author | wenzelm |
Sun, 12 Aug 2018 14:28:28 +0200 | |
changeset 68743 | 91162dd89571 |
parent 68604 | 57721285d4ef |
child 68975 | 5ce4d117cea7 |
permissions | -rw-r--r-- |
68582 | 1 |
(* Title: HOL/Algebra/Sym_Groups.thy |
2 |
Author: Paulo Emílio de Vilhena |
|
3 |
*) |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
4 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
5 |
theory Sym_Groups |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
6 |
imports Cycles Group Coset Generated_Groups Solvable_Groups |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
7 |
begin |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
8 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
9 |
abbreviation inv' :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
10 |
where "inv' f \<equiv> Hilbert_Choice.inv f" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
11 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
12 |
definition sym_group :: "nat \<Rightarrow> (nat \<Rightarrow> nat) monoid" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
13 |
where "sym_group n = \<lparr> carrier = { p. p permutes {1..n} }, mult = (\<circ>), one = id \<rparr>" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
14 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
15 |
definition sign_img :: "int monoid" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
16 |
where "sign_img = \<lparr> carrier = { -1, 1 }, mult = ( * ), one = 1 \<rparr>" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
17 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
18 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
19 |
lemma sym_group_is_group: "group (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
20 |
apply (rule groupI) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
21 |
apply (simp_all add: sym_group_def permutes_compose permutes_id comp_assoc) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
22 |
using permutes_inv permutes_inv_o(2) by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
23 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
24 |
lemma sym_group_inv_closed: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
25 |
assumes "p \<in> carrier (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
26 |
shows "inv' p \<in> carrier (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
27 |
using assms permutes_inv sym_group_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
28 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
29 |
lemma sym_group_inv_equality: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
30 |
assumes "p \<in> carrier (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
31 |
shows "inv\<^bsub>(sym_group n)\<^esub> p = inv' p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
32 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
33 |
have "inv' p \<circ> p = id" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
34 |
using assms permutes_inv_o(2) sym_group_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
35 |
hence "(inv' p) \<otimes>\<^bsub>(sym_group n)\<^esub> p = one (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
36 |
by (simp add: sym_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
37 |
thus ?thesis using group.inv_equality[OF sym_group_is_group] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
38 |
by (simp add: assms sym_group_inv_closed) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
39 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
40 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
41 |
lemma sign_is_hom: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
42 |
"group_hom (sym_group n) sign_img sign" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
43 |
unfolding group_hom_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
44 |
proof (auto) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
45 |
show "group (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
46 |
by (simp add: sym_group_is_group) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
47 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
48 |
show "group sign_img" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
49 |
unfolding sign_img_def group_def monoid_def group_axioms_def Units_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
50 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
51 |
show "group_hom_axioms (sym_group n) sign_img sign" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
52 |
unfolding sign_img_def group_hom_axioms_def sym_group_def hom_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
53 |
proof auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
54 |
show "\<And>x. sign x \<noteq> - 1 \<Longrightarrow> x permutes {Suc 0..n} \<Longrightarrow> sign x = 1" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
55 |
by (meson sign_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
56 |
show "\<And>x y. \<lbrakk> x permutes {Suc 0..n}; y permutes {Suc 0..n} \<rbrakk> \<Longrightarrow> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
57 |
sign (x \<circ> y) = sign x * sign y" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
58 |
using sign_compose permutation_permutes by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
59 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
60 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
61 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
62 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
63 |
definition alt_group :: "nat \<Rightarrow> (nat \<Rightarrow> nat) monoid" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
64 |
where "alt_group n = (sym_group n) \<lparr> carrier := { p. p permutes {1..n} \<and> evenperm p } \<rparr>" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
65 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
66 |
lemma alt_group_is_kernel_from_sign: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
67 |
"carrier (alt_group n) = kernel (sym_group n) sign_img sign" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
68 |
unfolding alt_group_def sym_group_def sign_img_def kernel_def sign_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
69 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
70 |
lemma alt_group_is_group: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
71 |
"group (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
72 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
73 |
have "subgroup (kernel (sym_group n) sign_img sign) (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
74 |
using group_hom.subgroup_kernel sign_is_hom by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
75 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
76 |
using alt_group_def alt_group_is_kernel_from_sign group.subgroup_imp_group |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
77 |
sym_group_is_group by fastforce |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
78 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
79 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
80 |
lemma alt_group_inv_closed: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
81 |
assumes "p \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
82 |
shows "inv' p \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
83 |
using assms permutes_inv alt_group_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
84 |
using evenperm_inv permutation_permutes by fastforce |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
85 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
86 |
lemma alt_group_inv_equality: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
87 |
assumes "p \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
88 |
shows "inv\<^bsub>(alt_group n)\<^esub> p = inv' p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
89 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
90 |
have "inv' p \<circ> p = id" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
91 |
using assms permutes_inv_o(2) alt_group_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
