src/HOL/Bali/Table.thy
author wenzelm
Mon, 15 Feb 2016 14:55:44 +0100
changeset 62337 d3996d5873dd
parent 62042 6c6ccf573479
child 67443 3abf6a722518
permissions -rw-r--r--
proper syntax;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
12857
a4386cc9b1c3 tuned header;
wenzelm
parents: 12854
diff changeset
     1
(*  Title:      HOL/Bali/Table.thy
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
     2
    Author:     David von Oheimb
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
     3
*)
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
     4
subsection \<open>Abstract tables and their implementation as lists\<close>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
     5
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 14981
diff changeset
     6
theory Table imports Basis begin
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
     7
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
     8
text \<open>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
     9
design issues:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    10
\begin{itemize}
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    11
\item definition of table: infinite map vs. list vs. finite set
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    12
      list chosen, because:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    13
  \begin{itemize} 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    14
  \item[+]  a priori finite
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    15
  \item[+]  lookup is more operational than for finite set
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    16
  \item[-]  not very abstract, but function table converts it to abstract 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    17
            mapping
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    18
  \end{itemize}
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    19
\item coding of lookup result: Some/None vs. value/arbitrary
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    20
   Some/None chosen, because:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    21
  \begin{itemize}
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    22
  \item[++] makes definedness check possible (applies also to finite set),
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    23
     which is important for the type standard, hiding/overriding, etc.
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    24
     (though it may perhaps be possible at least for the operational semantics
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    25
      to treat programs as infinite, i.e. where classes, fields, methods etc.
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    26
      of any name are considered to be defined)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    27
  \item[-]  sometimes awkward case distinctions, alleviated by operator 'the'
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    28
  \end{itemize}
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    29
\end{itemize}
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    30
\<close>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    31
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    32
type_synonym ('a, 'b) table    \<comment>\<open>table with key type 'a and contents type 'b\<close>
14134
0fdf5708c7a8 Replaced \<leadsto> by \<rightharpoonup>
nipkow
parents: 14025
diff changeset
    33
      = "'a \<rightharpoonup> 'b"
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    34
type_synonym ('a, 'b) tables   \<comment>\<open>non-unique table with key 'a and contents 'b\<close>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    35
      = "'a \<Rightarrow> 'b set"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    36
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    37
58887
38db8ddc0f57 modernized header;
wenzelm
parents: 55518
diff changeset
    38
subsubsection "map of / table of"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    39
34939
44294cfecb1d modernized syntax
haftmann
parents: 30235
diff changeset
    40
abbreviation
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    41
  table_of :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) table"   \<comment>\<open>concrete table\<close>
35355
613e133966ea modernized syntax declarations, and make them actually work with authentic syntax;
wenzelm
parents: 34939
diff changeset
    42
  where "table_of \<equiv> map_of"
34939
44294cfecb1d modernized syntax
haftmann
parents: 30235
diff changeset
    43
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    44
translations
35431
8758fe1fc9f8 cleanup type translations;
wenzelm
parents: 35417
diff changeset
    45
  (type) "('a, 'b) table" <= (type) "'a \<rightharpoonup> 'b"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    46
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    47
(* ### To map *)
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    48
lemma map_add_find_left[simp]: "n k = None \<Longrightarrow> (m ++ n) k = m k"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    49
  by (simp add: map_add_def)
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    50
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    51
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    52
subsubsection \<open>Conditional Override\<close>
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    53
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 34939
diff changeset
    54
definition cond_override :: "('b \<Rightarrow>'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b) table" where
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    55
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    56
\<comment>\<open>when merging tables old and new, only override an entry of table old when  
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    57
   the condition cond holds\<close>
37956
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
    58
"cond_override cond old new =
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
    59
 (\<lambda>k.
