66277
|
1 |
(*
|
|
2 |
File: HOL/Analysis/Infinite_Product.thy
|
|
3 |
Author: Manuel Eberl
|
|
4 |
|
|
5 |
Basic results about convergence and absolute convergence of infinite products
|
|
6 |
and their connection to summability.
|
|
7 |
*)
|
|
8 |
section \<open>Infinite Products\<close>
|
|
9 |
theory Infinite_Products
|
|
10 |
imports Complex_Main
|
|
11 |
begin
|
|
12 |
|
|
13 |
lemma sum_le_prod:
|
|
14 |
fixes f :: "'a \<Rightarrow> 'b :: linordered_semidom"
|
|
15 |
assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
|
|
16 |
shows "sum f A \<le> (\<Prod>x\<in>A. 1 + f x)"
|
|
17 |
using assms
|
|
18 |
proof (induction A rule: infinite_finite_induct)
|
|
19 |
case (insert x A)
|
|
20 |
from insert.hyps have "sum f A + f x * (\<Prod>x\<in>A. 1) \<le> (\<Prod>x\<in>A. 1 + f x) + f x * (\<Prod>x\<in>A. 1 + f x)"
|
|
21 |
by (intro add_mono insert mult_left_mono prod_mono) (auto intro: insert.prems)
|
|
22 |
with insert.hyps show ?case by (simp add: algebra_simps)
|
|
23 |
qed simp_all
|
|
24 |
|
|
25 |
lemma prod_le_exp_sum:
|
|
26 |
fixes f :: "'a \<Rightarrow> real"
|
|
27 |
assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
|
|
28 |
shows "prod (\<lambda>x. 1 + f x) A \<le> exp (sum f A)"
|
|
29 |
using assms
|
|
30 |
proof (induction A rule: infinite_finite_induct)
|
|
31 |
case (insert x A)
|
|
32 |
have "(1 + f x) * (\<Prod>x\<in>A. 1 + f x) \<le> exp (f x) * exp (sum f A)"
|
|
33 |
using insert.prems by (intro mult_mono insert prod_nonneg exp_ge_add_one_self) auto
|
|
34 |
with insert.hyps show ?case by (simp add: algebra_simps exp_add)
|
|
35 |
qed simp_all
|
|
36 |
|
|
37 |
lemma lim_ln_1_plus_x_over_x_at_0: "(\<lambda>x::real. ln (1 + x) / x) \<midarrow>0\<rightarrow> 1"
|
|
38 |
proof (rule lhopital)
|
|
39 |
show "(\<lambda>x::real. ln (1 + x)) \<midarrow>0\<rightarrow> 0"
|
|
40 |
by (rule tendsto_eq_intros refl | simp)+
|
|
41 |
have "eventually (\<lambda>x::real. x \<in> {-1/2<..<1/2}) (nhds 0)"
|
|
42 |
by (rule eventually_nhds_in_open) auto
|
|
43 |
hence *: "eventually (\<lambda>x::real. x \<in> {-1/2<..<1/2}) (at 0)"
|
|
44 |
by (rule filter_leD [rotated]) (simp_all add: at_within_def)
|
|
45 |
show "eventually (\<lambda>x::real. ((\<lambda>x. ln (1 + x)) has_field_derivative inverse (1 + x)) (at x)) (at 0)"
|
|
46 |
using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
|
|
47 |
show "eventually (\<lambda>x::real. ((\<lambda>x. x) has_field_derivative 1) (at x)) (at 0)"
|
|
48 |
using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
|
|
49 |
show "\<forall>\<^sub>F x in at 0. x \<noteq> 0" by (auto simp: at_within_def eventually_inf_principal)
|
|
50 |
show "(\<lambda>x::real. inverse (1 + x) / 1) \<midarrow>0\<rightarrow> 1"
|
|
51 |
by (rule tendsto_eq_intros refl | simp)+
|
|
52 |
qed auto
|
|
53 |
|
|
54 |
definition convergent_prod :: "(nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}) \<Rightarrow> bool" where
|
|
55 |
"convergent_prod f \<longleftrightarrow> (\<exists>M L. (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)"
|
|
56 |
|
|
57 |
lemma convergent_prod_altdef:
|
|
58 |
fixes f :: "nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}"
|
|
59 |
shows "convergent_prod f \<longleftrightarrow> (\<exists>M L. (\<forall>n\<ge>M. f n \<noteq> 0) \<and> (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)"
|
|
60 |
proof
|
|
61 |
assume "convergent_prod f"
|
|
62 |
then obtain M L where *: "(\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L" "L \<noteq> 0"
