfixGe_trans"; |
|
599 |
||
600 |
Goal "[| x pfixGe y; y pfixGe x |] ==> x = y"; |
|
601 |
by (blast_tac (claset() addIs [antisym_gen_prefix RS antisymE]) 1); |
|
602 |
qed "pfixGe_antisym"; |
|
603 |
||
604 |
Goalw [prefix_def, Ge_def] |
|
605 |
"<xs,ys>:prefix(nat) ==> xs pfixGe ys"; |
|
606 |
by (rtac (gen_prefix_mono RS subsetD) 1); |
|
607 |
by Auto_tac; |
|
608 |
qed "prefix_imp_pfixGe"; |
|
609 |
||
610 |
||
611 |
||
612 |
||
613 |
||
614 |