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    60
  (case new k of
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    61
     None         \<Rightarrow> old k                       
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    62
   | Some new_val \<Rightarrow> (case old k of
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    63
                        None         \<Rightarrow> Some new_val          
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    64
                      | Some old_val \<Rightarrow> (if cond new_val old_val
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    65
                                         then Some new_val     
37956
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
    66
                                         else Some old_val))))"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    67
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    68
lemma cond_override_empty1[simp]: "cond_override c empty t = t"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    69
  by (simp add: cond_override_def fun_eq_iff)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    70
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    71
lemma cond_override_empty2[simp]: "cond_override c t empty = t"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    72
  by (simp add: cond_override_def fun_eq_iff)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    73
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    74
lemma cond_override_None[simp]:
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    75
  "old k = None \<Longrightarrow> (cond_override c old new) k = new k"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    76
  by (simp add: cond_override_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    77
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    78
lemma cond_override_override:
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    79
  "\<lbrakk>old k = Some ov;new k = Some nv; C nv ov\<rbrakk> 
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    80
    \<Longrightarrow> (cond_override C old new) k = Some nv"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    81
  by (auto simp add: cond_override_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    82
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    83
lemma cond_override_noOverride:
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    84
  "\<lbrakk>old k = Some ov;new k = Some nv; \<not> (C nv ov)\<rbrakk> 
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    85
    \<Longrightarrow> (cond_override C old new) k = Some ov"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    86
  by (auto simp add: cond_override_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    87
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    88
lemma dom_cond_override: "dom (cond_override C s t) \<subseteq> dom s \<union> dom t"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    89
  by (auto simp add: cond_override_def dom_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    90
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    91
lemma finite_dom_cond_override:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    92
 "\<lbrakk> finite (dom s); finite (dom t) \<rbrakk> \<Longrightarrow> finite (dom (cond_override C s t))"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    93
apply (rule_tac B="dom s \<union> dom t" in finite_subset)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    94
apply (rule dom_cond_override)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    95
by (rule finite_UnI)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    96
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
    97
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
    98
subsubsection \<open>Filter on Tables\<close>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
    99
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   100
definition filter_tab :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b) table \<Rightarrow> ('a, 'b) table"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   101
  where
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   102
    "filter_tab c t = (\<lambda>k. (case t k of 
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   103
                             None   \<Rightarrow> None
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   104
                           | Some x \<Rightarrow> if c k x then Some x else None))"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   105
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   106
lemma filter_tab_empty[simp]: "filter_tab c empty = empty"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   107
by (simp add: filter_tab_def empty_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   108
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   109
lemma filter_tab_True[simp]: "filter_tab (\<lambda>x y. True) t = t"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   110
by (simp add: fun_eq_iff filter_tab_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   111
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   112
lemma filter_tab_False[simp]: "filter_tab (\<lambda>x y. False) t = empty"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   113
by (simp add: fun_eq_iff filter_tab_def empty_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   114
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   115
lemma filter_tab_ran_subset: "ran (filter_tab c t) \<subseteq> ran t"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   116
by (auto simp add: filter_tab_def ran_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   117
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   118
lemma filter_tab_range_subset: "range (filter_tab c t) \<subseteq> range t \<union> {None}"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   119
apply (auto simp add: filter_tab_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   120
apply (drule sym, blast)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   121
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   122
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   123
lemma finite_range_filter_tab:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   124
  "finite (range t) \<Longrightarrow> finite (range (filter_tab c t))"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   125
apply (rule_tac B="range t \<union> {None} " in finite_subset)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   126
apply (rule filter_tab_range_subset)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   127
apply (auto intro: finite_UnI)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   128
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   129
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   130
lemma filter_tab_SomeD[dest!]: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   131
"filter_tab c t k = Some x \<Longrightarrow> (t k = Some x) \<and> c k x"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   132
by (auto simp add: filter_tab_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   133
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   134
lemma filter_tab_SomeI: "\<lbrakk>t k = Some x;C k x\<rbrakk> \<Longrightarrow>filter_tab C t k = Some x"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   135
by (simp add: filter_tab_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   136
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   137
lemma filter_tab_all_True: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   138
 "\<forall> k y. t k = Some y \<longrightarrow> p k y \<Longrightarrow>filter_tab p t = t"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   139
apply (auto simp add: filter_tab_def fun_eq_iff)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   140
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   141
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   142
lemma filter_tab_all_True_Some:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   143
 "\<lbrakk>\<forall> k y. t k = Some y \<longrightarrow> p k y; t k = Some v\<rbrakk> \<Longrightarrow> filter_tab p t k = Some v"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   144
by (auto simp add: filter_tab_def fun_eq_iff)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   145
12925
99131847fb93 Added check for field/method access to operational semantics and proved the acesses valid.