|
|
63 |
by (auto simp: convergent_prod_def)
|
|
64 |
have "f i \<noteq> 0" if "i \<ge> M" for i
|
|
65 |
proof
|
|
66 |
assume "f i = 0"
|
|
67 |
have **: "eventually (\<lambda>n. (\<Prod>i\<le>n. f (i+M)) = 0) sequentially"
|
|
68 |
using eventually_ge_at_top[of "i - M"]
|
|
69 |
proof eventually_elim
|
|
70 |
case (elim n)
|
|
71 |
with \<open>f i = 0\<close> and \<open>i \<ge> M\<close> show ?case
|
|
72 |
by (auto intro!: bexI[of _ "i - M"] prod_zero)
|
|
73 |
qed
|
|
74 |
have "(\<lambda>n. (\<Prod>i\<le>n. f (i+M))) \<longlonglongrightarrow> 0"
|
|
75 |
unfolding filterlim_iff
|
|
76 |
by (auto dest!: eventually_nhds_x_imp_x intro!: eventually_mono[OF **])
|
|
77 |
from tendsto_unique[OF _ this *(1)] and *(2)
|
|
78 |
show False by simp
|
|
79 |
qed
|
|
80 |
with * show "(\<exists>M L. (\<forall>n\<ge>M. f n \<noteq> 0) \<and> (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)"
|
|
81 |
by blast
|
|
82 |
qed (auto simp: convergent_prod_def)
|
|
83 |
|
|
84 |
definition abs_convergent_prod :: "(nat \<Rightarrow> _) \<Rightarrow> bool" where
|
|
85 |
"abs_convergent_prod f \<longleftrightarrow> convergent_prod (\<lambda>i. 1 + norm (f i - 1))"
|
|
86 |
|
|
87 |
lemma abs_convergent_prodI:
|
|
88 |
assumes "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
|
|
89 |
shows "abs_convergent_prod f"
|
|
90 |
proof -
|
|
91 |
from assms obtain L where L: "(\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1)) \<longlonglongrightarrow> L"
|
|
92 |
by (auto simp: convergent_def)
|
|
93 |
have "L \<ge> 1"
|
|
94 |
proof (rule tendsto_le)
|
|
95 |
show "eventually (\<lambda>n. (\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> 1) sequentially"
|
|
96 |
proof (intro always_eventually allI)
|
|
97 |
fix n
|
|
98 |
have "(\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> (\<Prod>i\<le>n. 1)"
|
|
99 |
by (intro prod_mono) auto
|
|
100 |
thus "(\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> 1" by simp
|
|
101 |
qed
|
|
102 |
qed (use L in simp_all)
|
|
103 |
hence "L \<noteq> 0" by auto
|
|
104 |
with L show ?thesis unfolding abs_convergent_prod_def convergent_prod_def
|
|
105 |
by (intro exI[of _ "0::nat"] exI[of _ L]) auto
|
|
106 |
qed
|
|
107 |
|
|
108 |
lemma
|
|
109 |
fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,idom}"
|
|
110 |
assumes "convergent_prod f"
|
|
111 |
shows convergent_prod_imp_convergent: "convergent (\<lambda>n. \<Prod>i\<le>n. f i)"
|
|
112 |
and convergent_prod_to_zero_iff: "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<exists>i. f i = 0)"
|
|
113 |
proof -
|
|
114 |
from assms obtain M L
|
|
115 |
where M: "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0" and "(\<lambda>n. \<Prod>i\<le>n. f (i + M)) \<longlonglongrightarrow> L" and "L \<noteq> 0"
|
|
116 |
by (auto simp: convergent_prod_altdef)
|
|
117 |
note this(2)
|
|
118 |
also have "(\<lambda>n. \<Prod>i\<le>n. f (i + M)) = (\<lambda>n. \<Prod>i=M..M+n. f i)"
|
|
119 |
by (intro ext prod.reindex_bij_witness[of _ "\<lambda>n. n - M" "\<lambda>n. n + M"]) auto
|
|
120 |
finally have "(\<lambda>n. (\<Prod>i<M. f i) * (\<Prod>i=M..M+n. f i)) \<longlonglongrightarrow> (\<Prod>i<M. f i) * L"
|
|
121 |
by (intro tendsto_mult tendsto_const)
|
|
122 |
also have "(\<lambda>n. (\<Prod>i<M. f i) * (\<Prod>i=M..M+n. f i)) = (\<lambda>n. (\<Prod>i\<in>{..<M}\<union>{M..M+n}. f i))"
|
|
123 |
by (subst prod.union_disjoint) auto
