author | wenzelm |
Mon, 11 Sep 2023 19:30:48 +0200 | |
changeset 78659 | b5f3d1051b13 |
parent 76340 | fdb91b733b65 |
child 80768 | c7723cc15de8 |
permissions | -rw-r--r-- |
37936 | 1 |
(* Title: HOL/Auth/Message.thy |
1839 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1996 University of Cambridge |
|
4 |
||
5 |
Datatypes of agents and messages; |
|
1913 | 6 |
Inductive relations "parts", "analz" and "synth" |
1839 | 7 |
*) |
8 |
||
61830 | 9 |
section\<open>Theory of Agents and Messages for Security Protocols\<close> |
13956 | 10 |
|
27105
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
11 |
theory Message |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
12 |
imports Main |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
13 |
begin |
11189 | 14 |
|
15 |
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) |
|
13926 | 16 |
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
17 |
by blast |
1839 | 18 |
|
41774 | 19 |
type_synonym |
1839 | 20 |
key = nat |
21 |
||
22 |
consts |
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
23 |
all_symmetric :: bool \<comment> \<open>true if all keys are symmetric\<close> |
67613 | 24 |
invKey :: "key\<Rightarrow>key" \<comment> \<open>inverse of a symmetric key\<close> |
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
25 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
26 |
specification (invKey) |
14181 | 27 |
invKey [simp]: "invKey (invKey K) = K" |
67613 | 28 |
invKey_symmetric: "all_symmetric \<longrightarrow> invKey = id" |
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
29 |
by (rule exI [of _ id], auto) |
1839 | 30 |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
31 |
|
61830 | 32 |
text\<open>The inverse of a symmetric key is itself; that of a public key |
33 |
is the private key and vice versa\<close> |
|
1839 | 34 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
35 |
definition symKeys :: "key set" where |
11230
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents:
11192
diff
changeset
|
36 |
"symKeys == {K. invKey K = K}" |
1839 | 37 |
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
38 |
datatype \<comment> \<open>We allow any number of friendly agents\<close> |
2032 | 39 |
agent = Server | Friend nat | Spy |
1839 | 40 |
|
58310 | 41 |
datatype |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
42 |
msg = Agent agent \<comment> \<open>Agent names\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
43 |
| Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
44 |
| Nonce nat \<comment> \<open>Unguessable nonces\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
45 |
| Key key \<comment> \<open>Crypto keys\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
46 |
| Hash msg \<comment> \<open>Hashing\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
47 |
| MPair msg msg \<comment> \<open>Compound messages\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
48 |
| Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> |
1839 | 49 |
|
5234 | 50 |
|
61956 | 51 |
text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close> |
5234 | 52 |
syntax |
61956 | 53 |
"_MTuple" :: "['a, args] \<Rightarrow> 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") |
1839 | 54 |
translations |
61956 | 55 |
"\<lbrace>x, y, z\<rbrace>" \<rightleftharpoons> "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>" |
56 |
"\<lbrace>x, y\<rbrace>" \<rightleftharpoons> "CONST MPair x y" |
|
1839 | 57 |
|
58 |
||
67613 | 59 |
definition HPair :: "[msg,msg] \<Rightarrow> msg" ("(4Hash[_] /_)" [0, 1000]) where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
60 |
\<comment> \<open>Message Y paired with a MAC computed with the help of X\<close> |
61956 | 61 |
"Hash[X] Y == \<lbrace>Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>" |
2484 | 62 |
|
67613 | 63 |
definition keysFor :: "msg set \<Rightarrow> key set" where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
64 |
\<comment> \<open>Keys useful to decrypt elements of a message set\<close> |
11192 | 65 |
"keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}" |
1839 | 66 |
|
16818 | 67 |
|
76299 | 68 |
subsection\<open>Inductive Definition of All Parts of a Message\<close> |
1839 | 69 |
|
23746 | 70 |
inductive_set |
67613 | 71 |
parts :: "msg set \<Rightarrow> msg set" |
23746 | 72 |
for H :: "msg set" |
73 |
where |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
74 |
Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> parts H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
75 |
| Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> X \<in> parts H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
76 |
| Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> Y \<in> parts H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
77 |
| Body: "Crypt K X \<in> parts H \<Longrightarrow> X \<in> parts H" |
11189 | 78 |
|
79 |
||
61830 | 80 |
text\<open>Monotonicity\<close> |
76289 | 81 |
lemma parts_mono_aux: "\<lbrakk>G \<subseteq> H; X \<in> parts G\<rbrakk> \<Longrightarrow> X \<in> parts H" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
82 |
by (erule parts.induct) (auto dest: parts.Fst parts.Snd parts.Body) |
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
83 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
84 |
lemma parts_mono: "G \<subseteq> H \<Longrightarrow> parts(G) \<subseteq> parts(H)" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
85 |
using parts_mono_aux by blast |
1839 | 86 |
|
87 |
||
61830 | 88 |
text\<open>Equations hold because constructors are injective.\<close> |
76338 | 89 |
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x \<in>A)" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
90 |
by auto |
13926 | 91 |
|
76338 | 92 |
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x \<in>A)" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
93 |
by auto |
13926 | 94 |
|
95 |
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" |
|
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
96 |
by auto |
13926 | 97 |
|
98 |
||
76299 | 99 |
subsection\<open>Inverse of keys\<close> |
13926 | 100 |
|
101 |
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" |
|
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
102 |
by (metis invKey) |
13926 | 103 |
