41561
|
1 |
(* Title: HOL/SPARK/Examples/Gcd/Greatest_Common_Divisor.thy
|
|
2 |
Author: Stefan Berghofer
|
|
3 |
Copyright: secunet Security Networks AG
|
|
4 |
*)
|
|
5 |
|
|
6 |
theory Greatest_Common_Divisor
|
|
7 |
imports SPARK GCD
|
|
8 |
begin
|
|
9 |
|
|
10 |
spark_proof_functions
|
|
11 |
gcd = "gcd :: int \<Rightarrow> int \<Rightarrow> int"
|
|
12 |
|
|
13 |
spark_open "greatest_common_divisor/g_c_d.siv"
|
|
14 |
|
|
15 |
spark_vc procedure_g_c_d_4
|
|
16 |
proof -
|
|
17 |
from `0 < d` have "0 \<le> c mod d" by (rule pos_mod_sign)
|
|
18 |
with `0 \<le> c` `0 < d` `c - c sdiv d * d \<noteq> 0` show ?C1
|
|
19 |
by (simp add: sdiv_pos_pos zmod_zdiv_equality')
|
|
20 |
next
|
|
21 |
from `0 \<le> c` `0 < d` `gcd c d = gcd m n` show ?C2
|
|
22 |
by (simp add: sdiv_pos_pos zmod_zdiv_equality' gcd_non_0_int)
|
|
23 |
qed
|
|
24 |
|
|
25 |
spark_vc procedure_g_c_d_11
|
|
26 |
proof -
|
|
27 |
from `0 \<le> c` `0 < d` `c - c sdiv d * d = 0`
|
|
28 |
have "d dvd c"
|
|
29 |
by (auto simp add: sdiv_pos_pos dvd_def mult_ac)
|
|
30 |
with `0 < d` `gcd c d = gcd m n` show ?C1
|
|
31 |
by simp
|
|
32 |
qed
|
|
33 |
|
|
34 |
spark_end
|
|
35 |
|
|
36 |
end
|