|
|
124 |
also have "(\<lambda>n. {..<M} \<union> {M..M+n}) = (\<lambda>n. {..n+M})" by auto
|
|
125 |
finally have lim: "(\<lambda>n. prod f {..n}) \<longlonglongrightarrow> prod f {..<M} * L"
|
|
126 |
by (rule LIMSEQ_offset)
|
|
127 |
thus "convergent (\<lambda>n. \<Prod>i\<le>n. f i)"
|
|
128 |
by (auto simp: convergent_def)
|
|
129 |
|
|
130 |
show "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<exists>i. f i = 0)"
|
|
131 |
proof
|
|
132 |
assume "\<exists>i. f i = 0"
|
|
133 |
then obtain i where "f i = 0" by auto
|
|
134 |
moreover with M have "i < M" by (cases "i < M") auto
|
|
135 |
ultimately have "(\<Prod>i<M. f i) = 0" by auto
|
|
136 |
with lim show "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0" by simp
|
|
137 |
next
|
|
138 |
assume "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0"
|
|
139 |
from tendsto_unique[OF _ this lim] and \<open>L \<noteq> 0\<close>
|
|
140 |
show "\<exists>i. f i = 0" by auto
|
|
141 |
qed
|
|
142 |
qed
|
|
143 |
|
|
144 |
lemma abs_convergent_prod_altdef:
|
|
145 |
"abs_convergent_prod f \<longleftrightarrow> convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
|
|
146 |
proof
|
|
147 |
assume "abs_convergent_prod f"
|
|
148 |
thus "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
|
|
149 |
by (auto simp: abs_convergent_prod_def intro!: convergent_prod_imp_convergent)
|
|
150 |
qed (auto intro: abs_convergent_prodI)
|
|
151 |
|
|
152 |
lemma weierstrass_prod_ineq:
|
|
153 |
fixes f :: "'a \<Rightarrow> real"
|
|
154 |
assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<in> {0..1}"
|
|
155 |
shows "1 - sum f A \<le> (\<Prod>x\<in>A. 1 - f x)"
|
|
156 |
using assms
|
|
157 |
proof (induction A rule: infinite_finite_induct)
|
|
158 |
case (insert x A)
|
|
159 |
from insert.hyps and insert.prems
|
|
160 |
have "1 - sum f A + f x * (\<Prod>x\<in>A. 1 - f x) \<le> (\<Prod>x\<in>A. 1 - f x) + f x * (\<Prod>x\<in>A. 1)"
|
|
161 |
by (intro insert.IH add_mono mult_left_mono prod_mono) auto
|
|
162 |
with insert.hyps show ?case by (simp add: algebra_simps)
|
|
163 |
qed simp_all
|
|
164 |
|
|
165 |
lemma norm_prod_minus1_le_prod_minus1:
|
|
166 |
fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,comm_ring_1}"
|
|
167 |
shows "norm (prod (\<lambda>n. 1 + f n) A - 1) \<le> prod (\<lambda>n. 1 + norm (f n)) A - 1"
|
|
168 |
proof (induction A rule: infinite_finite_induct)
|
|
169 |
case (insert x A)
|
|
170 |
from insert.hyps have
|
|
171 |
"norm ((\<Prod>n\<in>insert x A. 1 + f n) - 1) =
|
|
172 |
norm ((\<Prod>n\<in>A. 1 + f n) - 1 + f x * (\<Prod>n\<in>A. 1 + f n))"
|
|
173 |
by (simp add: algebra_simps)
|
|
174 |
also have "\<dots> \<le> norm ((\<Prod>n\<in>A. 1 + f n) - 1) + norm (f x * (\<Prod>n\<in>A. 1 + f n))"
|
|
175 |
by (rule norm_triangle_ineq)
|
|
176 |
also have "norm (f x * (\<Prod>n\<in>A. 1 + f n)) = norm (f x) * (\<Prod>x\<in>A. norm (1 + f x))"
|
|
177 |
by (simp add: prod_norm norm_mult)
|
|
178 |
also have "(\<Prod>x\<in>A. norm (1 + f x)) \<le> (\<Prod>x\<in>A. norm (1::'a) + norm (f x))"
|
|
179 |
by (intro prod_mono norm_triangle_ineq ballI conjI) auto
|
|
180 |
also have "norm (1::'a) = 1" by simp
|
|
181 |
also note insert.IH
|
|
182 |
also have "(\<Prod>n\<in>A. 1 + norm (f n)) - 1 + norm (f x) * (\<Prod>x\<in>A. 1 + norm (f x)) =
|
|
183 |
(\<Prod>n\<in>insert x A. 1 + norm (f n)) - 1"
|
|
184 |
using insert.hyps by (simp add: algebra_simps)
|
|
185 |
finally show ?case by - (simp_all add: mult_left_mono)
