50518
|
1 |
(* Title: HOL/BNF/Examples/Stream.thy
|
|
2 |
Author: Dmitriy Traytel, TU Muenchen
|
|
3 |
Author: Andrei Popescu, TU Muenchen
|
|
4 |
Copyright 2012
|
|
5 |
|
|
6 |
Infinite streams.
|
|
7 |
*)
|
|
8 |
|
|
9 |
header {* Infinite Streams *}
|
|
10 |
|
|
11 |
theory Stream
|
|
12 |
imports "../BNF"
|
|
13 |
begin
|
|
14 |
|
|
15 |
codata 'a stream = Stream (shd: 'a) (stl: "'a stream")
|
|
16 |
|
|
17 |
(* TODO: Provide by the package*)
|
|
18 |
theorem stream_set_induct:
|
|
19 |
"\<lbrakk>\<And>s. P (shd s) s; \<And>s y. \<lbrakk>y \<in> stream_set (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s\<rbrakk> \<Longrightarrow>
|
|
20 |
\<forall>y \<in> stream_set s. P y s"
|
|
21 |
by (rule stream.dtor_set_induct)
|
|
22 |
(auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta)
|
|
23 |
|
|
24 |
theorem shd_stream_set: "shd s \<in> stream_set s"
|
|
25 |
by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta)
|
|
26 |
(metis UnCI fsts_def insertI1 stream.dtor_set)
|
|
27 |
|
|
28 |
theorem stl_stream_set: "y \<in> stream_set (stl s) \<Longrightarrow> y \<in> stream_set s"
|
|
29 |
by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta)
|
|
30 |
(metis insertI1 set_mp snds_def stream.dtor_set_set_incl)
|
|
31 |
|
|
32 |
(* only for the non-mutual case: *)
|
|
33 |
theorem stream_set_induct1[consumes 1, case_names shd stl, induct set: "stream_set"]:
|
|
34 |
assumes "y \<in> stream_set s" and "\<And>s. P (shd s) s"
|
|
35 |
and "\<And>s y. \<lbrakk>y \<in> stream_set (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
|
|
36 |
shows "P y s"
|
|
37 |
using assms stream_set_induct by blast
|
|
38 |
(* end TODO *)
|
|
39 |
|
|
40 |
|
|
41 |
subsection {* prepend list to stream *}
|
|
42 |
|
|
43 |
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
|
|
44 |
"shift [] s = s"
|
|
45 |
| "shift (x # xs) s = Stream x (shift xs s)"
|
|
46 |
|
|
47 |
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
|
|
48 |
by (induct xs) auto
|
|
49 |
|
|
50 |
lemma shift_simps[simp]:
|
|
51 |
"shd (xs @- s) = (if xs = [] then shd s else hd xs)"
|
|
52 |
"stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
|
|
53 |
by (induct xs) auto
|
|
54 |
|
|
55 |
|
|
56 |
subsection {* recurring stream out of a list *}
|
|
57 |
|
|
58 |
definition cycle :: "'a list \<Rightarrow> 'a stream" where
|
|
59 |
"cycle = stream_unfold hd (\<lambda>xs. tl xs @ [hd xs])"
|
|
60 |
|
|
61 |
lemma cycle_simps[simp]:
|
|
62 |
"shd (cycle u) = hd u"
|
|
63 |
"stl (cycle u) = cycle (tl u @ [hd u])"
|
|
64 |
by (auto simp: cycle_def)
|
|
65 |
|
|
66 |
|
|
67 |
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
|
|
68 |
proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>u. s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []"])
|
|
69 |
case (2 s1 s2)
|
|
70 |
then obtain u where "s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []" by blast
|
|
71 |
thus ?case using stream.unfold[of hd "\<lambda>xs. tl xs @ [hd xs]" u] by (auto simp: cycle_def)
|
|
72 |
qed auto
|
|
73 |
|
|
74 |
lemma cycle_Cons: "cycle (x # xs) = Stream x (cycle (xs @ [x]))"
|
|
75 |
proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>x xs. s1 = cycle (x # xs) \<and> s2 = Stream x (cycle (xs @ [x]))"])
|
|
76 |
case (2 s1 s2)
|
|
77 |
then obtain x xs where "s1 = cycle (x # xs) \<and> s2 = Stream x (cycle (xs @ [x]))" by blast
|
|
78 |
thus ?case
|
|
79 |
by (auto simp: cycle_def intro!: exI[of _ "hd (xs @ [x])"] exI[of _ "tl (xs @ [x])"] stream.unfold)
|
|
80 |
qed auto
|
|
81 |
|
|
82 |
coinductive_set
|
|
83 |
streams :: "'a set => 'a stream set"
|
|
84 |
for A :: "'a set"
|
|
85 |
where
|
|
86 |
Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> Stream a s \<in> streams A"
|
|
87 |
|
|
88 |
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
|
|
89 |
by (induct w) auto
|
|
90 |
|
|
91 |
lemma stream_set_streams:
|
|
92 |
assumes "stream_set s \<subseteq> A"
|
|
93 |
shows "s \<in> streams A"
|
|
94 |
proof (coinduct rule: streams.coinduct[of "\<lambda>s'. \<exists>a s. s' = Stream a s \<and> a \<in> A \<and> stream_set s \<subseteq> A"])
|
|
95 |
case streams from assms show ?case by (cases s) auto
|
|
96 |
next
|
|