|
104 |
||
76299 | 105 |
subsection\<open>The @{term keysFor} operator\<close> |
13926 | 106 |
|
107 |
lemma keysFor_empty [simp]: "keysFor {} = {}" |
|
76289 | 108 |
unfolding keysFor_def by blast |
13926 | 109 |
|
110 |
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" |
|
76289 | 111 |
unfolding keysFor_def by blast |
13926 | 112 |
|
76338 | 113 |
lemma keysFor_UN [simp]: "keysFor (\<Union>i \<in>A. H i) = (\<Union>i \<in>A. keysFor (H i))" |
76289 | 114 |
unfolding keysFor_def by blast |
13926 | 115 |
|
61830 | 116 |
text\<open>Monotonicity\<close> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
117 |
lemma keysFor_mono: "G \<subseteq> H \<Longrightarrow> keysFor(G) \<subseteq> keysFor(H)" |
76289 | 118 |
unfolding keysFor_def by blast |
13926 | 119 |
|
120 |
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" |
|
76289 | 121 |
unfolding keysFor_def by auto |
13926 | 122 |
|
123 |
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" |
|
76289 | 124 |
unfolding keysFor_def by auto |
13926 | 125 |
|
126 |
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" |
|
76289 | 127 |
unfolding keysFor_def by auto |
13926 | 128 |
|
129 |
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" |
|
76289 | 130 |
unfolding keysFor_def by auto |
13926 | 131 |
|
132 |
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" |
|
76289 | 133 |
unfolding keysFor_def by auto |
13926 | 134 |
|
61956 | 135 |
lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H" |
76289 | 136 |
unfolding keysFor_def by auto |
13926 | 137 |
|
138 |
lemma keysFor_insert_Crypt [simp]: |
|
139 |
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" |
|
76289 | 140 |
unfolding keysFor_def by auto |
13926 | 141 |
|
142 |
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}" |
|
76289 | 143 |
unfolding keysFor_def by auto |
13926 | 144 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
145 |
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H \<Longrightarrow> invKey K \<in> keysFor H" |
76289 | 146 |
unfolding keysFor_def by blast |
13926 | 147 |
|
148 |
||
61830 | 149 |
subsection\<open>Inductive relation "parts"\<close> |
13926 | 150 |
|
151 |
lemma MPair_parts: |
|
76289 | 152 |
"\<lbrakk>\<lbrace>X,Y\<rbrace> \<in> parts H; |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
153 |
\<lbrakk>X \<in> parts H; Y \<in> parts H\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
76289 | 154 |
by (blast dest: parts.Fst parts.Snd) |
13926 | 155 |
|
156 |
declare MPair_parts [elim!] parts.Body [dest!] |
|
61830 | 157 |
text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the |
13926 | 158 |
compound message. They work well on THIS FILE. |
61830 | 159 |
\<open>MPair_parts\<close> is left as SAFE because it speeds up proofs. |
160 |
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close> |
|
13926 | 161 |
|
162 |
lemma parts_increasing: "H \<subseteq> parts(H)" |
|
76289 | 163 |
by blast |
13926 | 164 |
|
45605 | 165 |
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] |
13926 | 166 |
|
76289 | 167 |
lemma parts_empty_aux: "X \<in> parts{} \<Longrightarrow> False" |
168 |
by (induction rule: parts.induct) (blast+) |
|
169 |
||
13926 | 170 |
lemma parts_empty [simp]: "parts{} = {}" |
76289 | 171 |
using parts_empty_aux by blast |
13926 | 172 |
|
76338 | 173 |
lemma parts_emptyE [elim!]: "X \<in> parts{} \<Longrightarrow> P" |
76289 | 174 |
by simp |
13926 | 175 |
|
61830 | 176 |
text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close> |
76338 | 177 |
lemma parts_singleton: "X \<in> parts H \<Longrightarrow> \<exists>Y \<in>H. X \<in> parts {Y}" |
76289 | 178 |
by (erule parts.induct, fast+) |
13926 | 179 |
|
180 |
||
61830 | 181 |
subsubsection\<open>Unions\<close> |
13926 | 182 |
|
183 |
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" |
|
76340 | 184 |
proof - |
185 |
have "X \<in> parts (G \<union> H) \<Longrightarrow> X \<in> parts G \<union> parts H" for X |
|
186 |
by (induction rule: parts.induct) auto |
|
187 |
then show ?thesis |
|
188 |
by (simp add: order_antisym parts_mono subsetI) |
|
189 |
qed |
|
13926 | 190 |
|
191 |
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H" |
|
76289 | 192 |
by (metis insert_is_Un parts_Un) |
13926 | 193 |
|
61830 | 194 |
text\<open>TWO inserts to avoid looping. This rewrite is better than nothing. |
195 |
But its behaviour can be strange.\<close> |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
196 |
lemma parts_insert2: |
76289 | 197 |
"parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H" |
198 |
by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un) |
|
13926 | 199 |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
200 |
lemma parts_image [simp]: |
76338 | 201 |
"parts (f ` A) = (\<Union>x \<in>A. parts {f x})" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
202 |
apply auto |
76289 | 203 |
apply (metis (mono_tags, opaque_lifting) image_iff parts_singleton) |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
204 |
apply (metis empty_subsetI image_eqI insert_absorb insert_subset parts_mono) |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
205 |
done |
13926 | 206 |
|
76340 | 207 |
text\<open>Added to simplify arguments to parts, analz and synth.\<close> |
13926 | 208 |
|
61830 | 209 |
text\<open>This allows \<open>blast\<close> to simplify occurrences of |
69597 | 210 |
\<^term>\<open>parts(G\<union>H)\<close> in the assumption.\<close> |
17729 | 211 |
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] |
212 |
declare in_parts_UnE [elim!] |
|
13926 | 213 |
|
214 |
||
215 |
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" |
|
76289 | 216 |
by (blast intro: parts_mono [THEN [2] rev_subsetD]) |
13926 | 217 |
|
61830 | 218 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 219 |
|
76338 | 220 |
lemma parts_partsD [dest!]: "X \<in> parts (parts H) \<Longrightarrow> X \<in> parts H" |
76289 | 221 |
by (erule parts.induct, blast+) |
13926 | 222 |
|
223 |
lemma parts_idem [simp]: "parts (parts H) = parts H" |
|
76289 | 224 |
by blast |
13926 | 225 |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
226 |
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" |
76289 | 227 |
by (metis parts_idem parts_increasing parts_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
228 |
|