|
|
186 |
qed simp_all
|
|
187 |
|
|
188 |
lemma convergent_prod_imp_ev_nonzero:
|
|
189 |
fixes f :: "nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}"
|
|
190 |
assumes "convergent_prod f"
|
|
191 |
shows "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
|
|
192 |
using assms by (auto simp: eventually_at_top_linorder convergent_prod_altdef)
|
|
193 |
|
|
194 |
lemma convergent_prod_imp_LIMSEQ:
|
|
195 |
fixes f :: "nat \<Rightarrow> 'a :: {real_normed_field}"
|
|
196 |
assumes "convergent_prod f"
|
|
197 |
shows "f \<longlonglongrightarrow> 1"
|
|
198 |
proof -
|
|
199 |
from assms obtain M L where L: "(\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L" "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0" "L \<noteq> 0"
|
|
200 |
by (auto simp: convergent_prod_altdef)
|
|
201 |
hence L': "(\<lambda>n. \<Prod>i\<le>Suc n. f (i+M)) \<longlonglongrightarrow> L" by (subst filterlim_sequentially_Suc)
|
|
202 |
have "(\<lambda>n. (\<Prod>i\<le>Suc n. f (i+M)) / (\<Prod>i\<le>n. f (i+M))) \<longlonglongrightarrow> L / L"
|
|
203 |
using L L' by (intro tendsto_divide) simp_all
|
|
204 |
also from L have "L / L = 1" by simp
|
|
205 |
also have "(\<lambda>n. (\<Prod>i\<le>Suc n. f (i+M)) / (\<Prod>i\<le>n. f (i+M))) = (\<lambda>n. f (n + Suc M))"
|
|
206 |
using assms L by (auto simp: fun_eq_iff atMost_Suc)
|
|
207 |
finally show ?thesis by (rule LIMSEQ_offset)
|
|
208 |
qed
|
|
209 |
|
|
210 |
lemma abs_convergent_prod_imp_summable:
|
|
211 |
fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
|
|
212 |
assumes "abs_convergent_prod f"
|
|
213 |
shows "summable (\<lambda>i. norm (f i - 1))"
|
|
214 |
proof -
|
|
215 |
from assms have "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
|
|
216 |
unfolding abs_convergent_prod_def by (rule convergent_prod_imp_convergent)
|
|
217 |
then obtain L where L: "(\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1)) \<longlonglongrightarrow> L"
|
|
218 |
unfolding convergent_def by blast
|
|
219 |
have "convergent (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))"
|
|
220 |
proof (rule Bseq_monoseq_convergent)
|
|
221 |
have "eventually (\<lambda>n. (\<Prod>i\<le>n. 1 + norm (f i - 1)) < L + 1) sequentially"
|
|
222 |
using L(1) by (rule order_tendstoD) simp_all
|
|
223 |
hence "\<forall>\<^sub>F x in sequentially. norm (\<Sum>i\<le>x. norm (f i - 1)) \<le> L + 1"
|
|
224 |
proof eventually_elim
|
|
225 |
case (elim n)
|
|
226 |
have "norm (\<Sum>i\<le>n. norm (f i - 1)) = (\<Sum>i\<le>n. norm (f i - 1))"
|
|
227 |
unfolding real_norm_def by (intro abs_of_nonneg sum_nonneg) simp_all
|
|
228 |
also have "\<dots> \<le> (\<Prod>i\<le>n. 1 + norm (f i - 1))" by (rule sum_le_prod) auto
|
|
229 |
also have "\<dots> < L + 1" by (rule elim)
|
|
230 |
finally show ?case by simp
|
|
231 |
qed
|
|
232 |
thus "Bseq (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))" by (rule BfunI)
|
|
233 |
next
|
|
234 |
show "monoseq (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))"
|
|
235 |
by (rule mono_SucI1) auto
|
|
236 |
qed
|
|
237 |
thus "summable (\<lambda>i. norm (f i - 1))" by (simp add: summable_iff_convergent')
|
|
238 |
qed
|
|
239 |
|
|
240 |
lemma summable_imp_abs_convergent_prod:
|
|
241 |
fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
|
|
242 |
assumes "summable (\<lambda>i. norm (f i - 1))"
|
|
243 |
shows "abs_convergent_prod f"
|
|
244 |
proof (intro abs_convergent_prodI Bseq_monoseq_convergent)