92 |
hence "(inv' p) \<otimes>\<^bsub>(alt_group n)\<^esub> p = one (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
93 |
by (simp add: alt_group_def sym_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
94 |
thus ?thesis using group.inv_equality[OF alt_group_is_group] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
95 |
by (simp add: assms alt_group_inv_closed) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
96 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
97 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
98 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
99 |
subsection \<open>Transposition Sequences\<close> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
100 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
101 |
text \<open>In order to prove that the Alternating Group can be generated by 3-cycles, we need |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
102 |
a stronger decomposition of permutations as transposition sequences than the one |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
103 |
proposed found at Permutations.thy\<close> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
104 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
105 |
inductive swapidseq_ext :: "'a set \<Rightarrow> nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool" where |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
106 |
empty: "swapidseq_ext {} 0 id" | |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
107 |
single: "\<lbrakk> swapidseq_ext S n p; a \<notin> S \<rbrakk> \<Longrightarrow> swapidseq_ext (insert a S) n p" | |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
108 |
comp: "\<lbrakk> swapidseq_ext S n p; a \<noteq> b \<rbrakk> \<Longrightarrow> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
109 |
swapidseq_ext (insert a (insert b S)) (Suc n) ((Fun.swap a b id) \<circ> p)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
110 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
111 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
112 |
lemma swapidseq_ext_finite: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
113 |
assumes "swapidseq_ext S n p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
114 |
shows "finite S" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
115 |
apply (induction) by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
116 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
117 |
lemma swapidseq_ext_zero_imp_id: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
118 |
assumes "swapidseq_ext S 0 p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
119 |
shows "p = id" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
120 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
121 |
{ fix S n and p :: "'a \<Rightarrow> 'a" assume "swapidseq_ext S n p" "n = 0" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
122 |
hence "p = id" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
123 |
apply (induction) by auto } |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
124 |
thus ?thesis using assms by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
125 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
126 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
127 |
lemma swapidseq_ext_zero: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
128 |
assumes "finite S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
129 |
shows "swapidseq_ext S 0 id" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
130 |
proof (induct set: "finite") |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
131 |
case empty thus ?case using swapidseq_ext.empty . |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
132 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
133 |
case insert show ?case using swapidseq_ext.single[OF insert(3) insert(2)] . |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
134 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
135 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
136 |
lemma swapidseq_ext_finite_expansion: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
137 |
assumes "finite B" "swapidseq_ext A n p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
138 |
shows "swapidseq_ext (A \<union> B) n p" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
139 |
proof (induct set: "finite") |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
140 |
case empty thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
141 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
142 |
case insert show ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
143 |
by (metis Un_insert_right insert.hyps(3) insert.prems insert_absorb single) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
144 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
145 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
146 |
lemma swapidseq_ext_backwards: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
147 |
assumes "swapidseq_ext A (Suc n) p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
148 |
shows "\<exists>a b A' p'. a \<noteq> b \<and> A = (insert a (insert b A')) \<and> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
149 |
swapidseq_ext A' n p' \<and> p = (Fun.swap a b id) \<circ> p'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
150 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
151 |
{ fix A n k and p :: "'a \<Rightarrow> 'a" assume "swapidseq_ext A n p" "n = Suc k" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
152 |
hence "\<exists>a b A' p'. a \<noteq> b \<and> A = (insert a (insert b A')) \<and> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
153 |
swapidseq_ext A' k p' \<and> p = (Fun.swap a b id) \<circ> p'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
154 |
proof (induction) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
155 |
case empty thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
156 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
157 |
case single thus ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
158 |
by (metis Un_insert_right insert_iff insert_is_Un swapidseq_ext.single) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
159 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
160 |
case comp thus ?case by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
161 |
qed } |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
162 |
thus ?thesis using assms by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
163 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
164 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
165 |
lemma swapidseq_ext_endswap: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
166 |
assumes "swapidseq_ext S n p" "a \<noteq> b" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
167 |
shows "swapidseq_ext (insert a (insert b S)) (Suc n) (p \<circ> (Fun.swap a b id))" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
168 |
proof (induction n arbitrary: S p a b) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
169 |
case 0 hence "p = id" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
170 |
using swapidseq_ext_zero_imp_id by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
171 |
thus ?case using 0 by (metis comp_id id_comp swapidseq_ext.comp) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
172 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
173 |
case (Suc n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
174 |
then obtain c d S' and p' :: "'a \<Rightarrow> 'a" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
175 |
where cd: "c \<noteq> d" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
176 |
and S: "S = (insert c (insert d S'))" "swapidseq_ext S' n p'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
177 |
and p: "p = (Fun.swap c d id) \<circ> p'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
178 |
using swapidseq_ext_backwards[OF Suc(2)] by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
179 |
hence "swapidseq_ext (insert a (insert b S')) (Suc n) (p' \<circ> (Fun.swap a b id))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
