author | wenzelm |
Mon, 11 Sep 2023 19:30:48 +0200 | |
changeset 78659 | b5f3d1051b13 |
parent 49310 | 6e30078de4f0 |
permissions | -rw-r--r-- |
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
1 |
\newcommand{\eqo}{\mbox{$=\!\!o$}} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
2 |
\newcommand{\leqo}{\mbox{$\leq\!\!o$}} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
3 |
\newcommand{\lesso}{\mbox{$<\!\!o$}} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
4 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
5 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
6 |
\begin{abstract} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
7 |
We develop a basic theory of ordinals and cardinals in Isabelle/HOL, up to the |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
8 |
point where some cardinality facts relevant for the ``working mathematician" become available. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
9 |
Unlike in set theory, here we do not have at hand canonical notions of ordinal and cardinal. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
10 |
Therefore, here an ordinal is merely a well-order relation and a cardinal is an |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
11 |
ordinal minim w.r.t. order embedding on its field. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
12 |
\end{abstract} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
13 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
14 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
15 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
16 |
\section{Introduction} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
17 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
18 |
In set theory (under formalizations such as Zermelo-Fraenkel or Von Neumann-Bernays-G\"{o}del), an |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
19 |
{\em ordinal} is a special kind of well-order, namely one |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
20 |
whose strict version is the restriction of the membership relation to a set. In particular, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
21 |
the field of a set-theoretic ordinal is a transitive set, and the non-strict version |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
22 |
of an ordinal relation is set inclusion. Set-theoretic ordinals enjoy the nice properties |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
23 |
of membership on transitive sets, while at the same time forming a complete class of |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
24 |
representatives for well-orders (since any well-order turns out isomorphic to an ordinal). |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
25 |
Moreover, the class of ordinals is itself transitive and well-ordered by membership as the strict relation |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
26 |
and inclusion as the non-strict relation. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
27 |
Also knowing that any set can be well-ordered (in the presence of the axiom of choice), one then defines |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
28 |
the {\em cardinal} of a set to be the smallest ordinal isomorphic to a well-order on that set. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
29 |
This makes the class of cardinals a complete set of representatives for the intuitive notion |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
30 |
of set cardinality.\footnote{The ``intuitive" cardinality of a set $A$ is the class of all |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
31 |
sets equipollent to $A$, i.e., being in bijection with $A$.} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
32 |
The ability to produce {\em canonical well-orders} from the membership relation (having the aforementioned |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
33 |
convenient properties) |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
34 |
allows for a harmonious development of the theory of cardinals in set-theoretic settings. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
35 |
Non-trivial cardinality results, such as $A$ being equipollent to $A \times A$ for any infinite $A$, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
36 |
follow rather quickly within this theory. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
37 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
38 |
However, a canonical notion of well-order is {\em not} available in HOL. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
39 |
Here, one has to do with well-order ``as is", but otherwise has all the necessary infrastructure |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
40 |
(including Hilbert choice) to ``climb" well-orders recursively and to well-oder arbitrary sets. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
41 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
42 |
The current work, formalized in Isabelle/HOL, develops the basic theory of ordinals and cardinals |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
43 |
up to the point where there are inferred a collection of non-trivial cardinality facts useful |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
44 |
for the ``working mathematician", among which: |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
45 |
\begin{itemize} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
46 |
\item Given any two sets (on any two given types)\footnote{Recall that, in HOL, a set |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
47 |
on a type $\alpha$ is modeled, just like a predicate, as a function from $\alpha$ to \textsf{bool}.}, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
48 |
one is injectable in the other. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
49 |
\item If at least one of two sets is infinite, then their sum and their Cartesian product are equipollent |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
50 |
to the larger of the two. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
51 |
\item The set of lists (and also the set of finite sets) with element from an |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
52 |
infinite set is equipollent with that set. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
53 |
\end{itemize} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
54 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
55 |
Our development emulates the standard one from set-theory, but keeps everything |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
56 |
{\em up to order isomorphism}. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
57 |
An (HOL) ordinal is merely a well-order. An {\em ordinal embedding} is an |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
58 |
injective and order-compatible function which maps its source into an initial segment |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
59 |
(i.e., order filter) of its target. Now, a {\em cardinal} (called in this work a {\em cardinal order}) |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
60 |
is an ordinal minim w.r.t. the existence of embeddings among all |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
61 |
well-orders on its field. After showing the existence of cardinals on any given set, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
62 |