|
|
245 |
show "monoseq (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
|
|
246 |
by (intro mono_SucI1)
|
|
247 |
(auto simp: atMost_Suc algebra_simps intro!: mult_nonneg_nonneg prod_nonneg)
|
|
248 |
next
|
|
249 |
show "Bseq (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
|
|
250 |
proof (rule Bseq_eventually_mono)
|
|
251 |
show "eventually (\<lambda>n. norm (\<Prod>i\<le>n. 1 + norm (f i - 1)) \<le>
|
|
252 |
norm (exp (\<Sum>i\<le>n. norm (f i - 1)))) sequentially"
|
|
253 |
by (intro always_eventually allI) (auto simp: abs_prod exp_sum intro!: prod_mono)
|
|
254 |
next
|
|
255 |
from assms have "(\<lambda>n. \<Sum>i\<le>n. norm (f i - 1)) \<longlonglongrightarrow> (\<Sum>i. norm (f i - 1))"
|
|
256 |
using sums_def_le by blast
|
|
257 |
hence "(\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1))) \<longlonglongrightarrow> exp (\<Sum>i. norm (f i - 1))"
|
|
258 |
by (rule tendsto_exp)
|
|
259 |
hence "convergent (\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1)))"
|
|
260 |
by (rule convergentI)
|
|
261 |
thus "Bseq (\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1)))"
|
|
262 |
by (rule convergent_imp_Bseq)
|
|
263 |
qed
|
|
264 |
qed
|
|
265 |
|
|
266 |
lemma abs_convergent_prod_conv_summable:
|
|
267 |
fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
|
|
268 |
shows "abs_convergent_prod f \<longleftrightarrow> summable (\<lambda>i. norm (f i - 1))"
|
|
269 |
by (blast intro: abs_convergent_prod_imp_summable summable_imp_abs_convergent_prod)
|
|
270 |
|
|
271 |
lemma abs_convergent_prod_imp_LIMSEQ:
|
|
272 |
fixes f :: "nat \<Rightarrow> 'a :: {comm_ring_1,real_normed_div_algebra}"
|
|
273 |
assumes "abs_convergent_prod f"
|
|
274 |
shows "f \<longlonglongrightarrow> 1"
|
|
275 |
proof -
|
|
276 |
from assms have "summable (\<lambda>n. norm (f n - 1))"
|
|
277 |
by (rule abs_convergent_prod_imp_summable)
|
|
278 |
from summable_LIMSEQ_zero[OF this] have "(\<lambda>n. f n - 1) \<longlonglongrightarrow> 0"
|
|
279 |
by (simp add: tendsto_norm_zero_iff)
|
|
280 |
from tendsto_add[OF this tendsto_const[of 1]] show ?thesis by simp
|
|
281 |
qed
|
|
282 |
|
|
283 |
lemma abs_convergent_prod_imp_ev_nonzero:
|
|
284 |
fixes f :: "nat \<Rightarrow> 'a :: {comm_ring_1,real_normed_div_algebra}"
|
|
285 |
assumes "abs_convergent_prod f"
|
|
286 |
shows "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
|
|
287 |
proof -
|
|
288 |
from assms have "f \<longlonglongrightarrow> 1"
|
|
289 |
by (rule abs_convergent_prod_imp_LIMSEQ)
|
|
290 |
hence "eventually (\<lambda>n. dist (f n) 1 < 1) at_top"
|
|
291 |
by (auto simp: tendsto_iff)
|
|
292 |
thus ?thesis by eventually_elim auto
|
|
293 |
qed
|
|
294 |
|
|
295 |
lemma convergent_prod_offset:
|
|
296 |
assumes "convergent_prod (\<lambda>n. f (n + m))"
|
|
297 |
shows "convergent_prod f"
|
|
298 |
proof -
|
|
299 |
from assms obtain M L where "(\<lambda>n. \<Prod>k\<le>n. f (k + (M + m))) \<longlonglongrightarrow> L" "L \<noteq> 0"
|
|
300 |
by (auto simp: convergent_prod_def add.assoc)
|
|
301 |
thus "convergent_prod f" unfolding convergent_prod_def by blast
|
|
302 |
qed
|
|
303 |
|
|
304 |
lemma abs_convergent_prod_offset:
|
|
305 |
assumes "abs_convergent_prod (\<lambda>n. f (n + m))"
|
|
306 |
shows "abs_convergent_prod f"
|
|
307 |
using assms unfolding abs_convergent_prod_def by (rule convergent_prod_offset)
|
|
308 |
|
|
309 |
lemma convergent_prod_ignore_initial_segment:
