author | wenzelm |
Wed, 12 Mar 2025 11:39:00 +0100 | |
changeset 82265 | 4b875a4c83b0 |
parent 80098 | c06c95576ea9 |
permissions | -rw-r--r-- |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1 |
(* Title: HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2 |
Author: Amine Chaieb |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3 |
*) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
4 |
|
60560 | 5 |
section \<open>A formalization of Ferrante and Rackoff's procedure with polynomial parameters, see Paper in CALCULEMUS 2008\<close> |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
6 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
7 |
theory Parametric_Ferrante_Rackoff |
55754 | 8 |
imports |
9 |
Reflected_Multivariate_Polynomial |
|
10 |
Dense_Linear_Order |
|
11 |
DP_Library |
|
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
64240
diff
changeset
|
12 |
"HOL-Library.Code_Target_Numeral" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
13 |
begin |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
14 |
|
60533 | 15 |
subsection \<open>Terms\<close> |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
16 |
|
66809 | 17 |
datatype (plugins del: size) tm = CP poly | Bound nat | Add tm tm | Mul poly tm |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
18 |
| Neg tm | Sub tm tm | CNP nat poly tm |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
19 |
|
66809 | 20 |
instantiation tm :: size |
21 |
begin |
|
22 |
||
23 |
primrec size_tm :: "tm \<Rightarrow> nat" |
|
67123 | 24 |
where |
25 |
"size_tm (CP c) = polysize c" |
|
26 |
| "size_tm (Bound n) = 1" |
|
27 |
| "size_tm (Neg a) = 1 + size_tm a" |
|
28 |
| "size_tm (Add a b) = 1 + size_tm a + size_tm b" |
|
29 |
| "size_tm (Sub a b) = 3 + size_tm a + size_tm b" |
|
30 |
| "size_tm (Mul c a) = 1 + polysize c + size_tm a" |
|
31 |
| "size_tm (CNP n c a) = 3 + polysize c + size_tm a " |
|
66809 | 32 |
|
33 |
instance .. |
|
34 |
||
35 |
end |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
36 |
|
60560 | 37 |
text \<open>Semantics of terms tm.\<close> |
68442 | 38 |
primrec Itm :: "'a::field_char_0 list \<Rightarrow> 'a list \<Rightarrow> tm \<Rightarrow> 'a" |
67123 | 39 |
where |
40 |
"Itm vs bs (CP c) = (Ipoly vs c)" |
|
41 |
| "Itm vs bs (Bound n) = bs!n" |
|
42 |
| "Itm vs bs (Neg a) = -(Itm vs bs a)" |
|
43 |
| "Itm vs bs (Add a b) = Itm vs bs a + Itm vs bs b" |
|
44 |
| "Itm vs bs (Sub a b) = Itm vs bs a - Itm vs bs b" |
|
45 |
| "Itm vs bs (Mul c a) = (Ipoly vs c) * Itm vs bs a" |
|
46 |
| "Itm vs bs (CNP n c t) = (Ipoly vs c)*(bs!n) + Itm vs bs t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
47 |
|
55754 | 48 |
fun allpolys :: "(poly \<Rightarrow> bool) \<Rightarrow> tm \<Rightarrow> bool" |
67123 | 49 |
where |
50 |
"allpolys P (CP c) = P c" |
|
51 |
| "allpolys P (CNP n c p) = (P c \<and> allpolys P p)" |
|
52 |
| "allpolys P (Mul c p) = (P c \<and> allpolys P p)" |
|
53 |
| "allpolys P (Neg p) = allpolys P p" |
|
54 |
| "allpolys P (Add p q) = (allpolys P p \<and> allpolys P q)" |
|
55 |
| "allpolys P (Sub p q) = (allpolys P p \<and> allpolys P q)" |
|
56 |
| "allpolys P p = True" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
57 |
|
55754 | 58 |
primrec tmboundslt :: "nat \<Rightarrow> tm \<Rightarrow> bool" |
67123 | 59 |
where |
60 |
"tmboundslt n (CP c) = True" |
|
61 |
| "tmboundslt n (Bound m) = (m < n)" |
|
62 |
| "tmboundslt n (CNP m c a) = (m < n \<and> tmboundslt n a)" |
|
63 |
| "tmboundslt n (Neg a) = tmboundslt n a" |
|
64 |
| "tmboundslt n (Add a b) = (tmboundslt n a \<and> tmboundslt n b)" |
|
65 |
| "tmboundslt n (Sub a b) = (tmboundslt n a \<and> tmboundslt n b)" |
|
66 |
| "tmboundslt n (Mul i a) = tmboundslt n a" |
|
67 |
||
68 |
primrec tmbound0 :: "tm \<Rightarrow> bool" \<comment> \<open>a \<open>tm\<close> is \<^emph>\<open>independent\<close> of Bound 0\<close> |
|
69 |
where |
|
70 |
"tmbound0 (CP c) = True" |
|
71 |
| "tmbound0 (Bound n) = (n>0)" |
|
72 |
| "tmbound0 (CNP n c a) = (n\<noteq>0 \<and> tmbound0 a)" |
|
73 |
| "tmbound0 (Neg a) = tmbound0 a" |
|
74 |
| "tmbound0 (Add a b) = (tmbound0 a \<and> tmbound0 b)" |
|
75 |
| "tmbound0 (Sub a b) = (tmbound0 a \<and> tmbound0 b)" |
|
76 |
| "tmbound0 (Mul i a) = tmbound0 a" |
|
55754 | 77 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
78 |
lemma tmbound0_I: |
67123 | 79 |
assumes "tmbound0 a" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
80 |
shows "Itm vs (b#bs) a = Itm vs (b'#bs) a" |
67123 | 81 |
using assms by (induct a rule: tm.induct) auto |
82 |
||
83 |
primrec tmbound :: "nat \<Rightarrow> tm \<Rightarrow> bool" \<comment> \<open>a \<open>tm\<close> is \<^emph>\<open>independent\<close> of Bound n\<close> |
|
84 |
where |
|
85 |
"tmbound n (CP c) = True" |
|
86 |
| "tmbound n (Bound m) = (n \<noteq> m)" |
|
87 |
| "tmbound n (CNP m c a) = (n\<noteq>m \<and> tmbound n a)" |
|
88 |
| "tmbound n (Neg a) = tmbound n a" |
|
89 |
| "tmbound n (Add a b) = (tmbound n a \<and> tmbound n b)" |
|
90 |
| "tmbound n (Sub a b) = (tmbound n a \<and> tmbound n b)" |
|
91 |
| "tmbound n (Mul i a) = tmbound n a" |
|
55754 | 92 |
|
93 |
lemma tmbound0_tmbound_iff: "tmbound 0 t = tmbound0 t" |
|
94 |
by (induct t) auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
95 |
|
55754 | 96 |
lemma tmbound_I: |
97 |
assumes bnd: "tmboundslt (length bs) t" |
|
98 |
and nb: "tmbound n t" |
|
99 |
and le: "n \<le> length bs" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
100 |
shows "Itm vs (bs[n:=x]) t = Itm vs bs t" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
101 |
using nb le bnd |
55754 | 102 |
by (induct t rule: tm.induct) auto |
39246 | 103 |
|
55754 | 104 |
fun decrtm0 :: "tm \<Rightarrow> tm" |
67123 | 105 |
where |
106 |
"decrtm0 (Bound n) = Bound (n - 1)" |
|
107 |
| "decrtm0 (Neg a) = Neg (decrtm0 a)" |
|
108 |
| "decrtm0 (Add a b) = Add (decrtm0 a) (decrtm0 b)" |
|
109 |
| "decrtm0 (Sub a b) = Sub (decrtm0 a) (decrtm0 b)" |
|
110 |
| "decrtm0 (Mul c a) = Mul c (decrtm0 a)" |
|
111 |
| "decrtm0 (CNP n c a) = CNP (n - 1) c (decrtm0 a)" |
|
112 |
| "decrtm0 a = a" |
|
39246 | 113 |
|
55754 | 114 |
fun incrtm0 :: "tm \<Rightarrow> tm" |
67123 | 115 |
where |
116 |
"incrtm0 (Bound n) = Bound (n + 1)" |
|
117 |
| "incrtm0 (Neg a) = Neg (incrtm0 a)" |
|
118 |
| "incrtm0 (Add a b) = Add (incrtm0 a) (incrtm0 b)" |
|
119 |
| "incrtm0 (Sub a b) = Sub (incrtm0 a) (incrtm0 b)" |
|
120 |
| "incrtm0 (Mul c a) = Mul c (incrtm0 a)" |
|
121 |
| "incrtm0 (CNP n c a) = CNP (n + 1) c (incrtm0 a)" |
|
122 |
| "incrtm0 a = a" |
|
39246 | 123 |
|
55754 | 124 |
lemma decrtm0: |
125 |
assumes nb: "tmbound0 t" |
|
126 |
shows "Itm vs (x # bs) t = Itm vs bs (decrtm0 t)" |
|
127 |
using nb by (induct t rule: decrtm0.induct) simp_all |
|
39246 | 128 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
129 |
lemma incrtm0: "Itm vs (x#bs) (incrtm0 t) = Itm vs bs t" |
55754 | 130 |
by (induct t rule: decrtm0.induct) simp_all |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
131 |
|
55754 | 132 |
primrec decrtm :: "nat \<Rightarrow> tm \<Rightarrow> tm" |
67123 | 133 |
where |
134 |
"decrtm m (CP c) = (CP c)" |
|
135 |
| "decrtm m (Bound n) = (if n < m then Bound n else Bound (n - 1))" |
|
136 |
| "decrtm m (Neg a) = Neg (decrtm m a)" |
|
137 |
| "decrtm m (Add a b) = Add (decrtm m a) (decrtm m b)" |
|
138 |
| "decrtm m (Sub a b) = Sub (decrtm m a) (decrtm m b)" |
|
139 |
| "decrtm m (Mul c a) = Mul c (decrtm m a)" |
|
140 |
| "decrtm m (CNP n c a) = (if n < m then CNP n c (decrtm m a) else CNP (n - 1) c (decrtm m a))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
141 |
|
55754 | 142 |
primrec removen :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" |
67123 | 143 |
where |
144 |
"removen n [] = []" |
|
145 |
| "removen n (x#xs) = (if n=0 then xs else (x#(removen (n - 1) xs)))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
146 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
147 |
lemma removen_same: "n \<ge> length xs \<Longrightarrow> removen n xs = xs" |
55754 | 148 |
by (induct xs arbitrary: n) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
149 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
150 |
lemma nth_length_exceeds: "n \<ge> length xs \<Longrightarrow> xs!n = []!(n - length xs)" |
55754 | 151 |
by (induct xs arbitrary: n) auto |
152 |
||
60560 | 153 |
lemma removen_length: "length (removen n xs) = (if n \<ge> length xs then length xs else length xs - 1)" |
67123 | 154 |
by (induct xs arbitrary: n) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
155 |
|
55754 | 156 |
lemma removen_nth: |
157 |
"(removen n xs)!m = |
|
158 |
(if n \<ge> length xs then xs!m |
|
159 |
else if m < n then xs!m |
|
160 |
else if m \<le> length xs then xs!(Suc m) |
|
161 |
else []!(m - (length xs - 1)))" |
|
162 |
proof (induct xs arbitrary: n m) |
|
163 |
case Nil |
|
55768 | 164 |
then show ?case by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
165 |
next |
60560 | 166 |
case (Cons x xs) |
167 |
let ?l = "length (x # xs)" |
|
168 |
consider "n \<ge> ?l" | "n < ?l" by arith |
|
169 |
then show ?case |
|
170 |
proof cases |
|
60567 | 171 |
case 1 |
172 |
with removen_same[OF this] show ?thesis by simp |
|
60560 | 173 |
next |
60567 | 174 |
case nl: 2 |
60560 | 175 |
consider "m < n" | "m \<ge> n" by arith |
176 |
then show ?thesis |
|
177 |
proof cases |
|
178 |
case 1 |
|
179 |
then show ?thesis |
|
180 |
using Cons by (cases m) auto |
|
181 |
next |
|
182 |
case 2 |
|
183 |
consider "m \<le> ?l" | "m > ?l" by arith |
|
184 |
then show ?thesis |
|
185 |
proof cases |
|
186 |
case 1 |
|
187 |
then show ?thesis |
|
188 |
using Cons by (cases m) auto |
|
189 |
next |
|
60567 | 190 |
case ml: 2 |
60560 | 191 |
have th: "length (removen n (x # xs)) = length xs" |
60567 | 192 |
using removen_length[where n = n and xs= "x # xs"] nl by simp |
193 |
with ml have "m \<ge> length (removen n (x # xs))" |
|
55768 | 194 |
by auto |
60560 | 195 |
from th nth_length_exceeds[OF this] have "(removen n (x # xs))!m = [] ! (m - length xs)" |
196 |
by auto |
|
197 |
then have "(removen n (x # xs))!m = [] ! (m - (length (x # xs) - 1))" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33212
diff
changeset
|
198 |
by auto |
60560 | 199 |
then show ?thesis |
60567 | 200 |
using ml nl by auto |
60560 | 201 |
qed |
202 |
qed |
|
203 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
204 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
205 |
|
55754 | 206 |
lemma decrtm: |
207 |
assumes bnd: "tmboundslt (length bs) t" |
|
208 |
and nb: "tmbound m t" |
|
209 |
and nle: "m \<le> length bs" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
210 |
shows "Itm vs (removen m bs) (decrtm m t) = Itm vs bs t" |
80098 | 211 |
using bnd nb nle by (induct t rule: tm.induct) (auto simp: removen_nth) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
212 |
|
55754 | 213 |
primrec tmsubst0:: "tm \<Rightarrow> tm \<Rightarrow> tm" |
67123 | 214 |
where |
215 |
"tmsubst0 t (CP c) = CP c" |
|
216 |
| "tmsubst0 t (Bound n) = (if n=0 then t else Bound n)" |
|
217 |
| "tmsubst0 t (CNP n c a) = (if n=0 then Add (Mul c t) (tmsubst0 t a) else CNP n c (tmsubst0 t a))" |
|
218 |
| "tmsubst0 t (Neg a) = Neg (tmsubst0 t a)" |
|
219 |
| "tmsubst0 t (Add a b) = Add (tmsubst0 t a) (tmsubst0 t b)" |
|
220 |
| "tmsubst0 t (Sub a b) = Sub (tmsubst0 t a) (tmsubst0 t b)" |
|
221 |
| "tmsubst0 t (Mul i a) = Mul i (tmsubst0 t a)" |
|
55754 | 222 |
|
60560 | 223 |
lemma tmsubst0: "Itm vs (x # bs) (tmsubst0 t a) = Itm vs (Itm vs (x # bs) t # bs) a" |
41842 | 224 |
by (induct a rule: tm.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
225 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
226 |
lemma tmsubst0_nb: "tmbound0 t \<Longrightarrow> tmbound0 (tmsubst0 t a)" |
41842 | 227 |
by (induct a rule: tm.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
228 |
|
55754 | 229 |
primrec tmsubst:: "nat \<Rightarrow> tm \<Rightarrow> tm \<Rightarrow> tm" |
67123 | 230 |
where |
231 |
"tmsubst n t (CP c) = CP c" |
|
232 |
| "tmsubst n t (Bound m) = (if n=m then t else Bound m)" |
|
233 |
| "tmsubst n t (CNP m c a) = |
|
234 |
(if n = m then Add (Mul c t) (tmsubst n t a) else CNP m c (tmsubst n t a))" |
|
235 |
| "tmsubst n t (Neg a) = Neg (tmsubst n t a)" |
|
236 |
| "tmsubst n t (Add a b) = Add (tmsubst n t a) (tmsubst n t b)" |
|
237 |
| "tmsubst n t (Sub a b) = Sub (tmsubst n t a) (tmsubst n t b)" |
|
238 |
| "tmsubst n t (Mul i a) = Mul i (tmsubst n t a)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
239 |
|
55754 | 240 |
lemma tmsubst: |
241 |
assumes nb: "tmboundslt (length bs) a" |
|
242 |
and nlt: "n \<le> length bs" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
243 |
shows "Itm vs bs (tmsubst n t a) = Itm vs (bs[n:= Itm vs bs t]) a" |
55754 | 244 |
using nb nlt |
245 |
by (induct a rule: tm.induct) auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
246 |
|
55754 | 247 |
lemma tmsubst_nb0: |
248 |
assumes tnb: "tmbound0 t" |
|
249 |
shows "tmbound0 (tmsubst 0 t a)" |
|
250 |
using tnb |
|
251 |
by (induct a rule: tm.induct) auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
252 |
|
55754 | 253 |
lemma tmsubst_nb: |
254 |
assumes tnb: "tmbound m t" |
|
255 |
shows "tmbound m (tmsubst m t a)" |
|
256 |
using tnb |
|
257 |
by (induct a rule: tm.induct) auto |
|
258 |
||
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
259 |
lemma incrtm0_tmbound: "tmbound n t \<Longrightarrow> tmbound (Suc n) (incrtm0 t)" |
55754 | 260 |
by (induct t) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
261 |
|
60560 | 262 |
|
263 |
text \<open>Simplification.\<close> |
|
55754 | 264 |
|
66809 | 265 |
fun tmadd:: "tm \<Rightarrow> tm \<Rightarrow> tm" |
67123 | 266 |
where |
267 |
"tmadd (CNP n1 c1 r1) (CNP n2 c2 r2) = |
|
268 |
(if n1 = n2 then |
|
269 |
let c = c1 +\<^sub>p c2 |
|
270 |
in if c = 0\<^sub>p then tmadd r1 r2 else CNP n1 c (tmadd r1 r2) |
|
271 |
else if n1 \<le> n2 then (CNP n1 c1 (tmadd r1 (CNP n2 c2 r2))) |
|
272 |
else (CNP n2 c2 (tmadd (CNP n1 c1 r1) r2)))" |
|
273 |
| "tmadd (CNP n1 c1 r1) t = CNP n1 c1 (tmadd r1 t)" |
|
274 |
| "tmadd t (CNP n2 c2 r2) = CNP n2 c2 (tmadd t r2)" |
|
275 |
| "tmadd (CP b1) (CP b2) = CP (b1 +\<^sub>p b2)" |
|
276 |
| "tmadd a b = Add a b" |
|
66809 | 277 |
|
278 |
lemma tmadd [simp]: "Itm vs bs (tmadd t s) = Itm vs bs (Add t s)" |
|
80098 | 279 |
proof (induct t s rule: tmadd.induct) |
280 |
case (1 n1 c1 r1 n2 c2 r2) |
|
281 |
show ?case |
|
282 |
proof (cases "c1 +\<^sub>p c2 = 0\<^sub>p") |
|
283 |
case 0: True |
|
284 |
show ?thesis |
|
285 |
proof (cases "n1 \<le> n2") |
|
286 |
case True |
|
287 |
with 0 show ?thesis |
|
288 |
apply (simp add: 1) |
|
289 |
by (metis INum_int(2) Ipoly.simps(1) comm_semiring_class.distrib mult_eq_0_iff polyadd) |
|
290 |
qed (use 0 1 in auto) |
|
291 |
next |
|
292 |
case False |
|
293 |
then show ?thesis |
|
294 |
using 1 comm_semiring_class.distrib by auto |
|
295 |
qed |
|
296 |
qed auto |
|
55754 | 297 |
|
66809 | 298 |
lemma tmadd_nb0[simp]: "tmbound0 t \<Longrightarrow> tmbound0 s \<Longrightarrow> tmbound0 (tmadd t s)" |
80098 | 299 |
by (induct t s rule: tmadd.induct) (auto simp: Let_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
300 |
|
66809 | 301 |
lemma tmadd_nb[simp]: "tmbound n t \<Longrightarrow> tmbound n s \<Longrightarrow> tmbound n (tmadd t s)" |
80098 | 302 |
by (induct t s rule: tmadd.induct) (auto simp: Let_def) |
55754 | 303 |
|
66809 | 304 |
lemma tmadd_blt[simp]: "tmboundslt n t \<Longrightarrow> tmboundslt n s \<Longrightarrow> tmboundslt n (tmadd t s)" |
80098 | 305 |
by (induct t s rule: tmadd.induct) (auto simp: Let_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
306 |
|
55754 | 307 |
lemma tmadd_allpolys_npoly[simp]: |
66809 | 308 |
"allpolys isnpoly t \<Longrightarrow> allpolys isnpoly s \<Longrightarrow> allpolys isnpoly (tmadd t s)" |
55754 | 309 |
by (induct t s rule: tmadd.induct) (simp_all add: Let_def polyadd_norm) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
310 |
|
55754 | 311 |
fun tmmul:: "tm \<Rightarrow> poly \<Rightarrow> tm" |
67123 | 312 |
where |
313 |
"tmmul (CP j) = (\<lambda>i. CP (i *\<^sub>p j))" |
|
314 |
| "tmmul (CNP n c a) = (\<lambda>i. CNP n (i *\<^sub>p c) (tmmul a i))" |
|
315 |
| "tmmul t = (\<lambda>i. Mul i t)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
316 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
317 |
lemma tmmul[simp]: "Itm vs bs (tmmul t i) = Itm vs bs (Mul i t)" |
55754 | 318 |
by (induct t arbitrary: i rule: tmmul.induct) (simp_all add: field_simps) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
319 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
320 |
lemma tmmul_nb0[simp]: "tmbound0 t \<Longrightarrow> tmbound0 (tmmul t i)" |
55754 | 321 |
by (induct t arbitrary: i rule: tmmul.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
322 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
323 |
lemma tmmul_nb[simp]: "tmbound n t \<Longrightarrow> tmbound n (tmmul t i)" |
55754 | 324 |
by (induct t arbitrary: n rule: tmmul.induct) auto |
325 |
||
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
326 |
lemma tmmul_blt[simp]: "tmboundslt n t \<Longrightarrow> tmboundslt n (tmmul t i)" |
80098 | 327 |
by (induct t arbitrary: i rule: tmmul.induct) (auto simp: Let_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
328 |
|
55754 | 329 |
lemma tmmul_allpolys_npoly[simp]: |
68442 | 330 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
55754 | 331 |