180 |
by (simp add: Suc.IH Suc.prems(2)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
181 |
hence "swapidseq_ext (insert c (insert d (insert a (insert b S')))) (Suc (Suc n)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
182 |
((Fun.swap c d id) \<circ> p' \<circ> (Fun.swap a b id))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
183 |
by (metis cd fun.map_comp swapidseq_ext.comp) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
184 |
then show ?case by (metis S(1) p insert_commute) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
185 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
186 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
187 |
lemma swapidseq_ext_imp_swapiseq: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
188 |
assumes "swapidseq_ext S n p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
189 |
shows "swapidseq n p" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
190 |
proof (induction) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
191 |
case empty thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
192 |
case single show ?case using single(3) . |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
193 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
194 |
case comp thus ?case by (meson comp_Suc) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
195 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
196 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
197 |
lemma swapidseq_ext_extension: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
198 |
assumes "swapidseq_ext A n p" "swapidseq_ext B m q" "A \<inter> B = {}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
199 |
shows "swapidseq_ext (A \<union> B) (n + m) (p \<circ> q)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
200 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
201 |
{ fix m and q :: "'a \<Rightarrow> 'a" and A B :: "'a set" assume "finite A" "swapidseq_ext B m q" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
202 |
hence "swapidseq_ext (A \<union> B) m q" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
203 |
proof (induct set: "finite") |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
204 |
case empty thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
205 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
206 |
case (insert a A') thus ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
207 |
using swapidseq_ext.single[of "A' \<union> B" m q a] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
208 |
by (metis Un_insert_left insert_absorb) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
209 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
210 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
211 |
from assms show ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
212 |
proof (induct n arbitrary: p A) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
213 |
case 0 thus ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
214 |
using swapidseq_ext_zero_imp_id[OF 0(1)] aux_lemma[of A B m q] by (simp add: swapidseq_ext_finite) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
215 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
216 |
case (Suc n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
217 |
obtain a b A' and p' :: "'a \<Rightarrow> 'a" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
218 |
where A': "a \<noteq> b" "A = (insert a (insert b A'))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
219 |
and p': "swapidseq_ext A' n p'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
220 |
and p: "p = (Fun.swap a b id) \<circ> p'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
221 |
using swapidseq_ext_backwards[OF Suc(2)] by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
222 |
hence "swapidseq_ext (A' \<union> B) (n + m) (p' \<circ> q)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
223 |
using Suc.hyps Suc.prems(3) assms(2) by fastforce |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
224 |
thus ?case using swapidseq_ext.comp[of "A' \<union> B" "n + m" "p' \<circ> q" a b] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
225 |
by (metis Un_insert_left p A' add_Suc rewriteR_comp_comp) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
226 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
227 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
228 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
229 |
lemma swapidseq_ext_of_cycles: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
230 |
assumes "cycle cs" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
231 |
shows "swapidseq_ext (set cs) (length cs - 1) (cycle_of_list cs)" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
232 |
proof (induction cs rule: cycle_of_list.induct) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
233 |
case (1 i j cs) show ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
234 |
proof (cases) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
235 |
assume "cs = []" thus ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
236 |
using swapidseq_ext.comp[OF swapidseq_ext.empty, of i j] "1.prems" by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
237 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
238 |
assume "cs \<noteq> []" hence "length (j # cs) \<ge> 2" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
239 |
using not_less_eq_eq by fastforce |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
240 |
hence IH: "swapidseq_ext (set (j # cs)) (length (j # cs) - 1) (cycle_of_list (j # cs))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
241 |
using "1.IH" "1.prems" by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
242 |
thus ?case using swapidseq_ext.comp[OF IH, of i j] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
243 |
by (metis "1.prems" cycle_of_list.simps(1) diff_Suc_1 distinct.simps(2) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
244 |
distinct_length_2_or_more insert_absorb length_Cons list.simps(15)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
245 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
246 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
247 |
case "2_1" thus ?case using swapidseq_ext.empty |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
248 |
by (metis cycle_of_list.simps(2) diff_0_eq_0 empty_set list.size(3)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
249 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
250 |
case ("2_2" v) thus ?case using swapidseq_ext.single[OF swapidseq_ext.empty, of v] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
251 |
by (metis cycle_of_list.simps(3) diff_Suc_1 distinct.simps(2) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
252 |
empty_set length_Cons list.simps(15) list.size(3)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
253 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
254 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
255 |
lemma cycle_decomp_imp_swapidseq_ext: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
256 |
assumes "cycle_decomp S p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
257 |
shows "\<exists>n. swapidseq_ext S n p" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
258 |
proof (induction) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
259 |
case empty |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
260 |
then show ?case using swapidseq_ext.empty by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
261 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
262 |
case (comp I p cs) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
263 |
then obtain m where m: "swapidseq_ext I m p" by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
264 |
hence "swapidseq_ext (set cs) (length cs - 1) (cycle_of_list cs)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
265 |
using comp.hyps(2) swapidseq_ext_of_cycles by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
266 |