|
|
310 |
fixes f :: "nat \<Rightarrow> 'a :: {real_normed_field}"
|
|
311 |
assumes "convergent_prod f"
|
|
312 |
shows "convergent_prod (\<lambda>n. f (n + m))"
|
|
313 |
proof -
|
|
314 |
from assms obtain M L
|
|
315 |
where L: "(\<lambda>n. \<Prod>k\<le>n. f (k + M)) \<longlonglongrightarrow> L" "L \<noteq> 0" and nz: "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0"
|
|
316 |
by (auto simp: convergent_prod_altdef)
|
|
317 |
define C where "C = (\<Prod>k<m. f (k + M))"
|
|
318 |
from nz have [simp]: "C \<noteq> 0"
|
|
319 |
by (auto simp: C_def)
|
|
320 |
|
|
321 |
from L(1) have "(\<lambda>n. \<Prod>k\<le>n+m. f (k + M)) \<longlonglongrightarrow> L"
|
|
322 |
by (rule LIMSEQ_ignore_initial_segment)
|
|
323 |
also have "(\<lambda>n. \<Prod>k\<le>n+m. f (k + M)) = (\<lambda>n. C * (\<Prod>k\<le>n. f (k + M + m)))"
|
|
324 |
proof (rule ext, goal_cases)
|
|
325 |
case (1 n)
|
|
326 |
have "{..n+m} = {..<m} \<union> {m..n+m}" by auto
|
|
327 |
also have "(\<Prod>k\<in>\<dots>. f (k + M)) = C * (\<Prod>k=m..n+m. f (k + M))"
|
|
328 |
unfolding C_def by (rule prod.union_disjoint) auto
|
|
329 |
also have "(\<Prod>k=m..n+m. f (k + M)) = (\<Prod>k\<le>n. f (k + m + M))"
|
|
330 |
by (intro ext prod.reindex_bij_witness[of _ "\<lambda>k. k + m" "\<lambda>k. k - m"]) auto
|
|
331 |
finally show ?case by (simp add: add_ac)
|
|
332 |
qed
|
|
333 |
finally have "(\<lambda>n. C * (\<Prod>k\<le>n. f (k + M + m)) / C) \<longlonglongrightarrow> L / C"
|
|
334 |
by (intro tendsto_divide tendsto_const) auto
|
|
335 |
hence "(\<lambda>n. \<Prod>k\<le>n. f (k + M + m)) \<longlonglongrightarrow> L / C" by simp
|
|
336 |
moreover from \<open>L \<noteq> 0\<close> have "L / C \<noteq> 0" by simp
|
|
337 |
ultimately show ?thesis unfolding convergent_prod_def by blast
|
|
338 |
qed
|
|
339 |
|
|
340 |
lemma abs_convergent_prod_ignore_initial_segment:
|
|
341 |
assumes "abs_convergent_prod f"
|
|
342 |
shows "abs_convergent_prod (\<lambda>n. f (n + m))"
|
|
343 |
using assms unfolding abs_convergent_prod_def
|
|
344 |
by (rule convergent_prod_ignore_initial_segment)
|
|
345 |
|
|
346 |
lemma summable_LIMSEQ':
|
|
347 |
assumes "summable (f::nat\<Rightarrow>'a::{t2_space,comm_monoid_add})"
|
|
348 |
shows "(\<lambda>n. \<Sum>i\<le>n. f i) \<longlonglongrightarrow> suminf f"
|
|
349 |
using assms sums_def_le by blast
|
|
350 |
|
|
351 |
lemma abs_convergent_prod_imp_convergent_prod:
|
|
352 |
fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,complete_space,comm_ring_1}"
|
|
353 |
assumes "abs_convergent_prod f"
|
|
354 |
shows "convergent_prod f"
|
|
355 |
proof -
|
|
356 |
from assms have "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
|
|
357 |
by (rule abs_convergent_prod_imp_ev_nonzero)
|
|
358 |
then obtain N where N: "f n \<noteq> 0" if "n \<ge> N" for n
|
|
359 |
by (auto simp: eventually_at_top_linorder)
|
|
360 |
let ?P = "\<lambda>n. \<Prod>i\<le>n. f (i + N)" and ?Q = "\<lambda>n. \<Prod>i\<le>n. 1 + norm (f (i + N) - 1)"
|
|
361 |
|
|
362 |
have "Cauchy ?P"
|
|
363 |
proof (rule CauchyI', goal_cases)
|
|
364 |
case (1 \<epsilon>)
|
|
365 |
from assms have "abs_convergent_prod (\<lambda>n. f (n + N))"
|
|
366 |
by (rule abs_convergent_prod_ignore_initial_segment)
|
|
367 |
hence "Cauchy ?Q"
|
|
368 |
unfolding abs_convergent_prod_def
|
|
369 |
by (intro convergent_Cauchy convergent_prod_imp_convergent)
|
|
370 |
from CauchyD[OF this 1] obtain M where M: "norm (?Q m - ?Q n) < \<epsilon>" if "m \<ge> M" "n \<ge> M" for m n
