author | aspinall |
Fri, 30 Sep 2005 18:18:34 +0200 | |
changeset 17740 | fc385ce6187d |
parent 16183 | 052d9aba392d |
child 21588 | cd0dc678a205 |
permissions | -rw-r--r-- |
15634 | 1 |
(* ID: $Id$ |
11479 | 2 |
Author: Sidi O Ehmety, Computer Laboratory |
3 |
Copyright 2001 University of Cambridge |
|
4 |
*) |
|
5 |
||
15634 | 6 |
header{*Weak Safety Properties*} |
7 |
||
8 |
theory Constrains |
|
9 |
imports UNITY |
|
10 |
||
11 |
begin |
|
11479 | 12 |
consts traces :: "[i, i] => i" |
13 |
(* Initial states and program => (final state, reversed trace to it)... |
|
12195 | 14 |
the domain may also be state*list(state) *) |
11479 | 15 |
inductive |
16 |
domains |
|
17 |
"traces(init, acts)" <= |
|
18 |
"(init Un (UN act:acts. field(act)))*list(UN act:acts. field(act))" |
|
15634 | 19 |
intros |
11479 | 20 |
(*Initial trace is empty*) |
15634 | 21 |
Init: "s: init ==> <s,[]> : traces(init,acts)" |
11479 | 22 |
|
15634 | 23 |
Acts: "[| act:acts; <s,evs> : traces(init,acts); <s,s'>: act |] |
11479 | 24 |
==> <s', Cons(s,evs)> : traces(init, acts)" |
25 |
||
15634 | 26 |
type_intros list.intros UnI1 UnI2 UN_I fieldI2 fieldI1 |
11479 | 27 |
|
28 |
||
15634 | 29 |
consts reachable :: "i=>i" |
11479 | 30 |
inductive |
31 |
domains |
|
32 |
"reachable(F)" <= "Init(F) Un (UN act:Acts(F). field(act))" |
|
15634 | 33 |
intros |
34 |
Init: "s:Init(F) ==> s:reachable(F)" |
|
11479 | 35 |
|
15634 | 36 |
Acts: "[| act: Acts(F); s:reachable(F); <s,s'>: act |] |
11479 | 37 |
==> s':reachable(F)" |
38 |
||
15634 | 39 |
type_intros UnI1 UnI2 fieldI2 UN_I |
11479 | 40 |
|
41 |
||
42 |
consts |
|
43 |
Constrains :: "[i,i] => i" (infixl "Co" 60) |
|
44 |
op_Unless :: "[i, i] => i" (infixl "Unless" 60) |
|
45 |
||
46 |
defs |
|
15634 | 47 |
Constrains_def: |
12195 | 48 |
"A Co B == {F:program. F:(reachable(F) Int A) co B}" |
11479 | 49 |
|
15634 | 50 |
Unless_def: |
11479 | 51 |
"A Unless B == (A-B) Co (A Un B)" |
52 |
||
53 |
constdefs |
|
54 |
Stable :: "i => i" |
|
55 |
"Stable(A) == A Co A" |
|
56 |
(*Always is the weak form of "invariant"*) |
|
57 |
Always :: "i => i" |
|
12195 | 58 |
"Always(A) == initially(A) Int Stable(A)" |
11479 | 59 |
|
15634 | 60 |
|
61 |
(*** traces and reachable ***) |
|
62 |
||
63 |
lemma reachable_type: "reachable(F) <= state" |
|
64 |
apply (cut_tac F = F in Init_type) |
|
65 |
apply (cut_tac F = F in Acts_type) |
|
66 |
apply (cut_tac F = F in reachable.dom_subset, blast) |
|
67 |
done |
|
68 |
||
69 |
lemma st_set_reachable: "st_set(reachable(F))" |
|
70 |
apply (unfold st_set_def) |
|
71 |
apply (rule reachable_type) |
|
72 |
done |
|
73 |
declare st_set_reachable [iff] |
|
74 |
||
75 |
lemma reachable_Int_state: "reachable(F) Int state = reachable(F)" |
|
76 |
by (cut_tac reachable_type, auto) |
|
77 |
declare reachable_Int_state [iff] |
|
78 |
||
79 |
lemma state_Int_reachable: "state Int reachable(F) = reachable(F)" |
|
80 |
by (cut_tac reachable_type, auto) |
|
81 |
declare state_Int_reachable [iff] |
|
82 |
||
83 |
lemma reachable_equiv_traces: |
|
84 |
"F \<in> program ==> reachable(F)={s \<in> state. \<exists>evs. <s,evs>:traces(Init(F), Acts(F))}" |