97 |
fix s' assume "\<exists>a s. s' = Stream a s \<and> a \<in> A \<and> stream_set s \<subseteq> A"
|
|
98 |
then guess a s by (elim exE)
|
|
99 |
with assms show "\<exists>a l. s' = Stream a l \<and>
|
|
100 |
a \<in> A \<and> ((\<exists>a s. l = Stream a s \<and> a \<in> A \<and> stream_set s \<subseteq> A) \<or> l \<in> streams A)"
|
|
101 |
by (cases s) auto
|
|
102 |
qed
|
|
103 |
|
|
104 |
|
|
105 |
subsection {* flatten a stream of lists *}
|
|
106 |
|
|
107 |
definition flat where
|
|
108 |
"flat \<equiv> stream_unfold (hd o shd) (\<lambda>s. if tl (shd s) = [] then stl s else Stream (tl (shd s)) (stl s))"
|
|
109 |
|
|
110 |
lemma flat_simps[simp]:
|
|
111 |
"shd (flat ws) = hd (shd ws)"
|
|
112 |
"stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else Stream (tl (shd ws)) (stl ws))"
|
|
113 |
unfolding flat_def by auto
|
|
114 |
|
|
115 |
lemma flat_Cons[simp]: "flat (Stream (x#xs) w) = Stream x (flat (if xs = [] then w else Stream xs w))"
|
|
116 |
unfolding flat_def using stream.unfold[of "hd o shd" _ "Stream (x#xs) w"] by auto
|
|
117 |
|
|
118 |
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (Stream xs ws) = xs @- flat ws"
|
|
119 |
by (induct xs) auto
|
|
120 |
|
|
121 |
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
|
|
122 |
by (cases ws) auto
|
|
123 |
|
|
124 |
|
|
125 |
subsection {* take, drop, nth for streams *}
|
|
126 |
|
|
127 |
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
|
|
128 |
"stake 0 s = []"
|
|
129 |
| "stake (Suc n) s = shd s # stake n (stl s)"
|
|
130 |
|
|
131 |
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
|
|
132 |
"sdrop 0 s = s"
|
|
133 |
| "sdrop (Suc n) s = sdrop n (stl s)"
|
|
134 |
|
|
135 |
primrec snth :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a" where
|
|
136 |
"snth 0 s = shd s"
|
|
137 |
| "snth (Suc n) s = snth n (stl s)"
|
|
138 |
|
|
139 |
lemma stake_sdrop: "stake n s @- sdrop n s = s"
|
|
140 |
by (induct n arbitrary: s) auto
|
|
141 |
|
|
142 |
lemma stake_empty: "stake n s = [] \<longleftrightarrow> n = 0"
|
|
143 |
by (cases n) auto
|
|
144 |
|
|
145 |
lemma sdrop_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> sdrop n s = s'"
|
|
146 |
by (induct n arbitrary: w s) auto
|
|
147 |
|
|
148 |
lemma stake_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> stake n s = w"
|
|
149 |
by (induct n arbitrary: w s) auto
|
|
150 |
|
|
151 |
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
|
|
152 |
by (induct m arbitrary: s) auto
|
|
153 |
|
|
154 |
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
|
|
155 |
by (induct m arbitrary: s) auto
|
|
156 |
|
|
157 |
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
|
|
158 |
by (auto dest: arg_cong[of _ _ stl])
|
|
159 |
|
|
160 |
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
|
|
161 |
proof (induct n arbitrary: u)
|
|
162 |
case (Suc n) thus ?case by (cases u) auto
|
|
163 |
qed auto
|
|
164 |
|
|
165 |
lemma stake_cycle_le[simp]:
|
|
166 |
assumes "u \<noteq> []" "n < length u"
|
|
167 |
shows "stake n (cycle u) = take n u"
|
|
168 |
using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
|
|
169 |
by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
|
|
170 |
|
|
171 |
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
|
|
172 |
by (metis cycle_decomp stake_shift)
|
|
173 |
|
|
174 |
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
|
|
175 |
by (metis cycle_decomp sdrop_shift)
|
|
176 |
|
|
177 |
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
|
|
178 |
stake n (cycle u) = concat (replicate (n div length u) u)"
|
|
179 |
by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
|
|
180 |
|
|
181 |
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
|
|
182 |
sdrop n (cycle u) = cycle u"
|
|
183 |
by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
|
|
184 |
|
|
185 |
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
|
|
186 |
stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
|
|
187 |
by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
|
|
188 |
|
|
189 |
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
|
|
190 |
by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
|
|
191 |
|
|
192 |
end
|