thus ?case using swapidseq_ext_extension m |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
267 |
using comp.hyps(3) by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
268 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
269 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
270 |
lemma swapidseq_ext_of_permutations: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
271 |
assumes "p permutes S" "finite S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
272 |
shows "\<exists>n. swapidseq_ext S n p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
273 |
using assms cycle_decomp_imp_swapidseq_ext cycle_decomposition by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
274 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
275 |
lemma split_swapidseq: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
276 |
assumes "k \<le> n" "swapidseq n p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
277 |
shows "\<exists>q r. swapidseq k q \<and> swapidseq (n - k) r \<and> p = q \<circ> r" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
278 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
279 |
{ fix n :: "nat" and p :: "'a \<Rightarrow> 'a" assume "swapidseq (Suc n) p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
280 |
hence "\<exists>a b q. a \<noteq> b \<and> swapidseq n q \<and> p = (Fun.swap a b id) \<circ> q" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
281 |
proof (cases) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
282 |
case comp_Suc thus ?thesis by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
283 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
284 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
285 |
from assms show ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
286 |
proof (induction k) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
287 |
case 0 thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
288 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
289 |
case (Suc k) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
290 |
then obtain r q where 1: "swapidseq k q" "swapidseq (n - k) r" "p = q \<circ> r" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
291 |
using Suc_leD by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
292 |
then obtain a b r' where 2: "a \<noteq> b" "swapidseq (n - (Suc k)) r'" "r = (Fun.swap a b id) \<circ> r'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
293 |
using aux_lemma[of "n - (Suc k)" r] by (metis Suc.prems(1) Suc_diff_le diff_Suc_Suc) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
294 |
have "swapidseq (Suc k) (q \<circ> (Fun.swap a b id))" using 1 2 by (simp add: swapidseq_endswap) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
295 |
moreover have "p = (q \<circ> (Fun.swap a b id)) \<circ> r'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
296 |
using 1 2 fun.map_comp by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
297 |
ultimately show ?case using 2 by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
298 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
299 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
300 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
301 |
lemma split_swapidseq_ext: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
302 |
assumes "k \<le> n" "swapidseq_ext S n p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
303 |
shows "\<exists>q r S1 S2. swapidseq_ext S1 k q \<and> swapidseq_ext S2 (n - k) r \<and> p = q \<circ> r \<and> S1 \<union> S2 = S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
304 |
using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
305 |
proof (induction k) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
306 |
case 0 have "finite S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
307 |
using "0.prems"(2) swapidseq_ext_finite by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
308 |
have "swapidseq_ext {} 0 id \<and> swapidseq_ext S (n - 0) p \<and> p = id \<circ> p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
309 |
using swapidseq_ext.empty by (simp add: assms(2)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
310 |
thus ?case by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
311 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
312 |
case (Suc k) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
313 |
then obtain q r S1 S2 where "swapidseq_ext S1 k q" "swapidseq_ext S2 (n - k) r" "p = q \<circ> r" "S1 \<union> S2 = S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
314 |
using Suc_leD by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
315 |
then obtain a b S2' and r' :: "'a \<Rightarrow> 'a" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
316 |
where S2': "a \<noteq> b" "S2 = (insert a (insert b S2'))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
317 |
and r': "swapidseq_ext S2' (n - (Suc k)) r'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
318 |
and r: "r = (Fun.swap a b id) \<circ> r'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
319 |
by (metis Suc.prems(1) Suc_diff_le diff_Suc_Suc swapidseq_ext_backwards) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
320 |
have "swapidseq_ext (insert a (insert b S1)) (Suc k) (q \<circ> (Fun.swap a b id))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
321 |
by (simp add: S2'(1) \<open>swapidseq_ext S1 k q\<close> swapidseq_ext_endswap) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
322 |
moreover have "p = (q \<circ> (Fun.swap a b id)) \<circ> r'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
323 |
by (simp add: \<open>p = q \<circ> r\<close> fun.map_comp r) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
324 |
moreover have "(insert a (insert b S1)) \<union> S2' = S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
325 |
using S2'(2) \<open>S1 \<union> S2 = S\<close> by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
326 |
ultimately show ?case using r r' by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
327 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
328 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
329 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
330 |
|
68604 | 331 |
definition three_cycles :: "nat \<Rightarrow> (nat \<Rightarrow> nat) set" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
332 |
where "three_cycles n \<equiv> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
333 |
{ cycle_of_list cs | cs. cycle cs \<and> length cs = 3 \<and> set cs \<subseteq> {1..n} }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
334 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
335 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
336 |
lemma stupid_lemma: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
337 |
assumes "length cs = 3" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
338 |
shows "cs = [(cs ! 0), (cs ! 1), (cs ! 2)]" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
339 |
proof (intro nth_equalityI) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
340 |
show "length cs = length [(cs ! 0), (cs ! 1), (cs ! 2)]" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
341 |
using assms by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
342 |
show "\<forall> ia < length cs. cs ! ia = [(cs ! 0), (cs ! 1), (cs ! 2)] ! ia" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
343 |
by (metis Suc_1 Suc_eq_plus1 add.left_neutral assms less_antisym |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
344 |
less_one nth_Cons' nth_Cons_Suc numeral_3_eq_3) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
345 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
346 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
347 |
lemma alt_group_as_three_cycles: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
348 |
"carrier (alt_group n) = generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
349 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
350 |
show "generate (alt_group n) (three_cycles n) \<subseteq> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
