author | wenzelm |
Sun, 12 Aug 2018 14:28:28 +0200 | |
changeset 68743 | 91162dd89571 |
parent 68605 | 440aa6b7d99a |
child 69122 | 1b5178abaf97 |
permissions | -rw-r--r-- |
68582 | 1 |
(* Title: HOL/Algebra/Solvable_Groups.thy |
2 |
Author: Paulo Emílio de Vilhena |
|
3 |
*) |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
4 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
5 |
theory Solvable_Groups |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
6 |
imports Group Coset Generated_Groups |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
7 |
begin |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
8 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
9 |
inductive solvable_seq :: "('a, 'b) monoid_scheme \<Rightarrow> 'a set \<Rightarrow> bool" for G where |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
10 |
unity: "solvable_seq G { \<one>\<^bsub>G\<^esub> }" | |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
11 |
extension: "\<lbrakk> solvable_seq G K; K \<subset> H; subgroup H G; K \<lhd> (G \<lparr> carrier := H \<rparr>); |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
12 |
comm_group ((G \<lparr> carrier := H \<rparr>) Mod K) \<rbrakk> \<Longrightarrow> solvable_seq G H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
13 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
14 |
definition |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
15 |
solvable :: "('a, 'b) monoid_scheme \<Rightarrow> bool" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
16 |
where "solvable G \<longleftrightarrow> solvable_seq G (carrier G)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
17 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
18 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
19 |
subsection \<open>Solvable Groups and Derived Subgroups\<close> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
20 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
21 |
text \<open>We show that a group G is solvable iff the subgroup (derived G ^^ n) (carrier G) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
22 |
is trivial for a sufficiently large n\<close> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
23 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
24 |
lemma (in group) solvable_imp_subgroup: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
25 |
assumes "solvable_seq G H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
26 |
shows "subgroup H G" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
27 |
proof (induction) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
28 |
case unity thus ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
29 |
using generate_empty generate_is_subgroup by force |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
30 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
31 |
case extension thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
32 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
33 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
34 |
lemma (in group) augment_solvable_seq: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
35 |
assumes "subgroup H G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
36 |
and "solvable_seq G (derived G H)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
37 |
shows "solvable_seq G H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
38 |
proof (cases) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
39 |
assume "derived G H = H" thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
40 |
unfolding solvable_def using assms by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
41 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
42 |
assume "derived G H \<noteq> H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
43 |
thus ?thesis unfolding solvable_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
44 |
using solvable_seq.extension[OF assms(2), of H] assms(1) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
45 |
derived_quot_of_subgroup_is_comm_group[of H, OF assms(1)] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
46 |
derived_incl[OF assms(1)] derived_subgroup_is_normal[OF assms(1)] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
47 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
48 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
49 |
theorem (in group) trivial_derived_seq_imp_solvable: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
50 |
assumes "subgroup H G" and "((derived G) ^^ n) H = { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
51 |
shows "solvable_seq G H" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
52 |
proof (induction n arbitrary: H) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
53 |
case 0 hence "H = { \<one> }" by simp thus ?case by (simp add: unity) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
54 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
55 |
case (Suc n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
56 |
hence "(derived G ^^ n) (derived G H) = { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
57 |
by (simp add: funpow_swap1) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
58 |
moreover have "subgroup (derived G H) G" unfolding derived_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
59 |
using Suc.prems(1) derived_set_incl generate_is_subgroup order.trans subgroup.subset |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
60 |
by (metis (no_types, lifting)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
61 |
ultimately have "solvable_seq G (derived G H)" by (simp add: Suc.IH) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
62 |
thus ?case by (simp add: Suc.prems(1) augment_solvable_seq) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
63 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
64 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
65 |
theorem (in group) solvable_imp_trivial_derived_seq: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
66 |
assumes "solvable_seq G H" and "subgroup H G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
67 |
shows "\<exists>n. (derived G ^^ n) H = { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