|
85 |
apply (rule equalityI, safe) |
|
86 |
apply (blast dest: reachable_type [THEN subsetD]) |
|
87 |
apply (erule_tac [2] traces.induct) |
|
88 |
apply (erule reachable.induct) |
|
89 |
apply (blast intro: reachable.intros traces.intros)+ |
|
90 |
done |
|
91 |
||
92 |
lemma Init_into_reachable: "Init(F) <= reachable(F)" |
|
93 |
by (blast intro: reachable.intros) |
|
94 |
||
95 |
lemma stable_reachable: "[| F \<in> program; G \<in> program; |
|
96 |
Acts(G) <= Acts(F) |] ==> G \<in> stable(reachable(F))" |
|
97 |
apply (blast intro: stableI constrainsI st_setI |
|
98 |
reachable_type [THEN subsetD] reachable.intros) |
|
99 |
done |
|
100 |
||
101 |
declare stable_reachable [intro!] |
|
102 |
declare stable_reachable [simp] |
|
103 |
||
104 |
(*The set of all reachable states is an invariant...*) |
|
105 |
lemma invariant_reachable: |
|
106 |
"F \<in> program ==> F \<in> invariant(reachable(F))" |
|
107 |
apply (unfold invariant_def initially_def) |
|
108 |
apply (blast intro: reachable_type [THEN subsetD] reachable.intros) |
|
109 |
done |
|
110 |
||
111 |
(*...in fact the strongest invariant!*) |
|
112 |
lemma invariant_includes_reachable: "F \<in> invariant(A) ==> reachable(F) <= A" |
|
113 |
apply (cut_tac F = F in Acts_type) |
|
114 |
apply (cut_tac F = F in Init_type) |
|
115 |
apply (cut_tac F = F in reachable_type) |
|
116 |
apply (simp (no_asm_use) add: stable_def constrains_def invariant_def initially_def) |
|
117 |
apply (rule subsetI) |
|
118 |
apply (erule reachable.induct) |
|
119 |
apply (blast intro: reachable.intros)+ |
|
120 |
done |
|
121 |
||
122 |
(*** Co ***) |
|
123 |
||
124 |
lemma constrains_reachable_Int: "F \<in> B co B'==>F:(reachable(F) Int B) co (reachable(F) Int B')" |
|
125 |
apply (frule constrains_type [THEN subsetD]) |
|
126 |
apply (frule stable_reachable [OF _ _ subset_refl]) |
|
127 |
apply (simp_all add: stable_def constrains_Int) |
|
128 |
done |
|
129 |
||
130 |
(*Resembles the previous definition of Constrains*) |
|
131 |
lemma Constrains_eq_constrains: |
|
132 |
"A Co B = {F \<in> program. F:(reachable(F) Int A) co (reachable(F) Int B)}" |
|
133 |
apply (unfold Constrains_def) |
|
134 |
apply (blast dest: constrains_reachable_Int constrains_type [THEN subsetD] |
|
135 |
intro: constrains_weaken) |
|
136 |
done |
|
137 |
||
138 |
lemmas Constrains_def2 = Constrains_eq_constrains [THEN eq_reflection] |
|
139 |
||
140 |
lemma constrains_imp_Constrains: "F \<in> A co A' ==> F \<in> A Co A'" |
|
141 |
apply (unfold Constrains_def) |
|
142 |
apply (blast intro: constrains_weaken_L dest: constrainsD2) |
|
143 |
done |
|
144 |
||
145 |
lemma ConstrainsI: |
|
146 |
"[|!!act s s'. [| act \<in> Acts(F); <s,s'>:act; s \<in> A |] ==> s':A'; |
|
147 |
F \<in> program|] |
|
148 |
==> F \<in> A Co A'" |
|
149 |
apply (auto simp add: Constrains_def constrains_def st_set_def) |
|
150 |
apply (blast dest: reachable_type [THEN subsetD]) |
|
151 |
done |
|
152 |
||
153 |
lemma Constrains_type: |
|
154 |
"A Co B <= program" |
|
155 |
apply (unfold Constrains_def, blast) |
|
156 |
done |
|
157 |
||
158 |
lemma Constrains_empty: "F \<in> 0 Co B <-> F \<in> program" |