351 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
352 |
{ fix p assume "p \<in> three_cycles n" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
353 |
have "p \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
354 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
355 |
from \<open>p \<in> three_cycles n\<close> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
356 |
obtain cs where p: "p = cycle_of_list cs" |
68604 | 357 |
and cs: "cycle cs" "length cs = 3" "set cs \<subseteq> {1..n}" |
358 |
using three_cycles_def by blast |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
359 |
hence "p = (Fun.swap (cs ! 0) (cs ! 1) id) \<circ> (Fun.swap (cs ! 1) (cs ! 2) id)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
360 |
using stupid_lemma[OF cs(2)] p |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
361 |
by (metis comp_id cycle_of_list.simps(1) cycle_of_list.simps(3)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
362 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
363 |
hence "evenperm p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
364 |
by (metis cs(1) distinct_length_2_or_more evenperm_comp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
365 |
evenperm_swap permutation_swap_id stupid_lemma[OF cs(2)]) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
366 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
367 |
moreover have "permutation p" using p cs(1) cycle_permutes by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
368 |
hence "p permutes {1..n}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
369 |
using id_outside_supp[OF cs(1)] p cs permutation_permutes unfolding permutes_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
370 |
using permutation_permutes permutes_def subsetCE by metis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
371 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
372 |
ultimately show ?thesis by (simp add: alt_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
373 |
qed } note aux_lemma = this |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
374 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
375 |
fix p assume "p \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
376 |
thus "p \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
377 |
proof (induction) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
378 |
case one thus ?case by (simp add: alt_group_is_group group.is_monoid) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
379 |
case incl thus ?case using aux_lemma unfolding alt_group_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
380 |
case inv thus ?case using aux_lemma by (simp add: alt_group_is_group) next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
381 |
case eng thus ?case by (simp add: alt_group_is_group group.is_monoid monoid.m_closed) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
382 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
383 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
384 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
385 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
386 |
show "carrier (alt_group n) \<subseteq> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
387 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
388 |
fix p assume p: "p \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
389 |
show "p \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
390 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
391 |
{ fix q :: "nat \<Rightarrow> nat" and a b c |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
392 |
assume A: "a \<noteq> b" "b \<noteq> c" "{ a, b, c } \<subseteq> {1..n}" "q = cycle_of_list [a, b, c]" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
393 |
have "q \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
394 |
proof (cases) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
395 |
assume "c = a" hence "q = id" by (simp add: A(4) swap_commute) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
396 |
thus "q \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
397 |
using generate.one[of "alt_group n"] by (simp add: alt_group_def sym_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
398 |
next |
68604 | 399 |
assume "c \<noteq> a" |
400 |
have "q \<in> (three_cycles n)" |
|
401 |
unfolding three_cycles_def mem_Collect_eq |
|
402 |
proof (intro exI conjI) |
|
403 |
show "cycle [a,b,c]" |
|
404 |
using A \<open>c \<noteq> a\<close> by auto |
|
405 |
qed (use A in auto) |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
406 |
thus "q \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
407 |
by (simp add: generate.incl) |
68604 | 408 |
qed } note gen3 = this |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
409 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
410 |
{ fix S :: "nat set" and q :: "nat \<Rightarrow> nat" assume A: "swapidseq_ext S 2 q" "S \<subseteq> {1..n}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
411 |
have "q \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
412 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
413 |
obtain a b S' q' where ab: "a \<noteq> b" "S = (insert a (insert b S'))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
414 |
and q': "swapidseq_ext S' 1 q'" "q = (Fun.swap a b id) \<circ> q'" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
415 |
using swapidseq_ext_backwards[of S 1 q] A(1) Suc_1 by metis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
416 |
then obtain c d S'' where cd: "c \<noteq> d" "S' = (insert c (insert d S''))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
417 |
and q: "q = (Fun.swap a b id) \<circ> (Fun.swap c d id)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
418 |
using swapidseq_ext_backwards[of S' 0 q'] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
419 |
by (metis One_nat_def comp_id swapidseq_ext_zero_imp_id) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
420 |
hence incl: "{ a, b, c, d } \<subseteq> {1..n}" using A(2) ab(2) by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
421 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
422 |
proof (cases) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
423 |
assume Eq: "b = c" hence "q = cycle_of_list [a, b, d]" by (simp add: q) |
68604 | 424 |
thus ?thesis using gen3 ab cd Eq incl by simp |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
425 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
426 |
assume In: "b \<noteq> c" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
427 |
have "q = (cycle_of_list [a, b, c]) \<circ> (cycle_of_list [b, c, d])" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
428 |
by (metis (no_types, lifting) comp_id cycle_of_list.simps(1) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
429 |
cycle_of_list.simps(3) fun.map_comp q swap_id_idempotent) |
68604 | 430 |
moreover have "... = cycle_of_list [a, b, c] \<otimes>\<^bsub>alt_group n\<^esub> cycle_of_list [b, c, d]" |
431 |
by (simp add: alt_group_def sym_group_def) |
|
432 |
ultimately show ?thesis |
|
433 |
by (metis (no_types) In generate.eng[where ?h1.0 = "cycle_of_list [a, b, c]" |
|
434 |
and ?h2.0 = "cycle_of_list [b, c, d]"] |
|
435 |
gen3[of a b c] gen3[of b c d] \<open>a \<noteq> b\<close> \<open>c \<noteq> d\<close> insert_subset incl) |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
436 |
qed |
68604 | 437 |
qed } note gen3swap = this |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
438 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
439 |
have "p permutes {1..n}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
440 |
using p permutation_permutes unfolding alt_group_def by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
441 |
then obtain l where "swapidseq_ext {1..n} l p" "swapidseq l p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
442 |
using swapidseq_ext_of_permutations swapidseq_ext_imp_swapiseq by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
443 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
444 |