68 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
69 |
{ fix K H assume A: "K \<subseteq> H" "K \<lhd> (G \<lparr> carrier := H \<rparr>)" "subgroup K G" "subgroup H G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
70 |
"comm_group ((G \<lparr> carrier := H \<rparr>) Mod K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
71 |
have "derived G H \<subseteq> K" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
72 |
proof - |
68605 | 73 |
have Hcarr: "\<And>a. a \<in> H \<Longrightarrow> a \<in> carrier G" |
74 |
by (meson A(4) subgroup.mem_carrier) |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
75 |
have "derived_set G H \<subseteq> K" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
76 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
77 |
fix h assume "h \<in> derived_set G H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
78 |
then obtain h1 h2 where h12: "h1 \<in> H" "h2 \<in> H" "h = h1 \<otimes> h2 \<otimes> inv h1 \<otimes> inv h2" by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
79 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
80 |
hence K_h12: "(K #> (h1 \<otimes> h2)) \<in> carrier ((G \<lparr> carrier := H \<rparr>) Mod K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
81 |
unfolding FactGroup_def RCOSETS_def r_coset_def apply simp by (metis A(4) subgroup_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
82 |
have K_h1: "K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> h1 \<in> carrier ((G \<lparr> carrier := H \<rparr>) Mod K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
83 |
unfolding FactGroup_def RCOSETS_def r_coset_def apply simp using h12(1) by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
84 |
have K_h2: "K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> h2 \<in> carrier ((G \<lparr> carrier := H \<rparr>) Mod K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
85 |
unfolding FactGroup_def RCOSETS_def r_coset_def apply simp using h12(2) by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
86 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
87 |
hence "K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> (h1 \<otimes> h2) = |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
88 |
(K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> h1) <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> (K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> h2)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
89 |
using normal.rcos_sum[OF A(2),of h1 h2] h12(1-2) by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
90 |
also have " ... = |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
91 |
(K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> h2) <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> (K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> h1)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
92 |
using comm_groupE(4)[OF A(5) K_h1 K_h2] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
93 |
finally have "K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> (h1 \<otimes> h2) = K #>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> (h2 \<otimes> h1)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
94 |
using normal.rcos_sum[OF A(2),of h2 h1] h12(1-2) by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
95 |
|
68605 | 96 |
moreover have h12H: "h1 \<otimes> h2 \<in> H" and "h2 \<otimes> h1 \<in> H" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
97 |
using h12 subgroupE(4)[OF A(4)] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
98 |
ultimately have "K #> (h1 \<otimes> h2) = K #> (h2 \<otimes> h1)" by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
99 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
100 |
then obtain k where k: "k \<in> K" "\<one> \<otimes> (h1 \<otimes> h2) = k \<otimes> (h2 \<otimes> h1)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
101 |
using subgroup.one_closed[OF A(3)] unfolding r_coset_def by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
102 |
hence "(h1 \<otimes> h2) \<otimes> (inv h1 \<otimes> inv h2) = k" |
68605 | 103 |
proof - |
104 |
have "k \<in> carrier G" |
|
105 |
by (meson A(3) k(1) subgroup.mem_carrier) |
|
106 |
with Hcarr h12 show ?thesis |
|
107 |
by (metis h12H inv_mult_group inv_solve_right k(2) r_cancel_one' subgroup_def subgroup_self) |
|
108 |
qed |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
109 |
hence "h = k" using h12 |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
110 |
by (meson A(4) \<open>h1 \<otimes> h2 \<in> H\<close> inv_closed m_assoc subgroup.mem_carrier) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
111 |
thus "h \<in> K" using k(1) by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
112 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
113 |
thus ?thesis unfolding derived_def by (meson A(3) generateE(3) order.trans subgroupE(1)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
114 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
115 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
116 |
show "\<exists>n. (derived G ^^ n) H = { \<one> }" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
117 |
proof (induct H rule: solvable_seq.induct) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
118 |
case unity have "(derived G ^^ 0) { \<one> } = { \<one> }" by simp thus ?case by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
119 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
120 |
case (extension K H) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
121 |
then obtain n where n: "(derived G ^^ n) K = { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
122 |
using solvable_imp_subgroup extension by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
123 |
have "derived G H \<subseteq> K" using solvable_imp_subgroup extension aux_lemma by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
124 |
hence "(derived G ^^ n) (derived G H) \<subseteq> (derived G ^^ n) K" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
125 |
using mono_derived solvable_imp_subgroup extension.hyps(4) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
126 |