schirmer
parents: 12858
diff changeset
   146
lemma filter_tab_all_False: 
99131847fb93 Added check for field/method access to operational semantics and proved the acesses valid.
schirmer
parents: 12858
diff changeset
   147
 "\<forall> k y. t k = Some y \<longrightarrow> \<not> p k y \<Longrightarrow>filter_tab p t = empty"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   148
by (auto simp add: filter_tab_def fun_eq_iff)
12925
99131847fb93 Added check for field/method access to operational semantics and proved the acesses valid.
schirmer
parents: 12858
diff changeset
   149
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   150
lemma filter_tab_None: "t k = None \<Longrightarrow> filter_tab p t k = None"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   151
apply (simp add: filter_tab_def fun_eq_iff)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   152
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   153
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   154
lemma filter_tab_dom_subset: "dom (filter_tab C t) \<subseteq> dom t"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   155
by (auto simp add: filter_tab_def dom_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   156
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   157
lemma filter_tab_eq: "\<lbrakk>a=b\<rbrakk> \<Longrightarrow> filter_tab C a = filter_tab C b"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   158
by (auto simp add: fun_eq_iff filter_tab_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   159
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   160
lemma finite_dom_filter_tab:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   161
"finite (dom t) \<Longrightarrow> finite (dom (filter_tab C t))"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   162
apply (rule_tac B="dom t" in finite_subset)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   163
by (rule filter_tab_dom_subset)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   164
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   165
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   166
lemma filter_tab_weaken:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   167
"\<lbrakk>\<forall> a \<in> t k: \<exists> b \<in> s k: P a b; 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   168
  \<And> k x y. \<lbrakk>t k = Some x;s k = Some y\<rbrakk> \<Longrightarrow> cond k x \<longrightarrow> cond k y
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   169
 \<rbrakk> \<Longrightarrow> \<forall> a \<in> filter_tab cond t k: \<exists> b \<in> filter_tab cond s k: P a b"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   170
by (force simp add: filter_tab_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   171
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   172
lemma cond_override_filter: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   173
  "\<lbrakk>\<And> k old new. \<lbrakk>s k = Some new; t k = Some old\<rbrakk> 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   174
    \<Longrightarrow> (\<not> overC new old \<longrightarrow>  \<not> filterC k new) \<and> 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   175
        (overC new old \<longrightarrow> filterC k old \<longrightarrow> filterC k new)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   176
   \<rbrakk> \<Longrightarrow>
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   177
    cond_override overC (filter_tab filterC t) (filter_tab filterC s) 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   178
    = filter_tab filterC (cond_override overC t s)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   179
by (auto simp add: fun_eq_iff cond_override_def filter_tab_def )
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   180
12925
99131847fb93 Added check for field/method access to operational semantics and proved the acesses valid.
schirmer
parents: 12858
diff changeset
   181
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
   182
subsubsection \<open>Misc\<close>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   183
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   184
lemma Ball_set_table: "(\<forall> (x,y)\<in> set l. P x y) \<Longrightarrow> \<forall> x. \<forall> y\<in> map_of l x: P x y"
24038
18182c4aec9e replaced make_imp by rev_mp;
wenzelm
parents: 18447
diff changeset
   185
apply (erule rev_mp)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   186
apply (induct l)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   187
apply simp
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   188
apply (simp (no_asm))
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   189
apply auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   190
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   191
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   192
lemma Ball_set_tableD: 
55518
1ddb2edf5ceb folded 'Option.set' into BNF-generated 'set_option'
blanchet
parents: 46584
diff changeset
   193
  "\<lbrakk>(\<forall> (x,y)\<in> set l. P x y); x \<in> set_option (table_of l xa)\<rbrakk> \<Longrightarrow> P xa x"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   194
apply (frule Ball_set_table)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   195
by auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   196
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   197
declare map_of_SomeD [elim]
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   198
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   199
lemma table_of_Some_in_set:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   200
"table_of l k = Some x \<Longrightarrow> (k,x) \<in> set l"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   201
by auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   202
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   203
lemma set_get_eq: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   204
  "unique l \<Longrightarrow> (k, the (table_of l k)) \<in> set l = (table_of l k \<noteq> None)"
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 16417
diff changeset
   205
by (auto dest!: weak_map_of_SomeI)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   206
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   207
lemma inj_Pair_const2: "inj (\<lambda>k. (k, C))"
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 13337
diff changeset
   208
apply (rule inj_onI)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   209
apply auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   210
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   211
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   212
lemma table_of_mapconst_SomeI:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   213
  "\<lbrakk>table_of t k = Some y'; snd y=y'; fst y=c\<rbrakk> \<Longrightarrow>
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   214
    table_of (map (\<lambda>(k,x). (k,c,x)) t) k = Some y"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   215
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   216
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   217
lemma table_of_mapconst_NoneI:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   218
  "\<lbrakk>table_of t k = None\<rbrakk> \<Longrightarrow>
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   219
    table_of (map (\<lambda>(k,x). (k,c,x)) t) k = None"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   220
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   221
45605
a89b4bc311a5 eliminated obsolete "standard";
wenzelm
parents: 41778
diff changeset
   222
lemmas table_of_map2_SomeI = inj_Pair_const2 [THEN map_of_mapk_SomeI]
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   223
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   224
lemma table_of_map_SomeI: "table_of t k = Some x \<Longrightarrow>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   225
   table_of (map (\<lambda>(k,x). (k, f x)) t) k = Some (f x)"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   226
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   227
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   228
lemma table_of_remap_SomeD:
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   229
  "table_of (map (\<lambda>((k,k'),x). (k,(k',x))) t) k = Some (k',x) \<Longrightarrow>
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   230
    table_of t (k, k') = Some x"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   231
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   232
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   233
lemma table_of_mapf_Some:
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   234
  "\<forall>x y. f x = f y \<longrightarrow> x = y \<Longrightarrow>
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   235
    table_of (map (\<lambda>(k,x). (k,f x)) t) k = Some (f x) \<Longrightarrow> table_of t k = Some x"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   236
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   237
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   238
lemma table_of_mapf_SomeD [dest!]:
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   239
  "table_of (map (\<lambda>(k,x). (k, f x)) t) k = Some z \<Longrightarrow> (\<exists>y\<in>table_of t k: z=f y)"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   240
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   241
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   242
lemma table_of_mapf_NoneD [dest!]:
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   243
  "table_of (map (\<lambda>(k,x). (k, f x)) t) k = None \<Longrightarrow> (table_of t k = None)"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   244
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   245
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   246
lemma table_of_mapkey_SomeD [dest!]:
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   247
  "table_of (map (\<lambda>(k,x). ((k,C),x)) t) (k,D) = Some x \<Longrightarrow> C = D \<and> table_of t k = Some x"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   248
  by (induct t) auto
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   249
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   250
lemma table_of_mapkey_SomeD2 [dest!]:
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   251
  "table_of (map (\<lambda>(k,x). ((k,C),x)) t) ek = Some x \<Longrightarrow>
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   252
    C = snd ek \<and> table_of t (fst ek) = Some x"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   253
  by (induct t) auto
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   254
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   255
lemma table_append_Some_iff: "table_of (xs@ys) k = Some z = 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   256
 (table_of xs k = Some z \<or> (table_of xs k = None \<and> table_of ys k = Some z))"
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13688
diff changeset
   257
apply (simp)
d9b155757dc8 *** empty log message ***
nipkow
parents: 13688
diff changeset
   258
apply (rule map_add_Some_iff)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   259
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   260
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   261
lemma table_of_filter_unique_SomeD [rule_format (no_asm)]:
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   262