shows "allpolys isnpoly t \<Longrightarrow> isnpoly c \<Longrightarrow> allpolys isnpoly (tmmul t c)" |
332 |
by (induct t rule: tmmul.induct) (simp_all add: Let_def polymul_norm) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
333 |
|
55754 | 334 |
definition tmneg :: "tm \<Rightarrow> tm" |
335 |
where "tmneg t \<equiv> tmmul t (C (- 1,1))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
336 |
|
55754 | 337 |
definition tmsub :: "tm \<Rightarrow> tm \<Rightarrow> tm" |
66809 | 338 |
where "tmsub s t \<equiv> (if s = t then CP 0\<^sub>p else tmadd s (tmneg t))" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
339 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
340 |
lemma tmneg[simp]: "Itm vs bs (tmneg t) = Itm vs bs (Neg t)" |
55754 | 341 |
using tmneg_def[of t] by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
342 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
343 |
lemma tmneg_nb0[simp]: "tmbound0 t \<Longrightarrow> tmbound0 (tmneg t)" |
55754 | 344 |
using tmneg_def by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
345 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
346 |
lemma tmneg_nb[simp]: "tmbound n t \<Longrightarrow> tmbound n (tmneg t)" |
55754 | 347 |
using tmneg_def by simp |
348 |
||
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
349 |
lemma tmneg_blt[simp]: "tmboundslt n t \<Longrightarrow> tmboundslt n (tmneg t)" |
55754 | 350 |
using tmneg_def by simp |
351 |
||
352 |
lemma [simp]: "isnpoly (C (-1, 1))" |
|
67123 | 353 |
by (simp add: isnpoly_def) |
55754 | 354 |
|
355 |
lemma tmneg_allpolys_npoly[simp]: |
|
68442 | 356 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
55754 | 357 |
shows "allpolys isnpoly t \<Longrightarrow> allpolys isnpoly (tmneg t)" |
67123 | 358 |
by (auto simp: tmneg_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
359 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
360 |
lemma tmsub[simp]: "Itm vs bs (tmsub a b) = Itm vs bs (Sub a b)" |
55754 | 361 |
using tmsub_def by simp |
362 |
||
363 |
lemma tmsub_nb0[simp]: "tmbound0 t \<Longrightarrow> tmbound0 s \<Longrightarrow> tmbound0 (tmsub t s)" |
|
364 |
using tmsub_def by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
365 |
|
55754 | 366 |
lemma tmsub_nb[simp]: "tmbound n t \<Longrightarrow> tmbound n s \<Longrightarrow> tmbound n (tmsub t s)" |
367 |
using tmsub_def by simp |
|
368 |
||
369 |
lemma tmsub_blt[simp]: "tmboundslt n t \<Longrightarrow> tmboundslt n s \<Longrightarrow> tmboundslt n (tmsub t s)" |
|
370 |
using tmsub_def by simp |
|
371 |
||
372 |
lemma tmsub_allpolys_npoly[simp]: |
|
68442 | 373 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
55754 | 374 |
shows "allpolys isnpoly t \<Longrightarrow> allpolys isnpoly s \<Longrightarrow> allpolys isnpoly (tmsub t s)" |
67123 | 375 |
by (simp add: tmsub_def isnpoly_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
376 |
|
55754 | 377 |
fun simptm :: "tm \<Rightarrow> tm" |
67123 | 378 |
where |
379 |
"simptm (CP j) = CP (polynate j)" |
|
380 |
| "simptm (Bound n) = CNP n (1)\<^sub>p (CP 0\<^sub>p)" |
|
381 |
| "simptm (Neg t) = tmneg (simptm t)" |
|
382 |
| "simptm (Add t s) = tmadd (simptm t) (simptm s)" |
|
383 |
| "simptm (Sub t s) = tmsub (simptm t) (simptm s)" |
|
384 |
| "simptm (Mul i t) = |
|
385 |
(let i' = polynate i in if i' = 0\<^sub>p then CP 0\<^sub>p else tmmul (simptm t) i')" |
|
386 |
| "simptm (CNP n c t) = |
|
387 |
(let c' = polynate c in if c' = 0\<^sub>p then simptm t else tmadd (CNP n c' (CP 0\<^sub>p)) (simptm t))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
388 |
|
55754 | 389 |
lemma polynate_stupid: |
68442 | 390 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
391 |
shows "polynate t = 0\<^sub>p \<Longrightarrow> Ipoly bs t = (0::'a)" |
80098 | 392 |
by (metis INum_int(2) Ipoly.simps(1) polynate) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
393 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
394 |
lemma simptm_ci[simp]: "Itm vs bs (simptm t) = Itm vs bs t" |
80098 | 395 |
by (induct t rule: simptm.induct) (auto simp: Let_def polynate_stupid) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
396 |
|
55754 | 397 |
lemma simptm_tmbound0[simp]: "tmbound0 t \<Longrightarrow> tmbound0 (simptm t)" |
80098 | 398 |
by (induct t rule: simptm.induct) (auto simp: Let_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
399 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
400 |
lemma simptm_nb[simp]: "tmbound n t \<Longrightarrow> tmbound n (simptm t)" |
80098 | 401 |
by (induct t rule: simptm.induct) (auto simp: Let_def) |
55754 | 402 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
403 |
lemma simptm_nlt[simp]: "tmboundslt n t \<Longrightarrow> tmboundslt n (simptm t)" |
80098 | 404 |
by (induct t rule: simptm.induct) (auto simp: Let_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
405 |
|
55754 | 406 |
lemma [simp]: "isnpoly 0\<^sub>p" |
60560 | 407 |
and [simp]: "isnpoly (C (1, 1))" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
408 |
by (simp_all add: isnpoly_def) |
55754 | 409 |
|
410 |
lemma simptm_allpolys_npoly[simp]: |
|
68442 | 411 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
412 |
shows "allpolys isnpoly (simptm p)" |
80098 | 413 |
by (induct p rule: simptm.induct) (auto simp: Let_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
414 |
|
41822 | 415 |
declare let_cong[fundef_cong del] |
416 |
||
60560 | 417 |
fun split0 :: "tm \<Rightarrow> poly \<times> tm" |
67123 | 418 |
where |
419 |
"split0 (Bound 0) = ((1)\<^sub>p, CP 0\<^sub>p)" |
|
420 |
| "split0 (CNP 0 c t) = (let (c', t') = split0 t in (c +\<^sub>p c', t'))" |
|
421 |
| "split0 (Neg t) = (let (c, t') = split0 t in (~\<^sub>p c, Neg t'))" |
|
422 |
| "split0 (CNP n c t) = (let (c', t') = split0 t in (c', CNP n c t'))" |
|
423 |
| "split0 (Add s t) = (let (c1, s') = split0 s; (c2, t') = split0 t in (c1 +\<^sub>p c2, Add s' t'))" |
|
424 |
| "split0 (Sub s t) = (let (c1, s') = split0 s; (c2, t') = split0 t in (c1 -\<^sub>p c2, Sub s' t'))" |
|
425 |
| "split0 (Mul c t) = (let (c', t') = split0 t in (c *\<^sub>p c', Mul c t'))" |
|
426 |
| "split0 t = (0\<^sub>p, t)" |
|
41822 | 427 |
|
428 |
declare let_cong[fundef_cong] |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
429 |
|
55754 | 430 |
lemma split0_stupid[simp]: "\<exists>x y. (x, y) = split0 p" |
80098 | 431 |
using prod.collapse by blast |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
432 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
433 |
lemma split0: |
60560 | 434 |
"tmbound 0 (snd (split0 t)) \<and> Itm vs bs (CNP 0 (fst (split0 t)) (snd (split0 t))) = Itm vs bs t" |
80098 | 435 |
proof (induct t rule: split0.induct) |
436 |
case (7 c t) |
|
437 |
then show ?case |
|
438 |
by (simp add: Let_def split_def mult.assoc flip: distrib_left) |
|
439 |
qed (auto simp: Let_def split_def field_simps) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
440 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
441 |
lemma split0_ci: "split0 t = (c',t') \<Longrightarrow> Itm vs bs t = Itm vs bs (CNP 0 c' t')" |
55754 | 442 |
proof - |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
443 |
fix c' t' |
55754 | 444 |
assume "split0 t = (c', t')" |
67123 | 445 |
then have "c' = fst (split0 t)" "t' = snd (split0 t)" |
55754 | 446 |
by auto |
67123 | 447 |
with split0[where t="t" and bs="bs"] show "Itm vs bs t = Itm vs bs (CNP 0 c' t')" |
55754 | 448 |
by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
449 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
450 |
|
55754 | 451 |
lemma split0_nb0: |
68442 | 452 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
453 |
shows "split0 t = (c',t') \<Longrightarrow> tmbound 0 t'" |
55754 | 454 |
proof - |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
455 |
fix c' t' |
55754 | 456 |
assume "split0 t = (c', t')" |
67123 | 457 |
then have "c' = fst (split0 t)" "t' = snd (split0 t)" |
55754 | 458 |
by auto |
459 |
with conjunct1[OF split0[where t="t"]] show "tmbound 0 t'" |
|
460 |
by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
461 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
462 |
|
55754 | 463 |
lemma split0_nb0'[simp]: |
68442 | 464 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
465 |
shows "tmbound0 (snd (split0 t))" |
55754 | 466 |
using split0_nb0[of t "fst (split0 t)" "snd (split0 t)"] |
467 |
by (simp add: tmbound0_tmbound_iff) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
468 |
|
55754 | 469 |
lemma split0_nb: |
470 |
assumes nb: "tmbound n t" |
|
471 |
shows "tmbound n (snd (split0 t))" |
|
80098 | 472 |
using nb by (induct t rule: split0.induct) (auto simp: Let_def split_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
473 |
|
55754 | 474 |
lemma split0_blt: |
475 |
assumes nb: "tmboundslt n t" |
|
476 |
shows "tmboundslt n (snd (split0 t))" |
|
80098 | 477 |
using nb by (induct t rule: split0.induct) (auto simp: Let_def split_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
478 |
|
55754 | 479 |
lemma tmbound_split0: "tmbound 0 t \<Longrightarrow> Ipoly vs (fst (split0 t)) = 0" |
80098 | 480 |
by (induct t rule: split0.induct) (auto simp: Let_def split_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
481 |
|
55754 | 482 |
lemma tmboundslt_split0: "tmboundslt n t \<Longrightarrow> Ipoly vs (fst (split0 t)) = 0 \<or> n > 0" |
80098 | 483 |
by (induct t rule: split0.induct) (auto simp: Let_def split_def) |
55754 | 484 |
|
485 |
lemma tmboundslt0_split0: "tmboundslt 0 t \<Longrightarrow> Ipoly vs (fst (split0 t)) = 0" |
|
80098 | 486 |
by (induct t rule: split0.induct) (auto simp: Let_def split_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
487 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
488 |
lemma allpolys_split0: "allpolys isnpoly p \<Longrightarrow> allpolys isnpoly (snd (split0 p))" |
55754 | 489 |
by (induct p rule: split0.induct) (auto simp add: isnpoly_def Let_def split_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
490 |
|
55754 | 491 |
lemma isnpoly_fst_split0: |
68442 | 492 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
55754 | 493 |
shows "allpolys isnpoly p \<Longrightarrow> isnpoly (fst (split0 p))" |
494 |
by (induct p rule: split0.induct) |
|
495 |
(auto simp add: polyadd_norm polysub_norm polyneg_norm polymul_norm Let_def split_def) |
|
496 |
||
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
497 |
|
60560 | 498 |
subsection \<open>Formulae\<close> |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
499 |
|
66809 | 500 |
datatype (plugins del: size) fm = T | F | Le tm | Lt tm | Eq tm | NEq tm | |
74101 | 501 |
Not fm | And fm fm | Or fm fm | Imp fm fm | Iff fm fm | E fm | A fm |
66809 | 502 |
|
503 |
instantiation fm :: size |
|
504 |
begin |
|
505 |
||
506 |
primrec size_fm :: "fm \<Rightarrow> nat" |
|
67123 | 507 |
where |
74101 | 508 |
"size_fm (Not p) = 1 + size_fm p" |
67123 | 509 |
| "size_fm (And p q) = 1 + size_fm p + size_fm q" |
510 |
| "size_fm (Or p q) = 1 + size_fm p + size_fm q" |
|
511 |
| "size_fm (Imp p q) = 3 + size_fm p + size_fm q" |
|
512 |
| "size_fm (Iff p q) = 3 + 2 * (size_fm p + size_fm q)" |
|
513 |
| "size_fm (E p) = 1 + size_fm p" |
|
514 |
| "size_fm (A p) = 4 + size_fm p" |
|
515 |
| "size_fm T = 1" |
|
516 |
| "size_fm F = 1" |
|
517 |
| "size_fm (Le _) = 1" |
|
518 |
| "size_fm (Lt _) = 1" |
|
519 |
| "size_fm (Eq _) = 1" |
|
520 |
| "size_fm (NEq _) = 1" |
|
66809 | 521 |
|
522 |
instance .. |
|
523 |
||
524 |
end |
|
525 |
||
526 |
lemma fmsize_pos [simp]: "size p > 0" for p :: fm |
|
527 |
by (induct p) simp_all |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
528 |
|
60561 | 529 |
text \<open>Semantics of formulae (fm).\<close> |
60560 | 530 |
primrec Ifm ::"'a::linordered_field list \<Rightarrow> 'a list \<Rightarrow> fm \<Rightarrow> bool" |
67123 | 531 |
where |
532 |
"Ifm vs bs T = True" |
|
533 |
| "Ifm vs bs F = False" |
|
534 |
| "Ifm vs bs (Lt a) = (Itm vs bs a < 0)" |
|
535 |
| "Ifm vs bs (Le a) = (Itm vs bs a \<le> 0)" |
|
536 |
| "Ifm vs bs (Eq a) = (Itm vs bs a = 0)" |
|
537 |
| "Ifm vs bs (NEq a) = (Itm vs bs a \<noteq> 0)" |
|
74101 | 538 |
| "Ifm vs bs (Not p) = (\<not> (Ifm vs bs p))" |
67123 | 539 |
| "Ifm vs bs (And p q) = (Ifm vs bs p \<and> Ifm vs bs q)" |
540 |
| "Ifm vs bs (Or p q) = (Ifm vs bs p \<or> Ifm vs bs q)" |
|
541 |
| "Ifm vs bs (Imp p q) = ((Ifm vs bs p) \<longrightarrow> (Ifm vs bs q))" |
|
542 |
| "Ifm vs bs (Iff p q) = (Ifm vs bs p = Ifm vs bs q)" |
|
543 |
| "Ifm vs bs (E p) = (\<exists>x. Ifm vs (x#bs) p)" |
|
544 |
| "Ifm vs bs (A p) = (\<forall>x. Ifm vs (x#bs) p)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
545 |
|
55768 | 546 |
fun not:: "fm \<Rightarrow> fm" |
67123 | 547 |
where |
74101 | 548 |
"not (Not (Not p)) = not p" |
549 |
| "not (Not p) = p" |
|
67123 | 550 |
| "not T = F" |
551 |
| "not F = T" |
|
552 |
| "not (Lt t) = Le (tmneg t)" |
|
553 |
| "not (Le t) = Lt (tmneg t)" |
|
554 |
| "not (Eq t) = NEq t" |
|
555 |
| "not (NEq t) = Eq t" |
|
74101 | 556 |
| "not p = Not p" |
557 |
||
558 |
lemma not[simp]: "Ifm vs bs (not p) = Ifm vs bs (Not p)" |
|
55754 | 559 |
by (induct p rule: not.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
560 |
|
55754 | 561 |
definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 562 |
where "conj p q \<equiv> |
55754 | 563 |
(if p = F \<or> q = F then F |
564 |
else if p = T then q |
|
565 |
else if q = T then p |
|
566 |
else if p = q then p |
|
567 |
else And p q)" |
|
568 |
||
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
569 |
lemma conj[simp]: "Ifm vs bs (conj p q) = Ifm vs bs (And p q)" |
55754 | 570 |
by (cases "p=F \<or> q=F", simp_all add: conj_def) (cases p, simp_all) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
571 |
|
55754 | 572 |
definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 573 |
where "disj p q \<equiv> |
55754 | 574 |
(if (p = T \<or> q = T) then T |
575 |
else if p = F then q |
|
576 |
else if q = F then p |
|
577 |
else if p = q then p |
|
578 |
else Or p q)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
579 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
580 |
lemma disj[simp]: "Ifm vs bs (disj p q) = Ifm vs bs (Or p q)" |
55768 | 581 |
by (cases "p = T \<or> q = T", simp_all add: disj_def) (cases p, simp_all) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
582 |
|
55754 | 583 |
definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 584 |
where "imp p q \<equiv> |
55754 | 585 |
(if p = F \<or> q = T \<or> p = q then T |
586 |
else if p = T then q |
|
587 |
else if q = F then not p |
|
588 |
else Imp p q)" |
|
589 |
||
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
590 |
lemma imp[simp]: "Ifm vs bs (imp p q) = Ifm vs bs (Imp p q)" |
55768 | 591 |
by (cases "p = F \<or> q = T") (simp_all add: imp_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
592 |
|
55754 | 593 |
definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 594 |
where "iff p q \<equiv> |
55754 | 595 |
(if p = q then T |
74101 | 596 |
else if p = Not q \<or> Not p = q then F |
55754 | 597 |
else if p = F then not q |
598 |
else if q = F then not p |
|
599 |
else if p = T then q |
|
600 |
else if q = T then p |
|
601 |
else Iff p q)" |
|
602 |
||
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
603 |
lemma iff[simp]: "Ifm vs bs (iff p q) = Ifm vs bs (Iff p q)" |
74101 | 604 |
by (unfold iff_def, cases "p = q", simp, cases "p = Not q", simp) (cases "Not p= q", auto) |
41822 | 605 |
|
60561 | 606 |
text \<open>Quantifier freeness.\<close> |
55754 | 607 |
fun qfree:: "fm \<Rightarrow> bool" |
67123 | 608 |
where |
609 |
"qfree (E p) = False" |
|
610 |
| "qfree (A p) = False" |
|
74101 | 611 |
| "qfree (Not p) = qfree p" |
67123 | 612 |
| "qfree (And p q) = (qfree p \<and> qfree q)" |
613 |
| "qfree (Or p q) = (qfree p \<and> qfree q)" |
|
614 |
| "qfree (Imp p q) = (qfree p \<and> qfree q)" |
|
615 |
| "qfree (Iff p q) = (qfree p \<and> qfree q)" |
|
616 |
| "qfree p = True" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
617 |
|
60561 | 618 |
text \<open>Boundedness and substitution.\<close> |
55754 | 619 |
primrec boundslt :: "nat \<Rightarrow> fm \<Rightarrow> bool" |
67123 | 620 |
where |
621 |
"boundslt n T = True" |
|
622 |
| "boundslt n F = True" |
|
623 |
| "boundslt n (Lt t) = tmboundslt n t" |
|
624 |
| "boundslt n (Le t) = tmboundslt n t" |
|
625 |
| "boundslt n (Eq t) = tmboundslt n t" |
|
626 |
| "boundslt n (NEq t) = tmboundslt n t" |
|
74101 | 627 |
| "boundslt n (Not p) = boundslt n p" |
67123 | 628 |
| "boundslt n (And p q) = (boundslt n p \<and> boundslt n q)" |
629 |
| "boundslt n (Or p q) = (boundslt n p \<and> boundslt n q)" |
|
630 |
| "boundslt n (Imp p q) = ((boundslt n p) \<and> (boundslt n q))" |
|
631 |
| "boundslt n (Iff p q) = (boundslt n p \<and> boundslt n q)" |
|
632 |
| "boundslt n (E p) = boundslt (Suc n) p" |
|
633 |
| "boundslt n (A p) = boundslt (Suc n) p" |
|
634 |
||
635 |
fun bound0:: "fm \<Rightarrow> bool" \<comment> \<open>a formula is independent of Bound 0\<close> |
|
636 |
where |
|
637 |
"bound0 T = True" |
|
638 |
| "bound0 F = True" |
|
639 |
| "bound0 (Lt a) = tmbound0 a" |
|
640 |
| "bound0 (Le a) = tmbound0 a" |
|
641 |
| "bound0 (Eq a) = tmbound0 a" |
|
642 |
| "bound0 (NEq a) = tmbound0 a" |
|
74101 | 643 |
| "bound0 (Not p) = bound0 p" |
67123 | 644 |
| "bound0 (And p q) = (bound0 p \<and> bound0 q)" |
645 |
| "bound0 (Or p q) = (bound0 p \<and> bound0 q)" |
|
646 |
| "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))" |
|
647 |
| "bound0 (Iff p q) = (bound0 p \<and> bound0 q)" |