have "evenperm p" using p by (simp add: alt_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
445 |
hence "even l" using \<open>swapidseq l p\<close> evenperm_unique by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
446 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
447 |
then obtain k where "swapidseq_ext {1..n} (2 * k) p" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
448 |
using dvd_def by (metis \<open>swapidseq_ext {1..n} l p\<close>) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
449 |
thus "p \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
450 |
proof (induct k arbitrary: p) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
451 |
case 0 |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
452 |
hence "p = id" by (simp add: swapidseq_ext_zero_imp_id) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
453 |
moreover have "id \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
454 |
using generate.one[of "alt_group n"] by (simp add: alt_group_def sym_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
455 |
ultimately show ?case by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
456 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
457 |
case (Suc k) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
458 |
then obtain S1 S2 q r |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
459 |
where split: "swapidseq_ext S1 2 q" "swapidseq_ext S2 (2 * k) r" "p = q \<circ> r" "S1 \<union> S2 = {1..n}" |
68604 | 460 |
using split_swapidseq_ext[of 2 "2 * Suc k" "{1..n}" p] by auto |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
461 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
462 |
hence "r \<in> generate (alt_group n) (three_cycles n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
463 |
using Suc.hyps swapidseq_ext_finite_expansion[of "{1..n}" S2 "2 * k" r] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
464 |
by (metis (no_types, lifting) Suc.prems Un_commute sup.right_idem swapidseq_ext_finite) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
465 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
466 |
moreover have "q \<in> generate (alt_group n) (three_cycles n)" |
68604 | 467 |
using gen3swap[OF split(1)] \<open>S1 \<union> S2 = {1..n}\<close> by auto |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
468 |
ultimately show ?case |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
469 |
using split generate.eng[of q "alt_group n" "three_cycles n" r] |
68604 | 470 |
by (metis (full_types) alt_group_def monoid.simps(1) partial_object.simps(3) sym_group_def) |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
471 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
472 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
473 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
474 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
475 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
476 |
lemma elts_from_card: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
477 |
assumes "card S \<ge> n" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
478 |
obtains f where "inj_on f {1..n}" "f ` {1..n} \<subseteq> S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
479 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
480 |
have "\<exists>f. inj_on f {1..n} \<and> f ` {1..n} \<subseteq> S" using assms |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
481 |
proof (induction n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
482 |
case 0 thus ?case by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
483 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
484 |
case (Suc n) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
485 |
then obtain f where f: "inj_on f {1..n}" "f ` {1..n} \<subseteq> S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
486 |
using Suc_leD by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
487 |
hence "card (f ` {1..n}) = n" by (simp add: card_image) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
488 |
then obtain y where y: "y \<in> S - (f ` {1..n})" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
489 |
by (metis Diff_eq_empty_iff Suc.prems \<open>f ` {1..n} \<subseteq> S\<close> not_less_eq_eq order_refl some_in_eq subset_antisym) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
490 |
define f' where f': "f' = (\<lambda>x. (if x \<in> {1..n} then f x else y))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
491 |
hence "\<And>i j. \<lbrakk> i \<in> {1..Suc n}; j \<in> {1..Suc n} \<rbrakk> \<Longrightarrow> f' i = f' j \<Longrightarrow> i = j" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
492 |
by (metis (no_types, lifting) DiffD2 f(1) y atLeastAtMostSuc_conv atLeastatMost_empty_iff2 |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
493 |
card_0_eq card_atLeastAtMost diff_Suc_1 finite_atLeastAtMost image_eqI inj_onD insertE nat.simps(3)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
494 |
moreover have "f' ` {1..n} \<subseteq> S \<and> f' (Suc n) \<in> S" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
495 |
using f f' y by (simp add: image_subset_iff) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
496 |
hence "f' ` {1..Suc n} \<subseteq> S" using f' by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
497 |
ultimately show ?case unfolding inj_on_def by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
498 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
499 |
thus ?thesis using that by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
500 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
501 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
502 |
theorem derived_alt_group_is_cons: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
503 |
assumes "n \<ge> 5" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
504 |
shows "derived (alt_group n) (carrier (alt_group n)) = carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
505 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
506 |
show "derived (alt_group n) (carrier (alt_group n)) \<subseteq> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
507 |
by (simp add: alt_group_is_group group.derived_incl group.subgroup_self) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
508 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
509 |
show "carrier (alt_group n) \<subseteq> derived (alt_group n) (carrier (alt_group n))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
510 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
511 |
have derived_set_in_carrier: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
512 |
"derived_set (alt_group n) (carrier (alt_group n)) \<subseteq> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
513 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
514 |
fix p assume "p \<in> derived_set (alt_group n) (carrier (alt_group n))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
515 |
then obtain q r |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
516 |
where q: "q \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
517 |
and r: "r \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
518 |
and "p = q \<otimes>\<^bsub>(alt_group n)\<^esub> r \<otimes>\<^bsub>(alt_group n)\<^esub> (inv' q) \<otimes>\<^bsub>(alt_group n)\<^esub> (inv' r)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
519 |
using alt_group_inv_equality by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
520 |
hence p: "p = q \<circ> r \<circ> (inv' q) \<circ> (inv' r)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
521 |
by (simp add: alt_group_def sym_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
522 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
523 |
have "q permutes {1..n}" using q by (simp add: alt_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
524 |
moreover have r_perm: "r permutes {1..n}" using r by (simp add: alt_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
525 |
ultimately have "p permutes {1..n} \<and> evenperm p" using p |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