  "table_of (filter P xs) k = Some z \<Longrightarrow> unique xs \<longrightarrow> table_of xs k = Some z"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   263
  by (induct xs) (auto del: map_of_SomeD intro!: map_of_SomeD)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   264
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   265
46212
d86ef6b96097 tuned white space;
wenzelm
parents: 45605
diff changeset
   266
definition Un_tables :: "('a, 'b) tables set \<Rightarrow> ('a, 'b) tables"
d86ef6b96097 tuned white space;
wenzelm
parents: 45605
diff changeset
   267
  where "Un_tables ts = (\<lambda>k. \<Union>t\<in>ts. t k)"
37956
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   268
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   269
definition overrides_t :: "('a, 'b) tables \<Rightarrow> ('a, 'b) tables \<Rightarrow> ('a, 'b) tables"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   270
    (infixl "\<oplus>\<oplus>" 100)
37956
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   271
  where "s \<oplus>\<oplus> t = (\<lambda>k. if t k = {} then s k else t k)"
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   272
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   273
definition
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   274
  hidings_entails :: "('a, 'b) tables \<Rightarrow> ('a, 'c) tables \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> bool"
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   275
    ("_ hidings _ entails _" 20)
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   276
  where "(t hidings s entails R) = (\<forall>k. \<forall>x\<in>t k. \<forall>y\<in>s k. R x y)"
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   277
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   278
definition
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
   279
  \<comment>\<open>variant for unique table:\<close>
37956
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   280
  hiding_entails :: "('a, 'b) table  \<Rightarrow> ('a, 'c) table  \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> bool"
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   281
    ("_ hiding _ entails _"  20)
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   282
  where "(t hiding  s entails R) = (\<forall>k. \<forall>x\<in>t k: \<forall>y\<in>s k: R x y)"
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   283
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   284
definition
62042
6c6ccf573479 isabelle update_cartouches -c -t;
wenzelm
parents: 61069
diff changeset
   285
  \<comment>\<open>variant for a unique table and conditional overriding:\<close>
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   286
  cond_hiding_entails :: "('a, 'b) table  \<Rightarrow> ('a, 'c) table  
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   287
                          \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> bool"  
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   288
                          ("_ hiding _ under _ entails _"  20)
37956
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   289
  where "(t hiding  s under C entails R) = (\<forall>k. \<forall>x\<in>t k: \<forall>y\<in>s k: C x y \<longrightarrow> R x y)"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   290
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   291
58887
38db8ddc0f57 modernized header;
wenzelm
parents: 55518
diff changeset
   292
subsubsection "Untables"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   293
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   294
lemma Un_tablesI [intro]:  "t \<in> ts \<Longrightarrow> x \<in> t k \<Longrightarrow> x \<in> Un_tables ts k"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   295
  by (auto simp add: Un_tables_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   296
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   297
lemma Un_tablesD [dest!]: "x \<in> Un_tables ts k \<Longrightarrow> \<exists>t. t \<in> ts \<and> x \<in> t k"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   298
  by (auto simp add: Un_tables_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   299
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   300
lemma Un_tables_empty [simp]: "Un_tables {} = (\<lambda>k. {})"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   301
  by (simp add: Un_tables_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   302
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   303
58887
38db8ddc0f57 modernized header;
wenzelm
parents: 55518
diff changeset
   304
subsubsection "overrides"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   305
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   306
lemma empty_overrides_t [simp]: "(\<lambda>k. {}) \<oplus>\<oplus> m = m"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   307
  by (simp add: overrides_t_def)
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   308
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   309
lemma overrides_empty_t [simp]: "m \<oplus>\<oplus> (\<lambda>k. {}) = m"
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   310
  by (simp add: overrides_t_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   311
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   312
lemma overrides_t_Some_iff: 
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   313
  "(x \<in> (s \<oplus>\<oplus> t) k) = (x \<in> t k \<or> t k = {} \<and> x \<in> s k)"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   314
  by (simp add: overrides_t_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   315
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   316
lemmas overrides_t_SomeD = overrides_t_Some_iff [THEN iffD1, dest!]