76338 | 229 |
lemma parts_trans: "\<lbrakk>X \<in> parts G; G \<subseteq> parts H\<rbrakk> \<Longrightarrow> X \<in> parts H" |
76289 | 230 |
by (metis parts_subset_iff subsetD) |
13926 | 231 |
|
61830 | 232 |
text\<open>Cut\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
233 |
lemma parts_cut: |
76338 | 234 |
"\<lbrakk>Y \<in> parts (insert X G); X \<in> parts H\<rbrakk> \<Longrightarrow> Y \<in> parts (G \<union> H)" |
76289 | 235 |
by (blast intro: parts_trans) |
18492 | 236 |
|
76338 | 237 |
lemma parts_cut_eq [simp]: "X \<in> parts H \<Longrightarrow> parts (insert X H) = parts H" |
76289 | 238 |
by (metis insert_absorb parts_idem parts_insert) |
13926 | 239 |
|
240 |
||
61830 | 241 |
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> |
13926 | 242 |
|
243 |
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] |
|
244 |
||
245 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
246 |
lemma parts_insert_Agent [simp]: |
76289 | 247 |
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" |
248 |
apply (rule parts_insert_eq_I) |
|
249 |
apply (erule parts.induct, auto) |
|
250 |
done |
|
13926 | 251 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
252 |
lemma parts_insert_Nonce [simp]: |
76289 | 253 |
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" |
254 |
apply (rule parts_insert_eq_I) |
|
255 |
apply (erule parts.induct, auto) |
|
256 |
done |
|
13926 | 257 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
258 |
lemma parts_insert_Number [simp]: |
76289 | 259 |
"parts (insert (Number N) H) = insert (Number N) (parts H)" |
260 |
apply (rule parts_insert_eq_I) |
|
261 |
apply (erule parts.induct, auto) |
|
262 |
done |
|
13926 | 263 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
264 |
lemma parts_insert_Key [simp]: |
76289 | 265 |
"parts (insert (Key K) H) = insert (Key K) (parts H)" |
266 |
apply (rule parts_insert_eq_I) |
|
267 |
apply (erule parts.induct, auto) |
|
268 |
done |
|
13926 | 269 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
270 |
lemma parts_insert_Hash [simp]: |
76289 | 271 |
"parts (insert (Hash X) H) = insert (Hash X) (parts H)" |
272 |
apply (rule parts_insert_eq_I) |
|
273 |
apply (erule parts.induct, auto) |
|
274 |
done |
|
13926 | 275 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
276 |
lemma parts_insert_Crypt [simp]: |
76289 | 277 |
"parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" |
76340 | 278 |
proof - |
279 |
have "Y \<in> parts (insert (Crypt K X) H) \<Longrightarrow> Y \<in> insert (Crypt K X) (parts (insert X H))" for Y |
|
280 |
by (induction rule: parts.induct) auto |
|
281 |
then show ?thesis |
|
282 |
by (smt (verit) insertI1 insert_commute parts.simps parts_cut_eq parts_insert_eq_I) |
|
283 |
qed |
|
13926 | 284 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
285 |
lemma parts_insert_MPair [simp]: |
76340 | 286 |
"parts (insert \<lbrace>X,Y\<rbrace> H) = insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))" |
287 |
proof - |
|
288 |
have "Z \<in> parts (insert \<lbrace>X, Y\<rbrace> H) \<Longrightarrow> Z \<in> insert \<lbrace>X, Y\<rbrace> (parts (insert X (insert Y H)))" for Z |
|
289 |
by (induction rule: parts.induct) auto |
|
290 |
then show ?thesis |
|
291 |
by (smt (verit) insertI1 insert_commute parts.simps parts_cut_eq parts_insert_eq_I) |
|
292 |
qed |
|
13926 | 293 |
|
294 |
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" |
|
76289 | 295 |
by auto |
13926 | 296 |
|
61830 | 297 |
text\<open>In any message, there is an upper bound N on its greatest nonce.\<close> |
67613 | 298 |
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n \<longrightarrow> Nonce n \<notin> parts {msg}" |
57394 | 299 |
proof (induct msg) |
300 |
case (Nonce n) |
|
76289 | 301 |
show ?case |
302 |
by simp (metis Suc_n_not_le_n) |
|
57394 | 303 |
next |
304 |
case (MPair X Y) |
|
76289 | 305 |
then show ?case \<comment> \<open>metis works out the necessary sum itself!\<close> |
306 |
by (simp add: parts_insert2) (metis le_trans nat_le_linear) |
|
57394 | 307 |
qed auto |
13926 | 308 |
|
61830 | 309 |
subsection\<open>Inductive relation "analz"\<close> |
13926 | 310 |
|
61830 | 311 |
text\<open>Inductive definition of "analz" -- what can be broken down from a set of |
1839 | 312 |
messages, including keys. A form of downward closure. Pairs can |
61830 | 313 |
be taken apart; messages decrypted with known keys.\<close> |
1839 | 314 |
|
23746 | 315 |
inductive_set |
67613 | 316 |
analz :: "msg set \<Rightarrow> msg set" |
23746 | 317 |
for H :: "msg set" |
318 |
where |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
319 |
Inj [intro,simp]: "X \<in> H \<Longrightarrow> X \<in> analz H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
320 |
| Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> X \<in> analz H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
321 |
| Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> Y \<in> analz H" |
23746 | 322 |
| Decrypt [dest]: |
76289 | 323 |
"\<lbrakk>Crypt K X \<in> analz H; Key(invKey K) \<in> analz H\<rbrakk> \<Longrightarrow> X \<in> analz H" |
1839 | 324 |
|
325 |
||
61830 | 326 |
text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close> |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
327 |
lemma analz_mono_aux: "\<lbrakk>G \<subseteq> H; X \<in> analz G\<rbrakk> \<Longrightarrow> X \<in> analz H" |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
328 |
by (erule analz.induct) (auto dest: analz.Fst analz.Snd) |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
329 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
330 |
lemma analz_mono: "G\<subseteq>H \<Longrightarrow> analz(G) \<subseteq> analz(H)" |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
331 |
using analz_mono_aux by blast |
11189 | 332 |
|
61830 | 333 |
text\<open>Making it safe speeds up proofs\<close> |
13926 | 334 |
lemma MPair_analz [elim!]: |
76289 | 335 |
"\<lbrakk>\<lbrace>X,Y\<rbrace> \<in> analz H; |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
336 |
\<lbrakk>X \<in> analz H; Y \<in> analz H\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
76289 | 337 |
by (blast dest: analz.Fst analz.Snd) |
13926 | 338 |
|
339 |
lemma analz_increasing: "H \<subseteq> analz(H)" |
|
76289 | 340 |
by blast |