by (simp add: extension.hyps(1) subgroup.subset) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
127 |
hence "(derived G ^^ (Suc n)) H \<subseteq> { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
128 |
by (metis funpow_simps_right(2) n o_apply) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
129 |
moreover have "\<one> \<in> derived G ((derived G ^^ n) H)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
130 |
unfolding derived_def using generate.one by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
131 |
hence "{ \<one> } \<subseteq> (derived G ^^ (Suc n)) H" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
132 |
ultimately show ?case by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
133 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
134 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
135 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
136 |
theorem (in group) solvable_iff_trivial_derived_seq: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
137 |
"solvable G \<longleftrightarrow> (\<exists>n. (derived G ^^ n) (carrier G) = { \<one> })" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
138 |
unfolding solvable_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
139 |
using solvable_imp_trivial_derived_seq subgroup_self |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
140 |
trivial_derived_seq_imp_solvable by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
141 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
142 |
corollary (in group) solvable_subgroup: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
143 |
assumes "subgroup H G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
144 |
shows "solvable G \<Longrightarrow> solvable_seq G H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
145 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
146 |
{ fix I J assume A: "subgroup I G" "subgroup J G" "I \<subseteq> J" "solvable_seq G J" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
147 |
have "solvable_seq G I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
148 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
149 |
obtain n where "(derived G ^^ n) J = { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
150 |
using solvable_imp_trivial_derived_seq[OF A(4) A(2)] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
151 |
hence "(derived G ^^ n) I \<subseteq> { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
152 |
using mono_derived[OF subgroup.subset[OF A(2)] A(3)] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
153 |
hence "(derived G ^^ n) I = { \<one> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
154 |
using subgroup.one_closed[OF exp_of_derived_is_subgroup[OF A(1), of n]] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
155 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
156 |
using trivial_derived_seq_imp_solvable[OF A(1), of n] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
157 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
158 |
assume "solvable G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
159 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
160 |
using aux_lemma[OF assms subgroup_self subgroup.subset[OF assms]] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
161 |
unfolding solvable_def by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
162 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
163 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
164 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
165 |
subsection \<open>Short Exact Sequences\<close> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
166 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
167 |
text \<open>Even if we don't talk about short exact sequences explicitly, we show that given an |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
168 |
injective homomorphism from a group H to a group G, if H isn't solvable the group G |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
169 |
isn't neither. \<close> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
170 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
171 |
lemma (in group_hom) generate_of_img: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
172 |
assumes "K \<subseteq> carrier G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
173 |
shows "generate H (h ` K) = h ` (generate G K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
174 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
175 |
have img_in_carrier: "h ` K \<subseteq> carrier H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
176 |
by (meson assms group_hom.hom_closed group_hom_axioms image_subsetI subsetCE) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
177 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
178 |
show "generate H (h ` K) \<subseteq> h ` generate G K" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
179 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
180 |
fix x assume "x \<in> generate H (h ` K)" |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
181 |
then obtain r where r: "elts r \<subseteq> (h ` K)" "Generated_Groups.norm H r = x" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
182 |
using H.generate_repr_iff img_in_carrier by auto |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
183 |
from \<open>elts r \<subseteq> (h ` K)\<close> have "Generated_Groups.norm H r \<in> h ` generate G K" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
184 |
proof (induct r rule: repr.induct) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
185 |
case One |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
186 |
have "\<one>\<^bsub>G\<^esub> \<in> generate G K" using generate.one[of G] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
187 |
hence "h \<one>\<^bsub>G\<^esub> \<in> h ` generate G K" by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
188 |
thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
189 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
190 |
case (Inv x) hence "x \<in> h ` K" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
191 |
then obtain k where k: "k \<in> K" "x = h k" by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