|
648 |
| "bound0 p = False" |
|
55754 | 649 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
650 |
lemma bound0_I: |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
651 |
assumes bp: "bound0 p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
652 |
shows "Ifm vs (b#bs) p = Ifm vs (b'#bs) p" |
55754 | 653 |
using bp tmbound0_I[where b="b" and bs="bs" and b'="b'"] |
654 |
by (induct p rule: bound0.induct) auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
655 |
|
67123 | 656 |
primrec bound:: "nat \<Rightarrow> fm \<Rightarrow> bool" \<comment> \<open>a formula is independent of Bound n\<close> |
657 |
where |
|
658 |
"bound m T = True" |
|
659 |
| "bound m F = True" |
|
660 |
| "bound m (Lt t) = tmbound m t" |
|
661 |
| "bound m (Le t) = tmbound m t" |
|
662 |
| "bound m (Eq t) = tmbound m t" |
|
663 |
| "bound m (NEq t) = tmbound m t" |
|
74101 | 664 |
| "bound m (Not p) = bound m p" |
67123 | 665 |
| "bound m (And p q) = (bound m p \<and> bound m q)" |
666 |
| "bound m (Or p q) = (bound m p \<and> bound m q)" |
|
667 |
| "bound m (Imp p q) = ((bound m p) \<and> (bound m q))" |
|
668 |
| "bound m (Iff p q) = (bound m p \<and> bound m q)" |
|
669 |
| "bound m (E p) = bound (Suc m) p" |
|
670 |
| "bound m (A p) = bound (Suc m) p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
671 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
672 |
lemma bound_I: |
55754 | 673 |
assumes bnd: "boundslt (length bs) p" |
674 |
and nb: "bound n p" |
|
675 |
and le: "n \<le> length bs" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
676 |
shows "Ifm vs (bs[n:=x]) p = Ifm vs bs p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
677 |
using bnd nb le tmbound_I[where bs=bs and vs = vs] |
55754 | 678 |
proof (induct p arbitrary: bs n rule: fm.induct) |
679 |
case (E p bs n) |
|
60561 | 680 |
have "Ifm vs ((y#bs)[Suc n:=x]) p = Ifm vs (y#bs) p" for y |
681 |
proof - |
|
55754 | 682 |
from E have bnd: "boundslt (length (y#bs)) p" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
683 |
and nb: "bound (Suc n) p" and le: "Suc n \<le> length (y#bs)" by simp+ |
60561 | 684 |
from E.hyps[OF bnd nb le tmbound_I] show ?thesis . |
685 |
qed |
|
55768 | 686 |
then show ?case by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
687 |
next |
55754 | 688 |
case (A p bs n) |
60561 | 689 |
have "Ifm vs ((y#bs)[Suc n:=x]) p = Ifm vs (y#bs) p" for y |
690 |
proof - |
|
55754 | 691 |
from A have bnd: "boundslt (length (y#bs)) p" |
692 |
and nb: "bound (Suc n) p" |
|
693 |
and le: "Suc n \<le> length (y#bs)" |
|
694 |
by simp_all |
|
60561 | 695 |
from A.hyps[OF bnd nb le tmbound_I] show ?thesis . |
696 |
qed |
|
55768 | 697 |
then show ?case by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
698 |
qed auto |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
699 |
|
55768 | 700 |
fun decr0 :: "fm \<Rightarrow> fm" |
67123 | 701 |
where |
702 |
"decr0 (Lt a) = Lt (decrtm0 a)" |
|
703 |
| "decr0 (Le a) = Le (decrtm0 a)" |
|
704 |
| "decr0 (Eq a) = Eq (decrtm0 a)" |
|
705 |
| "decr0 (NEq a) = NEq (decrtm0 a)" |
|
74101 | 706 |
| "decr0 (Not p) = Not (decr0 p)" |
67123 | 707 |
| "decr0 (And p q) = conj (decr0 p) (decr0 q)" |
708 |
| "decr0 (Or p q) = disj (decr0 p) (decr0 q)" |
|
709 |
| "decr0 (Imp p q) = imp (decr0 p) (decr0 q)" |
|
710 |
| "decr0 (Iff p q) = iff (decr0 p) (decr0 q)" |
|
711 |
| "decr0 p = p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
712 |
|
55754 | 713 |
lemma decr0: |
67123 | 714 |
assumes "bound0 p" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
715 |
shows "Ifm vs (x#bs) p = Ifm vs bs (decr0 p)" |
67123 | 716 |
using assms by (induct p rule: decr0.induct) (simp_all add: decrtm0) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
717 |
|
55754 | 718 |
primrec decr :: "nat \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 719 |
where |
720 |
"decr m T = T" |
|
721 |
| "decr m F = F" |
|
722 |
| "decr m (Lt t) = (Lt (decrtm m t))" |
|
723 |
| "decr m (Le t) = (Le (decrtm m t))" |
|
724 |
| "decr m (Eq t) = (Eq (decrtm m t))" |
|
725 |
| "decr m (NEq t) = (NEq (decrtm m t))" |
|
74101 | 726 |
| "decr m (Not p) = Not (decr m p)" |
67123 | 727 |
| "decr m (And p q) = conj (decr m p) (decr m q)" |
728 |
| "decr m (Or p q) = disj (decr m p) (decr m q)" |
|
729 |
| "decr m (Imp p q) = imp (decr m p) (decr m q)" |
|
730 |
| "decr m (Iff p q) = iff (decr m p) (decr m q)" |
|
731 |
| "decr m (E p) = E (decr (Suc m) p)" |
|
732 |
| "decr m (A p) = A (decr (Suc m) p)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
733 |
|
55754 | 734 |
lemma decr: |
735 |
assumes bnd: "boundslt (length bs) p" |
|
736 |
and nb: "bound m p" |
|
737 |
and nle: "m < length bs" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
738 |
shows "Ifm vs (removen m bs) (decr m p) = Ifm vs bs p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
739 |
using bnd nb nle |
55754 | 740 |
proof (induct p arbitrary: bs m rule: fm.induct) |
741 |
case (E p bs m) |
|
60560 | 742 |
have "Ifm vs (removen (Suc m) (x#bs)) (decr (Suc m) p) = Ifm vs (x#bs) p" for x |
743 |
proof - |
|
55754 | 744 |
from E |
745 |
have bnd: "boundslt (length (x#bs)) p" |
|
746 |
and nb: "bound (Suc m) p" |
|
747 |
and nle: "Suc m < length (x#bs)" |
|
748 |
by auto |
|
60560 | 749 |
from E(1)[OF bnd nb nle] show ?thesis . |
750 |
qed |
|
55768 | 751 |
then show ?case by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
752 |
next |
55754 | 753 |
case (A p bs m) |
60560 | 754 |
have "Ifm vs (removen (Suc m) (x#bs)) (decr (Suc m) p) = Ifm vs (x#bs) p" for x |
755 |
proof - |
|
55754 | 756 |
from A |
757 |
have bnd: "boundslt (length (x#bs)) p" |
|
758 |
and nb: "bound (Suc m) p" |
|
759 |
and nle: "Suc m < length (x#bs)" |
|
760 |
by auto |
|
60560 | 761 |
from A(1)[OF bnd nb nle] show ?thesis . |
762 |
qed |
|
55768 | 763 |
then show ?case by auto |
80098 | 764 |
qed (auto simp: decrtm removen_nth) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
765 |
|
55754 | 766 |
primrec subst0 :: "tm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 767 |
where |
768 |
"subst0 t T = T" |
|
769 |
| "subst0 t F = F" |
|
770 |
| "subst0 t (Lt a) = Lt (tmsubst0 t a)" |
|
771 |
| "subst0 t (Le a) = Le (tmsubst0 t a)" |
|
772 |
| "subst0 t (Eq a) = Eq (tmsubst0 t a)" |
|
773 |
| "subst0 t (NEq a) = NEq (tmsubst0 t a)" |
|
74101 | 774 |
| "subst0 t (Not p) = Not (subst0 t p)" |
67123 | 775 |
| "subst0 t (And p q) = And (subst0 t p) (subst0 t q)" |
776 |
| "subst0 t (Or p q) = Or (subst0 t p) (subst0 t q)" |
|
777 |
| "subst0 t (Imp p q) = Imp (subst0 t p) (subst0 t q)" |
|
778 |
| "subst0 t (Iff p q) = Iff (subst0 t p) (subst0 t q)" |
|
779 |
| "subst0 t (E p) = E p" |
|
780 |
| "subst0 t (A p) = A p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
781 |
|
55754 | 782 |
lemma subst0: |
783 |
assumes qf: "qfree p" |
|
784 |
shows "Ifm vs (x # bs) (subst0 t p) = Ifm vs ((Itm vs (x # bs) t) # bs) p" |
|
785 |
using qf tmsubst0[where x="x" and bs="bs" and t="t"] |
|
786 |
by (induct p rule: fm.induct) auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
787 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
788 |
lemma subst0_nb: |
55754 | 789 |
assumes bp: "tmbound0 t" |
790 |
and qf: "qfree p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
791 |
shows "bound0 (subst0 t p)" |
67123 | 792 |
using qf tmsubst0_nb[OF bp] bp by (induct p rule: fm.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
793 |
|
55754 | 794 |
primrec subst:: "nat \<Rightarrow> tm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 795 |
where |
796 |
"subst n t T = T" |
|
797 |
| "subst n t F = F" |
|
798 |
| "subst n t (Lt a) = Lt (tmsubst n t a)" |
|
799 |
| "subst n t (Le a) = Le (tmsubst n t a)" |
|
800 |
| "subst n t (Eq a) = Eq (tmsubst n t a)" |
|
801 |
| "subst n t (NEq a) = NEq (tmsubst n t a)" |
|
74101 | 802 |
| "subst n t (Not p) = Not (subst n t p)" |
67123 | 803 |
| "subst n t (And p q) = And (subst n t p) (subst n t q)" |
804 |
| "subst n t (Or p q) = Or (subst n t p) (subst n t q)" |
|
805 |
| "subst n t (Imp p q) = Imp (subst n t p) (subst n t q)" |
|
806 |
| "subst n t (Iff p q) = Iff (subst n t p) (subst n t q)" |
|
807 |
| "subst n t (E p) = E (subst (Suc n) (incrtm0 t) p)" |
|
808 |
| "subst n t (A p) = A (subst (Suc n) (incrtm0 t) p)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
809 |
|
55754 | 810 |
lemma subst: |
811 |
assumes nb: "boundslt (length bs) p" |
|
812 |
and nlm: "n \<le> length bs" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
813 |
shows "Ifm vs bs (subst n t p) = Ifm vs (bs[n:= Itm vs bs t]) p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
814 |
using nb nlm |
39246 | 815 |
proof (induct p arbitrary: bs n t rule: fm.induct) |
55754 | 816 |
case (E p bs n) |
60560 | 817 |
have "Ifm vs (x#bs) (subst (Suc n) (incrtm0 t) p) = |
818 |
Ifm vs (x#bs[n:= Itm vs bs t]) p" for x |
|
819 |
proof - |
|
55754 | 820 |
from E have bn: "boundslt (length (x#bs)) p" |
821 |
by simp |
|
822 |
from E have nlm: "Suc n \<le> length (x#bs)" |
|
823 |
by simp |
|
824 |
from E(1)[OF bn nlm] |
|
55768 | 825 |
have "Ifm vs (x#bs) (subst (Suc n) (incrtm0 t) p) = |
826 |
Ifm vs ((x#bs)[Suc n:= Itm vs (x#bs) (incrtm0 t)]) p" |
|
55754 | 827 |
by simp |
60560 | 828 |
then show ?thesis |
55754 | 829 |
by (simp add: incrtm0[where x="x" and bs="bs" and t="t"]) |
60560 | 830 |
qed |
55768 | 831 |
then show ?case by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
832 |
next |
55754 | 833 |
case (A p bs n) |
60560 | 834 |
have "Ifm vs (x#bs) (subst (Suc n) (incrtm0 t) p) = |
835 |
Ifm vs (x#bs[n:= Itm vs bs t]) p" for x |
|
836 |
proof - |
|
55754 | 837 |
from A have bn: "boundslt (length (x#bs)) p" |
838 |
by simp |
|
839 |
from A have nlm: "Suc n \<le> length (x#bs)" |
|
840 |
by simp |
|
841 |
from A(1)[OF bn nlm] |
|
55768 | 842 |
have "Ifm vs (x#bs) (subst (Suc n) (incrtm0 t) p) = |
843 |
Ifm vs ((x#bs)[Suc n:= Itm vs (x#bs) (incrtm0 t)]) p" |
|
55754 | 844 |
by simp |
60560 | 845 |
then show ?thesis |
55754 | 846 |
by (simp add: incrtm0[where x="x" and bs="bs" and t="t"]) |
60560 | 847 |
qed |
55768 | 848 |
then show ?case by simp |
80098 | 849 |
qed (auto simp: tmsubst) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
850 |
|
55754 | 851 |
lemma subst_nb: |
67123 | 852 |
assumes "tmbound m t" |
55754 | 853 |
shows "bound m (subst m t p)" |
67123 | 854 |
using assms tmsubst_nb incrtm0_tmbound by (induct p arbitrary: m t rule: fm.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
855 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
856 |
lemma not_qf[simp]: "qfree p \<Longrightarrow> qfree (not p)" |
55754 | 857 |
by (induct p rule: not.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
858 |
lemma not_bn0[simp]: "bound0 p \<Longrightarrow> bound0 (not p)" |
55754 | 859 |
by (induct p rule: not.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
860 |
lemma not_nb[simp]: "bound n p \<Longrightarrow> bound n (not p)" |
55754 | 861 |
by (induct p rule: not.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
862 |
lemma not_blt[simp]: "boundslt n p \<Longrightarrow> boundslt n (not p)" |
55754 | 863 |
by (induct p rule: not.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
864 |
|
55754 | 865 |
lemma conj_qf[simp]: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (conj p q)" |
866 |
using conj_def by auto |
|
867 |
lemma conj_nb0[simp]: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (conj p q)" |
|
868 |
using conj_def by auto |
|
869 |
lemma conj_nb[simp]: "bound n p \<Longrightarrow> bound n q \<Longrightarrow> bound n (conj p q)" |
|
870 |
using conj_def by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
871 |
lemma conj_blt[simp]: "boundslt n p \<Longrightarrow> boundslt n q \<Longrightarrow> boundslt n (conj p q)" |
55754 | 872 |
using conj_def by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
873 |
|
55754 | 874 |
lemma disj_qf[simp]: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (disj p q)" |
875 |
using disj_def by auto |
|
876 |
lemma disj_nb0[simp]: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (disj p q)" |
|
877 |
using disj_def by auto |
|
878 |
lemma disj_nb[simp]: "bound n p \<Longrightarrow> bound n q \<Longrightarrow> bound n (disj p q)" |
|
879 |
using disj_def by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
880 |
lemma disj_blt[simp]: "boundslt n p \<Longrightarrow> boundslt n q \<Longrightarrow> boundslt n (disj p q)" |
55754 | 881 |
using disj_def by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
882 |
|
55754 | 883 |
lemma imp_qf[simp]: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (imp p q)" |
55768 | 884 |
using imp_def by (cases "p = F \<or> q = T") (simp_all add: imp_def) |
55754 | 885 |
lemma imp_nb0[simp]: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (imp p q)" |
55768 | 886 |
using imp_def by (cases "p = F \<or> q = T \<or> p = q") (simp_all add: imp_def) |
55754 | 887 |
lemma imp_nb[simp]: "bound n p \<Longrightarrow> bound n q \<Longrightarrow> bound n (imp p q)" |
55768 | 888 |
using imp_def by (cases "p = F \<or> q = T \<or> p = q") (simp_all add: imp_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
889 |
lemma imp_blt[simp]: "boundslt n p \<Longrightarrow> boundslt n q \<Longrightarrow> boundslt n (imp p q)" |
55754 | 890 |
using imp_def by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
891 |
|
55754 | 892 |
lemma iff_qf[simp]: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (iff p q)" |
893 |
unfolding iff_def by (cases "p = q") auto |
|
894 |
lemma iff_nb0[simp]: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (iff p q)" |
|
895 |
using iff_def unfolding iff_def by (cases "p = q") auto |
|
896 |
lemma iff_nb[simp]: "bound n p \<Longrightarrow> bound n q \<Longrightarrow> bound n (iff p q)" |
|
897 |
using iff_def unfolding iff_def by (cases "p = q") auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
898 |
lemma iff_blt[simp]: "boundslt n p \<Longrightarrow> boundslt n q \<Longrightarrow> boundslt n (iff p q)" |
55754 | 899 |
using iff_def by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
900 |
lemma decr0_qf: "bound0 p \<Longrightarrow> qfree (decr0 p)" |
55754 | 901 |
by (induct p) simp_all |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
902 |
|
61586 | 903 |
fun isatom :: "fm \<Rightarrow> bool" \<comment> \<open>test for atomicity\<close> |
67123 | 904 |
where |
905 |
"isatom T = True" |
|
906 |
| "isatom F = True" |
|
907 |
| "isatom (Lt a) = True" |
|
908 |
| "isatom (Le a) = True" |
|
909 |
| "isatom (Eq a) = True" |
|
910 |
| "isatom (NEq a) = True" |
|
911 |
| "isatom p = False" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
912 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
913 |
lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p" |
55754 | 914 |
by (induct p) simp_all |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
915 |
|
55754 | 916 |
definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 917 |
where "djf f p q \<equiv> |
55754 | 918 |
(if q = T then T |
919 |
else if q = F then f p |
|
920 |
else (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))" |
|
921 |
||
922 |
definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" |
|
923 |
where "evaldjf f ps \<equiv> foldr (djf f) ps F" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
924 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
925 |
lemma djf_Or: "Ifm vs bs (djf f p q) = Ifm vs bs (Or (f p) q)" |
80098 | 926 |
by (cases "f p") (simp_all add: Let_def djf_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
927 |
|
55754 | 928 |
lemma evaldjf_ex: "Ifm vs bs (evaldjf f ps) \<longleftrightarrow> (\<exists>p \<in> set ps. Ifm vs bs (f p))" |
929 |
by (induct ps) (simp_all add: evaldjf_def djf_Or) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
930 |
|
55754 | 931 |
lemma evaldjf_bound0: |
80098 | 932 |
assumes "\<forall>x \<in> set xs. bound0 (f x)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
933 |
shows "bound0 (evaldjf f xs)" |
67123 | 934 |
using assms |
80098 | 935 |
proof (induct xs) |
936 |
case Nil |
|
937 |
then show ?case |
|
938 |
by (simp add: evaldjf_def) |
|
939 |
next |
|
940 |
case (Cons a xs) |
|
941 |
then show ?case |
|
942 |
by (cases "f a") (simp_all add: evaldjf_def djf_def Let_def) |
|
943 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
944 |
|
55754 | 945 |
lemma evaldjf_qf: |
67123 | 946 |
assumes "\<forall>x\<in> set xs. qfree (f x)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
947 |
shows "qfree (evaldjf f xs)" |
67123 | 948 |
using assms |
80098 | 949 |
proof (induct xs) |
950 |
case Nil |
|
951 |
then show ?case |
|
952 |
by (simp add: evaldjf_def) |
|
953 |
next |
|
954 |
case (Cons a xs) |
|
955 |
then show ?case |
|
956 |
by (cases "f a") (simp_all add: evaldjf_def djf_def Let_def) |
|
957 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
958 |
|
55754 | 959 |
fun disjuncts :: "fm \<Rightarrow> fm list" |
67123 | 960 |
where |
961 |
"disjuncts (Or p q) = disjuncts p @ disjuncts q" |
|
962 |
| "disjuncts F = []" |
|
963 |
| "disjuncts p = [p]" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
964 |
|
55754 | 965 |
lemma disjuncts: "(\<exists>q \<in> set (disjuncts p). Ifm vs bs q) = Ifm vs bs p" |
966 |
by (induct p rule: disjuncts.induct) auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
967 |
|
67123 | 968 |
lemma disjuncts_nb: |
969 |
assumes "bound0 p" |
|
970 |
shows "\<forall>q \<in> set (disjuncts p). bound0 q" |
|
55754 | 971 |
proof - |
67123 | 972 |
from assms have "list_all bound0 (disjuncts p)" |