|
|
371 |
by blast
|
|
372 |
show ?case
|
|
373 |
proof (rule exI[of _ M], safe, goal_cases)
|
|
374 |
case (1 m n)
|
|
375 |
have "dist (?P m) (?P n) = norm (?P n - ?P m)"
|
|
376 |
by (simp add: dist_norm norm_minus_commute)
|
|
377 |
also from 1 have "{..n} = {..m} \<union> {m<..n}" by auto
|
|
378 |
hence "norm (?P n - ?P m) = norm (?P m * (\<Prod>k\<in>{m<..n}. f (k + N)) - ?P m)"
|
|
379 |
by (subst prod.union_disjoint [symmetric]) (auto simp: algebra_simps)
|
|
380 |
also have "\<dots> = norm (?P m * ((\<Prod>k\<in>{m<..n}. f (k + N)) - 1))"
|
|
381 |
by (simp add: algebra_simps)
|
|
382 |
also have "\<dots> = (\<Prod>k\<le>m. norm (f (k + N))) * norm ((\<Prod>k\<in>{m<..n}. f (k + N)) - 1)"
|
|
383 |
by (simp add: norm_mult prod_norm)
|
|
384 |
also have "\<dots> \<le> ?Q m * ((\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) - 1)"
|
|
385 |
using norm_prod_minus1_le_prod_minus1[of "\<lambda>k. f (k + N) - 1" "{m<..n}"]
|
|
386 |
norm_triangle_ineq[of 1 "f k - 1" for k]
|
|
387 |
by (intro mult_mono prod_mono ballI conjI norm_prod_minus1_le_prod_minus1 prod_nonneg) auto
|
|
388 |
also have "\<dots> = ?Q m * (\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) - ?Q m"
|
|
389 |
by (simp add: algebra_simps)
|
|
390 |
also have "?Q m * (\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) =
|
|
391 |
(\<Prod>k\<in>{..m}\<union>{m<..n}. 1 + norm (f (k + N) - 1))"
|
|
392 |
by (rule prod.union_disjoint [symmetric]) auto
|
|
393 |
also from 1 have "{..m}\<union>{m<..n} = {..n}" by auto
|
|
394 |
also have "?Q n - ?Q m \<le> norm (?Q n - ?Q m)" by simp
|
|
395 |
also from 1 have "\<dots> < \<epsilon>" by (intro M) auto
|
|
396 |
finally show ?case .
|
|
397 |
qed
|
|
398 |
qed
|
|
399 |
hence conv: "convergent ?P" by (rule Cauchy_convergent)
|
|
400 |
then obtain L where L: "?P \<longlonglongrightarrow> L"
|
|
401 |
by (auto simp: convergent_def)
|
|
402 |
|
|
403 |
have "L \<noteq> 0"
|
|
404 |
proof
|
|
405 |
assume [simp]: "L = 0"
|
|
406 |
from tendsto_norm[OF L] have limit: "(\<lambda>n. \<Prod>k\<le>n. norm (f (k + N))) \<longlonglongrightarrow> 0"
|
|
407 |
by (simp add: prod_norm)
|
|
408 |
|
|
409 |
from assms have "(\<lambda>n. f (n + N)) \<longlonglongrightarrow> 1"
|
|
410 |
by (intro abs_convergent_prod_imp_LIMSEQ abs_convergent_prod_ignore_initial_segment)
|
|
411 |
hence "eventually (\<lambda>n. norm (f (n + N) - 1) < 1) sequentially"
|
|
412 |
by (auto simp: tendsto_iff dist_norm)
|
|
413 |
then obtain M0 where M0: "norm (f (n + N) - 1) < 1" if "n \<ge> M0" for n
|
|
414 |
by (auto simp: eventually_at_top_linorder)
|
|
415 |
|
|
416 |
{
|
|
417 |
fix M assume M: "M \<ge> M0"
|
|
418 |
with M0 have M: "norm (f (n + N) - 1) < 1" if "n \<ge> M" for n using that by simp
|
|
419 |
|
|
420 |
have "(\<lambda>n. \<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<longlonglongrightarrow> 0"
|
|
421 |
proof (rule tendsto_sandwich)
|
|
422 |
show "eventually (\<lambda>n. (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<ge> 0) sequentially"
|
|
423 |
using M by (intro always_eventually prod_nonneg allI ballI) (auto intro: less_imp_le)
|
|
424 |
have "norm (1::'a) - norm (f (i + M + N) - 1) \<le> norm (f (i + M + N))" for i
|
|
425 |
using norm_triangle_ineq3[of "f (i + M + N)" 1] by simp
|
|
426 |
thus "eventually (\<lambda>n. (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<le> (\<Prod>k\<le>n. norm (f (k+M+N)))) at_top"