192 |
hence "inv\<^bsub>H\<^esub> x = h (inv k)" using assms by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
193 |
thus ?case using k by (simp add: generate.inv) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
194 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
195 |
case (Leaf x) hence "x \<in> h ` K" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
196 |
then obtain k where "k \<in> K" "x = h k" by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
197 |
thus ?case by (simp add: generate.incl) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
198 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
199 |
case (Mult x1 x2) hence A: "elts x1 \<union> elts x2 \<subseteq> h ` K" by simp |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
200 |
have "Generated_Groups.norm H x1 \<in> h ` (generate G K)" using A Mult by simp |
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
201 |
moreover have "Generated_Groups.norm H x2 \<in> h ` (generate G K)" using A Mult by simp |
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
202 |
ultimately obtain k1 k2 where k1: "k1 \<in> generate G K" "Generated_Groups.norm H x1 = h k1" |
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
203 |
and k2: "k2 \<in> generate G K" "Generated_Groups.norm H x2 = h k2" by blast |
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
204 |
hence "Generated_Groups.norm H (Mult x1 x2) = h (k1 \<otimes> k2)" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
205 |
using G.generate_in_carrier assms by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
206 |
thus ?case using k1 k2 by (simp add: generate.eng) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
207 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
208 |
thus "x \<in> h ` generate G K" using r by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
209 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
210 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
211 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
212 |
show "h ` generate G K \<subseteq> generate H (h ` K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
213 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
214 |
fix x assume "x \<in> h ` generate G K" |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
215 |
then obtain r where r: "elts r \<subseteq> K" "x = h (Generated_Groups.norm G r)" using G.generate_repr_iff assms by auto |
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
216 |
from \<open>elts r \<subseteq> K\<close> have "h (Generated_Groups.norm G r) \<in> generate H (h ` K)" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
217 |
proof (induct r rule: repr.induct) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
218 |
case One thus ?case by (simp add: generate.one) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
219 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
220 |
case (Inv x) hence A: "x \<in> K" by simp |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
221 |
hence "h (Generated_Groups.norm G (Inv x)) = inv\<^bsub>H\<^esub> (h x)" using assms by auto |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
222 |
moreover have "h x \<in> generate H (h ` K)" using A by (simp add: generate.incl) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
223 |
ultimately show ?case by (simp add: A generate.inv) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
224 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
225 |
case (Leaf x) thus ?case by (simp add: generate.incl) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
226 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
227 |
case (Mult x1 x2) hence A: "elts x1 \<union> elts x2 \<subseteq> K" by simp |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
228 |
have "Generated_Groups.norm G x1 \<in> carrier G" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
229 |
by (meson A G.generateE(1) G.generate_repr_iff Un_subset_iff assms subgroup.mem_carrier) |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
230 |
moreover have "Generated_Groups.norm G x2 \<in> carrier G" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
231 |
by (meson A G.generateE(1) G.generate_repr_iff Un_subset_iff assms subgroup.mem_carrier) |
68576
b6cc5c265b04
Hiding the constant "norm", lest it clash with the norm of a vector space
paulson <lp15@cam.ac.uk>
parents:
68569
diff
changeset
|
232 |
ultimately have "h (Generated_Groups.norm G (Mult x1 x2)) = h (Generated_Groups.norm G x1) \<otimes>\<^bsub>H\<^esub> h (Generated_Groups.norm G x2)" by simp |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
233 |
thus ?case using Mult A by (simp add: generate.eng) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
234 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
235 |
thus "x \<in> generate H (h ` K)" using r by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
236 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
237 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
238 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
239 |
lemma (in group_hom) derived_of_img: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
240 |
assumes "K \<subseteq> carrier G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
241 |
shows "(derived H ^^ n) (h ` K) = h ` ((derived G ^^ n) K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
242 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
243 |
{ fix K assume A: "K \<subseteq> carrier G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
244 |
have "derived H (h ` K) = h ` (derived G K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
245 |
proof - |
68605 | 246 |
have Kcarr: "\<And>a. a \<in> K \<Longrightarrow> a \<in> carrier G" |
247 |
by (metis (no_types) A subsetCE) |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
248 |
have "derived_set H (h ` K) = h ` (derived_set G K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
249 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
250 |
show "derived_set H (h ` K) \<subseteq> h ` derived_set G K" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