973 |
by (induct p rule: disjuncts.induct) auto |
|
55768 | 974 |
then show ?thesis |
975 |
by (simp only: list_all_iff) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
976 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
977 |
|
67123 | 978 |
lemma disjuncts_qf: |
979 |
assumes "qfree p" |
|
980 |
shows "\<forall>q \<in> set (disjuncts p). qfree q" |
|
60560 | 981 |
proof - |
67123 | 982 |
from assms have "list_all qfree (disjuncts p)" |
55768 | 983 |
by (induct p rule: disjuncts.induct) auto |
67123 | 984 |
then show ?thesis |
985 |
by (simp only: list_all_iff) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
986 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
987 |
|
55768 | 988 |
definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" |
989 |
where "DJ f p \<equiv> evaldjf f (disjuncts p)" |
|
990 |
||
991 |
lemma DJ: |
|
992 |
assumes fdj: "\<forall>p q. Ifm vs bs (f (Or p q)) = Ifm vs bs (Or (f p) (f q))" |
|
993 |
and fF: "f F = F" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
994 |
shows "Ifm vs bs (DJ f p) = Ifm vs bs (f p)" |
55768 | 995 |
proof - |
55754 | 996 |
have "Ifm vs bs (DJ f p) = (\<exists>q \<in> set (disjuncts p). Ifm vs bs (f q))" |
997 |
by (simp add: DJ_def evaldjf_ex) |
|
55768 | 998 |
also have "\<dots> = Ifm vs bs (f p)" |
999 |
using fdj fF by (induct p rule: disjuncts.induct) auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1000 |
finally show ?thesis . |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1001 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1002 |
|
55768 | 1003 |
lemma DJ_qf: |
1004 |
assumes fqf: "\<forall>p. qfree p \<longrightarrow> qfree (f p)" |
|
1005 |
shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p)" |
|
1006 |
proof clarify |
|
1007 |
fix p |
|
1008 |
assume qf: "qfree p" |
|
1009 |
have th: "DJ f p = evaldjf f (disjuncts p)" |
|
1010 |
by (simp add: DJ_def) |
|
55754 | 1011 |
from disjuncts_qf[OF qf] have "\<forall>q\<in> set (disjuncts p). qfree q" . |
55768 | 1012 |
with fqf have th':"\<forall>q\<in> set (disjuncts p). qfree (f q)" |
1013 |
by blast |
|
1014 |
from evaldjf_qf[OF th'] th show "qfree (DJ f p)" |
|
1015 |
by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1016 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1017 |
|
55768 | 1018 |
lemma DJ_qe: |
1019 |
assumes qe: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm vs bs (qe p) = Ifm vs bs (E p))" |
|
55754 | 1020 |
shows "\<forall>bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm vs bs ((DJ qe p)) = Ifm vs bs (E p))" |
55768 | 1021 |
proof clarify |
1022 |
fix p :: fm and bs |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1023 |
assume qf: "qfree p" |
55768 | 1024 |
from qe have qth: "\<forall>p. qfree p \<longrightarrow> qfree (qe p)" |
1025 |
by blast |
|
1026 |
from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" |
|
1027 |
by auto |
|
1028 |
have "Ifm vs bs (DJ qe p) \<longleftrightarrow> (\<exists>q\<in> set (disjuncts p). Ifm vs bs (qe q))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1029 |
by (simp add: DJ_def evaldjf_ex) |
55768 | 1030 |
also have "\<dots> = (\<exists>q \<in> set(disjuncts p). Ifm vs bs (E q))" |
1031 |
using qe disjuncts_qf[OF qf] by auto |
|
1032 |
also have "\<dots> = Ifm vs bs (E p)" |
|
1033 |
by (induct p rule: disjuncts.induct) auto |
|
1034 |
finally show "qfree (DJ qe p) \<and> Ifm vs bs (DJ qe p) = Ifm vs bs (E p)" |
|
1035 |
using qfth by blast |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1036 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1037 |
|
55768 | 1038 |
fun conjuncts :: "fm \<Rightarrow> fm list" |
67123 | 1039 |
where |
1040 |
"conjuncts (And p q) = conjuncts p @ conjuncts q" |
|
1041 |
| "conjuncts T = []" |
|
1042 |
| "conjuncts p = [p]" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1043 |
|
55768 | 1044 |
definition list_conj :: "fm list \<Rightarrow> fm" |
1045 |
where "list_conj ps \<equiv> foldr conj ps T" |
|
1046 |
||
1047 |
definition CJNB :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" |
|
67123 | 1048 |
where "CJNB f p \<equiv> |
55768 | 1049 |
(let cjs = conjuncts p; |
1050 |
(yes, no) = partition bound0 cjs |
|
1051 |
in conj (decr0 (list_conj yes)) (f (list_conj no)))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1052 |
|
60560 | 1053 |
lemma conjuncts_qf: "qfree p \<Longrightarrow> \<forall>q \<in> set (conjuncts p). qfree q" |
55768 | 1054 |
proof - |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1055 |
assume qf: "qfree p" |
55768 | 1056 |
then have "list_all qfree (conjuncts p)" |
1057 |
by (induct p rule: conjuncts.induct) auto |
|
1058 |
then show ?thesis |
|
1059 |
by (simp only: list_all_iff) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1060 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1061 |
|
55754 | 1062 |
lemma conjuncts: "(\<forall>q\<in> set (conjuncts p). Ifm vs bs q) = Ifm vs bs p" |
55768 | 1063 |
by (induct p rule: conjuncts.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1064 |
|
67123 | 1065 |
lemma conjuncts_nb: |
1066 |
assumes "bound0 p" |
|
1067 |
shows "\<forall>q \<in> set (conjuncts p). bound0 q" |
|
55768 | 1068 |
proof - |
67123 | 1069 |
from assms have "list_all bound0 (conjuncts p)" |
55768 | 1070 |
by (induct p rule:conjuncts.induct) auto |
1071 |
then show ?thesis |
|
1072 |
by (simp only: list_all_iff) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1073 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1074 |
|
55768 | 1075 |
fun islin :: "fm \<Rightarrow> bool" |
67123 | 1076 |
where |
1077 |
"islin (And p q) = (islin p \<and> islin q \<and> p \<noteq> T \<and> p \<noteq> F \<and> q \<noteq> T \<and> q \<noteq> F)" |
|
1078 |
| "islin (Or p q) = (islin p \<and> islin q \<and> p \<noteq> T \<and> p \<noteq> F \<and> q \<noteq> T \<and> q \<noteq> F)" |
|
1079 |
| "islin (Eq (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" |
|
1080 |
| "islin (NEq (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" |
|
1081 |
| "islin (Lt (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" |
|
1082 |
| "islin (Le (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" |
|
74101 | 1083 |
| "islin (Not p) = False" |
67123 | 1084 |
| "islin (Imp p q) = False" |
1085 |
| "islin (Iff p q) = False" |
|
1086 |
| "islin p = bound0 p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1087 |
|
55768 | 1088 |
lemma islin_stupid: |
1089 |
assumes nb: "tmbound0 p" |
|
1090 |
shows "islin (Lt p)" |
|
1091 |
and "islin (Le p)" |
|
1092 |
and "islin (Eq p)" |
|
1093 |
and "islin (NEq p)" |
|
58259 | 1094 |
using nb by (cases p, auto, rename_tac nat a b, case_tac nat, auto)+ |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1095 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1096 |
definition "lt p = (case p of CP (C c) \<Rightarrow> if 0>\<^sub>N c then T else F| _ \<Rightarrow> Lt p)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1097 |
definition "le p = (case p of CP (C c) \<Rightarrow> if 0\<ge>\<^sub>N c then T else F | _ \<Rightarrow> Le p)" |
55768 | 1098 |
definition "eq p = (case p of CP (C c) \<Rightarrow> if c = 0\<^sub>N then T else F | _ \<Rightarrow> Eq p)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1099 |
definition "neq p = not (eq p)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1100 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1101 |
lemma lt: "allpolys isnpoly p \<Longrightarrow> Ifm vs bs (lt p) = Ifm vs bs (Lt p)" |
80098 | 1102 |
by (auto simp: lt_def isnpoly_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1103 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1104 |
lemma le: "allpolys isnpoly p \<Longrightarrow> Ifm vs bs (le p) = Ifm vs bs (Le p)" |
80098 | 1105 |
by (auto simp: le_def isnpoly_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1106 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1107 |
lemma eq: "allpolys isnpoly p \<Longrightarrow> Ifm vs bs (eq p) = Ifm vs bs (Eq p)" |
80098 | 1108 |
by (auto simp: eq_def isnpoly_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1109 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1110 |
lemma neq: "allpolys isnpoly p \<Longrightarrow> Ifm vs bs (neq p) = Ifm vs bs (NEq p)" |
55768 | 1111 |
by (simp add: neq_def eq) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1112 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1113 |
lemma lt_lin: "tmbound0 p \<Longrightarrow> islin (lt p)" |
80098 | 1114 |
using islin_stupid |
1115 |
by(auto simp: lt_def isnpoly_def split: tm.split poly.split) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1116 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1117 |
lemma le_lin: "tmbound0 p \<Longrightarrow> islin (le p)" |
80098 | 1118 |
using islin_stupid |
1119 |
by(auto simp: le_def isnpoly_def split: tm.split poly.split) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1120 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1121 |
lemma eq_lin: "tmbound0 p \<Longrightarrow> islin (eq p)" |
80098 | 1122 |
using islin_stupid |
1123 |
by(auto simp: eq_def isnpoly_def split: tm.split poly.split) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1124 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1125 |
lemma neq_lin: "tmbound0 p \<Longrightarrow> islin (neq p)" |
80098 | 1126 |
using islin_stupid |
1127 |
by(auto simp: neq_def eq_def isnpoly_def split: tm.split poly.split) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1128 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1129 |
definition "simplt t = (let (c,s) = split0 (simptm t) in if c= 0\<^sub>p then lt s else Lt (CNP 0 c s))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1130 |
definition "simple t = (let (c,s) = split0 (simptm t) in if c= 0\<^sub>p then le s else Le (CNP 0 c s))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1131 |
definition "simpeq t = (let (c,s) = split0 (simptm t) in if c= 0\<^sub>p then eq s else Eq (CNP 0 c s))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1132 |
definition "simpneq t = (let (c,s) = split0 (simptm t) in if c= 0\<^sub>p then neq s else NEq (CNP 0 c s))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1133 |
|
67123 | 1134 |
lemma simplt_islin [simp]: |
68442 | 1135 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1136 |
shows "islin (simplt t)" |
55754 | 1137 |
unfolding simplt_def |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1138 |
using split0_nb0' |
80098 | 1139 |
by (auto simp: lt_lin Let_def split_def isnpoly_fst_split0[OF simptm_allpolys_npoly] |
55768 | 1140 |
islin_stupid allpolys_split0[OF simptm_allpolys_npoly]) |
1141 |
||
67123 | 1142 |
lemma simple_islin [simp]: |
68442 | 1143 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1144 |
shows "islin (simple t)" |
55754 | 1145 |
unfolding simple_def |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1146 |
using split0_nb0' |
80098 | 1147 |
by (auto simp: Let_def split_def isnpoly_fst_split0[OF simptm_allpolys_npoly] |
55768 | 1148 |
islin_stupid allpolys_split0[OF simptm_allpolys_npoly] le_lin) |
1149 |
||
67123 | 1150 |
lemma simpeq_islin [simp]: |
68442 | 1151 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1152 |
shows "islin (simpeq t)" |
55754 | 1153 |
unfolding simpeq_def |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1154 |
using split0_nb0' |
80098 | 1155 |
by (auto simp: Let_def split_def isnpoly_fst_split0[OF simptm_allpolys_npoly] |
55768 | 1156 |
islin_stupid allpolys_split0[OF simptm_allpolys_npoly] eq_lin) |
1157 |
||
67123 | 1158 |
lemma simpneq_islin [simp]: |
68442 | 1159 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1160 |
shows "islin (simpneq t)" |
55754 | 1161 |
unfolding simpneq_def |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1162 |
using split0_nb0' |
80098 | 1163 |
by (auto simp: Let_def split_def isnpoly_fst_split0[OF simptm_allpolys_npoly] |
55768 | 1164 |
islin_stupid allpolys_split0[OF simptm_allpolys_npoly] neq_lin) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1165 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1166 |
lemma really_stupid: "\<not> (\<forall>c1 s'. (c1, s') \<noteq> split0 s)" |
55768 | 1167 |
by (cases "split0 s") auto |
1168 |
||
1169 |
lemma split0_npoly: |
|
68442 | 1170 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
67123 | 1171 |
and *: "allpolys isnpoly t" |
55768 | 1172 |
shows "isnpoly (fst (split0 t))" |
1173 |
and "allpolys isnpoly (snd (split0 t))" |
|
67123 | 1174 |
using * |
55768 | 1175 |
by (induct t rule: split0.induct) |
80098 | 1176 |
(auto simp: Let_def split_def polyadd_norm polymul_norm polyneg_norm |
55768 | 1177 |
polysub_norm really_stupid) |
1178 |
||
1179 |
lemma simplt[simp]: "Ifm vs bs (simplt t) = Ifm vs bs (Lt t)" |
|
1180 |
proof - |
|
67123 | 1181 |
have *: "allpolys isnpoly (simptm t)" |
55768 | 1182 |
by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1183 |
let ?t = "simptm t" |
60560 | 1184 |
show ?thesis |
1185 |
proof (cases "fst (split0 ?t) = 0\<^sub>p") |
|
1186 |
case True |
|
1187 |
then show ?thesis |
|
67123 | 1188 |
using split0[of "simptm t" vs bs] lt[OF split0_npoly(2)[OF *], of vs bs] |
55768 | 1189 |
by (simp add: simplt_def Let_def split_def lt) |
60560 | 1190 |
next |
1191 |
case False |
|
1192 |
then show ?thesis |
|
1193 |
using split0[of "simptm t" vs bs] |
|
55768 | 1194 |
by (simp add: simplt_def Let_def split_def) |
60560 | 1195 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1196 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1197 |
|
55768 | 1198 |
lemma simple[simp]: "Ifm vs bs (simple t) = Ifm vs bs (Le t)" |
1199 |
proof - |
|
67123 | 1200 |
have *: "allpolys isnpoly (simptm t)" |
55768 | 1201 |
by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1202 |
let ?t = "simptm t" |
60560 | 1203 |
show ?thesis |
1204 |
proof (cases "fst (split0 ?t) = 0\<^sub>p") |
|
1205 |
case True |
|
1206 |
then show ?thesis |
|
67123 | 1207 |
using split0[of "simptm t" vs bs] le[OF split0_npoly(2)[OF *], of vs bs] |
55768 | 1208 |
by (simp add: simple_def Let_def split_def le) |
60560 | 1209 |
next |
1210 |
case False |
|
1211 |
then show ?thesis |
|
55768 | 1212 |
using split0[of "simptm t" vs bs] |
1213 |
by (simp add: simple_def Let_def split_def) |
|
60560 | 1214 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1215 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1216 |
|
55768 | 1217 |
lemma simpeq[simp]: "Ifm vs bs (simpeq t) = Ifm vs bs (Eq t)" |
1218 |
proof - |
|
1219 |
have n: "allpolys isnpoly (simptm t)" |
|
1220 |
by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1221 |
let ?t = "simptm t" |
60560 | 1222 |
show ?thesis |
1223 |
proof (cases "fst (split0 ?t) = 0\<^sub>p") |
|
1224 |
case True |
|
1225 |
then show ?thesis |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1226 |
using split0[of "simptm t" vs bs] eq[OF split0_npoly(2)[OF n], of vs bs] |
55768 | 1227 |
by (simp add: simpeq_def Let_def split_def) |
60560 | 1228 |
next |
1229 |
case False |
|
1230 |
then show ?thesis using split0[of "simptm t" vs bs] |
|
55768 | 1231 |
by (simp add: simpeq_def Let_def split_def) |
60560 | 1232 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1233 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1234 |
|
55768 | 1235 |
lemma simpneq[simp]: "Ifm vs bs (simpneq t) = Ifm vs bs (NEq t)" |
1236 |
proof - |
|
1237 |
have n: "allpolys isnpoly (simptm t)" |
|
1238 |
by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1239 |
let ?t = "simptm t" |
60560 | 1240 |
show ?thesis |
1241 |
proof (cases "fst (split0 ?t) = 0\<^sub>p") |
|
1242 |
case True |
|
1243 |
then show ?thesis |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1244 |
using split0[of "simptm t" vs bs] neq[OF split0_npoly(2)[OF n], of vs bs] |
55768 | 1245 |
by (simp add: simpneq_def Let_def split_def) |
60560 | 1246 |
next |
1247 |
case False |
|
1248 |
then show ?thesis |
|
55768 | 1249 |
using split0[of "simptm t" vs bs] by (simp add: simpneq_def Let_def split_def) |
60560 | 1250 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1251 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1252 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1253 |
lemma lt_nb: "tmbound0 t \<Longrightarrow> bound0 (lt t)" |
80098 | 1254 |
by(auto simp: lt_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1255 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1256 |
lemma le_nb: "tmbound0 t \<Longrightarrow> bound0 (le t)" |
80098 | 1257 |
by(auto simp: le_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1258 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1259 |
lemma eq_nb: "tmbound0 t \<Longrightarrow> bound0 (eq t)" |
80098 | 1260 |
by(auto simp: eq_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1261 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1262 |
lemma neq_nb: "tmbound0 t \<Longrightarrow> bound0 (neq t)" |
80098 | 1263 |
by(auto simp: neq_def eq_def split: tm.split poly.split) |
1264 |
||
1265 |
(*THE FOLLOWING PROOFS MIGHT BE COMBINED*) |
|
55768 | 1266 |
lemma simplt_nb[simp]: |
80098 | 1267 |
assumes "SORT_CONSTRAINT('a::field_char_0)" and t: "tmbound0 t" |
1268 |
shows "bound0 (simplt t)" |
|
55768 | 1269 |
proof (simp add: simplt_def Let_def split_def) |
80098 | 1270 |
have *: "tmbound0 (simptm t)" |
1271 |
using t by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1272 |
let ?c = "fst (split0 (simptm t))" |
67123 | 1273 |
from tmbound_split0[OF *[unfolded tmbound0_tmbound_iff[symmetric]]] |
55768 | 1274 |
have th: "\<forall>bs. Ipoly bs ?c = Ipoly bs 0\<^sub>p" |