|
159 |
by (auto dest: Constrains_type [THEN subsetD] |
|
160 |
intro: constrains_imp_Constrains) |
|
161 |
declare Constrains_empty [iff] |
|
162 |
||
163 |
lemma Constrains_state: "F \<in> A Co state <-> F \<in> program" |
|
164 |
apply (unfold Constrains_def) |
|
165 |
apply (auto dest: Constrains_type [THEN subsetD] intro: constrains_imp_Constrains) |
|
166 |
done |
|
167 |
declare Constrains_state [iff] |
|
168 |
||
169 |
lemma Constrains_weaken_R: |
|
170 |
"[| F \<in> A Co A'; A'<=B' |] ==> F \<in> A Co B'" |
|
171 |
apply (unfold Constrains_def2) |
|
172 |
apply (blast intro: constrains_weaken_R) |
|
173 |
done |
|
174 |
||
175 |
lemma Constrains_weaken_L: |
|
176 |
"[| F \<in> A Co A'; B<=A |] ==> F \<in> B Co A'" |
|
177 |
apply (unfold Constrains_def2) |
|
178 |
apply (blast intro: constrains_weaken_L st_set_subset) |
|
179 |
done |
|
180 |
||
181 |
lemma Constrains_weaken: |
|
182 |
"[| F \<in> A Co A'; B<=A; A'<=B' |] ==> F \<in> B Co B'" |
|
183 |
apply (unfold Constrains_def2) |
|
184 |
apply (blast intro: constrains_weaken st_set_subset) |
|
185 |
done |
|
186 |
||
187 |
(** Union **) |
|
188 |
lemma Constrains_Un: |
|
189 |
"[| F \<in> A Co A'; F \<in> B Co B' |] ==> F \<in> (A Un B) Co (A' Un B')" |
|
190 |
apply (unfold Constrains_def2, auto) |
|
191 |
apply (simp add: Int_Un_distrib) |
|
192 |
apply (blast intro: constrains_Un) |
|
193 |
done |
|
194 |
||
195 |
lemma Constrains_UN: |
|
196 |
"[|(!!i. i \<in> I==>F \<in> A(i) Co A'(i)); F \<in> program|] |
|
197 |
==> F:(\<Union>i \<in> I. A(i)) Co (\<Union>i \<in> I. A'(i))" |
|
198 |
by (auto intro: constrains_UN simp del: UN_simps |
|
199 |
simp add: Constrains_def2 Int_UN_distrib) |
|
200 |
||
201 |
||
202 |
(** Intersection **) |
|
203 |
||
204 |
lemma Constrains_Int: |
|
205 |
"[| F \<in> A Co A'; F \<in> B Co B'|]==> F:(A Int B) Co (A' Int B')" |
|
206 |
apply (unfold Constrains_def) |
|
207 |
apply (subgoal_tac "reachable (F) Int (A Int B) = (reachable (F) Int A) Int (reachable (F) Int B) ") |
|
208 |
apply (auto intro: constrains_Int) |
|
209 |
done |
|
210 |
||
211 |
lemma Constrains_INT: |
|
212 |
"[| (!!i. i \<in> I ==>F \<in> A(i) Co A'(i)); F \<in> program |] |
|
213 |
==> F:(\<Inter>i \<in> I. A(i)) Co (\<Inter>i \<in> I. A'(i))" |
|
214 |
apply (simp (no_asm_simp) del: INT_simps add: Constrains_def INT_extend_simps) |
|
215 |
apply (rule constrains_INT) |
|
216 |
apply (auto simp add: Constrains_def) |
|
217 |
done |
|
218 |
||
219 |
lemma Constrains_imp_subset: "F \<in> A Co A' ==> reachable(F) Int A <= A'" |
|
220 |
apply (unfold Constrains_def) |
|
221 |
apply (blast dest: constrains_imp_subset) |
|
222 |
done |
|
223 |
||
224 |
lemma Constrains_trans: |
|
225 |
"[| F \<in> A Co B; F \<in> B Co C |] ==> F \<in> A Co C" |
|
226 |
apply (unfold Constrains_def2) |
|
227 |
apply (blast intro: constrains_trans constrains_weaken) |
|
228 |
done |
|
229 |
||
230 |
lemma Constrains_cancel: |
|
231 |
"[| F \<in> A Co (A' Un B); F \<in> B Co B' |] ==> F \<in> A Co (A' Un B')" |
|
232 |
apply (unfold Constrains_def2) |
|
233 |
apply (simp (no_asm_use) add: Int_Un_distrib) |