251 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
252 |
fix x assume "x \<in> derived_set H (h ` K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
253 |
then obtain k1 k2 |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
254 |
where k12: "k1 \<in> K" "k2 \<in> K" |
68605 | 255 |
and xeq: "x = (h k1) \<otimes>\<^bsub>H\<^esub> (h k2) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h k1) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub>(h k2)" by blast |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
256 |
hence "x = h (k1 \<otimes> k2 \<otimes> inv k1 \<otimes> inv k2)" |
68605 | 257 |
proof - |
258 |
have "k1 \<in> carrier G" "k2 \<in> carrier G" |
|
259 |
using A \<open>k1 \<in> K\<close> \<open>k2 \<in> K\<close> by blast+ |
|
260 |
then show ?thesis |
|
261 |
using G.inv_closed G.m_closed xeq hom_inv hom_mult by presburger |
|
262 |
qed |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
263 |
thus "x \<in> h ` (derived_set G K)" using k12 by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
264 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
265 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
266 |
show "h ` derived_set G K \<subseteq> derived_set H (h ` K)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
267 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
268 |
fix x assume " x \<in> h ` derived_set G K" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
269 |
then obtain k1 k2 where k12: "k1 \<in> K" "k2 \<in> K" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
270 |
and "x = h (k1 \<otimes> k2 \<otimes> inv k1 \<otimes> inv k2)" by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
271 |
hence "x = (h k1) \<otimes>\<^bsub>H\<^esub> (h k2) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h k1) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub>(h k2)" |
68605 | 272 |
by (metis (no_types) Kcarr G.inv_closed G.m_closed hom_inv hom_mult) |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
273 |
thus "x \<in> derived_set H (h ` K)" using k12 by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
274 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
275 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
276 |
thus ?thesis unfolding derived_def using generate_of_img |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
277 |
by (simp add: G.derived_set_in_carrier A) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
278 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
279 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
280 |
from \<open>K \<subseteq> carrier G\<close> show ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
281 |
proof (induction n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
282 |
case 0 thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
283 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
284 |
case (Suc n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
285 |
have "(derived H ^^ Suc n) (h ` K) = (derived H) ((derived H ^^ n) (h ` K))" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
286 |
also have " ... = (derived H) (h ` ((derived G ^^ n) K))" using Suc by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
287 |
also have " ... = h ` ((derived G) ((derived G ^^ n) K))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
288 |
using aux_lemma[of "(derived G ^^ n) K"] G.exp_of_derived_in_carrier[OF Suc(2),of n] by linarith |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
289 |
also have " ... = h ` ((derived G ^^ (Suc n)) K)" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
290 |
finally show ?case . |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
291 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
292 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
293 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
294 |
theorem (in group_hom) solvable_img_imp_solvable: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
295 |
assumes "subgroup I G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
296 |
and "inj_on h I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
297 |
and "solvable_seq H (h ` I)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
298 |
shows "solvable_seq G I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
299 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
300 |
{ fix n I assume A: "subgroup I G" "inj_on h I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
301 |
hence "inj_on h ((derived G ^^ n) I)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
302 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
303 |
have "(derived G ^^ n) I \<subseteq> I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
304 |
proof (induction n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
305 |
case 0 thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
306 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
307 |
case (Suc n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
308 |
hence "(derived G) ((derived G ^^ n) I) \<subseteq> (derived G) I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
309 |
using G.mono_derived[of I "(derived G ^^ n) I" 1, |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
310 |
OF subgroup.subset[OF A(1)] Suc] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
311 |
thus ?case using A(1) G.derived_incl by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
312 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
313 |
thus ?thesis using A(2) inj_on_subset by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
314 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
315 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
316 |
obtain n where "(derived H ^^ n) (h ` I) = { \<one>\<^bsub>H\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
317 |
using H.solvable_imp_subgroup H.solvable_imp_trivial_derived_seq assms(3) by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
318 |
hence "h ` ((derived G ^^ n) I) = { \<one>\<^bsub>H\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
319 |
by (metis derived_of_img assms(1) subgroup.subset) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
320 |