13926 | 341 |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
342 |
lemma analz_into_parts: "X \<in> analz H \<Longrightarrow> X \<in> parts H" |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
343 |
by (erule analz.induct) auto |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
344 |
|
13926 | 345 |
lemma analz_subset_parts: "analz H \<subseteq> parts H" |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
346 |
using analz_into_parts by blast |
13926 | 347 |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
348 |
lemma analz_parts [simp]: "analz (parts H) = parts H" |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
349 |
using analz_subset_parts by blast |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
350 |
|
45605 | 351 |
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] |
13926 | 352 |
|
353 |
||
354 |
lemma parts_analz [simp]: "parts (analz H) = parts H" |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
355 |
by (metis analz_increasing analz_subset_parts parts_idem parts_mono subset_antisym) |
13926 | 356 |
|
45605 | 357 |
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] |
13926 | 358 |
|
61830 | 359 |
subsubsection\<open>General equational properties\<close> |
13926 | 360 |
|
361 |
lemma analz_empty [simp]: "analz{} = {}" |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
362 |
using analz_parts by fastforce |
13926 | 363 |
|
61830 | 364 |
text\<open>Converse fails: we can analz more from the union than from the |
365 |
separate parts, as a key in one might decrypt a message in the other\<close> |
|
13926 | 366 |
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" |
76289 | 367 |
by (intro Un_least analz_mono Un_upper1 Un_upper2) |
13926 | 368 |
|
369 |
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" |
|
76289 | 370 |
by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
13926 | 371 |
|
61830 | 372 |
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> |
13926 | 373 |
|
374 |
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] |
|
375 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
376 |
lemma analz_insert_Agent [simp]: |
76289 | 377 |
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" |
378 |
apply (rule analz_insert_eq_I) |
|
379 |
apply (erule analz.induct, auto) |
|
380 |
done |
|
13926 | 381 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
382 |
lemma analz_insert_Nonce [simp]: |
76289 | 383 |
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" |
384 |
apply (rule analz_insert_eq_I) |
|
385 |
apply (erule analz.induct, auto) |
|
386 |
done |
|
13926 | 387 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
388 |
lemma analz_insert_Number [simp]: |
76289 | 389 |
"analz (insert (Number N) H) = insert (Number N) (analz H)" |
390 |
apply (rule analz_insert_eq_I) |
|
391 |
apply (erule analz.induct, auto) |
|
392 |
done |
|
13926 | 393 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
394 |
lemma analz_insert_Hash [simp]: |
76289 | 395 |
"analz (insert (Hash X) H) = insert (Hash X) (analz H)" |
396 |
apply (rule analz_insert_eq_I) |
|
397 |
apply (erule analz.induct, auto) |
|
398 |
done |
|
13926 | 399 |
|
61830 | 400 |
text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close> |
13926 | 401 |
lemma analz_insert_Key [simp]: |
76289 | 402 |
"K \<notin> keysFor (analz H) \<Longrightarrow> |
13926 | 403 |
analz (insert (Key K) H) = insert (Key K) (analz H)" |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
404 |
unfolding keysFor_def |
76289 | 405 |
apply (rule analz_insert_eq_I) |
406 |
apply (erule analz.induct, auto) |
|
407 |
done |
|
13926 | 408 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
409 |
lemma analz_insert_MPair [simp]: |
76340 | 410 |
"analz (insert \<lbrace>X,Y\<rbrace> H) = insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))" |
411 |
proof - |
|
412 |
have "Z \<in> analz (insert \<lbrace>X, Y\<rbrace> H) \<Longrightarrow> Z \<in> insert \<lbrace>X, Y\<rbrace> (analz (insert X (insert Y H)))" for Z |
|
413 |
by (induction rule: analz.induct) auto |
|
414 |
moreover have "Z \<in> analz (insert X (insert Y H)) \<Longrightarrow> Z \<in> analz (insert \<lbrace>X, Y\<rbrace> H)" for Z |
|
415 |
by (induction rule: analz.induct) (use analz.Inj in blast)+ |
|
416 |
ultimately show ?thesis |
|
417 |
by auto |
|
418 |
qed |
|
13926 | 419 |
|
76340 | 420 |
text\<open>Can pull out encrypted message if the Key is not known\<close> |
13926 | 421 |
lemma analz_insert_Crypt: |
76289 | 422 |
"Key (invKey K) \<notin> analz H |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
423 |
\<Longrightarrow> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" |
76289 | 424 |
apply (rule analz_insert_eq_I) |
425 |
apply (erule analz.induct, auto) |
|
426 |
done |
|
13926 | 427 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
428 |
lemma analz_insert_Decrypt: |
76340 | 429 |
assumes "Key (invKey K) \<in> analz H" |
430 |
shows "analz (insert (Crypt K X) H) = insert (Crypt K X) (analz (insert X H))" |
|
431 |
proof - |
|
432 |
have "Y \<in> analz (insert (Crypt K X) H) \<Longrightarrow> Y \<in> insert (Crypt K X) (analz (insert X H))" for Y |
|
433 |
by (induction rule: analz.induct) auto |
|
434 |
moreover |
|
435 |
have "Y \<in> analz (insert X H) \<Longrightarrow> Y \<in> analz (insert (Crypt K X) H)" for Y |
|
436 |
proof (induction rule: analz.induct) |
|
437 |
case (Inj X) |
|
438 |
then show ?case |
|
439 |
by (metis analz.Decrypt analz.Inj analz_insertI assms insert_iff) |
|
440 |
qed auto |
|
441 |
ultimately show ?thesis |
|
442 |
by auto |
|
443 |
qed |
|
13926 | 444 |
|
61830 | 445 |
text\<open>Case analysis: either the message is secure, or it is not! Effective, |
62390 | 446 |
but can cause subgoals to blow up! Use with \<open>if_split\<close>; apparently |
69597 | 447 |
\<open>split_tac\<close> does not cope with patterns such as \<^term>\<open>analz (insert |
448 |
(Crypt K X) H)\<close>\<close> |
|
13926 | 449 |
lemma analz_Crypt_if [simp]: |
76289 | 450 |
"analz (insert (Crypt K X) H) = |
13926 | 451 |
(if (Key (invKey K) \<in> analz H) |
452 |
then insert (Crypt K X) (analz (insert X H)) |
|
453 |
else insert (Crypt K X) (analz H))" |
|
76289 | 454 |
by (simp add: analz_insert_Crypt analz_insert_Decrypt) |
13926 | 455 |
|
456 |
||
61830 | 457 |