we define the cardinal of a set $A$, denoted $|A|$, to be {\em some} cardinal order |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
63 |
on $A$. This concept is unique only up to order isomorphism (denoted $\eqo$), but meets |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
64 |
its purpose: any two sets $A$ and $B$ (laying at potentially distinct types) |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
65 |
are in bijection if and only if $|A|\;\eqo\;|B|$. Moreover, we also show that numeric cardinals |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
66 |
assigned to finite sets\footnote{Numeric cardinals of finite sets are already formalized in |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
67 |
Isabelle/HOL.} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
68 |
are {\em conservatively extended} by our general (order-theoretic) notion of |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
69 |
cardinal. We study the interaction of cardinals with standard set-theoretic |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
70 |
constructions such as powersets, products, sums and lists. These constructions are shown |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
71 |
to preserve the ``cardinal identity" $\eqo$ and also to be monotonic w.r.t. $\leqo$, the ordinal |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
72 |
embedding relation. By studying the interaction between these constructions, infinite sets and |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
73 |
cardinals, we obtain the |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
74 |
aforementioned results for ``working mathematicians". |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
75 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
76 |
For this development, we did not follow closely any particular textbook, and in fact are not |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
77 |
aware of such basic theory of cardinals previously |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
78 |
developed in HOL.\footnote{After writing this formalization, we became aware of |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
79 |
Paul Taylor's membership-free development of the theory of ordinals \cite{taylor-ordinals}.} On |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
80 |
the other hand, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
81 |
the set-theoretic versions of the facts proved here are folklore in set theory, and can be found, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
82 |
e.g., in the textbook \cite{card-book}. Beyond taking care of some locality aspects |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
83 |
concerning the spreading of our concepts throughout types, we have not departed |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
84 |
much from the techniques used in set theory for establishing these facts -- for instance, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
85 |
in the proof of one of our major theorems, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
86 |
\textit{Card-order-Times-same-infinite} from Section 8.4,\footnote{This theorem states that, for any |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
87 |
infinite cardinal $r$ on a set $A$, $|A\times A|$ is not larger than $r$.} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
88 |
we have essentially applied the technique described, e.g., in the proof of |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
89 |
theorem 1.5.11 from \cite{card-book}, page 47. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
90 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
91 |
Here is the structure of the rest of this document. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
92 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
93 |
The next three sections, 2-4, develop some |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
94 |
mathematical prerequisites. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
95 |
In Section 2, a large collection of simple facts about |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
96 |
injections, bijections, inverses, (in)finite sets and numeric cardinals are proved, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
97 |
making life easier |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
98 |
for later, when proving less trivial facts. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
99 |
Section 3 introduces upper and lower |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
100 |
bounds operators for order-like relations and studies their basic properties. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
101 |
Section 4 states some useful variations of well-founded recursion and induction principles. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
102 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
103 |
Then come the major sections, 5-8. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
104 |
Section 5 defines and studies, in the context of a well-order relation, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
105 |
the notions of minimum (of a set), maximum (of two elements), supremum, successor (of a set), |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
106 |
and order filter (i.e., initial segment, i.e., downward-closed set). |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
107 |
Section 6 defines and studies (well-order) embeddings, strict embeddings, isomorphisms, and |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
108 |
compatible functions. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
109 |
Section 7 deals with various constructions on well-orders, and with the relations |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
110 |
$\leqo$, $\lesso$ and $\eqo$ of well-order embedding, strict embedding, and isomorphism, respectively. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
111 |
Section 8 defines and studies cardinal order relations, the cardinal of a set, the connection |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
112 |
of cardinals with set-theoretic constructs, |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
113 |
the canonical cardinal of natural numbers and finite cardinals, the successor |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
114 |
of a cardinal, as well as regular cardinals. (The latter play a crucial role in the development of |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
115 |
a new (co)datatype package in HOL.) |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
116 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
117 |
Finally, section 9 provides an abstraction of the previous developments on |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
118 |
cardinals, to provide a simpler user interface to cardinals, which in most of |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
119 |
the cases allows to forget that cardinals are represented by orders and use them |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
120 |
through defined arithmetic operators. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
121 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
122 |
More informal details are provided at the beginning of each section, and also at the |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
123 |
beginning of some of the subsections. |