moreover have "inj_on h ((derived G ^^ n) I)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
321 |
using aux_lemma[OF assms(1-2), of n] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
322 |
hence "\<And>x. \<lbrakk> x \<in> ((derived G ^^ n) I); h x = \<one>\<^bsub>H\<^esub> \<rbrakk> \<Longrightarrow> x = \<one>" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
323 |
by (metis G.exp_of_derived_is_subgroup assms(1) hom_one inj_on_eq_iff subgroup_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
324 |
ultimately have "(derived G ^^ n) I = { \<one> }" by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
325 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
326 |
using G.trivial_derived_seq_imp_solvable[OF assms(1), of n] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
327 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
328 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
329 |
corollary (in group_hom) not_solvable: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
330 |
assumes "inj_on h (carrier G)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
331 |
and "\<not> solvable G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
332 |
shows "\<not> solvable H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
333 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
334 |
{ fix I J assume A: "subgroup I H" "subgroup J H" "I \<subseteq> J" "solvable_seq H J" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
335 |
have "solvable_seq H I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
336 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
337 |
obtain n where n: "(derived H ^^ n) J = { \<one>\<^bsub>H\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
338 |
using A(4) H.solvable_imp_subgroup H.solvable_imp_trivial_derived_seq by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
339 |
have "(derived H ^^ n) I \<subseteq> (derived H ^^ n) J" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
340 |
using A by (simp add: H.mono_derived subgroupE(1)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
341 |
hence "(derived H ^^ n) I \<subseteq> { \<one>\<^bsub>H\<^esub> }" using n by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
342 |
hence "(derived H ^^ n) I = { \<one>\<^bsub>H\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
343 |
by (simp add: A(1) subgroupE(2)[OF H.exp_of_derived_is_subgroup] subset_singleton_iff) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
344 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
345 |
using A(1) H.trivial_derived_seq_imp_solvable by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
346 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
347 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
348 |
show ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
349 |
proof (rule ccontr) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
350 |
assume "\<not> \<not> solvable H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
351 |
hence "solvable_seq H (carrier H)" unfolding solvable_def by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
352 |
hence "solvable_seq H (h ` (carrier G))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
353 |
using aux_lemma[of "h ` (carrier G)" "carrier H"] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
354 |
by (metis G.generateI G.subgroupE(1) G.subgroup_self H.generateE(1) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
355 |
H.subgroup_self generate_of_img hom_closed image_subsetI) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
356 |
hence "solvable_seq G (carrier G)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
357 |
using G.subgroup_self assms(1) solvable_img_imp_solvable by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
358 |
hence "solvable G" unfolding solvable_def by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
359 |
thus False using assms(2) by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
360 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
361 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
362 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
363 |
corollary (in group_hom) inj_hom_imp_solvable: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
364 |
assumes "inj_on h (carrier G)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
365 |
shows "solvable H \<Longrightarrow> solvable G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
366 |
using not_solvable[OF assms] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
367 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
368 |
theorem (in group_hom) solvable_imp_solvable_img: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
369 |
assumes "subgroup I G" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
370 |
and "solvable_seq G I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
371 |
shows "solvable_seq H (h ` I)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
372 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
373 |
obtain n where "(derived G ^^ n) I = { \<one>\<^bsub>G\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
374 |
using G.solvable_imp_trivial_derived_seq[OF assms(2) assms(1)] .. |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
375 |
hence "(derived H ^^ n) (h ` I) = { \<one>\<^bsub>H\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
376 |
using derived_of_img[OF G.subgroupE(1)[OF assms(1)], of n] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
377 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
378 |
using H.trivial_derived_seq_imp_solvable[OF subgroup_img_is_subgroup[OF assms(1)]] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
379 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
380 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
381 |
corollary (in group_hom) surj_hom_imp_solvable: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
382 |
assumes "h ` (carrier G) = (carrier H)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
383 |
shows "solvable G \<Longrightarrow> solvable H" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
384 |
using solvable_imp_solvable_img[OF G.subgroup_self] assms unfolding solvable_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