text\<open>This rule supposes "for the sake of argument" that we have the key.\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
458 |
lemma analz_insert_Crypt_subset: |
76289 | 459 |
"analz (insert (Crypt K X) H) \<subseteq> |
13926 | 460 |
insert (Crypt K X) (analz (insert X H))" |
76289 | 461 |
apply (rule subsetI) |
462 |
apply (erule analz.induct, auto) |
|
463 |
done |
|
13926 | 464 |
|
465 |
||
466 |
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" |
|
76289 | 467 |
apply auto |
468 |
apply (erule analz.induct, auto) |
|
469 |
done |
|
13926 | 470 |
|
471 |
||
61830 | 472 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 473 |
|
76338 | 474 |
lemma analz_analzD [dest!]: "X \<in> analz (analz H) \<Longrightarrow> X \<in> analz H" |
76289 | 475 |
by (erule analz.induct, blast+) |
13926 | 476 |
|
477 |
lemma analz_idem [simp]: "analz (analz H) = analz H" |
|
76289 | 478 |
by blast |
13926 | 479 |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
480 |
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" |
76289 | 481 |
by (metis analz_idem analz_increasing analz_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
482 |
|
76338 | 483 |
lemma analz_trans: "\<lbrakk>X \<in> analz G; G \<subseteq> analz H\<rbrakk> \<Longrightarrow> X \<in> analz H" |
76289 | 484 |
by (drule analz_mono, blast) |
13926 | 485 |
|
61830 | 486 |
text\<open>Cut; Lemma 2 of Lowe\<close> |
76338 | 487 |
lemma analz_cut: "\<lbrakk>Y \<in> analz (insert X H); X \<in> analz H\<rbrakk> \<Longrightarrow> Y \<in> analz H" |
76289 | 488 |
by (erule analz_trans, blast) |
13926 | 489 |
|
490 |
(*Cut can be proved easily by induction on |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
491 |
"Y: analz (insert X H) \<Longrightarrow> X: analz H \<longrightarrow> Y: analz H" |
13926 | 492 |
*) |
493 |
||
61830 | 494 |
text\<open>This rewrite rule helps in the simplification of messages that involve |
13926 | 495 |
the forwarding of unknown components (X). Without it, removing occurrences |
61830 | 496 |
of X can be very complicated.\<close> |
76338 | 497 |
lemma analz_insert_eq: "X \<in> analz H \<Longrightarrow> analz (insert X H) = analz H" |
76289 | 498 |
by (metis analz_cut analz_insert_eq_I insert_absorb) |
13926 | 499 |
|
500 |
||
61830 | 501 |
text\<open>A congruence rule for "analz"\<close> |
13926 | 502 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
503 |
lemma analz_subset_cong: |
76289 | 504 |
"\<lbrakk>analz G \<subseteq> analz G'; analz H \<subseteq> analz H'\<rbrakk> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
505 |
\<Longrightarrow> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" |
76289 | 506 |
by (metis Un_mono analz_Un analz_subset_iff subset_trans) |
13926 | 507 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
508 |
lemma analz_cong: |
76289 | 509 |
"\<lbrakk>analz G = analz G'; analz H = analz H'\<rbrakk> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
510 |
\<Longrightarrow> analz (G \<union> H) = analz (G' \<union> H')" |
76289 | 511 |
by (intro equalityI analz_subset_cong, simp_all) |
13926 | 512 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
513 |
lemma analz_insert_cong: |
76289 | 514 |
"analz H = analz H' \<Longrightarrow> analz(insert X H) = analz(insert X H')" |
515 |
by (force simp only: insert_def intro!: analz_cong) |
|
13926 | 516 |
|
61830 | 517 |
text\<open>If there are no pairs or encryptions then analz does nothing\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
518 |
lemma analz_trivial: |
76289 | 519 |
"\<lbrakk>\<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H\<rbrakk> \<Longrightarrow> analz H = H" |
520 |
apply safe |
|
521 |
apply (erule analz.induct, blast+) |
|
522 |
done |
|
13926 | 523 |
|
524 |
||
61830 | 525 |
subsection\<open>Inductive relation "synth"\<close> |
13926 | 526 |
|
61830 | 527 |
text\<open>Inductive definition of "synth" -- what can be built up from a set of |
1839 | 528 |
messages. A form of upward closure. Pairs can be built, messages |
3668 | 529 |
encrypted with known keys. Agent names are public domain. |
61830 | 530 |
Numbers can be guessed, but Nonces cannot be.\<close> |
1839 | 531 |
|
23746 | 532 |
inductive_set |
533 |
synth :: "msg set => msg set" |
|
534 |
for H :: "msg set" |
|
535 |
where |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
536 |
Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> synth H" |
23746 | 537 |
| Agent [intro]: "Agent agt \<in> synth H" |
538 |
| Number [intro]: "Number n \<in> synth H" |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
539 |
| Hash [intro]: "X \<in> synth H \<Longrightarrow> Hash X \<in> synth H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
540 |
| MPair [intro]: "\<lbrakk>X \<in> synth H; Y \<in> synth H\<rbrakk> \<Longrightarrow> \<lbrace>X,Y\<rbrace> \<in> synth H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
541 |
| Crypt [intro]: "\<lbrakk>X \<in> synth H; Key(K) \<in> H\<rbrakk> \<Longrightarrow> Crypt K X \<in> synth H" |
11189 | 542 |
|
61830 | 543 |
text\<open>Monotonicity\<close> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
544 |
lemma synth_mono: "G\<subseteq>H \<Longrightarrow> synth(G) \<subseteq> synth(H)" |
16818 | 545 |
by (auto, erule synth.induct, auto) |
11189 | 546 |
|
61830 | 547 |
text\<open>NO \<open>Agent_synth\<close>, as any Agent name can be synthesized. |
69597 | 548 |
The same holds for \<^term>\<open>Number\<close>\<close> |
11189 | 549 |
|
39216 | 550 |
inductive_simps synth_simps [iff]: |
76289 | 551 |
"Nonce n \<in> synth H" |
552 |
"Key K \<in> synth H" |
|
553 |
"Hash X \<in> synth H" |
|
554 |
"\<lbrace>X,Y\<rbrace> \<in> synth H" |
|
555 |
"Crypt K X \<in> synth H" |
|
13926 | 556 |
|
557 |
lemma synth_increasing: "H \<subseteq> synth(H)" |
|
76289 | 558 |
by blast |
13926 | 559 |
|
61830 | 560 |
subsubsection\<open>Unions\<close> |
13926 | 561 |
|
61830 | 562 |
text\<open>Converse fails: we can synth more from the union than from the |
563 |
separate parts, building a compound message using elements of each.\<close> |
|
13926 | 564 |
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" |
76289 | 565 |
by (intro Un_least synth_mono Un_upper1 Un_upper2) |
13926 | 566 |
|
567 |
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" |
|
76289 | 568 |
by (blast intro: synth_mono [THEN [2] rev_subsetD]) |
