author | wenzelm |
Mon, 11 Sep 2023 19:30:48 +0200 | |
changeset 78659 | b5f3d1051b13 |
parent 73622 | 4dc3baf45d6a |
child 80723 | ac6a69b0f634 |
permissions | -rw-r--r-- |
72536 | 1 |
theory Specifications_with_bundle_mixins |
73622 | 2 |
imports "HOL-Combinatorics.Perm" |
72536 | 3 |
begin |
4 |
||
72739
e7c2848b78e8
refined syntax for bundle mixins for locale and class specifications
haftmann
parents:
72536
diff
changeset
|
5 |
locale involutory = opening permutation_syntax + |
72536 | 6 |
fixes f :: \<open>'a perm\<close> |
7 |
assumes involutory: \<open>\<And>x. f \<langle>$\<rangle> (f \<langle>$\<rangle> x) = x\<close> |
|
8 |
begin |
|
9 |
||
10 |
lemma |
|
11 |
\<open>f * f = 1\<close> |
|
12 |
using involutory |
|
13 |
by (simp add: perm_eq_iff apply_sequence) |
|
14 |
||
15 |
end |
|
16 |
||
17 |
context involutory |
|
18 |
begin |
|
19 |
||
20 |
thm involutory (*syntax from permutation_syntax only present in locale specification and initial block*) |
|
21 |
||
22 |
end |
|
23 |
||
24 |
||
72739
e7c2848b78e8
refined syntax for bundle mixins for locale and class specifications
haftmann
parents:
72536
diff
changeset
|
25 |
class at_most_two_elems = opening permutation_syntax + |
72536 | 26 |
assumes swap_distinct: \<open>a \<noteq> b \<Longrightarrow> \<langle>a \<leftrightarrow> b\<rangle> \<langle>$\<rangle> c \<noteq> c\<close> |
27 |
begin |
|
28 |
||
29 |
lemma |
|
30 |
\<open>card (UNIV :: 'a set) \<le> 2\<close> |
|
31 |
proof (rule ccontr) |
|
32 |
fix a :: 'a |
|
33 |
assume \<open>\<not> card (UNIV :: 'a set) \<le> 2\<close> |
|
34 |
then have c0: \<open>card (UNIV :: 'a set) \<ge> 3\<close> |
|
35 |
by simp |
|
36 |
then have [simp]: \<open>finite (UNIV :: 'a set)\<close> |
|
37 |
using card.infinite by fastforce |
|
38 |
from c0 card_Diff1_le [of UNIV a] |
|
39 |
have ca: \<open>card (UNIV - {a}) \<ge> 2\<close> |
|
40 |
by simp |
|
41 |
then obtain b where \<open>b \<in> (UNIV - {a})\<close> |
|
42 |
by (metis all_not_in_conv card.empty card_2_iff' le_zero_eq) |
|
43 |
with ca card_Diff1_le [of \<open>UNIV - {a}\<close> b] |
|
44 |
have cb: \<open>card (UNIV - {a, b}) \<ge> 1\<close> and \<open>a \<noteq> b\<close> |
|
45 |
by simp_all |
|
46 |
then obtain c where \<open>c \<in> (UNIV - {a, b})\<close> |
|
47 |
by (metis One_nat_def all_not_in_conv card.empty le_zero_eq nat.simps(3)) |
|
48 |
then have \<open>a \<noteq> c\<close> \<open>b \<noteq> c\<close> |
|
49 |
by auto |
|
50 |
with swap_distinct [of a b c] show False |
|
51 |
by (simp add: \<open>a \<noteq> b\<close>) |
|
52 |
qed |
|
53 |
||
54 |
end |
|
55 |
||
56 |
thm swap_distinct (*syntax from permutation_syntax only present in class specification and initial block*) |
|
57 |
||
58 |
end |