1275 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1276 |
from isnpoly_fst_split0[OF simptm_allpolys_npoly[of t]] |
55768 | 1277 |
have ths: "isnpolyh ?c 0" "isnpolyh 0\<^sub>p 0" |
1278 |
by (simp_all add: isnpoly_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1279 |
from iffD1[OF isnpolyh_unique[OF ths] th] |
55754 | 1280 |
have "fst (split0 (simptm t)) = 0\<^sub>p" . |
55768 | 1281 |
then show "(fst (split0 (simptm t)) = 0\<^sub>p \<longrightarrow> bound0 (lt (snd (split0 (simptm t))))) \<and> |
1282 |
fst (split0 (simptm t)) = 0\<^sub>p" |
|
1283 |
by (simp add: simplt_def Let_def split_def lt_nb) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1284 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1285 |
|
55768 | 1286 |
lemma simple_nb[simp]: |
80098 | 1287 |
assumes "SORT_CONSTRAINT('a::field_char_0)" and t: "tmbound0 t" |
1288 |
shows "bound0 (simple t)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1289 |
proof(simp add: simple_def Let_def split_def) |
80098 | 1290 |
have *: "tmbound0 (simptm t)" |
1291 |
using t by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1292 |
let ?c = "fst (split0 (simptm t))" |
67123 | 1293 |
from tmbound_split0[OF *[unfolded tmbound0_tmbound_iff[symmetric]]] |
55768 | 1294 |
have th: "\<forall>bs. Ipoly bs ?c = Ipoly bs 0\<^sub>p" |
1295 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1296 |
from isnpoly_fst_split0[OF simptm_allpolys_npoly[of t]] |
55768 | 1297 |
have ths: "isnpolyh ?c 0" "isnpolyh 0\<^sub>p 0" |
1298 |
by (simp_all add: isnpoly_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1299 |
from iffD1[OF isnpolyh_unique[OF ths] th] |
55754 | 1300 |
have "fst (split0 (simptm t)) = 0\<^sub>p" . |
55768 | 1301 |
then show "(fst (split0 (simptm t)) = 0\<^sub>p \<longrightarrow> bound0 (le (snd (split0 (simptm t))))) \<and> |
1302 |
fst (split0 (simptm t)) = 0\<^sub>p" |
|
1303 |
by (simp add: simplt_def Let_def split_def le_nb) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1304 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1305 |
|
55768 | 1306 |
lemma simpeq_nb[simp]: |
80098 | 1307 |
assumes "SORT_CONSTRAINT('a::field_char_0)" and t: "tmbound0 t" |
1308 |
shows "bound0 (simpeq t)" |
|
55768 | 1309 |
proof (simp add: simpeq_def Let_def split_def) |
80098 | 1310 |
have *: "tmbound0 (simptm t)" |
1311 |
using t by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1312 |
let ?c = "fst (split0 (simptm t))" |
67123 | 1313 |
from tmbound_split0[OF *[unfolded tmbound0_tmbound_iff[symmetric]]] |
55768 | 1314 |
have th: "\<forall>bs. Ipoly bs ?c = Ipoly bs 0\<^sub>p" |
1315 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1316 |
from isnpoly_fst_split0[OF simptm_allpolys_npoly[of t]] |
55768 | 1317 |
have ths: "isnpolyh ?c 0" "isnpolyh 0\<^sub>p 0" |
1318 |
by (simp_all add: isnpoly_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1319 |
from iffD1[OF isnpolyh_unique[OF ths] th] |
55754 | 1320 |
have "fst (split0 (simptm t)) = 0\<^sub>p" . |
55768 | 1321 |
then show "(fst (split0 (simptm t)) = 0\<^sub>p \<longrightarrow> bound0 (eq (snd (split0 (simptm t))))) \<and> |
1322 |
fst (split0 (simptm t)) = 0\<^sub>p" |
|
1323 |
by (simp add: simpeq_def Let_def split_def eq_nb) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1324 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1325 |
|
55768 | 1326 |
lemma simpneq_nb[simp]: |
80098 | 1327 |
assumes "SORT_CONSTRAINT('a::field_char_0)" and t: "tmbound0 t" |
1328 |
shows "bound0 (simpneq t)" |
|
55768 | 1329 |
proof (simp add: simpneq_def Let_def split_def) |
80098 | 1330 |
have *: "tmbound0 (simptm t)" |
1331 |
using t by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1332 |
let ?c = "fst (split0 (simptm t))" |
67123 | 1333 |
from tmbound_split0[OF *[unfolded tmbound0_tmbound_iff[symmetric]]] |
55768 | 1334 |
have th: "\<forall>bs. Ipoly bs ?c = Ipoly bs 0\<^sub>p" |
1335 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1336 |
from isnpoly_fst_split0[OF simptm_allpolys_npoly[of t]] |
55768 | 1337 |
have ths: "isnpolyh ?c 0" "isnpolyh 0\<^sub>p 0" |
1338 |
by (simp_all add: isnpoly_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1339 |
from iffD1[OF isnpolyh_unique[OF ths] th] |
55754 | 1340 |
have "fst (split0 (simptm t)) = 0\<^sub>p" . |
55768 | 1341 |
then show "(fst (split0 (simptm t)) = 0\<^sub>p \<longrightarrow> bound0 (neq (snd (split0 (simptm t))))) \<and> |
1342 |
fst (split0 (simptm t)) = 0\<^sub>p" |
|
1343 |
by (simp add: simpneq_def Let_def split_def neq_nb) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1344 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1345 |
|
55768 | 1346 |
fun conjs :: "fm \<Rightarrow> fm list" |
67123 | 1347 |
where |
1348 |
"conjs (And p q) = conjs p @ conjs q" |
|
1349 |
| "conjs T = []" |
|
1350 |
| "conjs p = [p]" |
|
55768 | 1351 |
|
55754 | 1352 |
lemma conjs_ci: "(\<forall>q \<in> set (conjs p). Ifm vs bs q) = Ifm vs bs p" |
55768 | 1353 |
by (induct p rule: conjs.induct) auto |
1354 |
||
1355 |
definition list_disj :: "fm list \<Rightarrow> fm" |
|
1356 |
where "list_disj ps \<equiv> foldr disj ps F" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1357 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1358 |
lemma list_conj: "Ifm vs bs (list_conj ps) = (\<forall>p\<in> set ps. Ifm vs bs p)" |
80098 | 1359 |
by (induct ps) (auto simp: list_conj_def) |
55768 | 1360 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1361 |
lemma list_conj_qf: " \<forall>p\<in> set ps. qfree p \<Longrightarrow> qfree (list_conj ps)" |
80098 | 1362 |
by (induct ps) (auto simp: list_conj_def) |
55768 | 1363 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1364 |
lemma list_disj: "Ifm vs bs (list_disj ps) = (\<exists>p\<in> set ps. Ifm vs bs p)" |
80098 | 1365 |
by (induct ps) (auto simp: list_disj_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1366 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1367 |
lemma conj_boundslt: "boundslt n p \<Longrightarrow> boundslt n q \<Longrightarrow> boundslt n (conj p q)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1368 |
unfolding conj_def by auto |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1369 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1370 |
lemma conjs_nb: "bound n p \<Longrightarrow> \<forall>q\<in> set (conjs p). bound n q" |
80098 | 1371 |
proof (induct p rule: conjs.induct) |
1372 |
case (1 p q) |
|
1373 |
then show ?case |
|
1374 |
unfolding conjs.simps bound.simps by fastforce |
|
1375 |
qed auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1376 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1377 |
lemma conjs_boundslt: "boundslt n p \<Longrightarrow> \<forall>q\<in> set (conjs p). boundslt n q" |
80098 | 1378 |
proof (induct p rule: conjs.induct) |
1379 |
case (1 p q) |
|
1380 |
then show ?case |
|
1381 |
unfolding conjs.simps bound.simps by fastforce |
|
1382 |
qed auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1383 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1384 |
lemma list_conj_boundslt: " \<forall>p\<in> set ps. boundslt n p \<Longrightarrow> boundslt n (list_conj ps)" |
67123 | 1385 |
by (induct ps) (auto simp: list_conj_def) |
55768 | 1386 |
|
1387 |
lemma list_conj_nb: |
|
67123 | 1388 |
assumes "\<forall>p\<in> set ps. bound n p" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1389 |
shows "bound n (list_conj ps)" |
67123 | 1390 |
using assms by (induct ps) (auto simp: list_conj_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1391 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1392 |
lemma list_conj_nb': "\<forall>p\<in>set ps. bound0 p \<Longrightarrow> bound0 (list_conj ps)" |
67123 | 1393 |
by (induct ps) (auto simp: list_conj_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1394 |
|
55754 | 1395 |
lemma CJNB_qe: |
1396 |
assumes qe: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm vs bs (qe p) = Ifm vs bs (E p))" |
|
1397 |
shows "\<forall>bs p. qfree p \<longrightarrow> qfree (CJNB qe p) \<and> (Ifm vs bs ((CJNB qe p)) = Ifm vs bs (E p))" |
|
55768 | 1398 |
proof clarify |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1399 |
fix bs p |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1400 |
assume qfp: "qfree p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1401 |
let ?cjs = "conjuncts p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1402 |
let ?yes = "fst (partition bound0 ?cjs)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1403 |
let ?no = "snd (partition bound0 ?cjs)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1404 |
let ?cno = "list_conj ?no" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1405 |
let ?cyes = "list_conj ?yes" |
55768 | 1406 |
have part: "partition bound0 ?cjs = (?yes,?no)" |
1407 |
by simp |
|
1408 |
from partition_P[OF part] have "\<forall>q\<in> set ?yes. bound0 q" |
|
1409 |
by blast |
|
1410 |
then have yes_nb: "bound0 ?cyes" |
|
1411 |
by (simp add: list_conj_nb') |
|
1412 |
then have yes_qf: "qfree (decr0 ?cyes)" |
|
1413 |
by (simp add: decr0_qf) |
|
55754 | 1414 |
from conjuncts_qf[OF qfp] partition_set[OF part] |
55768 | 1415 |
have " \<forall>q\<in> set ?no. qfree q" |
1416 |
by auto |
|
1417 |
then have no_qf: "qfree ?cno" |
|
1418 |
by (simp add: list_conj_qf) |
|
1419 |
with qe have cno_qf:"qfree (qe ?cno)" |
|
1420 |
and noE: "Ifm vs bs (qe ?cno) = Ifm vs bs (E ?cno)" |
|
1421 |
by blast+ |
|
55754 | 1422 |
from cno_qf yes_qf have qf: "qfree (CJNB qe p)" |
55768 | 1423 |
by (simp add: CJNB_def Let_def split_def) |
60560 | 1424 |
have "Ifm vs bs p = ((Ifm vs bs ?cyes) \<and> (Ifm vs bs ?cno))" for bs |
1425 |
proof - |
|
55768 | 1426 |
from conjuncts have "Ifm vs bs p = (\<forall>q\<in> set ?cjs. Ifm vs bs q)" |
1427 |
by blast |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1428 |
also have "\<dots> = ((\<forall>q\<in> set ?yes. Ifm vs bs q) \<and> (\<forall>q\<in> set ?no. Ifm vs bs q))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1429 |
using partition_set[OF part] by auto |
60560 | 1430 |
finally show ?thesis |
55768 | 1431 |
using list_conj[of vs bs] by simp |
60560 | 1432 |
qed |
55768 | 1433 |
then have "Ifm vs bs (E p) = (\<exists>x. (Ifm vs (x#bs) ?cyes) \<and> (Ifm vs (x#bs) ?cno))" |
1434 |
by simp |
|
1435 |
also fix y have "\<dots> = (\<exists>x. (Ifm vs (y#bs) ?cyes) \<and> (Ifm vs (x#bs) ?cno))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1436 |
using bound0_I[OF yes_nb, where bs="bs" and b'="y"] by blast |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1437 |
also have "\<dots> = (Ifm vs bs (decr0 ?cyes) \<and> Ifm vs bs (E ?cno))" |
80098 | 1438 |
by (auto simp: decr0[OF yes_nb] simp del: partition_filter_conv) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1439 |
also have "\<dots> = (Ifm vs bs (conj (decr0 ?cyes) (qe ?cno)))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1440 |
using qe[rule_format, OF no_qf] by auto |
55754 | 1441 |
finally have "Ifm vs bs (E p) = Ifm vs bs (CJNB qe p)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1442 |
by (simp add: Let_def CJNB_def split_def) |
55768 | 1443 |
with qf show "qfree (CJNB qe p) \<and> Ifm vs bs (CJNB qe p) = Ifm vs bs (E p)" |
1444 |
by blast |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1445 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1446 |
|
66809 | 1447 |
fun simpfm :: "fm \<Rightarrow> fm" |
67123 | 1448 |
where |
1449 |
"simpfm (Lt t) = simplt (simptm t)" |
|
1450 |
| "simpfm (Le t) = simple (simptm t)" |
|
1451 |
| "simpfm (Eq t) = simpeq(simptm t)" |
|
1452 |
| "simpfm (NEq t) = simpneq(simptm t)" |
|
1453 |
| "simpfm (And p q) = conj (simpfm p) (simpfm q)" |
|
1454 |
| "simpfm (Or p q) = disj (simpfm p) (simpfm q)" |
|
74101 | 1455 |
| "simpfm (Imp p q) = disj (simpfm (Not p)) (simpfm q)" |
67123 | 1456 |
| "simpfm (Iff p q) = |
74101 | 1457 |
disj (conj (simpfm p) (simpfm q)) (conj (simpfm (Not p)) (simpfm (Not q)))" |
1458 |
| "simpfm (Not (And p q)) = disj (simpfm (Not p)) (simpfm (Not q))" |
|
1459 |
| "simpfm (Not (Or p q)) = conj (simpfm (Not p)) (simpfm (Not q))" |
|
1460 |
| "simpfm (Not (Imp p q)) = conj (simpfm p) (simpfm (Not q))" |
|
1461 |
| "simpfm (Not (Iff p q)) = |
|
1462 |
disj (conj (simpfm p) (simpfm (Not q))) (conj (simpfm (Not p)) (simpfm q))" |
|
1463 |
| "simpfm (Not (Eq t)) = simpneq t" |
|
1464 |
| "simpfm (Not (NEq t)) = simpeq t" |
|
1465 |
| "simpfm (Not (Le t)) = simplt (Neg t)" |
|
1466 |
| "simpfm (Not (Lt t)) = simple (Neg t)" |
|
1467 |
| "simpfm (Not (Not p)) = simpfm p" |
|
1468 |
| "simpfm (Not T) = F" |
|
1469 |
| "simpfm (Not F) = T" |
|
67123 | 1470 |
| "simpfm p = p" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1471 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1472 |
lemma simpfm[simp]: "Ifm vs bs (simpfm p) = Ifm vs bs p" |
55768 | 1473 |
by (induct p arbitrary: bs rule: simpfm.induct) auto |
1474 |
||
1475 |
lemma simpfm_bound0: |
|
68442 | 1476 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1477 |
shows "bound0 p \<Longrightarrow> bound0 (simpfm p)" |
55768 | 1478 |
by (induct p rule: simpfm.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1479 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1480 |
lemma lt_qf[simp]: "qfree (lt t)" |
80098 | 1481 |
by(auto simp: lt_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1482 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1483 |
lemma le_qf[simp]: "qfree (le t)" |
80098 | 1484 |
by(auto simp: le_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1485 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1486 |
lemma eq_qf[simp]: "qfree (eq t)" |
80098 | 1487 |
by(auto simp: eq_def split: tm.split poly.split) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1488 |
|
60560 | 1489 |
lemma neq_qf[simp]: "qfree (neq t)" |
1490 |
by (simp add: neq_def) |
|
1491 |
||
1492 |
lemma simplt_qf[simp]: "qfree (simplt t)" |
|
1493 |
by (simp add: simplt_def Let_def split_def) |
|
1494 |
||
1495 |
lemma simple_qf[simp]: "qfree (simple t)" |
|
1496 |
by (simp add: simple_def Let_def split_def) |
|
1497 |
||
1498 |
lemma simpeq_qf[simp]: "qfree (simpeq t)" |
|
1499 |
by (simp add: simpeq_def Let_def split_def) |
|
1500 |
||
1501 |
lemma simpneq_qf[simp]: "qfree (simpneq t)" |
|
1502 |
by (simp add: simpneq_def Let_def split_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1503 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1504 |
lemma simpfm_qf[simp]: "qfree p \<Longrightarrow> qfree (simpfm p)" |
55768 | 1505 |
by (induct p rule: simpfm.induct) auto |
1506 |
||
1507 |
lemma disj_lin: "islin p \<Longrightarrow> islin q \<Longrightarrow> islin (disj p q)" |
|
1508 |
by (simp add: disj_def) |
|
67123 | 1509 |
|
55768 | 1510 |
lemma conj_lin: "islin p \<Longrightarrow> islin q \<Longrightarrow> islin (conj p q)" |
1511 |
by (simp add: conj_def) |
|
1512 |
||
1513 |
lemma |
|
68442 | 1514 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
55754 | 1515 |
shows "qfree p \<Longrightarrow> islin (simpfm p)" |
55768 | 1516 |
by (induct p rule: simpfm.induct) (simp_all add: conj_lin disj_lin) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1517 |
|
66809 | 1518 |
fun prep :: "fm \<Rightarrow> fm" |
67123 | 1519 |
where |
1520 |
"prep (E T) = T" |
|
1521 |
| "prep (E F) = F" |
|
1522 |
| "prep (E (Or p q)) = disj (prep (E p)) (prep (E q))" |
|
74101 | 1523 |
| "prep (E (Imp p q)) = disj (prep (E (Not p))) (prep (E q))" |
1524 |
| "prep (E (Iff p q)) = disj (prep (E (And p q))) (prep (E (And (Not p) (Not q))))" |
|
1525 |
| "prep (E (Not (And p q))) = disj (prep (E (Not p))) (prep (E(Not q)))" |
|
1526 |
| "prep (E (Not (Imp p q))) = prep (E (And p (Not q)))" |
|
1527 |
| "prep (E (Not (Iff p q))) = disj (prep (E (And p (Not q)))) (prep (E(And (Not p) q)))" |
|
67123 | 1528 |
| "prep (E p) = E (prep p)" |
1529 |
| "prep (A (And p q)) = conj (prep (A p)) (prep (A q))" |
|
74101 | 1530 |
| "prep (A p) = prep (Not (E (Not p)))" |
1531 |
| "prep (Not (Not p)) = prep p" |
|
1532 |
| "prep (Not (And p q)) = disj (prep (Not p)) (prep (Not q))" |
|
1533 |
| "prep (Not (A p)) = prep (E (Not p))" |
|
1534 |
| "prep (Not (Or p q)) = conj (prep (Not p)) (prep (Not q))" |
|
1535 |
| "prep (Not (Imp p q)) = conj (prep p) (prep (Not q))" |
|
1536 |
| "prep (Not (Iff p q)) = disj (prep (And p (Not q))) (prep (And (Not p) q))" |
|
1537 |
| "prep (Not p) = not (prep p)" |
|
67123 | 1538 |
| "prep (Or p q) = disj (prep p) (prep q)" |
1539 |
| "prep (And p q) = conj (prep p) (prep q)" |
|
74101 | 1540 |
| "prep (Imp p q) = prep (Or (Not p) q)" |
1541 |
| "prep (Iff p q) = disj (prep (And p q)) (prep (And (Not p) (Not q)))" |
|
67123 | 1542 |
| "prep p = p" |
55768 | 1543 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1544 |
lemma prep: "Ifm vs bs (prep p) = Ifm vs bs p" |
55768 | 1545 |
by (induct p arbitrary: bs rule: prep.induct) auto |
1546 |
||
1547 |
||
60560 | 1548 |
text \<open>Generic quantifier elimination.\<close> |
66809 | 1549 |
fun qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm" |
67123 | 1550 |
where |
1551 |
"qelim (E p) = (\<lambda>qe. DJ (CJNB qe) (qelim p qe))" |
|
74101 | 1552 |
| "qelim (A p) = (\<lambda>qe. not (qe ((qelim (Not p) qe))))" |
1553 |
| "qelim (Not p) = (\<lambda>qe. not (qelim p qe))" |
|
67123 | 1554 |
| "qelim (And p q) = (\<lambda>qe. conj (qelim p qe) (qelim q qe))" |
1555 |
| "qelim (Or p q) = (\<lambda>qe. disj (qelim p qe) (qelim q qe))" |
|
1556 |
| "qelim (Imp p q) = (\<lambda>qe. imp (qelim p qe) (qelim q qe))" |
|
1557 |
| "qelim (Iff p q) = (\<lambda>qe. iff (qelim p qe) (qelim q qe))" |