526 |
apply (simp add: permutes_compose permutes_inv) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
527 |
by (metis evenperm_comp evenperm_inv finite_atLeastAtMost |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
528 |
permutation_compose permutation_inverse permutation_permutes) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
529 |
thus "p \<in> carrier (alt_group n)" by (simp add: alt_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
530 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
531 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
532 |
have "three_cycles n \<subseteq> derived_set (alt_group n) (carrier (alt_group n))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
533 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
534 |
fix p :: "nat \<Rightarrow> nat" assume "p \<in> three_cycles n" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
535 |
then obtain cs |
68604 | 536 |
where cs: "cycle cs" "length cs = 3" "set cs \<subseteq> {1..n}" and p: "p = cycle_of_list cs" |
537 |
unfolding three_cycles_def by blast |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
538 |
then obtain i j k where i: "i = cs ! 0" and j: "j = cs ! 1" and k: "k = cs ! 2" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
539 |
and ijk: "cs = [i, j, k]" using stupid_lemma[OF cs(2)] by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
540 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
541 |
have "p ^^ 2 = cycle_of_list [i, k, j]" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
542 |
proof |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
543 |
fix l show "(p ^^ 2) l = cycle_of_list [i, k, j] l" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
544 |
proof (cases) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
545 |
assume "l \<notin> {i, j, k}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
546 |
hence "l \<notin> set cs \<and> l \<notin> set [i, k, j]" using ijk by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
547 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
548 |
using id_outside_supp[of cs l] id_outside_supp[of "[i, j, k]" l] p o_apply |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
549 |
by (simp add: ijk numeral_2_eq_2) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
550 |
next |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
551 |
assume "\<not> l \<notin> {i, j, k}" hence "l \<in> {i, j, k}" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
552 |
have "map ((cycle_of_list cs) ^^ 2) cs = rotate 2 cs" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
553 |
using cyclic_rotation[of cs 2] cs by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
554 |
also have " ... = rotate1 (rotate1 [i, j , k])" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
555 |
by (metis One_nat_def Suc_1 funpow_0 ijk rotate_Suc rotate_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
556 |
also have " ... = [k, i, j]" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
557 |
finally have "map ((cycle_of_list cs) ^^ 2) cs = [k, i, j]" . |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
558 |
hence "map (p ^^ 2) [i, j, k] = [k, i, j]" using p ijk by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
559 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
560 |
moreover have "map (cycle_of_list [i, k, j]) [i, j, k] = [k, i, j]" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
561 |
using cs(1) ijk by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
562 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
563 |
ultimately show ?thesis using \<open>l \<in> {i, j, k}\<close> by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
564 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
565 |
qed |
68604 | 566 |
hence p2: "p ^^ 2 = (Fun.swap j k id) \<circ> (cycle_of_list [i, j, k]) \<circ> (inv' (Fun.swap j k id))" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
567 |
using conjugation_of_cycle[of "[i, j, k]" "Fun.swap j k id"] cs(1) ijk by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
568 |
|
68604 | 569 |
have "card ({1..n} - {i, j, k}) \<ge> card {1..n} - card {i, j, k}" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
570 |
by (meson diff_card_le_card_Diff finite.emptyI finite.insertI) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
571 |
hence card_ge_two: "card ({1..n} - {i, j, k}) \<ge> 2" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
572 |
using assms cs ijk by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
573 |
then obtain f :: "nat \<Rightarrow> nat" where f: "inj_on f {1..2}" "f ` {1..2} \<subseteq> {1..n} - {i, j, k}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
574 |
using elts_from_card[OF card_ge_two] by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
575 |
then obtain g h where gh: "g = f 1" "h = f 2" "g \<noteq> h" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
576 |
by (metis Suc_1 atLeastAtMost_iff diff_Suc_1 diff_Suc_Suc inj_onD nat.simps(3) one_le_numeral order_refl) |
68604 | 577 |
hence g: "g \<in> {1..n} - {i, j, k}" and h: "h \<in> {1..n} - {i, j, k}" using f(2) gh(2) by force+ |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
578 |
hence gh_simps: "g \<noteq> h \<and> g \<in> {1..n} \<and> h \<in> {1..n} \<and> g \<notin> {i, j, k} \<and> h \<notin> {i, j, k}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
579 |
using g gh(3) by blast |
68604 | 580 |
moreover have ijjk: "Fun.swap i j id = Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id)" |
581 |
and jkij: "Fun.swap j k id \<circ> (Fun.swap i j id \<circ> Fun.swap j k id) \<circ> inv' (Fun.swap j k id) = Fun.swap g h (Fun.swap g h (Fun.swap i j (Fun.swap j k id)))" |
|
582 |
by (simp_all add: comp_swap inv_swap_id) |
|
583 |
moreover have "Fun.swap g h (Fun.swap i j id) = Fun.swap i j (Fun.swap g h id)" |
|
584 |
by (metis (no_types) comp_id comp_swap gh_simps insert_iff swap_id_independent) |
|
585 |
moreover have "Fun.swap i j (Fun.swap g h (Fun.swap j k id \<circ> id)) = Fun.swap g h (Fun.swap i j (Fun.swap j k id))" |
|
586 |
by (metis (no_types) calculation(4) comp_id comp_swap) |
|
587 |
moreover have "inj (Fun.swap j k id)" "bij (Fun.swap g h id)" "bij (Fun.swap j k id)" |
|
588 |
by auto |
|
589 |
moreover have "Fun.swap j k id \<circ> inv' (Fun.swap j k id \<circ> Fun.swap g h id) = Fun.swap g h id" |
|
590 |
by (metis (no_types) bij_betw_id bij_swap_iff comp_id comp_swap gh_simps insert_iff inv_swap_id o_inv_distrib swap_id_independent swap_nilpotent) |
|
591 |
moreover have "Fun.swap j k id \<circ> (Fun.swap j k id \<circ> (Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id) \<circ> Fun.swap j k id)) \<circ> inv' (Fun.swap j k id) = Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id)" |
|
592 |
by (simp add: comp_swap inv_swap_id) |
|
593 |
moreover have "Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id) \<circ> Fun.swap j k id = Fun.swap j k id \<circ> (Fun.swap j k id \<circ> (Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id) \<circ> Fun.swap j k id))" |
|
594 |
by (simp add: comp_swap inv_swap_id) |
|
595 |
moreover have "Fun.swap g h id \<circ> (Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id) \<circ> Fun.swap j k id) \<circ> inv' (Fun.swap j k id \<circ> Fun.swap g h id) = Fun.swap j k id \<circ> (Fun.swap j k id \<circ> (Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id) \<circ> Fun.swap j k id)) \<circ> inv' (Fun.swap j k id)" |
|
596 |
by (metis calculation(10) calculation(4) calculation(9) comp_assoc comp_id comp_swap swap_nilpotent) |
|
597 |
ultimately have "Fun.swap i j (Fun.swap j k id) = Fun.swap j k id \<circ> Fun.swap g h id \<circ> (Fun.swap j k id \<circ> Fun.swap i j (Fun.swap j k id) \<circ> Fun.swap j k id) \<circ> inv' (Fun.swap j k id \<circ> Fun.swap g h id)" |
|
598 |
by (simp add: comp_assoc) |
|
599 |
then have final_step: |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
600 |
"p ^^ 2 = ((Fun.swap j k id) \<circ> (Fun.swap g h id)) \<circ> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