385 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
386 |
lemma solvable_seq_condition: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
387 |
assumes "group_hom G1 G2 h" "group_hom G2 G3 f" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
388 |
and "subgroup I G1" "subgroup J G2" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
389 |
and "h ` I \<subseteq> J" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
390 |
and "\<And>g. \<lbrakk> g \<in> carrier G2; f g = \<one>\<^bsub>G3\<^esub> \<rbrakk> \<Longrightarrow> g \<in> h ` I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
391 |
shows "\<lbrakk> solvable_seq G1 I; solvable_seq G3 (f ` J) \<rbrakk> \<Longrightarrow> solvable_seq G2 J" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
392 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
393 |
have G1: "group G1" and G2: "group G2" and G3: "group G3" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
394 |
using assms(1-2) unfolding group_hom_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
395 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
396 |
assume "solvable_seq G1 I" "solvable_seq G3 (f ` J)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
397 |
then obtain n m :: nat |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
398 |
where n: "(derived G1 ^^ n) I = { \<one>\<^bsub>G1\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
399 |
and m: "(derived G3 ^^ m) (f ` J) = { \<one>\<^bsub>G3\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
400 |
using group.solvable_imp_trivial_derived_seq[OF G1, of I] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
401 |
group.solvable_imp_trivial_derived_seq[OF G3, of "f ` J"] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
402 |
group_hom.subgroup_img_is_subgroup[OF assms(2) assms(4)] assms(2-4) by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
403 |
have "f ` ((derived G2 ^^ m) J) = (derived G3 ^^ m) (f ` J)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
404 |
using group_hom.derived_of_img[OF assms(2), of J m] subgroup.subset[OF assms(4)] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
405 |
hence "f ` ((derived G2 ^^ m) J) = { \<one>\<^bsub>G3\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
406 |
using m by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
407 |
hence "((derived G2 ^^ m) J) \<subseteq> h ` I" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
408 |
using assms(6) group.exp_of_derived_in_carrier[OF G2 subgroup.subset[OF assms(4)], of m] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
409 |
by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
410 |
hence "(derived G2 ^^ n) ((derived G2 ^^ m) J) \<subseteq> (derived G2 ^^ n) (h ` I)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
411 |
using group.mono_derived[OF G2, of "h ` I" "(derived G2 ^^ m) J" n] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
412 |
subgroup.subset[OF group_hom.subgroup_img_is_subgroup[OF assms(1) assms(3)]] by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
413 |
also have " ... = h ` { \<one>\<^bsub>G1\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
414 |
using group_hom.derived_of_img[OF assms(1) subgroup.subset[OF assms(3)], of n] n by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
415 |
also have " ... = { \<one>\<^bsub>G2\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
416 |
using assms(1) by (simp add: group_hom.hom_one) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
417 |
finally have "(derived G2 ^^ n) ((derived G2 ^^ m) J) \<subseteq> { \<one>\<^bsub>G2\<^esub> }" . |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
418 |
hence "(derived G2 ^^ (n + m)) J \<subseteq> { \<one>\<^bsub>G2\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
419 |
by (metis comp_eq_dest_lhs funpow_add) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
420 |
moreover have "{ \<one>\<^bsub>G2\<^esub> } \<subseteq> (derived G2 ^^ (n + m)) J" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
421 |
using subgroup.one_closed[OF group.exp_of_derived_is_subgroup[OF G2 assms(4), of "n + m"]] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
422 |
ultimately show ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
423 |
using group.trivial_derived_seq_imp_solvable[OF G2 assms(4), of "n + m"] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
424 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
425 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
426 |
lemma solvable_condition: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
427 |
assumes "group_hom G1 G2 h" "group_hom G2 G3 f" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
428 |
and "f ` (carrier G2) = (carrier G3)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
429 |
and "kernel G2 G3 f \<subseteq> h ` (carrier G1)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
430 |
shows "\<lbrakk> solvable G1; solvable G3 \<rbrakk> \<Longrightarrow> solvable G2" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
431 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
432 |
assume "solvable G1" "solvable G3" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
433 |
moreover have "\<And>g. \<lbrakk> g \<in> carrier G2; f g = \<one>\<^bsub>G3\<^esub> \<rbrakk> \<Longrightarrow> g \<in> h ` (carrier G1)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
434 |
using assms(4) unfolding kernel_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
435 |
moreover have "h ` (carrier G1 ) \<subseteq> (carrier G2)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
436 |
using group_hom.hom_closed[OF assms(1)] image_subsetI by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
437 |
ultimately show ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
438 |
using solvable_seq_condition[OF assms(1-2), of "carrier G1" "carrier G2"] assms(1-3) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
439 |
unfolding solvable_def group_hom_def by (simp add: group.subgroup_self) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
440 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
441 |
|
68582 | 442 |
end |