|
1558 |
| "qelim p = (\<lambda>y. simpfm p)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1559 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1560 |
lemma qelim: |
55754 | 1561 |
assumes qe_inv: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm vs bs (qe p) = Ifm vs bs (E p))" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1562 |
shows "\<And> bs. qfree (qelim p qe) \<and> (Ifm vs bs (qelim p qe) = Ifm vs bs p)" |
55768 | 1563 |
using qe_inv DJ_qe[OF CJNB_qe[OF qe_inv]] |
1564 |
by (induct p rule: qelim.induct) auto |
|
1565 |
||
1566 |
||
60533 | 1567 |
subsection \<open>Core Procedure\<close> |
55768 | 1568 |
|
67123 | 1569 |
fun minusinf:: "fm \<Rightarrow> fm" \<comment> \<open>virtual substitution of \<open>-\<infinity>\<close>\<close> |
1570 |
where |
|
1571 |
"minusinf (And p q) = conj (minusinf p) (minusinf q)" |
|
1572 |
| "minusinf (Or p q) = disj (minusinf p) (minusinf q)" |
|
1573 |
| "minusinf (Eq (CNP 0 c e)) = conj (eq (CP c)) (eq e)" |
|
1574 |
| "minusinf (NEq (CNP 0 c e)) = disj (not (eq e)) (not (eq (CP c)))" |
|
1575 |
| "minusinf (Lt (CNP 0 c e)) = disj (conj (eq (CP c)) (lt e)) (lt (CP (~\<^sub>p c)))" |
|
1576 |
| "minusinf (Le (CNP 0 c e)) = disj (conj (eq (CP c)) (le e)) (lt (CP (~\<^sub>p c)))" |
|
1577 |
| "minusinf p = p" |
|
1578 |
||
1579 |
fun plusinf:: "fm \<Rightarrow> fm" \<comment> \<open>virtual substitution of \<open>+\<infinity>\<close>\<close> |
|
1580 |
where |
|
1581 |
"plusinf (And p q) = conj (plusinf p) (plusinf q)" |
|
1582 |
| "plusinf (Or p q) = disj (plusinf p) (plusinf q)" |
|
1583 |
| "plusinf (Eq (CNP 0 c e)) = conj (eq (CP c)) (eq e)" |
|
1584 |
| "plusinf (NEq (CNP 0 c e)) = disj (not (eq e)) (not (eq (CP c)))" |
|
1585 |
| "plusinf (Lt (CNP 0 c e)) = disj (conj (eq (CP c)) (lt e)) (lt (CP c))" |
|
1586 |
| "plusinf (Le (CNP 0 c e)) = disj (conj (eq (CP c)) (le e)) (lt (CP c))" |
|
1587 |
| "plusinf p = p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1588 |
|
55768 | 1589 |
lemma minusinf_inf: |
67123 | 1590 |
assumes "islin p" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1591 |
shows "\<exists>z. \<forall>x < z. Ifm vs (x#bs) (minusinf p) \<longleftrightarrow> Ifm vs (x#bs) p" |
67123 | 1592 |
using assms |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1593 |
proof (induct p rule: minusinf.induct) |
80098 | 1594 |
case (1 p q) |
1595 |
then obtain zp zq where zp: "\<forall>x<zp. Ifm vs (x # bs) (minusinf p) = Ifm vs (x # bs) p" |
|
1596 |
and zq: "\<forall>x<zq. Ifm vs (x # bs) (minusinf q) = Ifm vs (x # bs) q" |
|
1597 |
by force |
|
55768 | 1598 |
then show ?case |
80098 | 1599 |
by (rule_tac x="min zp zq" in exI) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1600 |
next |
80098 | 1601 |
case (2 p q) |
1602 |
then obtain zp zq where zp: "\<forall>x<zp. Ifm vs (x # bs) (minusinf p) = Ifm vs (x # bs) p" |
|
1603 |
and zq: "\<forall>x<zq. Ifm vs (x # bs) (minusinf q) = Ifm vs (x # bs) q" |
|
1604 |
by force |
|
55768 | 1605 |
then show ?case |
80098 | 1606 |
by (rule_tac x="min zp zq" in exI) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1607 |
next |
55768 | 1608 |
case (3 c e) |
1609 |
then have nbe: "tmbound0 e" |
|
1610 |
by simp |
|
1611 |
from 3 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1612 |
by simp_all |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1613 |
note eqs = eq[OF nc(1), where ?'a = 'a] eq[OF nc(2), where ?'a = 'a] |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1614 |
let ?c = "Ipoly vs c" |
55768 | 1615 |
fix y |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1616 |
let ?e = "Itm vs (y#bs) e" |
60560 | 1617 |
consider "?c = 0" | "?c > 0" | "?c < 0" by arith |
1618 |
then show ?case |
|
1619 |
proof cases |
|
1620 |
case 1 |
|
1621 |
then show ?thesis |
|
55768 | 1622 |
using eq[OF nc(2), of vs] eq[OF nc(1), of vs] by auto |
60560 | 1623 |
next |
60567 | 1624 |
case c: 2 |
60560 | 1625 |
have "Ifm vs (x#bs) (Eq (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (Eq (CNP 0 c e)))" |
1626 |
if "x < -?e / ?c" for x |
|
1627 |
proof - |
|
1628 |
from that have "?c * x < - ?e" |
|
60567 | 1629 |
using pos_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1630 |
by (simp add: mult.commute) |
55768 | 1631 |
then have "?c * x + ?e < 0" |
1632 |
by simp |
|
60560 | 1633 |
then show ?thesis |
55768 | 1634 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x" and vs=vs and bs=bs] by auto |
60560 | 1635 |
qed |
1636 |
then show ?thesis by auto |
|
1637 |
next |
|
60567 | 1638 |
case c: 3 |
60560 | 1639 |
have "Ifm vs (x#bs) (Eq (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (Eq (CNP 0 c e)))" |
1640 |
if "x < -?e / ?c" for x |
|
1641 |
proof - |
|
1642 |
from that have "?c * x > - ?e" |
|
60567 | 1643 |
using neg_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1644 |
by (simp add: mult.commute) |
55768 | 1645 |
then have "?c * x + ?e > 0" |
1646 |
by simp |
|
60560 | 1647 |
then show ?thesis |
55768 | 1648 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] eqs by auto |
60560 | 1649 |
qed |
1650 |
then show ?thesis by auto |
|
1651 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1652 |
next |
55768 | 1653 |
case (4 c e) |
1654 |
then have nbe: "tmbound0 e" |
|
1655 |
by simp |
|
1656 |
from 4 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1657 |
by simp_all |
|
1658 |
note eqs = eq[OF nc(1), where ?'a = 'a] eq[OF nc(2), where ?'a = 'a] |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1659 |
let ?c = "Ipoly vs c" |
55768 | 1660 |
fix y |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1661 |
let ?e = "Itm vs (y#bs) e" |
60560 | 1662 |
consider "?c = 0" | "?c > 0" | "?c < 0" |
55768 | 1663 |
by arith |
60560 | 1664 |
then show ?case |
1665 |
proof cases |
|
1666 |
case 1 |
|
1667 |
then show ?thesis |
|
55768 | 1668 |
using eqs by auto |
60560 | 1669 |
next |
60567 | 1670 |
case c: 2 |
60560 | 1671 |
have "Ifm vs (x#bs) (NEq (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (NEq (CNP 0 c e)))" |
1672 |
if "x < -?e / ?c" for x |
|
1673 |
proof - |
|
1674 |
from that have "?c * x < - ?e" |
|
60567 | 1675 |
using pos_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1676 |
by (simp add: mult.commute) |
55768 | 1677 |
then have "?c * x + ?e < 0" |
1678 |
by simp |
|
60560 | 1679 |
then show ?thesis |
55768 | 1680 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x"] by auto |
60560 | 1681 |
qed |
1682 |
then show ?thesis by auto |
|
1683 |
next |
|
60567 | 1684 |
case c: 3 |
60560 | 1685 |
have "Ifm vs (x#bs) (NEq (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (NEq (CNP 0 c e)))" |
1686 |
if "x < -?e / ?c" for x |
|
1687 |
proof - |
|
1688 |
from that have "?c * x > - ?e" |
|
60567 | 1689 |
using neg_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1690 |
by (simp add: mult.commute) |
55768 | 1691 |
then have "?c * x + ?e > 0" |
1692 |
by simp |
|
60560 | 1693 |
then show ?thesis |
55768 | 1694 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x"] by auto |
60560 | 1695 |
qed |
1696 |
then show ?thesis by auto |
|
1697 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1698 |
next |
55768 | 1699 |
case (5 c e) |
1700 |
then have nbe: "tmbound0 e" |
|
1701 |
by simp |
|
1702 |
from 5 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1703 |
by simp_all |
|
1704 |
then have nc': "allpolys isnpoly (CP (~\<^sub>p c))" |
|
1705 |
by (simp add: polyneg_norm) |
|
1706 |
note eqs = lt[OF nc', where ?'a = 'a] eq [OF nc(1), where ?'a = 'a] lt[OF nc(2), where ?'a = 'a] |
|
1707 |
let ?c = "Ipoly vs c" |
|
1708 |
fix y |
|
1709 |
let ?e = "Itm vs (y#bs) e" |
|
60560 | 1710 |
consider "?c = 0" | "?c > 0" | "?c < 0" |
55768 | 1711 |
by arith |
60560 | 1712 |
then show ?case |
1713 |
proof cases |
|
1714 |
case 1 |
|
1715 |
then show ?thesis using eqs by auto |
|
1716 |
next |
|
60567 | 1717 |
case c: 2 |
60560 | 1718 |
have "Ifm vs (x#bs) (Lt (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (Lt (CNP 0 c e)))" |
1719 |
if "x < -?e / ?c" for x |
|
1720 |
proof - |
|
1721 |
from that have "?c * x < - ?e" |
|
60567 | 1722 |
using pos_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1723 |
by (simp add: mult.commute) |
55768 | 1724 |
then have "?c * x + ?e < 0" by simp |
60560 | 1725 |
then show ?thesis |
60567 | 1726 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] c eqs by auto |
60560 | 1727 |
qed |
1728 |
then show ?thesis by auto |
|
1729 |
next |
|
60567 | 1730 |
case c: 3 |
60560 | 1731 |
have "Ifm vs (x#bs) (Lt (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (Lt (CNP 0 c e)))" |
1732 |
if "x < -?e / ?c" for x |
|
1733 |
proof - |
|
1734 |
from that have "?c * x > - ?e" |
|
60567 | 1735 |
using neg_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1736 |
by (simp add: mult.commute) |
55768 | 1737 |
then have "?c * x + ?e > 0" |
1738 |
by simp |
|
60560 | 1739 |
then show ?thesis |
60567 | 1740 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x"] c by auto |
60560 | 1741 |
qed |
1742 |
then show ?thesis by auto |
|
1743 |
qed |
|
55768 | 1744 |
next |
1745 |
case (6 c e) |
|
1746 |
then have nbe: "tmbound0 e" |
|
1747 |
by simp |
|
1748 |
from 6 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1749 |
by simp_all |
|
1750 |
then have nc': "allpolys isnpoly (CP (~\<^sub>p c))" |
|
1751 |
by (simp add: polyneg_norm) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1752 |
note eqs = lt[OF nc', where ?'a = 'a] eq [OF nc(1), where ?'a = 'a] le[OF nc(2), where ?'a = 'a] |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1753 |
let ?c = "Ipoly vs c" |
55768 | 1754 |
fix y |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1755 |
let ?e = "Itm vs (y#bs) e" |
60560 | 1756 |
consider "?c = 0" | "?c > 0" | "?c < 0" by arith |
1757 |
then show ?case |
|
1758 |
proof cases |
|
1759 |
case 1 |
|
1760 |
then show ?thesis using eqs by auto |
|
1761 |
next |
|
60567 | 1762 |
case c: 2 |
60560 | 1763 |
have "Ifm vs (x#bs) (Le (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (Le (CNP 0 c e)))" |
1764 |
if "x < -?e / ?c" for x |
|
1765 |
proof - |
|
1766 |
from that have "?c * x < - ?e" |
|
60567 | 1767 |
using pos_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1768 |
by (simp add: mult.commute) |
55768 | 1769 |
then have "?c * x + ?e < 0" |
1770 |
by simp |
|
60560 | 1771 |
then show ?thesis |
60567 | 1772 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] c eqs |
55768 | 1773 |
by auto |
60560 | 1774 |
qed |
1775 |
then show ?thesis by auto |
|
1776 |
next |
|
60567 | 1777 |
case c: 3 |
60560 | 1778 |
have "Ifm vs (x#bs) (Le (CNP 0 c e)) = Ifm vs (x#bs) (minusinf (Le (CNP 0 c e)))" |
1779 |
if "x < -?e / ?c" for x |
|
1780 |
proof - |
|
1781 |
from that have "?c * x > - ?e" |
|
60567 | 1782 |
using neg_less_divide_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1783 |
by (simp add: mult.commute) |
55768 | 1784 |
then have "?c * x + ?e > 0" |
1785 |
by simp |
|
60560 | 1786 |
then show ?thesis |
60567 | 1787 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] c eqs |
55768 | 1788 |
by auto |
60560 | 1789 |
qed |
1790 |
then show ?thesis by auto |
|
1791 |
qed |
|
55768 | 1792 |
qed auto |
1793 |
||
1794 |
lemma plusinf_inf: |
|
67123 | 1795 |
assumes "islin p" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1796 |
shows "\<exists>z. \<forall>x > z. Ifm vs (x#bs) (plusinf p) \<longleftrightarrow> Ifm vs (x#bs) p" |
67123 | 1797 |
using assms |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1798 |
proof (induct p rule: plusinf.induct) |
80098 | 1799 |
case (1 p q) |
1800 |
then obtain zp zq where zp: "\<forall>x>zp. Ifm vs (x # bs) (plusinf p) = Ifm vs (x # bs) p" |
|
1801 |
and zq: "\<forall>x>zq. Ifm vs (x # bs) (plusinf q) = Ifm vs (x # bs) q" |
|
1802 |
by force |
|
55768 | 1803 |
then show ?case |
80098 | 1804 |
by (rule_tac x="max zp zq" in exI) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1805 |
next |
80098 | 1806 |
case (2 p q) |
1807 |
then obtain zp zq where zp: "\<forall>x>zp. Ifm vs (x # bs) (plusinf p) = Ifm vs (x # bs) p" |
|
1808 |
and zq: "\<forall>x>zq. Ifm vs (x # bs) (plusinf q) = Ifm vs (x # bs) q" |
|
1809 |
by force |
|
55768 | 1810 |
then show ?case |
80098 | 1811 |
by (rule_tac x="max zp zq" in exI) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1812 |
next |
55768 | 1813 |
case (3 c e) |
1814 |
then have nbe: "tmbound0 e" |
|
1815 |
by simp |
|
1816 |
from 3 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1817 |
by simp_all |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1818 |
note eqs = eq[OF nc(1), where ?'a = 'a] eq[OF nc(2), where ?'a = 'a] |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1819 |
let ?c = "Ipoly vs c" |
55768 | 1820 |
fix y |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1821 |
let ?e = "Itm vs (y#bs) e" |
60561 | 1822 |
consider "?c = 0" | "?c > 0" | "?c < 0" by arith |
1823 |
then show ?case |
|
1824 |
proof cases |
|
1825 |
case 1 |
|
1826 |
then show ?thesis |
|
55768 | 1827 |
using eq[OF nc(2), of vs] eq[OF nc(1), of vs] by auto |
60561 | 1828 |
next |
60567 | 1829 |
case c: 2 |
60561 | 1830 |
have "Ifm vs (x#bs) (Eq (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (Eq (CNP 0 c e)))" |
1831 |
if "x > -?e / ?c" for x |
|
1832 |
proof - |
|
1833 |
from that have "?c * x > - ?e" |
|
60567 | 1834 |
using pos_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1835 |
by (simp add: mult.commute) |
55768 | 1836 |
then have "?c * x + ?e > 0" |
1837 |
by simp |
|
60561 | 1838 |
then show ?thesis |
55768 | 1839 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x" and vs=vs and bs=bs] by auto |
60561 | 1840 |
qed |
1841 |
then show ?thesis by auto |
|
1842 |
next |
|
60567 | 1843 |
case c: 3 |
60561 | 1844 |
have "Ifm vs (x#bs) (Eq (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (Eq (CNP 0 c e)))" |
1845 |
if "x > -?e / ?c" for x |
|
1846 |
proof - |
|
1847 |
from that have "?c * x < - ?e" |
|
60567 | 1848 |
using neg_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1849 |
by (simp add: mult.commute) |
55768 | 1850 |
then have "?c * x + ?e < 0" by simp |
60561 | 1851 |
then show ?thesis |
55768 | 1852 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] eqs by auto |
60561 | 1853 |
qed |
1854 |
then show ?thesis by auto |
|
1855 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1856 |
next |
55768 | 1857 |
case (4 c e) |
1858 |
then have nbe: "tmbound0 e" |
|
1859 |
by simp |
|
1860 |
from 4 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1861 |
by simp_all |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1862 |
note eqs = eq[OF nc(1), where ?'a = 'a] eq[OF nc(2), where ?'a = 'a] |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1863 |
let ?c = "Ipoly vs c" |
55768 | 1864 |
fix y |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1865 |
let ?e = "Itm vs (y#bs) e" |
60561 | 1866 |
consider "?c = 0" | "?c > 0" | "?c < 0" by arith |
1867 |
then show ?case |
|
1868 |
proof cases |
|
1869 |
case 1 |
|
1870 |
then show ?thesis using eqs by auto |
|
1871 |
next |
|
60567 | 1872 |
case c: 2 |
60561 | 1873 |
have "Ifm vs (x#bs) (NEq (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (NEq (CNP 0 c e)))" |
1874 |
if "x > -?e / ?c" for x |
|
1875 |
proof - |
|
1876 |
from that have "?c * x > - ?e" |
|
60567 | 1877 |
using pos_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1878 |
by (simp add: mult.commute) |
55768 | 1879 |
then have "?c * x + ?e > 0" |
1880 |
by simp |
|
60561 | 1881 |
then show ?thesis |
55768 | 1882 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x"] by auto |
60561 | 1883 |
qed |
1884 |
then show ?thesis by auto |
|
1885 |
next |
|
60567 | 1886 |
case c: 3 |
60561 | 1887 |
have "Ifm vs (x#bs) (NEq (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (NEq (CNP 0 c e)))" |
1888 |
if "x > -?e / ?c" for x |
|
1889 |
proof - |
|
1890 |
from that have "?c * x < - ?e" |
|
60567 | 1891 |
using neg_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1892 |
by (simp add: mult.commute) |
55768 | 1893 |
then have "?c * x + ?e < 0" |
1894 |
by simp |
|
60561 | 1895 |
then show ?thesis |
55768 | 1896 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x"] by auto |
60561 | 1897 |
qed |
1898 |
then show ?thesis by auto |
|
1899 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1900 |
next |
55768 | 1901 |
case (5 c e) |
1902 |
then have nbe: "tmbound0 e" |
|
1903 |
by simp |
|
1904 |
from 5 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1905 |
by simp_all |
|
1906 |
then have nc': "allpolys isnpoly (CP (~\<^sub>p c))" |
|
1907 |
by (simp add: polyneg_norm) |
|
1908 |
note eqs = lt[OF nc(1), where ?'a = 'a] lt[OF nc', where ?'a = 'a] eq [OF nc(1), where ?'a = 'a] lt[OF nc(2), where ?'a = 'a] |
|
1909 |
let ?c = "Ipoly vs c" |
|
1910 |
fix y |
|
1911 |
let ?e = "Itm vs (y#bs) e" |
|
60561 | 1912 |
consider "?c = 0" | "?c > 0" | "?c < 0" by arith |
1913 |
then show ?case |
|
1914 |
proof cases |
|
1915 |
case 1 |
|
1916 |
then show ?thesis using eqs by auto |
|
1917 |
next |
|
60567 | 1918 |
case c: 2 |
60561 | 1919 |
have "Ifm vs (x#bs) (Lt (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (Lt (CNP 0 c e)))" |
1920 |
if "x > -?e / ?c" for x |
|
1921 |
proof - |
|
1922 |
from that have "?c * x > - ?e" |
|
60567 | 1923 |
using pos_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1924 |
by (simp add: mult.commute) |
55768 | 1925 |
then have "?c * x + ?e > 0" |
1926 |
by simp |
|
60561 | 1927 |
then show ?thesis |
60567 | 1928 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] c eqs by auto |
60561 | 1929 |