|
234 |
apply (blast intro: constrains_cancel) |
|
235 |
done |
|
236 |
||
237 |
(*** Stable ***) |
|
238 |
(* Useful because there's no Stable_weaken. [Tanja Vos] *) |
|
239 |
||
240 |
lemma stable_imp_Stable: |
|
241 |
"F \<in> stable(A) ==> F \<in> Stable(A)" |
|
242 |
||
243 |
apply (unfold stable_def Stable_def) |
|
244 |
apply (erule constrains_imp_Constrains) |
|
245 |
done |
|
246 |
||
247 |
lemma Stable_eq: "[| F \<in> Stable(A); A = B |] ==> F \<in> Stable(B)" |
|
248 |
by blast |
|
249 |
||
250 |
lemma Stable_eq_stable: |
|
251 |
"F \<in> Stable(A) <-> (F \<in> stable(reachable(F) Int A))" |
|
252 |
apply (auto dest: constrainsD2 simp add: Stable_def stable_def Constrains_def2) |
|
253 |
done |
|
254 |
||
255 |
lemma StableI: "F \<in> A Co A ==> F \<in> Stable(A)" |
|
256 |
by (unfold Stable_def, assumption) |
|
257 |
||
258 |
lemma StableD: "F \<in> Stable(A) ==> F \<in> A Co A" |
|
259 |
by (unfold Stable_def, assumption) |
|
260 |
||
261 |
lemma Stable_Un: |
|
262 |
"[| F \<in> Stable(A); F \<in> Stable(A') |] ==> F \<in> Stable(A Un A')" |
|
263 |
apply (unfold Stable_def) |
|
264 |
apply (blast intro: Constrains_Un) |
|
265 |
done |
|
266 |
||
267 |
lemma Stable_Int: |
|
268 |
"[| F \<in> Stable(A); F \<in> Stable(A') |] ==> F \<in> Stable (A Int A')" |
|
269 |
apply (unfold Stable_def) |
|
270 |
apply (blast intro: Constrains_Int) |
|
271 |
done |
|
272 |
||
273 |
lemma Stable_Constrains_Un: |
|
274 |
"[| F \<in> Stable(C); F \<in> A Co (C Un A') |] |
|
275 |
==> F \<in> (C Un A) Co (C Un A')" |
|
276 |
apply (unfold Stable_def) |
|
277 |
apply (blast intro: Constrains_Un [THEN Constrains_weaken_R]) |
|
278 |
done |
|
279 |
||
280 |
lemma Stable_Constrains_Int: |
|
281 |
"[| F \<in> Stable(C); F \<in> (C Int A) Co A' |] |
|
282 |
==> F \<in> (C Int A) Co (C Int A')" |
|
283 |
apply (unfold Stable_def) |
|
284 |
apply (blast intro: Constrains_Int [THEN Constrains_weaken]) |
|
285 |
done |
|
286 |
||
287 |
lemma Stable_UN: |
|
288 |
"[| (!!i. i \<in> I ==> F \<in> Stable(A(i))); F \<in> program |] |
|
289 |
==> F \<in> Stable (\<Union>i \<in> I. A(i))" |
|
290 |
apply (simp add: Stable_def) |
|
291 |
apply (blast intro: Constrains_UN) |
|
292 |
done |
|
293 |
||
294 |
lemma Stable_INT: |
|
295 |
"[|(!!i. i \<in> I ==> F \<in> Stable(A(i))); F \<in> program |] |
|
296 |
==> F \<in> Stable (\<Inter>i \<in> I. A(i))" |
|
297 |
apply (simp add: Stable_def) |
|
298 |
apply (blast intro: Constrains_INT) |
|
299 |
done |
|
300 |
||
301 |
lemma Stable_reachable: "F \<in> program ==>F \<in> Stable (reachable(F))" |
|
302 |
apply (simp (no_asm_simp) add: Stable_eq_stable Int_absorb) |
|
303 |
done |
|
304 |
||
305 |
lemma Stable_type: "Stable(A) <= program" |
|
306 |
apply (unfold Stable_def) |
|
307 |
apply (rule Constrains_type) |
|
308 |
done |
|
309 |
||
310 |
(*** The Elimination Theorem. The "free" m has become universally quantified! |
|
311 |
Should the premise be !!m instead of \<forall>m ? Would make it harder to use |
|
312 |
in forward proof. ***) |
|
313 |
||
314 |
lemma Elimination: |
|
315 |
"[| \<forall>m \<in> M. F \<in> ({s \<in> A. x(s) = m}) Co (B(m)); F \<in> program |] |