13926 | 569 |
|
61830 | 570 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 571 |
|
76338 | 572 |
lemma synth_synthD [dest!]: "X \<in> synth (synth H) \<Longrightarrow> X \<in> synth H" |
76289 | 573 |
by (erule synth.induct, auto) |
13926 | 574 |
|
575 |
lemma synth_idem: "synth (synth H) = synth H" |
|
76289 | 576 |
by blast |
13926 | 577 |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
578 |
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" |
76289 | 579 |
by (metis subset_trans synth_idem synth_increasing synth_mono) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
580 |
|
76338 | 581 |
lemma synth_trans: "\<lbrakk>X \<in> synth G; G \<subseteq> synth H\<rbrakk> \<Longrightarrow> X \<in> synth H" |
76289 | 582 |
by (drule synth_mono, blast) |
13926 | 583 |
|
61830 | 584 |
text\<open>Cut; Lemma 2 of Lowe\<close> |
76338 | 585 |
lemma synth_cut: "\<lbrakk>Y \<in> synth (insert X H); X \<in> synth H\<rbrakk> \<Longrightarrow> Y \<in> synth H" |
76289 | 586 |
by (erule synth_trans, blast) |
13926 | 587 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
588 |
lemma Crypt_synth_eq [simp]: |
76289 | 589 |
"Key K \<notin> H \<Longrightarrow> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" |
590 |
by blast |
|
13926 | 591 |
|
592 |
||
593 |
lemma keysFor_synth [simp]: |
|
76289 | 594 |
"keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}" |
595 |
unfolding keysFor_def by blast |
|
13926 | 596 |
|
597 |
||
61830 | 598 |
subsubsection\<open>Combinations of parts, analz and synth\<close> |
13926 | 599 |
|
600 |
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" |
|
76338 | 601 |
proof - |
602 |
have "X \<in> parts (synth H) \<Longrightarrow> X \<in> parts H \<union> synth H" for X |
|
603 |
by (induction X rule: parts.induct) (auto intro: parts.intros) |
|
604 |
then show ?thesis |
|
605 |
by (meson parts_increasing parts_mono subsetI antisym sup_least synth_increasing) |
|
606 |
qed |
|
13926 | 607 |
|
608 |
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" |
|
76338 | 609 |
using analz_cong by blast |
13926 | 610 |
|
611 |
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" |
|
76338 | 612 |
proof - |
613 |
have "X \<in> analz (synth G \<union> H) \<Longrightarrow> X \<in> analz (G \<union> H) \<union> synth G" for X |
|
614 |
by (induction X rule: analz.induct) (auto intro: analz.intros) |
|
615 |
then show ?thesis |
|
616 |
by (metis analz_subset_iff le_sup_iff subsetI subset_antisym synth_subset_iff) |
|
617 |
qed |
|
13926 | 618 |
|
619 |
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" |
|
76289 | 620 |
by (metis Un_empty_right analz_synth_Un) |
13926 | 621 |
|
622 |
||
61830 | 623 |
subsubsection\<open>For reasoning about the Fake rule in traces\<close> |
13926 | 624 |
|
76338 | 625 |
lemma parts_insert_subset_Un: "X \<in> G \<Longrightarrow> parts(insert X H) \<subseteq> parts G \<union> parts H" |
76289 | 626 |
by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono) |
13926 | 627 |
|
61830 | 628 |
text\<open>More specifically for Fake. See also \<open>Fake_parts_sing\<close> below\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
629 |
lemma Fake_parts_insert: |
76289 | 630 |
"X \<in> synth (analz H) \<Longrightarrow> |
13926 | 631 |
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" |
76289 | 632 |
by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono |
633 |
parts_synth synth_mono synth_subset_iff) |
|
13926 | 634 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
635 |
lemma Fake_parts_insert_in_Un: |
76289 | 636 |
"\<lbrakk>Z \<in> parts (insert X H); X \<in> synth (analz H)\<rbrakk> |
67613 | 637 |
\<Longrightarrow> Z \<in> synth (analz H) \<union> parts H" |
76289 | 638 |
by (metis Fake_parts_insert subsetD) |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
639 |
|
69597 | 640 |
text\<open>\<^term>\<open>H\<close> is sometimes \<^term>\<open>Key ` KK \<union> spies evs\<close>, so can't put |
641 |
\<^term>\<open>G=H\<close>.\<close> |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
642 |
lemma Fake_analz_insert: |
76338 | 643 |
"X \<in> synth (analz G) \<Longrightarrow> |
13926 | 644 |
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" |
76289 | 645 |
by (metis UnCI Un_commute Un_upper1 analz_analz_Un analz_mono analz_synth_Un insert_subset) |
13926 | 646 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
647 |
lemma analz_conj_parts [simp]: |
76289 | 648 |
"(X \<in> analz H \<and> X \<in> parts H) = (X \<in> analz H)" |
649 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
|
13926 | 650 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
651 |
lemma analz_disj_parts [simp]: |
76289 | 652 |
"(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" |
653 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
|
13926 | 654 |
|
61830 | 655 |
text\<open>Without this equation, other rules for synth and analz would yield |
656 |
redundant cases\<close> |
|
13926 | 657 |
lemma MPair_synth_analz [iff]: |
76289 | 658 |
"\<lbrace>X,Y\<rbrace> \<in> synth (analz H) \<longleftrightarrow> X \<in> synth (analz H) \<and> Y \<in> synth (analz H)" |
659 |
by blast |
|
13926 | 660 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
661 |
lemma Crypt_synth_analz: |
76289 | 662 |
"\<lbrakk>Key K \<in> analz H; Key (invKey K) \<in> analz H\<rbrakk> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
663 |
\<Longrightarrow> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" |
76289 | 664 |
by blast |
13926 | 665 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
666 |
lemma Hash_synth_analz [simp]: |
76289 | 667 |
"X \<notin> synth (analz H) |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
668 |
\<Longrightarrow> (Hash\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = (Hash\<lbrace>X,Y\<rbrace> \<in> analz H)" |
76289 | 669 |
by blast |
13926 | 670 |
|
671 |
||
61830 | 672 |
subsection\<open>HPair: a combination of Hash and MPair\<close> |
13926 | 673 |
|
61830 | 674 |
subsubsection\<open>Freeness\<close> |
13926 | 675 |
|
67613 | 676 |
lemma Agent_neq_HPair: "Agent A \<noteq> Hash[X] Y" |
57394 | 677 |
unfolding HPair_def by simp |
13926 | 678 |
|
67613 | 679 |
lemma Nonce_neq_HPair: "Nonce N \<noteq> Hash[X] Y" |
57394 | 680 |
unfolding HPair_def by simp |
13926 | 681 |
|