|
|
427 |
using M by (intro always_eventually allI prod_mono ballI conjI) (auto intro: less_imp_le)
|
|
428 |
|
|
429 |
define C where "C = (\<Prod>k<M. norm (f (k + N)))"
|
|
430 |
from N have [simp]: "C \<noteq> 0" by (auto simp: C_def)
|
|
431 |
from L have "(\<lambda>n. norm (\<Prod>k\<le>n+M. f (k + N))) \<longlonglongrightarrow> 0"
|
|
432 |
by (intro LIMSEQ_ignore_initial_segment) (simp add: tendsto_norm_zero_iff)
|
|
433 |
also have "(\<lambda>n. norm (\<Prod>k\<le>n+M. f (k + N))) = (\<lambda>n. C * (\<Prod>k\<le>n. norm (f (k + M + N))))"
|
|
434 |
proof (rule ext, goal_cases)
|
|
435 |
case (1 n)
|
|
436 |
have "{..n+M} = {..<M} \<union> {M..n+M}" by auto
|
|
437 |
also have "norm (\<Prod>k\<in>\<dots>. f (k + N)) = C * norm (\<Prod>k=M..n+M. f (k + N))"
|
|
438 |
unfolding C_def by (subst prod.union_disjoint) (auto simp: norm_mult prod_norm)
|
|
439 |
also have "(\<Prod>k=M..n+M. f (k + N)) = (\<Prod>k\<le>n. f (k + N + M))"
|
|
440 |
by (intro prod.reindex_bij_witness[of _ "\<lambda>i. i + M" "\<lambda>i. i - M"]) auto
|
|
441 |
finally show ?case by (simp add: add_ac prod_norm)
|
|
442 |
qed
|
|
443 |
finally have "(\<lambda>n. C * (\<Prod>k\<le>n. norm (f (k + M + N))) / C) \<longlonglongrightarrow> 0 / C"
|
|
444 |
by (intro tendsto_divide tendsto_const) auto
|
|
445 |
thus "(\<lambda>n. \<Prod>k\<le>n. norm (f (k + M + N))) \<longlonglongrightarrow> 0" by simp
|
|
446 |
qed simp_all
|
|
447 |
|
|
448 |
have "1 - (\<Sum>i. norm (f (i + M + N) - 1)) \<le> 0"
|
|
449 |
proof (rule tendsto_le)
|
|
450 |
show "eventually (\<lambda>n. 1 - (\<Sum>k\<le>n. norm (f (k+M+N) - 1)) \<le>
|
|
451 |
(\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1))) at_top"
|
|
452 |
using M by (intro always_eventually allI weierstrass_prod_ineq) (auto intro: less_imp_le)
|
|
453 |
show "(\<lambda>n. \<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<longlonglongrightarrow> 0" by fact
|
|
454 |
show "(\<lambda>n. 1 - (\<Sum>k\<le>n. norm (f (k + M + N) - 1)))
|
|
455 |
\<longlonglongrightarrow> 1 - (\<Sum>i. norm (f (i + M + N) - 1))"
|
|
456 |
by (intro tendsto_intros summable_LIMSEQ' summable_ignore_initial_segment
|
|
457 |
abs_convergent_prod_imp_summable assms)
|
|
458 |
qed simp_all
|
|
459 |
hence "(\<Sum>i. norm (f (i + M + N) - 1)) \<ge> 1" by simp
|
|
460 |
also have "\<dots> + (\<Sum>i<M. norm (f (i + N) - 1)) = (\<Sum>i. norm (f (i + N) - 1))"
|
|
461 |
by (intro suminf_split_initial_segment [symmetric] summable_ignore_initial_segment
|
|
462 |
abs_convergent_prod_imp_summable assms)
|
|
463 |
finally have "1 + (\<Sum>i<M. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))" by simp
|
|
464 |
} note * = this
|
|
465 |
|
|
466 |
have "1 + (\<Sum>i. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))"
|
|
467 |
proof (rule tendsto_le)
|
|
468 |
show "(\<lambda>M. 1 + (\<Sum>i<M. norm (f (i + N) - 1))) \<longlonglongrightarrow> 1 + (\<Sum>i. norm (f (i + N) - 1))"
|
|
469 |
by (intro tendsto_intros summable_LIMSEQ summable_ignore_initial_segment
|
|
470 |
abs_convergent_prod_imp_summable assms)
|
|
471 |
show "eventually (\<lambda>M. 1 + (\<Sum>i<M. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))) at_top"
|
|
472 |
using eventually_ge_at_top[of M0] by eventually_elim (use * in auto)
|
|
473 |
qed simp_all
|
|
474 |
thus False by simp
|
|
475 |
qed
|
|
476 |
with L show ?thesis by (auto simp: convergent_prod_def)
|
|
477 |
qed
|
|
478 |
|
|
479 |
end
|