|
316 |
==> F \<in> ({s \<in> A. x(s):M}) Co (\<Union>m \<in> M. B(m))" |
|
317 |
apply (unfold Constrains_def, auto) |
|
318 |
apply (rule_tac A1 = "reachable (F) Int A" |
|
319 |
in UNITY.elimination [THEN constrains_weaken_L]) |
|
320 |
apply (auto intro: constrains_weaken_L) |
|
321 |
done |
|
322 |
||
323 |
(* As above, but for the special case of A=state *) |
|
324 |
lemma Elimination2: |
|
325 |
"[| \<forall>m \<in> M. F \<in> {s \<in> state. x(s) = m} Co B(m); F \<in> program |] |
|
326 |
==> F \<in> {s \<in> state. x(s):M} Co (\<Union>m \<in> M. B(m))" |
|
327 |
apply (blast intro: Elimination) |
|
328 |
done |
|
329 |
||
330 |
(** Unless **) |
|
331 |
||
332 |
lemma Unless_type: "A Unless B <=program" |
|
333 |
||
334 |
apply (unfold Unless_def) |
|
335 |
apply (rule Constrains_type) |
|
336 |
done |
|
337 |
||
338 |
(*** Specialized laws for handling Always ***) |
|
339 |
||
340 |
(** Natural deduction rules for "Always A" **) |
|
341 |
||
342 |
lemma AlwaysI: |
|
343 |
"[| Init(F)<=A; F \<in> Stable(A) |] ==> F \<in> Always(A)" |
|
344 |
||
345 |
apply (unfold Always_def initially_def) |
|
346 |
apply (frule Stable_type [THEN subsetD], auto) |
|
347 |
done |
|
348 |
||
349 |
lemma AlwaysD: "F \<in> Always(A) ==> Init(F)<=A & F \<in> Stable(A)" |
|
350 |
by (simp add: Always_def initially_def) |
|
351 |
||
352 |
lemmas AlwaysE = AlwaysD [THEN conjE, standard] |
|
353 |
lemmas Always_imp_Stable = AlwaysD [THEN conjunct2, standard] |
|
354 |
||
355 |
(*The set of all reachable states is Always*) |
|
356 |
lemma Always_includes_reachable: "F \<in> Always(A) ==> reachable(F) <= A" |
|
357 |
apply (simp (no_asm_use) add: Stable_def Constrains_def constrains_def Always_def initially_def) |
|
358 |
apply (rule subsetI) |
|
359 |
apply (erule reachable.induct) |
|
360 |
apply (blast intro: reachable.intros)+ |
|
361 |
done |
|
362 |
||
363 |
lemma invariant_imp_Always: |
|
364 |
"F \<in> invariant(A) ==> F \<in> Always(A)" |
|
365 |
apply (unfold Always_def invariant_def Stable_def stable_def) |
|
366 |
apply (blast intro: constrains_imp_Constrains) |
|
367 |
done |
|
368 |
||
369 |
lemmas Always_reachable = invariant_reachable [THEN invariant_imp_Always, standard] |
|
370 |
||
371 |
lemma Always_eq_invariant_reachable: "Always(A) = {F \<in> program. F \<in> invariant(reachable(F) Int A)}" |
|
372 |
apply (simp (no_asm) add: Always_def invariant_def Stable_def Constrains_def2 stable_def initially_def) |
|
373 |
apply (rule equalityI, auto) |
|
374 |
apply (blast intro: reachable.intros reachable_type) |
|
375 |
done |
|
376 |
||
377 |
(*the RHS is the traditional definition of the "always" operator*) |
|
378 |
lemma Always_eq_includes_reachable: "Always(A) = {F \<in> program. reachable(F) <= A}" |
|
379 |
apply (rule equalityI, safe) |
|
380 |
apply (auto dest: invariant_includes_reachable |
|
381 |
simp add: subset_Int_iff invariant_reachable Always_eq_invariant_reachable) |
|
382 |
done |
|
383 |
||
384 |
lemma Always_type: "Always(A) <= program" |
|
385 |
by (unfold Always_def initially_def, auto) |
|
386 |
||
387 |