67613 | 682 |
lemma Number_neq_HPair: "Number N \<noteq> Hash[X] Y" |
57394 | 683 |
unfolding HPair_def by simp |
13926 | 684 |
|
67613 | 685 |
lemma Key_neq_HPair: "Key K \<noteq> Hash[X] Y" |
57394 | 686 |
unfolding HPair_def by simp |
13926 | 687 |
|
67613 | 688 |
lemma Hash_neq_HPair: "Hash Z \<noteq> Hash[X] Y" |
57394 | 689 |
unfolding HPair_def by simp |
13926 | 690 |
|
67613 | 691 |
lemma Crypt_neq_HPair: "Crypt K X' \<noteq> Hash[X] Y" |
57394 | 692 |
unfolding HPair_def by simp |
13926 | 693 |
|
694 |
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair |
|
76289 | 695 |
Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair |
13926 | 696 |
|
697 |
declare HPair_neqs [iff] |
|
698 |
declare HPair_neqs [symmetric, iff] |
|
699 |
||
67613 | 700 |
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X \<and> Y'=Y)" |
76289 | 701 |
by (simp add: HPair_def) |
13926 | 702 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
703 |
lemma MPair_eq_HPair [iff]: |
76289 | 704 |
"(\<lbrace>X',Y'\<rbrace> = Hash[X] Y) = (X' = Hash\<lbrace>X,Y\<rbrace> \<and> Y'=Y)" |
705 |
by (simp add: HPair_def) |
|
13926 | 706 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
707 |
lemma HPair_eq_MPair [iff]: |
76289 | 708 |
"(Hash[X] Y = \<lbrace>X',Y'\<rbrace>) = (X' = Hash\<lbrace>X,Y\<rbrace> \<and> Y'=Y)" |
709 |
by (auto simp add: HPair_def) |
|
13926 | 710 |
|
711 |
||
61830 | 712 |
subsubsection\<open>Specialized laws, proved in terms of those for Hash and MPair\<close> |
13926 | 713 |
|
714 |
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" |
|
76289 | 715 |
by (simp add: HPair_def) |
13926 | 716 |
|
717 |
lemma parts_insert_HPair [simp]: |
|
76289 | 718 |
"parts (insert (Hash[X] Y) H) = |
61956 | 719 |
insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (parts (insert Y H)))" |
76289 | 720 |
by (simp add: HPair_def) |
13926 | 721 |
|
722 |
lemma analz_insert_HPair [simp]: |
|
76289 | 723 |
"analz (insert (Hash[X] Y) H) = |
61956 | 724 |
insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (analz (insert Y H)))" |
76289 | 725 |
by (simp add: HPair_def) |
13926 | 726 |
|
727 |
lemma HPair_synth_analz [simp]: |
|
76289 | 728 |
"X \<notin> synth (analz H) |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
729 |
\<Longrightarrow> (Hash[X] Y \<in> synth (analz H)) = |
67613 | 730 |
(Hash \<lbrace>X, Y\<rbrace> \<in> analz H \<and> Y \<in> synth (analz H))" |
76289 | 731 |
by (auto simp add: HPair_def) |
13926 | 732 |
|
733 |
||
61830 | 734 |
text\<open>We do NOT want Crypt... messages broken up in protocols!!\<close> |
13926 | 735 |
declare parts.Body [rule del] |
736 |
||
737 |
||
61830 | 738 |
text\<open>Rewrites to push in Key and Crypt messages, so that other messages can |
739 |
be pulled out using the \<open>analz_insert\<close> rules\<close> |
|
13926 | 740 |
|
45605 | 741 |
lemmas pushKeys = |
27225 | 742 |
insert_commute [of "Key K" "Agent C"] |
743 |
insert_commute [of "Key K" "Nonce N"] |
|
744 |
insert_commute [of "Key K" "Number N"] |
|
745 |
insert_commute [of "Key K" "Hash X"] |
|
746 |
insert_commute [of "Key K" "MPair X Y"] |
|
747 |
insert_commute [of "Key K" "Crypt X K'"] |
|
45605 | 748 |
for K C N X Y K' |
13926 | 749 |
|
45605 | 750 |
lemmas pushCrypts = |
27225 | 751 |
insert_commute [of "Crypt X K" "Agent C"] |
752 |
insert_commute [of "Crypt X K" "Agent C"] |
|
753 |
insert_commute [of "Crypt X K" "Nonce N"] |
|
754 |
insert_commute [of "Crypt X K" "Number N"] |
|
755 |
insert_commute [of "Crypt X K" "Hash X'"] |
|
756 |
insert_commute [of "Crypt X K" "MPair X' Y"] |
|
45605 | 757 |
for X K C N X' Y |
13926 | 758 |
|
61830 | 759 |
text\<open>Cannot be added with \<open>[simp]\<close> -- messages should not always be |
760 |
re-ordered.\<close> |
|
13926 | 761 |
lemmas pushes = pushKeys pushCrypts |
762 |
||
763 |
||
61830 | 764 |
subsection\<open>The set of key-free messages\<close> |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
765 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
766 |
(*Note that even the encryption of a key-free message remains key-free. |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
767 |
This concept is valuable because of the theorem analz_keyfree_into_Un, proved below. *) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
768 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
769 |
inductive_set |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
770 |
keyfree :: "msg set" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
771 |
where |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
772 |
Agent: "Agent A \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
773 |
| Number: "Number N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
774 |
| Nonce: "Nonce N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
775 |
| Hash: "Hash X \<in> keyfree" |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
776 |
| MPair: "\<lbrakk>X \<in> keyfree; Y \<in> keyfree\<rbrakk> \<Longrightarrow> \<lbrace>X,Y\<rbrace> \<in> keyfree" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
777 |
| Crypt: "\<lbrakk>X \<in> keyfree\<rbrakk> \<Longrightarrow> Crypt K X \<in> keyfree" |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
778 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
779 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
780 |
declare keyfree.intros [intro] |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
781 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
782 |
inductive_cases keyfree_KeyE: "Key K \<in> keyfree" |
61956 | 783 |
inductive_cases keyfree_MPairE: "\<lbrace>X,Y\<rbrace> \<in> keyfree" |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
784 |
inductive_cases keyfree_CryptE: "Crypt K X \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
785 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
786 |
lemma parts_keyfree: "parts (keyfree) \<subseteq> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
787 |
by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE keyfree_CryptE) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
788 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
789 |
(*The key-free part of a set of messages can be removed from the scope of the analz operator.*) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
790 |