qed |
1930 |
then show ?thesis by auto |
|
1931 |
next |
|
60567 | 1932 |
case c: 3 |
60561 | 1933 |
have "Ifm vs (x#bs) (Lt (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (Lt (CNP 0 c e)))" |
1934 |
if "x > -?e / ?c" for x |
|
1935 |
proof - |
|
1936 |
from that have "?c * x < - ?e" |
|
60567 | 1937 |
using neg_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1938 |
by (simp add: mult.commute) |
55768 | 1939 |
then have "?c * x + ?e < 0" |
1940 |
by simp |
|
60561 | 1941 |
then show ?thesis |
60567 | 1942 |
using eqs tmbound0_I[OF nbe, where b="y" and b'="x"] c by auto |
60561 | 1943 |
qed |
1944 |
then show ?thesis by auto |
|
1945 |
qed |
|
55768 | 1946 |
next |
1947 |
case (6 c e) |
|
1948 |
then have nbe: "tmbound0 e" |
|
1949 |
by simp |
|
1950 |
from 6 have nc: "allpolys isnpoly (CP c)" "allpolys isnpoly e" |
|
1951 |
by simp_all |
|
1952 |
then have nc': "allpolys isnpoly (CP (~\<^sub>p c))" |
|
1953 |
by (simp add: polyneg_norm) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1954 |
note eqs = lt[OF nc(1), where ?'a = 'a] eq [OF nc(1), where ?'a = 'a] le[OF nc(2), where ?'a = 'a] |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1955 |
let ?c = "Ipoly vs c" |
55768 | 1956 |
fix y |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1957 |
let ?e = "Itm vs (y#bs) e" |
60561 | 1958 |
consider "?c = 0" | "?c > 0" | "?c < 0" by arith |
1959 |
then show ?case |
|
1960 |
proof cases |
|
1961 |
case 1 |
|
1962 |
then show ?thesis using eqs by auto |
|
1963 |
next |
|
60567 | 1964 |
case c: 2 |
60561 | 1965 |
have "Ifm vs (x#bs) (Le (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (Le (CNP 0 c e)))" |
1966 |
if "x > -?e / ?c" for x |
|
1967 |
proof - |
|
1968 |
from that have "?c * x > - ?e" |
|
60567 | 1969 |
using pos_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1970 |
by (simp add: mult.commute) |
55768 | 1971 |
then have "?c * x + ?e > 0" |
1972 |
by simp |
|
60561 | 1973 |
then show ?thesis |
60567 | 1974 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] c eqs by auto |
60561 | 1975 |
qed |
1976 |
then show ?thesis by auto |
|
1977 |
next |
|
60567 | 1978 |
case c: 3 |
60561 | 1979 |
have "Ifm vs (x#bs) (Le (CNP 0 c e)) = Ifm vs (x#bs) (plusinf (Le (CNP 0 c e)))" |
1980 |
if "x > -?e / ?c" for x |
|
1981 |
proof - |
|
1982 |
from that have "?c * x < - ?e" |
|
60567 | 1983 |
using neg_divide_less_eq[OF c, where a="x" and b="-?e"] |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
1984 |
by (simp add: mult.commute) |
55768 | 1985 |
then have "?c * x + ?e < 0" |
1986 |
by simp |
|
60561 | 1987 |
then show ?thesis |
60567 | 1988 |
using tmbound0_I[OF nbe, where b="y" and b'="x"] c eqs by auto |
60561 | 1989 |
qed |
1990 |
then show ?thesis by auto |
|
1991 |
qed |
|
55768 | 1992 |
qed auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
1993 |
|
55754 | 1994 |
lemma minusinf_nb: "islin p \<Longrightarrow> bound0 (minusinf p)" |
80098 | 1995 |
by (induct p rule: minusinf.induct) (auto simp: eq_nb lt_nb le_nb) |
55768 | 1996 |
|
55754 | 1997 |
lemma plusinf_nb: "islin p \<Longrightarrow> bound0 (plusinf p)" |
80098 | 1998 |
by (induct p rule: minusinf.induct) (auto simp: eq_nb lt_nb le_nb) |
55768 | 1999 |
|
2000 |
lemma minusinf_ex: |
|
2001 |
assumes lp: "islin p" |
|
2002 |
and ex: "Ifm vs (x#bs) (minusinf p)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2003 |
shows "\<exists>x. Ifm vs (x#bs) p" |
55768 | 2004 |
proof - |
2005 |
from bound0_I [OF minusinf_nb[OF lp], where bs ="bs"] ex |
|
2006 |
have th: "\<forall>x. Ifm vs (x#bs) (minusinf p)" |
|
2007 |
by auto |
|
55754 | 2008 |
from minusinf_inf[OF lp, where bs="bs"] |
55768 | 2009 |
obtain z where z: "\<forall>x<z. Ifm vs (x # bs) (minusinf p) = Ifm vs (x # bs) p" |
2010 |
by blast |
|
2011 |
from th have "Ifm vs ((z - 1)#bs) (minusinf p)" |
|
2012 |
by simp |
|
2013 |
moreover have "z - 1 < z" |
|
2014 |
by simp |
|
2015 |
ultimately show ?thesis |
|
2016 |
using z by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2017 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2018 |
|
55768 | 2019 |
lemma plusinf_ex: |
2020 |
assumes lp: "islin p" |
|
2021 |
and ex: "Ifm vs (x#bs) (plusinf p)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2022 |
shows "\<exists>x. Ifm vs (x#bs) p" |
55768 | 2023 |
proof - |
2024 |
from bound0_I [OF plusinf_nb[OF lp], where bs ="bs"] ex |
|
2025 |
have th: "\<forall>x. Ifm vs (x#bs) (plusinf p)" |
|
2026 |
by auto |
|
55754 | 2027 |
from plusinf_inf[OF lp, where bs="bs"] |
55768 | 2028 |
obtain z where z: "\<forall>x>z. Ifm vs (x # bs) (plusinf p) = Ifm vs (x # bs) p" |
2029 |
by blast |
|
2030 |
from th have "Ifm vs ((z + 1)#bs) (plusinf p)" |
|
2031 |
by simp |
|
2032 |
moreover have "z + 1 > z" |
|
2033 |
by simp |
|
2034 |
ultimately show ?thesis |
|
2035 |
using z by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2036 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2037 |
|
55768 | 2038 |
fun uset :: "fm \<Rightarrow> (poly \<times> tm) list" |
67123 | 2039 |
where |
2040 |
"uset (And p q) = uset p @ uset q" |
|
2041 |
| "uset (Or p q) = uset p @ uset q" |
|
2042 |
| "uset (Eq (CNP 0 a e)) = [(a, e)]" |
|
2043 |
| "uset (Le (CNP 0 a e)) = [(a, e)]" |
|
2044 |
| "uset (Lt (CNP 0 a e)) = [(a, e)]" |
|
2045 |
| "uset (NEq (CNP 0 a e)) = [(a, e)]" |
|
2046 |
| "uset p = []" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2047 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2048 |
lemma uset_l: |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2049 |
assumes lp: "islin p" |
55754 | 2050 |
shows "\<forall>(c,s) \<in> set (uset p). isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s" |
55768 | 2051 |
using lp by (induct p rule: uset.induct) auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2052 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2053 |
lemma minusinf_uset0: |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2054 |
assumes lp: "islin p" |
55768 | 2055 |
and nmi: "\<not> (Ifm vs (x#bs) (minusinf p))" |
2056 |
and ex: "Ifm vs (x#bs) p" (is "?I x p") |
|
2057 |
shows "\<exists>(c, s) \<in> set (uset p). x \<ge> - Itm vs (x#bs) s / Ipoly vs c" |
|
2058 |
proof - |
|
2059 |
have "\<exists>(c, s) \<in> set (uset p). |
|
2060 |
Ipoly vs c < 0 \<and> Ipoly vs c * x \<le> - Itm vs (x#bs) s \<or> |
|
2061 |
Ipoly vs c > 0 \<and> Ipoly vs c * x \<ge> - Itm vs (x#bs) s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2062 |
using lp nmi ex |
80098 | 2063 |
by (induct p rule: minusinf.induct) |
2064 |
(auto simp: eq le lt polyneg_norm linorder_not_less order_le_less) |
|
55768 | 2065 |
then obtain c s where csU: "(c, s) \<in> set (uset p)" |
2066 |
and x: "(Ipoly vs c < 0 \<and> Ipoly vs c * x \<le> - Itm vs (x#bs) s) \<or> |
|
2067 |
(Ipoly vs c > 0 \<and> Ipoly vs c * x \<ge> - Itm vs (x#bs) s)" by blast |
|
2068 |
then have "x \<ge> (- Itm vs (x#bs) s) / Ipoly vs c" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2069 |
using divide_le_eq[of "- Itm vs (x#bs) s" "Ipoly vs c" x] |
80098 | 2070 |
by (auto simp: mult.commute) |
55768 | 2071 |
then show ?thesis |
2072 |
using csU by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2073 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2074 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2075 |
lemma minusinf_uset: |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2076 |
assumes lp: "islin p" |
55768 | 2077 |
and nmi: "\<not> (Ifm vs (a#bs) (minusinf p))" |
2078 |
and ex: "Ifm vs (x#bs) p" (is "?I x p") |
|
55754 | 2079 |
shows "\<exists>(c,s) \<in> set (uset p). x \<ge> - Itm vs (a#bs) s / Ipoly vs c" |
55768 | 2080 |
proof - |
2081 |
from nmi have nmi': "\<not> Ifm vs (x#bs) (minusinf p)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2082 |
by (simp add: bound0_I[OF minusinf_nb[OF lp], where b=x and b'=a]) |
55754 | 2083 |
from minusinf_uset0[OF lp nmi' ex] |
55768 | 2084 |
obtain c s where csU: "(c,s) \<in> set (uset p)" |
2085 |
and th: "x \<ge> - Itm vs (x#bs) s / Ipoly vs c" |
|
2086 |
by blast |
|
2087 |
from uset_l[OF lp, rule_format, OF csU] have nb: "tmbound0 s" |
|
2088 |
by simp |
|
2089 |
from th tmbound0_I[OF nb, of vs x bs a] csU show ?thesis |
|
2090 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2091 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2092 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2093 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2094 |
lemma plusinf_uset0: |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2095 |
assumes lp: "islin p" |
55768 | 2096 |
and nmi: "\<not> (Ifm vs (x#bs) (plusinf p))" |
2097 |
and ex: "Ifm vs (x#bs) p" (is "?I x p") |
|
2098 |
shows "\<exists>(c, s) \<in> set (uset p). x \<le> - Itm vs (x#bs) s / Ipoly vs c" |
|
60560 | 2099 |
proof - |
55768 | 2100 |
have "\<exists>(c, s) \<in> set (uset p). |
2101 |
Ipoly vs c < 0 \<and> Ipoly vs c * x \<ge> - Itm vs (x#bs) s \<or> |
|
2102 |
Ipoly vs c > 0 \<and> Ipoly vs c * x \<le> - Itm vs (x#bs) s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2103 |
using lp nmi ex |
80098 | 2104 |
by (induct p rule: minusinf.induct) |
2105 |
(auto simp: eq le lt polyneg_norm linorder_not_less order_le_less) |
|
67123 | 2106 |
then obtain c s |
2107 |
where c_s: "(c, s) \<in> set (uset p)" |
|
2108 |
and "Ipoly vs c < 0 \<and> Ipoly vs c * x \<ge> - Itm vs (x#bs) s \<or> |
|
2109 |
Ipoly vs c > 0 \<and> Ipoly vs c * x \<le> - Itm vs (x#bs) s" |
|
55768 | 2110 |
by blast |
2111 |
then have "x \<le> (- Itm vs (x#bs) s) / Ipoly vs c" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2112 |
using le_divide_eq[of x "- Itm vs (x#bs) s" "Ipoly vs c"] |
80098 | 2113 |
by (auto simp: mult.commute) |
55768 | 2114 |
then show ?thesis |
67123 | 2115 |
using c_s by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2116 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2117 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2118 |
lemma plusinf_uset: |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2119 |
assumes lp: "islin p" |
55768 | 2120 |
and nmi: "\<not> (Ifm vs (a#bs) (plusinf p))" |
2121 |
and ex: "Ifm vs (x#bs) p" (is "?I x p") |
|
55754 | 2122 |
shows "\<exists>(c,s) \<in> set (uset p). x \<le> - Itm vs (a#bs) s / Ipoly vs c" |
55768 | 2123 |
proof - |
55754 | 2124 |
from nmi have nmi': "\<not> (Ifm vs (x#bs) (plusinf p))" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2125 |
by (simp add: bound0_I[OF plusinf_nb[OF lp], where b=x and b'=a]) |
55754 | 2126 |
from plusinf_uset0[OF lp nmi' ex] |
67123 | 2127 |
obtain c s |
2128 |
where c_s: "(c,s) \<in> set (uset p)" |
|
2129 |
and x: "x \<le> - Itm vs (x#bs) s / Ipoly vs c" |
|
55768 | 2130 |
by blast |
67123 | 2131 |
from uset_l[OF lp, rule_format, OF c_s] have nb: "tmbound0 s" |
55768 | 2132 |
by simp |
67123 | 2133 |
from x tmbound0_I[OF nb, of vs x bs a] c_s show ?thesis |
55768 | 2134 |
by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2135 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2136 |
|
55754 | 2137 |
lemma lin_dense: |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2138 |
assumes lp: "islin p" |
55768 | 2139 |
and noS: "\<forall>t. l < t \<and> t< u \<longrightarrow> t \<notin> (\<lambda>(c,t). - Itm vs (x#bs) t / Ipoly vs c) ` set (uset p)" |
2140 |
(is "\<forall>t. _ \<and> _ \<longrightarrow> t \<notin> (\<lambda>(c,t). - ?Nt x t / ?N c) ` ?U p") |
|
60561 | 2141 |
and lx: "l < x" and xu: "x < u" |
2142 |
and px: "Ifm vs (x # bs) p" |
|
55768 | 2143 |
and ly: "l < y" and yu: "y < u" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2144 |
shows "Ifm vs (y#bs) p" |
55768 | 2145 |
using lp px noS |
55754 | 2146 |
proof (induct p rule: islin.induct) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2147 |
case (5 c s) |
55754 | 2148 |
from "5.prems" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2149 |
have lin: "isnpoly c" "c \<noteq> 0\<^sub>p" "tmbound0 s" "allpolys isnpoly s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2150 |
and px: "Ifm vs (x # bs) (Lt (CNP 0 c s))" |
55768 | 2151 |
and noS: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> - Itm vs (x # bs) s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
2152 |
by simp_all |
|
2153 |
from ly yu noS have yne: "y \<noteq> - ?Nt x s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
|
2154 |
by simp |
|
2155 |
then have ycs: "y < - ?Nt x s / ?N c \<or> y > -?Nt x s / ?N c" |
|
2156 |
by auto |
|
60561 | 2157 |
consider "?N c = 0" | "?N c > 0" | "?N c < 0" by arith |
2158 |
then show ?case |
|
2159 |
proof cases |
|
2160 |
case 1 |
|
2161 |
then show ?thesis |
|
55768 | 2162 |
using px by (simp add: tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"]) |
60561 | 2163 |
next |
60567 | 2164 |
case N: 2 |
2165 |
from px pos_less_divide_eq[OF N, where a="x" and b="-?Nt x s"] |
|
55768 | 2166 |
have px': "x < - ?Nt x s / ?N c" |
80098 | 2167 |
by (auto simp: not_less field_simps) |
60561 | 2168 |
from ycs show ?thesis |
2169 |
proof |
|
55768 | 2170 |
assume y: "y < - ?Nt x s / ?N c" |
2171 |
then have "y * ?N c < - ?Nt x s" |
|
60567 | 2172 |
by (simp add: pos_less_divide_eq[OF N, where a="y" and b="-?Nt x s", symmetric]) |
55768 | 2173 |
then have "?N c * y + ?Nt x s < 0" |
2174 |
by (simp add: field_simps) |
|
60561 | 2175 |
then show ?thesis using tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"] |
55768 | 2176 |
by simp |
60561 | 2177 |
next |
55768 | 2178 |
assume y: "y > -?Nt x s / ?N c" |
2179 |
with yu have eu: "u > - ?Nt x s / ?N c" |
|
2180 |
by auto |
|
2181 |
with noS ly yu have th: "- ?Nt x s / ?N c \<le> l" |
|
2182 |
by (cases "- ?Nt x s / ?N c > l") auto |
|
2183 |
with lx px' have False |
|
2184 |
by simp |
|
60561 | 2185 |
then show ?thesis .. |
2186 |
qed |
|
2187 |
next |
|
60567 | 2188 |
case N: 3 |
2189 |
from px neg_divide_less_eq[OF N, where a="x" and b="-?Nt x s"] |
|
55768 | 2190 |
have px': "x > - ?Nt x s / ?N c" |
80098 | 2191 |
by (auto simp: not_less field_simps) |
60561 | 2192 |
from ycs show ?thesis |
2193 |
proof |
|
55768 | 2194 |
assume y: "y > - ?Nt x s / ?N c" |
2195 |
then have "y * ?N c < - ?Nt x s" |
|
60567 | 2196 |
by (simp add: neg_divide_less_eq[OF N, where a="y" and b="-?Nt x s", symmetric]) |
55768 | 2197 |
then have "?N c * y + ?Nt x s < 0" |
2198 |
by (simp add: field_simps) |
|
60561 | 2199 |
then show ?thesis using tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"] |
55768 | 2200 |
by simp |
60561 | 2201 |
next |
55768 | 2202 |
assume y: "y < -?Nt x s / ?N c" |
2203 |
with ly have eu: "l < - ?Nt x s / ?N c" |
|
2204 |
by auto |
|
2205 |
with noS ly yu have th: "- ?Nt x s / ?N c \<ge> u" |
|
2206 |
by (cases "- ?Nt x s / ?N c < u") auto |
|
2207 |
with xu px' have False |
|
2208 |
by simp |
|
60561 | 2209 |
then show ?thesis .. |
2210 |
qed |
|
2211 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2212 |
next |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2213 |
case (6 c s) |
55754 | 2214 |
from "6.prems" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2215 |
have lin: "isnpoly c" "c \<noteq> 0\<^sub>p" "tmbound0 s" "allpolys isnpoly s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2216 |
and px: "Ifm vs (x # bs) (Le (CNP 0 c s))" |
55768 | 2217 |
and noS: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> - Itm vs (x # bs) s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
2218 |
by simp_all |
|
2219 |
from ly yu noS have yne: "y \<noteq> - ?Nt x s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
|
2220 |
by simp |
|
2221 |
then have ycs: "y < - ?Nt x s / ?N c \<or> y > -?Nt x s / ?N c" |
|
2222 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2223 |
have ccs: "?N c = 0 \<or> ?N c < 0 \<or> ?N c > 0" by dlo |
60561 | 2224 |
consider "?N c = 0" | "?N c > 0" | "?N c < 0" by arith |
2225 |
then show ?case |
|
2226 |
proof cases |
|
2227 |
case 1 |
|
2228 |
then show ?thesis |
|
55768 | 2229 |
using px by (simp add: tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"]) |
60561 | 2230 |
next |
60567 | 2231 |
case N: 2 |
2232 |
from px pos_le_divide_eq[OF N, where a="x" and b="-?Nt x s"] |
|
55768 | 2233 |
have px': "x \<le> - ?Nt x s / ?N c" |
2234 |
by (simp add: not_less field_simps) |
|
60561 | 2235 |
from ycs show ?thesis |
2236 |
proof |
|
55768 | 2237 |
assume y: "y < - ?Nt x s / ?N c" |
2238 |
then have "y * ?N c < - ?Nt x s" |
|
60567 | 2239 |
by (simp add: pos_less_divide_eq[OF N, where a="y" and b="-?Nt x s", symmetric]) |
55768 | 2240 |
then have "?N c * y + ?Nt x s < 0" |
2241 |
by (simp add: field_simps) |
|
60561 | 2242 |
then show ?thesis |
55768 | 2243 |
using tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"] by simp |
60561 | 2244 |
next |
55768 | 2245 |
assume y: "y > -?Nt x s / ?N c" |
2246 |
with yu have eu: "u > - ?Nt x s / ?N c" |
|
2247 |
by auto |
|
2248 |
with noS ly yu have th: "- ?Nt x s / ?N c \<le> l" |
|
2249 |
by (cases "- ?Nt x s / ?N c > l") auto |
|
2250 |
with lx px' have False |
|
2251 |
by simp |
|
60561 | 2252 |
then show ?thesis .. |
2253 |
qed |
|
2254 |
next |
|
60567 | 2255 |
case N: 3 |
2256 |
from px neg_divide_le_eq[OF N, where a="x" and b="-?Nt x s"] |
|
67123 | 2257 |
have px': "x \<ge> - ?Nt x s / ?N c" |
55768 | 2258 |
by (simp add: field_simps) |
60561 | 2259 |
from ycs show ?thesis |
2260 |
proof |
|
55768 | 2261 |
assume y: "y > - ?Nt x s / ?N c" |
2262 |
then have "y * ?N c < - ?Nt x s" |
|
60567 | 2263 |
by (simp add: neg_divide_less_eq[OF N, where a="y" and b="-?Nt x s", symmetric]) |
55768 | 2264 |
then have "?N c * y + ?Nt x s < 0" |
2265 |
by (simp add: field_simps) |
|
60561 | 2266 |