lemma Always_state_eq: "Always(state) = program" |
|
388 |
apply (rule equalityI) |
|
389 |
apply (auto dest: Always_type [THEN subsetD] reachable_type [THEN subsetD] |
|
390 |
simp add: Always_eq_includes_reachable) |
|
391 |
done |
|
392 |
declare Always_state_eq [simp] |
|
393 |
||
394 |
lemma state_AlwaysI: "F \<in> program ==> F \<in> Always(state)" |
|
395 |
by (auto dest: reachable_type [THEN subsetD] |
|
396 |
simp add: Always_eq_includes_reachable) |
|
397 |
||
398 |
lemma Always_eq_UN_invariant: "st_set(A) ==> Always(A) = (\<Union>I \<in> Pow(A). invariant(I))" |
|
399 |
apply (simp (no_asm) add: Always_eq_includes_reachable) |
|
400 |
apply (rule equalityI, auto) |
|
401 |
apply (blast intro: invariantI rev_subsetD [OF _ Init_into_reachable] |
|
402 |
rev_subsetD [OF _ invariant_includes_reachable] |
|
403 |
dest: invariant_type [THEN subsetD])+ |
|
404 |
done |
|
405 |
||
406 |
lemma Always_weaken: "[| F \<in> Always(A); A <= B |] ==> F \<in> Always(B)" |
|
407 |
by (auto simp add: Always_eq_includes_reachable) |
|
408 |
||
409 |
||
410 |
(*** "Co" rules involving Always ***) |
|
411 |
lemmas Int_absorb2 = subset_Int_iff [unfolded iff_def, THEN conjunct1, THEN mp] |
|
412 |
||
413 |
lemma Always_Constrains_pre: "F \<in> Always(I) ==> (F:(I Int A) Co A') <-> (F \<in> A Co A')" |
|
414 |
apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_def Int_assoc [symmetric]) |
|
415 |
done |
|
416 |
||
417 |
lemma Always_Constrains_post: "F \<in> Always(I) ==> (F \<in> A Co (I Int A')) <->(F \<in> A Co A')" |
|
418 |
apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_eq_constrains Int_assoc [symmetric]) |
|
419 |
done |
|
420 |
||
421 |
lemma Always_ConstrainsI: "[| F \<in> Always(I); F \<in> (I Int A) Co A' |] ==> F \<in> A Co A'" |
|
422 |
by (blast intro: Always_Constrains_pre [THEN iffD1]) |
|
423 |
||
424 |
(* [| F \<in> Always(I); F \<in> A Co A' |] ==> F \<in> A Co (I Int A') *) |
|
425 |
lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2, standard] |
|
426 |
||
427 |
(*The analogous proof of Always_LeadsTo_weaken doesn't terminate*) |
|
428 |
lemma Always_Constrains_weaken: |
|
429 |
"[|F \<in> Always(C); F \<in> A Co A'; C Int B<=A; C Int A'<=B'|]==>F \<in> B Co B'" |
|
430 |
apply (rule Always_ConstrainsI) |
|
431 |
apply (drule_tac [2] Always_ConstrainsD, simp_all) |
|
432 |
apply (blast intro: Constrains_weaken) |
|
433 |
done |
|
434 |
||
435 |
(** Conjoining Always properties **) |
|
436 |
lemma Always_Int_distrib: "Always(A Int B) = Always(A) Int Always(B)" |
|
437 |
by (auto simp add: Always_eq_includes_reachable) |
|
438 |
||
439 |
(* the premise i \<in> I is need since \<Inter>is formally not defined for I=0 *) |
|
440 |
lemma Always_INT_distrib: "i \<in> I==>Always(\<Inter>i \<in> I. A(i)) = (\<Inter>i \<in> I. Always(A(i)))" |
|
441 |
apply (rule equalityI) |
|
442 |
apply (auto simp add: Inter_iff Always_eq_includes_reachable) |
|
443 |
done |
|
444 |
||
445 |
||
446 |
lemma Always_Int_I: "[| F \<in> Always(A); F \<in> Always(B) |] ==> F \<in> Always(A Int B)" |
|
447 |
apply (simp (no_asm_simp) add: Always_Int_distrib) |
|
448 |
done |
|
449 |
||
450 |