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   317
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   318
lemma overrides_t_right_empty [simp]: "n k = {} \<Longrightarrow> (m \<oplus>\<oplus> n) k = m k"  
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   319
  by (simp add: overrides_t_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   320
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   321
lemma overrides_t_find_right [simp]: "n k \<noteq> {} \<Longrightarrow> (m \<oplus>\<oplus> n) k = n k"  
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   322
  by (simp add: overrides_t_def)
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   323
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   324
58887
38db8ddc0f57 modernized header;
wenzelm
parents: 55518
diff changeset
   325
subsubsection "hiding entails"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   326
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   327
lemma hiding_entailsD: 
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   328
  "t hiding s entails R \<Longrightarrow> t k = Some x \<Longrightarrow> s k = Some y \<Longrightarrow> R x y"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   329
  by (simp add: hiding_entails_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   330
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   331
lemma empty_hiding_entails [simp]: "empty hiding s entails R"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   332
  by (simp add: hiding_entails_def)
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   333
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   334
lemma hiding_empty_entails [simp]: "t hiding empty entails R"
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   335
  by (simp add: hiding_entails_def)
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   336
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   337
58887
38db8ddc0f57 modernized header;
wenzelm
parents: 55518
diff changeset
   338
subsubsection "cond hiding entails"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   339
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   340
lemma cond_hiding_entailsD: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   341
"\<lbrakk>t hiding s under C entails R; t k = Some x; s k = Some y; C x y\<rbrakk> \<Longrightarrow> R x y"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   342
by (simp add: cond_hiding_entails_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   343
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   344
lemma empty_cond_hiding_entails[simp]: "empty hiding s under C entails R"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   345
by (simp add: cond_hiding_entails_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   346
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   347
lemma cond_hiding_empty_entails[simp]: "t hiding empty under C entails R"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   348
by (simp add: cond_hiding_entails_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   349
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   350
lemma hidings_entailsD: "\<lbrakk>t hidings s entails R; x \<in> t k; y \<in> s k\<rbrakk> \<Longrightarrow> R x y"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   351
by (simp add: hidings_entails_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   352
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   353
lemma hidings_empty_entails [intro!]: "t hidings (\<lambda>k. {}) entails R"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   354
apply (unfold hidings_entails_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   355
apply (simp (no_asm))
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   356
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   357
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   358
lemma empty_hidings_entails [intro!]:
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   359
  "(\<lambda>k. {}) hidings s entails R"apply (unfold hidings_entails_def)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   360
by (simp (no_asm))
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   361
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   362
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   363
(*###TO Map?*)
61069
aefe89038dd2 prefer symbols;
wenzelm
parents: 58963
diff changeset
   364
primrec atleast_free :: "('a \<rightharpoonup> 'b) => nat => bool"
37956
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   365
where
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   366
  "atleast_free m 0 = True"
ee939247b2fb modernized/unified some specifications;
wenzelm
parents: 35431
diff changeset
   367
| atleast_free_Suc: "atleast_free m (Suc n) = (\<exists>a. m a = None & (!b. atleast_free (m(a|->b)) n))"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   368
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   369
lemma atleast_free_weaken [rule_format (no_asm)]: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   370
  "!m. atleast_free m (Suc n) \<longrightarrow> atleast_free m n"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   371
apply (induct_tac "n")
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   372
apply (simp (no_asm))
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   373
apply clarify
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   374
apply (simp (no_asm))
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   375
apply (drule atleast_free_Suc [THEN iffD1])
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   376
apply fast
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   377
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   378
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   379
lemma atleast_free_SucI: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   380
"[| h a = None; !obj. atleast_free (h(a|->obj)) n |] ==> atleast_free h (Suc n)"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   381
by force
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   382
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   383
declare fun_upd_apply [simp del]
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   384
lemma atleast_free_SucD_lemma [rule_format (no_asm)]: 
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   385
" !m a. m a = None --> (!c. atleast_free (m(a|->c)) n) -->  
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   386
  (!b d. a ~= b --> atleast_free (m(b|->d)) n)"
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   387
apply (induct_tac "n")
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   388
apply  auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   389
apply (rule_tac x = "a" in exI)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   390
apply  (rule conjI)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   391
apply  (force simp add: fun_upd_apply)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   392
apply (erule_tac V = "m a = None" in thin_rl)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   393
apply clarify
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   394
apply (subst fun_upd_twist)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   395
apply  (erule not_sym)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   396
apply (rename_tac "ba")
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   397
apply (drule_tac x = "ba" in spec)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   398
apply clarify
58963
26bf09b95dda proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents: 58887
diff changeset
   399
apply (tactic "smp_tac @{context} 2 1")
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   400
apply (erule (1) notE impE)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   401
apply (case_tac "aa = b")
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   402
apply fast+
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   403
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   404
declare fun_upd_apply [simp]
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   405
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   406
lemma atleast_free_SucD: "atleast_free h (Suc n) ==> atleast_free (h(a|->b)) n"
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   407
apply auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   408
apply (case_tac "aa = a")
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   409
apply auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   410
apply (erule atleast_free_SucD_lemma)
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   411
apply auto
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   412
done
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   413
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   414
declare atleast_free_Suc [simp del]
46584
a935175fe6b6 tuned proofs;
wenzelm
parents: 46212
diff changeset
   415
12854
00d4a435777f Isabelle/Bali sources;
schirmer
parents:
diff changeset
   416
end