lemma analz_keyfree_into_Un: "\<lbrakk>X \<in> analz (G \<union> H); G \<subseteq> keyfree\<rbrakk> \<Longrightarrow> X \<in> parts G \<union> analz H" |
76291
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
791 |
proof (induction rule: analz.induct) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
792 |
case (Decrypt K X) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
793 |
then show ?case |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
794 |
by (metis Un_iff analz.Decrypt in_mono keyfree_KeyE parts.Body parts_keyfree parts_mono) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
795 |
qed (auto dest: parts.Body) |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
796 |
|
61830 | 797 |
subsection\<open>Tactics useful for many protocol proofs\<close> |
13926 | 798 |
ML |
76289 | 799 |
\<open> |
13926 | 800 |
(*Analysis of Fake cases. Also works for messages that forward unknown parts, |
801 |
but this application is no longer necessary if analz_insert_eq is used. |
|
802 |
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) |
|
803 |
||
32117
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
804 |
fun impOfSubs th = th RSN (2, @{thm rev_subsetD}) |
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
805 |
|
13926 | 806 |
(*Apply rules to break down assumptions of the form |
807 |
Y \<in> parts(insert X H) and Y \<in> analz(insert X H) |
|
808 |
*) |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
809 |
fun Fake_insert_tac ctxt = |
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
810 |
dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert}, |
24122 | 811 |
impOfSubs @{thm Fake_parts_insert}] THEN' |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
812 |
eresolve_tac ctxt [asm_rl, @{thm synth.Inj}]; |
13926 | 813 |
|
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
814 |
fun Fake_insert_simp_tac ctxt i = |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
815 |
REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i; |
13926 | 816 |
|
42474 | 817 |
fun atomic_spy_analz_tac ctxt = |
42793 | 818 |
SELECT_GOAL |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
819 |
(Fake_insert_simp_tac ctxt 1 THEN |
42793 | 820 |
IF_UNSOLVED |
821 |
(Blast.depth_tac |
|
822 |
(ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1)); |
|
13926 | 823 |
|
42474 | 824 |
fun spy_analz_tac ctxt i = |
42793 | 825 |
DETERM |
826 |
(SELECT_GOAL |
|
827 |
(EVERY |
|
828 |
[ (*push in occurrences of X...*) |
|
829 |
(REPEAT o CHANGED) |
|
59780 | 830 |
(Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.none), "X")] [] |
831 |
(insert_commute RS ssubst) 1), |
|
42793 | 832 |
(*...allowing further simplifications*) |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
833 |
simp_tac ctxt 1, |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
834 |
REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])), |
42793 | 835 |
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i); |
61830 | 836 |
\<close> |
13926 | 837 |
|
61830 | 838 |
text\<open>By default only \<open>o_apply\<close> is built-in. But in the presence of |
69597 | 839 |
eta-expansion this means that some terms displayed as \<^term>\<open>f o g\<close> will be |
61830 | 840 |
rewritten, and others will not!\<close> |
13926 | 841 |
declare o_def [simp] |
842 |
||
11189 | 843 |
|
13922 | 844 |
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" |
76289 | 845 |
by auto |
13922 | 846 |
|
847 |
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" |
|
76289 | 848 |
by auto |
13922 | 849 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
850 |
lemma synth_analz_mono: "G\<subseteq>H \<Longrightarrow> synth (analz(G)) \<subseteq> synth (analz(H))" |
76289 | 851 |
by (iprover intro: synth_mono analz_mono) |
13922 | 852 |
|
853 |
lemma Fake_analz_eq [simp]: |
|
76289 | 854 |
"X \<in> synth(analz H) \<Longrightarrow> synth (analz (insert X H)) = synth (analz H)" |
855 |
by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute |
|
856 |
subset_insertI synth_analz_mono synth_increasing synth_subset_iff) |
|
13922 | 857 |
|
61830 | 858 |
text\<open>Two generalizations of \<open>analz_insert_eq\<close>\<close> |
13922 | 859 |
lemma gen_analz_insert_eq [rule_format]: |
76289 | 860 |
"X \<in> analz H \<Longrightarrow> \<forall>G. H \<subseteq> G \<longrightarrow> analz (insert X G) = analz G" |
861 |
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) |
|
13922 | 862 |
|
76291
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
863 |
lemma synth_analz_insert_eq: |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
864 |
"\<lbrakk>X \<in> synth (analz H); H \<subseteq> G\<rbrakk> |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
865 |
\<Longrightarrow> (Key K \<in> analz (insert X G)) \<longleftrightarrow> (Key K \<in> analz G)" |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
866 |
proof (induction arbitrary: G rule: synth.induct) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
867 |
case (Inj X) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
868 |
then show ?case |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
869 |
using gen_analz_insert_eq by presburger |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
870 |
qed (simp_all add: subset_eq) |
13922 | 871 |
|
872 |
lemma Fake_parts_sing: |
|
76289 | 873 |
"X \<in> synth (analz H) \<Longrightarrow> parts{X} \<subseteq> synth (analz H) \<union> parts H" |
874 |
by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans) |
|
13922 | 875 |
|
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
876 |
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] |
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
877 |
|
61830 | 878 |
method_setup spy_analz = \<open> |
879 |
Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)\<close> |
|
76289 | 880 |
"for proving the Fake case when analz is involved" |
1839 | 881 |
|
61830 | 882 |
method_setup atomic_spy_analz = \<open> |
883 |
Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)\<close> |
|
76289 | 884 |
"for debugging spy_analz" |
11264 | 885 |
|
61830 | 886 |
method_setup Fake_insert_simp = \<open> |
887 |
Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)\<close> |
|
76289 | 888 |
"for debugging spy_analz" |
11264 | 889 |
|
1839 | 890 |
end |