(*Allows a kind of "implication introduction"*) |
|
451 |
lemma Always_Diff_Un_eq: "[| F \<in> Always(A) |] ==> (F \<in> Always(C-A Un B)) <-> (F \<in> Always(B))" |
|
452 |
by (auto simp add: Always_eq_includes_reachable) |
|
453 |
||
454 |
(*Delete the nearest invariance assumption (which will be the second one |
|
455 |
used by Always_Int_I) *) |
|
456 |
lemmas Always_thin = thin_rl [of "F \<in> Always(A)", standard] |
|
457 |
||
458 |
ML |
|
459 |
{* |
|
460 |
val reachable_type = thm "reachable_type"; |
|
461 |
val st_set_reachable = thm "st_set_reachable"; |
|
462 |
val reachable_Int_state = thm "reachable_Int_state"; |
|
463 |
val state_Int_reachable = thm "state_Int_reachable"; |
|
464 |
val reachable_equiv_traces = thm "reachable_equiv_traces"; |
|
465 |
val Init_into_reachable = thm "Init_into_reachable"; |
|
466 |
val stable_reachable = thm "stable_reachable"; |
|
467 |
val invariant_reachable = thm "invariant_reachable"; |
|
468 |
val invariant_includes_reachable = thm "invariant_includes_reachable"; |
|
469 |
val constrains_reachable_Int = thm "constrains_reachable_Int"; |
|
470 |
val Constrains_eq_constrains = thm "Constrains_eq_constrains"; |
|
471 |
val Constrains_def2 = thm "Constrains_def2"; |
|
472 |
val constrains_imp_Constrains = thm "constrains_imp_Constrains"; |
|
473 |
val ConstrainsI = thm "ConstrainsI"; |
|
474 |
val Constrains_type = thm "Constrains_type"; |
|
475 |
val Constrains_empty = thm "Constrains_empty"; |
|
476 |
val Constrains_state = thm "Constrains_state"; |
|
477 |
val Constrains_weaken_R = thm "Constrains_weaken_R"; |
|
478 |
val Constrains_weaken_L = thm "Constrains_weaken_L"; |
|
479 |
val Constrains_weaken = thm "Constrains_weaken"; |
|
480 |
val Constrains_Un = thm "Constrains_Un"; |
|
481 |
val Constrains_UN = thm "Constrains_UN"; |
|
482 |
val Constrains_Int = thm "Constrains_Int"; |
|
483 |
val Constrains_INT = thm "Constrains_INT"; |
|
484 |
val Constrains_imp_subset = thm "Constrains_imp_subset"; |
|
485 |
val Constrains_trans = thm "Constrains_trans"; |
|
486 |
val Constrains_cancel = thm "Constrains_cancel"; |
|
487 |
val stable_imp_Stable = thm "stable_imp_Stable"; |
|
488 |
val Stable_eq = thm "Stable_eq"; |
|
489 |
val Stable_eq_stable = thm "Stable_eq_stable"; |
|
490 |
val StableI = thm "StableI"; |
|
491 |
val StableD = thm "StableD"; |
|
492 |
val Stable_Un = thm "Stable_Un"; |
|
493 |
val Stable_Int = thm "Stable_Int"; |
|
494 |
val Stable_Constrains_Un = thm "Stable_Constrains_Un"; |
|
495 |
val Stable_Constrains_Int = thm "Stable_Constrains_Int"; |
|
496 |
val Stable_UN = thm "Stable_UN"; |
|
497 |
val Stable_INT = thm "Stable_INT"; |
|
498 |
val Stable_reachable = thm "Stable_reachable"; |
|
499 |
val Stable_type = thm "Stable_type"; |
|
500 |
val Elimination = thm "Elimination"; |
|
501 |
val Elimination2 = thm "Elimination2"; |
|
502 |
val Unless_type = thm "Unless_type"; |
|
503 |
val AlwaysI = thm "AlwaysI"; |
|
504 |
val AlwaysD = thm "AlwaysD"; |
|
505 |
val AlwaysE = thm "AlwaysE"; |
|
506 |
val Always_imp_Stable = thm "Always_imp_Stable"; |
|
507 |
val Always_includes_reachable = thm "Always_includes_reachable"; |