601 |
(cycle_of_list [i, j, k]) \<circ> |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
602 |
(inv' ((Fun.swap j k id) \<circ> (Fun.swap g h id)))" |
68604 | 603 |
using ijjk jkij by (auto simp: p2) |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
604 |
|
68604 | 605 |
define q where "q \<equiv> (Fun.swap j k id) \<circ> (Fun.swap g h id)" |
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
606 |
hence "(p \<circ> p) = q \<circ> p \<circ> (inv' q)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
607 |
by (metis final_step One_nat_def Suc_1 comp_id funpow.simps(2) funpow_simps_right(1) ijk p) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
608 |
hence "(p \<circ> p) \<circ> (inv' p) = q \<circ> p \<circ> (inv' q) \<circ> (inv' p)" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
609 |
hence 1: "p = q \<circ> p \<circ> (inv' q) \<circ> (inv' p)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
610 |
using p cycle_permutes[OF cs(1)] o_assoc[of p p "inv' p"] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
611 |
by (simp add: permutation_inverse_works(2)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
612 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
613 |
have "(Fun.swap j k id) \<circ> (Fun.swap g h id) permutes {1..n}" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
614 |
by (metis cs(3) gh_simps ijk insert_subset list.simps(15) permutes_compose permutes_swap_id) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
615 |
moreover have "evenperm ((Fun.swap j k id) \<circ> (Fun.swap g h id))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
616 |
by (metis cs(1) distinct_length_2_or_more evenperm_comp evenperm_swap gh(3) ijk permutation_swap_id) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
617 |
ultimately have 2: "q \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
618 |
by (simp add: alt_group_def q_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
619 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
620 |
have 3: "p \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
621 |
using alt_group_as_three_cycles generate.incl[OF \<open>p \<in> three_cycles n\<close>] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
622 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
623 |
from 1 2 3 show "p \<in> derived_set (alt_group n) (carrier (alt_group n))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
624 |
using alt_group_is_group[of n] alt_group_inv_equality[OF 2] alt_group_inv_equality[OF 3] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
625 |
unfolding alt_group_def sym_group_def by fastforce |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
626 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
627 |
hence "generate (alt_group n) (three_cycles n) \<subseteq> derived (alt_group n) (carrier (alt_group n))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
628 |
unfolding derived_def |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
629 |
using group.mono_generate[OF alt_group_is_group[of n]] derived_set_in_carrier by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
630 |
thus ?thesis using alt_group_as_three_cycles by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
631 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
632 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
633 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
634 |
corollary alt_group_not_solvable: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
635 |
assumes "n \<ge> 5" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
636 |
shows "\<not> solvable (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
637 |
proof (rule ccontr) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
638 |
assume "\<not> \<not> solvable (alt_group n)" hence "solvable (alt_group n)" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
639 |
then obtain k |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
640 |
where trivial_seq: "(derived (alt_group n) ^^ k) (carrier (alt_group n)) = { \<one>\<^bsub>alt_group n\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
641 |
using group.solvable_iff_trivial_derived_seq[OF alt_group_is_group[of n]] by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
642 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
643 |
have "(derived (alt_group n) ^^ k) (carrier (alt_group n)) = (carrier (alt_group n))" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
644 |
apply (induction k) using derived_alt_group_is_cons[OF assms] by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
645 |
hence "carrier (alt_group n) = { \<one>\<^bsub>alt_group n\<^esub> }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
646 |
using trivial_seq by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
647 |
hence singleton: "carrier (alt_group n) = { id }" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
648 |
by (simp add: alt_group_def sym_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
649 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
650 |
have "set [1 :: nat, 2, 3] \<subseteq> {1..n}" using assms by auto |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
651 |
moreover have "cycle [1 :: nat, 2, 3]" by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
652 |
moreover have "length [1 :: nat, 2, 3] = 3" by simp |
68604 | 653 |
ultimately have "cycle_of_list [1 :: nat, 2, 3] \<in> three_cycles n" |
654 |
unfolding three_cycles_def by blast |
|
68569
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
655 |
hence "cycle_of_list [1 :: nat, 2, 3] \<in> carrier (alt_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
656 |
using alt_group_as_three_cycles by (simp add: generate.incl) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
657 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
658 |
moreover have "map (cycle_of_list [1 :: nat, 2, 3]) [1 :: nat, 2, 3] = [2 :: nat, 3, 1]" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
659 |
using cyclic_rotation[OF \<open>cycle [1 :: nat, 2, 3]\<close>, of 1] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
660 |
hence "cycle_of_list [1 :: nat, 2, 3] \<noteq> id" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
661 |
by (metis list.map_id list.sel(1) numeral_One numeral_eq_iff semiring_norm(85)) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
662 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
663 |
ultimately show False using singleton by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
664 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
665 |
|
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
666 |
corollary sym_group_not_solvable: |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
667 |
assumes "n \<ge> 5" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
668 |
shows "\<not> solvable (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
669 |
proof - |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
670 |
have "subgroup (kernel (sym_group n) sign_img sign) (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
671 |
using group_hom.subgroup_kernel sign_is_hom by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
672 |
hence "subgroup (carrier (alt_group n)) (sym_group n)" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
673 |
using alt_group_is_kernel_from_sign[of n] by simp |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
674 |
hence "group_hom (alt_group n) (sym_group n) id" |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
675 |
using group.canonical_inj_is_hom[OF sym_group_is_group[of n]] by (simp add: alt_group_def) |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
676 |
thus ?thesis |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
677 |
using group_hom.not_solvable[of "alt_group n" "sym_group n" id] |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
678 |
alt_group_not_solvable[OF assms] inj_on_id by blast |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
679 |
qed |
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
680 |
|
68582 | 681 |
end |