|
508 |
val invariant_imp_Always = thm "invariant_imp_Always"; |
|
509 |
val Always_reachable = thm "Always_reachable"; |
|
510 |
val Always_eq_invariant_reachable = thm "Always_eq_invariant_reachable"; |
|
511 |
val Always_eq_includes_reachable = thm "Always_eq_includes_reachable"; |
|
512 |
val Always_type = thm "Always_type"; |
|
513 |
val Always_state_eq = thm "Always_state_eq"; |
|
514 |
val state_AlwaysI = thm "state_AlwaysI"; |
|
515 |
val Always_eq_UN_invariant = thm "Always_eq_UN_invariant"; |
|
516 |
val Always_weaken = thm "Always_weaken"; |
|
517 |
val Int_absorb2 = thm "Int_absorb2"; |
|
518 |
val Always_Constrains_pre = thm "Always_Constrains_pre"; |
|
519 |
val Always_Constrains_post = thm "Always_Constrains_post"; |
|
520 |
val Always_ConstrainsI = thm "Always_ConstrainsI"; |
|
521 |
val Always_ConstrainsD = thm "Always_ConstrainsD"; |
|
522 |
val Always_Constrains_weaken = thm "Always_Constrains_weaken"; |
|
523 |
val Always_Int_distrib = thm "Always_Int_distrib"; |
|
524 |
val Always_INT_distrib = thm "Always_INT_distrib"; |
|
525 |
val Always_Int_I = thm "Always_Int_I"; |
|
526 |
val Always_Diff_Un_eq = thm "Always_Diff_Un_eq"; |
|
527 |
val Always_thin = thm "Always_thin"; |
|
528 |
||
529 |
(*Combines two invariance ASSUMPTIONS into one. USEFUL??*) |
|
530 |
val Always_Int_tac = dtac Always_Int_I THEN' assume_tac THEN' etac Always_thin; |
|
531 |
||
532 |
(*Combines a list of invariance THEOREMS into one.*) |
|
533 |
val Always_Int_rule = foldr1 (fn (th1,th2) => [th1,th2] MRS Always_Int_I); |
|
534 |
||
535 |
(*To allow expansion of the program's definition when appropriate*) |
|
536 |
val program_defs_ref = ref ([]: thm list); |
|
537 |
||
538 |
(*proves "co" properties when the program is specified*) |
|
539 |
||
540 |
fun gen_constrains_tac(cs,ss) i = |
|
541 |
SELECT_GOAL |
|
542 |
(EVERY [REPEAT (Always_Int_tac 1), |
|
543 |
REPEAT (etac Always_ConstrainsI 1 |
|
544 |
ORELSE |
|
545 |
resolve_tac [StableI, stableI, |
|
546 |
constrains_imp_Constrains] 1), |
|
547 |
rtac constrainsI 1, |
|
548 |
(* Three subgoals *) |
|
549 |
rewrite_goal_tac [st_set_def] 3, |
|
550 |
REPEAT (Force_tac 2), |
|
551 |
full_simp_tac (ss addsimps !program_defs_ref) 1, |
|
552 |
ALLGOALS (clarify_tac cs), |
|
553 |
REPEAT (FIRSTGOAL (etac disjE)), |
|
554 |
ALLGOALS Clarify_tac, |
|
555 |
REPEAT (FIRSTGOAL (etac disjE)), |
|
556 |
ALLGOALS (clarify_tac cs), |
|
557 |
ALLGOALS (asm_full_simp_tac ss), |
|
558 |
ALLGOALS (clarify_tac cs)]) i; |
|
559 |
||
560 |
fun constrains_tac st = gen_constrains_tac (claset(), simpset()) st; |
|
561 |
||
562 |
(*For proving invariants*) |
|
563 |
fun always_tac i = |
|
564 |
rtac AlwaysI i THEN Force_tac i THEN constrains_tac i; |
|
565 |
*} |
|
566 |
||
16183
052d9aba392d
renamed "constrains" to "safety" to avoid keyword clash
paulson
parents:
15634
diff
changeset
|
567 |
method_setup safety = {* |
15634 | 568 |
Method.ctxt_args (fn ctxt => |
569 |
Method.METHOD (fn facts => |
|
570 |
gen_constrains_tac (local_clasimpset_of ctxt) 1)) *} |
|
571 |
"for proving safety properties" |
|
572 |
||
573 |
||
11479 | 574 |
end |
575 |