then show ?thesis |
55768 | 2267 |
using tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"] by simp |
60561 | 2268 |
next |
55768 | 2269 |
assume y: "y < -?Nt x s / ?N c" |
2270 |
with ly have eu: "l < - ?Nt x s / ?N c" |
|
2271 |
by auto |
|
2272 |
with noS ly yu have th: "- ?Nt x s / ?N c \<ge> u" |
|
2273 |
by (cases "- ?Nt x s / ?N c < u") auto |
|
2274 |
with xu px' have False by simp |
|
60561 | 2275 |
then show ?thesis .. |
2276 |
qed |
|
2277 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2278 |
next |
55768 | 2279 |
case (3 c s) |
55754 | 2280 |
from "3.prems" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2281 |
have lin: "isnpoly c" "c \<noteq> 0\<^sub>p" "tmbound0 s" "allpolys isnpoly s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2282 |
and px: "Ifm vs (x # bs) (Eq (CNP 0 c s))" |
55768 | 2283 |
and noS: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> - Itm vs (x # bs) s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
2284 |
by simp_all |
|
2285 |
from ly yu noS have yne: "y \<noteq> - ?Nt x s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
|
2286 |
by simp |
|
2287 |
then have ycs: "y < - ?Nt x s / ?N c \<or> y > -?Nt x s / ?N c" |
|
2288 |
by auto |
|
60561 | 2289 |
consider "?N c = 0" | "?N c < 0" | "?N c > 0" by arith |
2290 |
then show ?case |
|
2291 |
proof cases |
|
2292 |
case 1 |
|
2293 |
then show ?thesis |
|
55768 | 2294 |
using px by (simp add: tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"]) |
60561 | 2295 |
next |
2296 |
case 2 |
|
55768 | 2297 |
then have cnz: "?N c \<noteq> 0" |
2298 |
by simp |
|
2299 |
from px eq_divide_eq[of "x" "-?Nt x s" "?N c"] cnz |
|
2300 |
have px': "x = - ?Nt x s / ?N c" |
|
2301 |
by (simp add: field_simps) |
|
60561 | 2302 |
from ycs show ?thesis |
2303 |
proof |
|
55768 | 2304 |
assume y: "y < -?Nt x s / ?N c" |
2305 |
with ly have eu: "l < - ?Nt x s / ?N c" |
|
2306 |
by auto |
|
2307 |
with noS ly yu have th: "- ?Nt x s / ?N c \<ge> u" |
|
2308 |
by (cases "- ?Nt x s / ?N c < u") auto |
|
2309 |
with xu px' have False by simp |
|
60561 | 2310 |
then show ?thesis .. |
2311 |
next |
|
55768 | 2312 |
assume y: "y > -?Nt x s / ?N c" |
2313 |
with yu have eu: "u > - ?Nt x s / ?N c" |
|
2314 |
by auto |
|
2315 |
with noS ly yu have th: "- ?Nt x s / ?N c \<le> l" |
|
2316 |
by (cases "- ?Nt x s / ?N c > l") auto |
|
2317 |
with lx px' have False by simp |
|
60561 | 2318 |
then show ?thesis .. |
2319 |
qed |
|
2320 |
next |
|
2321 |
case 3 |
|
55768 | 2322 |
then have cnz: "?N c \<noteq> 0" |
2323 |
by simp |
|
2324 |
from px eq_divide_eq[of "x" "-?Nt x s" "?N c"] cnz |
|
2325 |
have px': "x = - ?Nt x s / ?N c" |
|
2326 |
by (simp add: field_simps) |
|
60561 | 2327 |
from ycs show ?thesis |
2328 |
proof |
|
55768 | 2329 |
assume y: "y < -?Nt x s / ?N c" |
2330 |
with ly have eu: "l < - ?Nt x s / ?N c" |
|
2331 |
by auto |
|
2332 |
with noS ly yu have th: "- ?Nt x s / ?N c \<ge> u" |
|
2333 |
by (cases "- ?Nt x s / ?N c < u") auto |
|
2334 |
with xu px' have False by simp |
|
60561 | 2335 |
then show ?thesis .. |
2336 |
next |
|
55768 | 2337 |
assume y: "y > -?Nt x s / ?N c" |
2338 |
with yu have eu: "u > - ?Nt x s / ?N c" |
|
2339 |
by auto |
|
2340 |
with noS ly yu have th: "- ?Nt x s / ?N c \<le> l" |
|
2341 |
by (cases "- ?Nt x s / ?N c > l") auto |
|
2342 |
with lx px' have False by simp |
|
60561 | 2343 |
then show ?thesis .. |
2344 |
qed |
|
2345 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2346 |
next |
60561 | 2347 |
case (4 c s) |
55754 | 2348 |
from "4.prems" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2349 |
have lin: "isnpoly c" "c \<noteq> 0\<^sub>p" "tmbound0 s" "allpolys isnpoly s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2350 |
and px: "Ifm vs (x # bs) (NEq (CNP 0 c s))" |
55768 | 2351 |
and noS: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> - Itm vs (x # bs) s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
2352 |
by simp_all |
|
2353 |
from ly yu noS have yne: "y \<noteq> - ?Nt x s / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
|
2354 |
by simp |
|
2355 |
then have ycs: "y < - ?Nt x s / ?N c \<or> y > -?Nt x s / ?N c" |
|
2356 |
by auto |
|
60561 | 2357 |
show ?case |
2358 |
proof (cases "?N c = 0") |
|
2359 |
case True |
|
2360 |
then show ?thesis |
|
55768 | 2361 |
using px by (simp add: tmbound0_I[OF lin(3), where bs="bs" and b="x" and b'="y"]) |
60561 | 2362 |
next |
2363 |
case False |
|
2364 |
with yne eq_divide_eq[of "y" "- ?Nt x s" "?N c"] |
|
2365 |
show ?thesis |
|
55768 | 2366 |
by (simp add: field_simps tmbound0_I[OF lin(3), of vs x bs y] sum_eq[symmetric]) |
60561 | 2367 |
qed |
80098 | 2368 |
qed (auto simp: tmbound0_I[where vs=vs and bs="bs" and b="y" and b'="x"] |
60561 | 2369 |
bound0_I[where vs=vs and bs="bs" and b="y" and b'="x"]) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2370 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2371 |
lemma inf_uset: |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2372 |
assumes lp: "islin p" |
55768 | 2373 |
and nmi: "\<not> (Ifm vs (x#bs) (minusinf p))" (is "\<not> (Ifm vs (x#bs) (?M p))") |
2374 |
and npi: "\<not> (Ifm vs (x#bs) (plusinf p))" (is "\<not> (Ifm vs (x#bs) (?P p))") |
|
2375 |
and ex: "\<exists>x. Ifm vs (x#bs) p" (is "\<exists>x. ?I x p") |
|
2376 |
shows "\<exists>(c, t) \<in> set (uset p). \<exists>(d, s) \<in> set (uset p). |
|
2377 |
?I ((- Itm vs (x#bs) t / Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) / 2) p" |
|
2378 |
proof - |
|
2379 |
let ?Nt = "\<lambda>x t. Itm vs (x#bs) t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2380 |
let ?N = "Ipoly vs" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2381 |
let ?U = "set (uset p)" |
55768 | 2382 |
from ex obtain a where pa: "?I a p" |
2383 |
by blast |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2384 |
from bound0_I[OF minusinf_nb[OF lp], where bs="bs" and b="x" and b'="a"] nmi |
55768 | 2385 |
have nmi': "\<not> (?I a (?M p))" |
2386 |
by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2387 |
from bound0_I[OF plusinf_nb[OF lp], where bs="bs" and b="x" and b'="a"] npi |
55768 | 2388 |
have npi': "\<not> (?I a (?P p))" |
2389 |
by simp |
|
55754 | 2390 |
have "\<exists>(c,t) \<in> set (uset p). \<exists>(d,s) \<in> set (uset p). ?I ((- ?Nt a t/?N c + - ?Nt a s /?N d) / 2) p" |
55768 | 2391 |
proof - |
2392 |
let ?M = "(\<lambda>(c,t). - ?Nt a t / ?N c) ` ?U" |
|
2393 |
have fM: "finite ?M" |
|
2394 |
by auto |
|
55754 | 2395 |
from minusinf_uset[OF lp nmi pa] plusinf_uset[OF lp npi pa] |
55768 | 2396 |
have "\<exists>(c, t) \<in> set (uset p). \<exists>(d, s) \<in> set (uset p). |
2397 |
a \<le> - ?Nt x t / ?N c \<and> a \<ge> - ?Nt x s / ?N d" |
|
2398 |
by blast |
|
67123 | 2399 |
then obtain c t d s |
2400 |
where ctU: "(c, t) \<in> ?U" |
|
2401 |
and dsU: "(d, s) \<in> ?U" |
|
55768 | 2402 |
and xs1: "a \<le> - ?Nt x s / ?N d" |
2403 |
and tx1: "a \<ge> - ?Nt x t / ?N c" |
|
2404 |
by blast |
|
55754 | 2405 |
from uset_l[OF lp] ctU dsU tmbound0_I[where bs="bs" and b="x" and b'="a"] xs1 tx1 |
55768 | 2406 |
have xs: "a \<le> - ?Nt a s / ?N d" and tx: "a \<ge> - ?Nt a t / ?N c" |
2407 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2408 |
from ctU have Mne: "?M \<noteq> {}" by auto |
55768 | 2409 |
then have Une: "?U \<noteq> {}" by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2410 |
let ?l = "Min ?M" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2411 |
let ?u = "Max ?M" |
55768 | 2412 |
have linM: "?l \<in> ?M" |
2413 |
using fM Mne by simp |
|
2414 |
have uinM: "?u \<in> ?M" |
|
2415 |
using fM Mne by simp |
|
2416 |
have ctM: "- ?Nt a t / ?N c \<in> ?M" |
|
2417 |
using ctU by auto |
|
2418 |
have dsM: "- ?Nt a s / ?N d \<in> ?M" |
|
2419 |
using dsU by auto |
|
2420 |
have lM: "\<forall>t\<in> ?M. ?l \<le> t" |
|
2421 |
using Mne fM by auto |
|
2422 |
have Mu: "\<forall>t\<in> ?M. t \<le> ?u" |
|
2423 |
using Mne fM by auto |
|
2424 |
have "?l \<le> - ?Nt a t / ?N c" |
|
2425 |
using ctM Mne by simp |
|
2426 |
then have lx: "?l \<le> a" |
|
2427 |
using tx by simp |
|
2428 |
have "- ?Nt a s / ?N d \<le> ?u" |
|
2429 |
using dsM Mne by simp |
|
2430 |
then have xu: "a \<le> ?u" |
|
2431 |
using xs by simp |
|
2432 |
from finite_set_intervals2[where P="\<lambda>x. ?I x p",OF pa lx xu linM uinM fM lM Mu] |
|
60561 | 2433 |
consider u where "u \<in> ?M" "?I u p" |
2434 |
| t1 t2 where "t1 \<in> ?M" "t2\<in> ?M" "\<forall>y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M" "t1 < a" "a < t2" "?I a p" |
|
2435 |
by blast |
|
2436 |
then show ?thesis |
|
2437 |
proof cases |
|
2438 |
case 1 |
|
55768 | 2439 |
then have "\<exists>(nu,tu) \<in> ?U. u = - ?Nt a tu / ?N nu" |
2440 |
by auto |
|
60561 | 2441 |
then obtain tu nu where tuU: "(nu, tu) \<in> ?U" and tuu: "u = - ?Nt a tu / ?N nu" |
55768 | 2442 |
by blast |
60561 | 2443 |
have "?I (((- ?Nt a tu / ?N nu) + (- ?Nt a tu / ?N nu)) / 2) p" |
2444 |
using \<open>?I u p\<close> tuu by simp |
|
2445 |
with tuU show ?thesis by blast |
|
2446 |
next |
|
2447 |
case 2 |
|
2448 |
have "\<exists>(t1n, t1u) \<in> ?U. t1 = - ?Nt a t1u / ?N t1n" |
|
2449 |
using \<open>t1 \<in> ?M\<close> by auto |
|
55768 | 2450 |
then obtain t1u t1n where t1uU: "(t1n, t1u) \<in> ?U" |
2451 |
and t1u: "t1 = - ?Nt a t1u / ?N t1n" |
|
2452 |
by blast |
|
60561 | 2453 |
have "\<exists>(t2n, t2u) \<in> ?U. t2 = - ?Nt a t2u / ?N t2n" |
2454 |
using \<open>t2 \<in> ?M\<close> by auto |
|
55768 | 2455 |
then obtain t2u t2n where t2uU: "(t2n, t2u) \<in> ?U" |
2456 |
and t2u: "t2 = - ?Nt a t2u / ?N t2n" |
|
2457 |
by blast |
|
60567 | 2458 |
have "t1 < t2" |
60561 | 2459 |
using \<open>t1 < a\<close> \<open>a < t2\<close> by simp |
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
2460 |
let ?u = "(t1 + t2) / 2" |
60561 | 2461 |
have "t1 < ?u" |
2462 |
using less_half_sum [OF \<open>t1 < t2\<close>] by auto |
|
2463 |
have "?u < t2" |
|
2464 |
using gt_half_sum [OF \<open>t1 < t2\<close>] by auto |
|
2465 |
have "?I ?u p" |
|
2466 |
using lp \<open>\<forall>y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M\<close> \<open>t1 < a\<close> \<open>a < t2\<close> \<open>?I a p\<close> \<open>t1 < ?u\<close> \<open>?u < t2\<close> |
|
2467 |
by (rule lin_dense) |
|
2468 |
with t1uU t2uU t1u t2u show ?thesis by blast |
|
2469 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2470 |
qed |
55768 | 2471 |
then obtain l n s m |
2472 |
where lnU: "(n, l) \<in> ?U" |
|
2473 |
and smU:"(m,s) \<in> ?U" |
|
2474 |
and pu: "?I ((- ?Nt a l / ?N n + - ?Nt a s / ?N m) / 2) p" |
|
2475 |
by blast |
|
2476 |
from lnU smU uset_l[OF lp] have nbl: "tmbound0 l" and nbs: "tmbound0 s" |
|
2477 |
by auto |
|
55754 | 2478 |
from tmbound0_I[OF nbl, where bs="bs" and b="a" and b'="x"] |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2479 |
tmbound0_I[OF nbs, where bs="bs" and b="a" and b'="x"] pu |
55768 | 2480 |
have "?I ((- ?Nt x l / ?N n + - ?Nt x s / ?N m) / 2) p" |
2481 |
by simp |
|
2482 |
with lnU smU show ?thesis by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2483 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2484 |
|
60561 | 2485 |
|
2486 |
section \<open>The Ferrante - Rackoff Theorem\<close> |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2487 |
|
55754 | 2488 |
theorem fr_eq: |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2489 |
assumes lp: "islin p" |
55768 | 2490 |
shows "(\<exists>x. Ifm vs (x#bs) p) \<longleftrightarrow> |
2491 |
(Ifm vs (x#bs) (minusinf p) \<or> |
|
2492 |
Ifm vs (x#bs) (plusinf p) \<or> |
|
2493 |
(\<exists>(n, t) \<in> set (uset p). \<exists>(m, s) \<in> set (uset p). |
|
2494 |
Ifm vs (((- Itm vs (x#bs) t / Ipoly vs n + - Itm vs (x#bs) s / Ipoly vs m) / 2)#bs) p))" |
|
60561 | 2495 |
(is "(\<exists>x. ?I x p) \<longleftrightarrow> ?M \<or> ?P \<or> ?F" is "?E \<longleftrightarrow> ?D") |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2496 |
proof |
60561 | 2497 |
show ?D if ?E |
2498 |
proof - |
|
2499 |
consider "?M \<or> ?P" | "\<not> ?M" "\<not> ?P" by blast |
|
2500 |
then show ?thesis |
|
2501 |
proof cases |
|
2502 |
case 1 |
|
2503 |
then show ?thesis by blast |
|
2504 |
next |
|
2505 |
case 2 |
|
60567 | 2506 |
from inf_uset[OF lp this] have ?F |
60561 | 2507 |
using \<open>?E\<close> by blast |
2508 |
then show ?thesis by blast |
|
2509 |
qed |
|
2510 |
qed |
|
2511 |
show ?E if ?D |
|
2512 |
proof - |
|
2513 |
from that consider ?M | ?P | ?F by blast |
|
2514 |
then show ?thesis |
|
2515 |
proof cases |
|
2516 |
case 1 |
|
2517 |
from minusinf_ex[OF lp this] show ?thesis . |
|
2518 |
next |
|
2519 |
case 2 |
|
2520 |
from plusinf_ex[OF lp this] show ?thesis . |
|
2521 |
next |
|
2522 |
case 3 |
|
2523 |
then show ?thesis by blast |
|
2524 |
qed |
|
2525 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2526 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2527 |
|
55768 | 2528 |
|
60533 | 2529 |
section \<open>First implementation : Naive by encoding all case splits locally\<close> |
55768 | 2530 |
|
55754 | 2531 |
definition "msubsteq c t d s a r = |
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2532 |
evaldjf (case_prod conj) |
55768 | 2533 |
[(let cd = c *\<^sub>p d |
2534 |
in (NEq (CP cd), Eq (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2535 |
(conj (Eq (CP c)) (NEq (CP d)), Eq (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2536 |
(conj (NEq (CP c)) (Eq (CP d)), Eq (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2537 |
(conj (Eq (CP c)) (Eq (CP d)), Eq r)]" |
|
2538 |
||
2539 |
lemma msubsteq_nb: |
|
2540 |
assumes lp: "islin (Eq (CNP 0 a r))" |
|
2541 |
and t: "tmbound0 t" |
|
2542 |
and s: "tmbound0 s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2543 |
shows "bound0 (msubsteq c t d s a r)" |
55768 | 2544 |
proof - |
2545 |
have th: "\<forall>x \<in> set |
|
2546 |
[(let cd = c *\<^sub>p d |
|
2547 |
in (NEq (CP cd), Eq (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2548 |
(conj (Eq (CP c)) (NEq (CP d)), Eq (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2549 |
(conj (NEq (CP c)) (Eq (CP d)), Eq (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2550 |
(conj (Eq (CP c)) (Eq (CP d)), Eq r)]. bound0 (case_prod conj x)" |
55768 | 2551 |
using lp by (simp add: Let_def t s) |
2552 |
from evaldjf_bound0[OF th] show ?thesis |
|
2553 |
by (simp add: msubsteq_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2554 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2555 |
|
55768 | 2556 |
lemma msubsteq: |
2557 |
assumes lp: "islin (Eq (CNP 0 a r))" |
|
2558 |
shows "Ifm vs (x#bs) (msubsteq c t d s a r) = |
|
2559 |
Ifm vs (((- Itm vs (x#bs) t / Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) / 2)#bs) (Eq (CNP 0 a r))" |
|
2560 |
(is "?lhs = ?rhs") |
|
2561 |
proof - |
|
2562 |
let ?Nt = "\<lambda>x t. Itm vs (x#bs) t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2563 |
let ?N = "\<lambda>p. Ipoly vs p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2564 |
let ?c = "?N c" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2565 |
let ?d = "?N d" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2566 |
let ?t = "?Nt x t" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2567 |
let ?s = "?Nt x s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2568 |
let ?a = "?N a" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2569 |
let ?r = "?Nt x r" |
55768 | 2570 |
from lp have lin:"isnpoly a" "a \<noteq> 0\<^sub>p" "tmbound0 r" "allpolys isnpoly r" |
2571 |
by simp_all |
|
60561 | 2572 |
note r = tmbound0_I[OF lin(3), of vs _ bs x] |
2573 |
consider "?c = 0" "?d = 0" | "?c = 0" "?d \<noteq> 0" | "?c \<noteq> 0" "?d = 0" | "?c \<noteq> 0" "?d \<noteq> 0" |
|
2574 |
by blast |
|
2575 |
then show ?thesis |
|
2576 |
proof cases |
|
2577 |
case 1 |
|
2578 |
then show ?thesis |
|
55768 | 2579 |
by (simp add: r[of 0] msubsteq_def Let_def evaldjf_ex) |
60561 | 2580 |
next |
60567 | 2581 |
case cd: 2 |
60561 | 2582 |
then have th: "(- ?t / ?c + - ?s / ?d)/2 = -?s / (2*?d)" |
55768 | 2583 |
by simp |
2584 |
have "?rhs = Ifm vs (-?s / (2*?d) # bs) (Eq (CNP 0 a r))" |
|
2585 |
by (simp only: th) |
|
2586 |
also have "\<dots> \<longleftrightarrow> ?a * (-?s / (2*?d)) + ?r = 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2587 |
by (simp add: r[of "- (Itm vs (x # bs) s / (2 * \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>))"]) |
55768 | 2588 |
also have "\<dots> \<longleftrightarrow> 2 * ?d * (?a * (-?s / (2*?d)) + ?r) = 0" |
60567 | 2589 |
using cd(2) mult_cancel_left[of "2*?d" "(?a * (-?s / (2*?d)) + ?r)" 0] by simp |
55768 | 2590 |
also have "\<dots> \<longleftrightarrow> (- ?a * ?s) * (2*?d / (2*?d)) + 2 * ?d * ?r= 0" |
66809 | 2591 |
by (simp add: field_simps distrib_left [of "2*?d"]) |
55768 | 2592 |
also have "\<dots> \<longleftrightarrow> - (?a * ?s) + 2*?d*?r = 0" |
60567 | 2593 |
using cd(2) by simp |
60561 | 2594 |
finally show ?thesis |
60567 | 2595 |
using cd |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45499
diff
changeset
|
2596 |
by (simp add: r[of "- (Itm vs (x # bs) s / (2 * \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>))"] msubsteq_def Let_def evaldjf_ex) |
60561 | 2597 |
next |
60567 | 2598 |
case cd: 3 |
2599 |
from cd(2) have th: "(- ?t / ?c + - ?s / ?d)/2 = -?t / (2 * ?c)" |
|
55768 | 2600 |
by simp |
2601 |
have "?rhs = Ifm vs (-?t / (2*?c) # bs) (Eq (CNP 0 a r))" |
|
2602 |
by (simp only: th) |
|
2603 |
also have "\<dots> \<longleftrightarrow> ?a * (-?t / (2*?c)) + ?r = 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2604 |
by (simp add: r[of "- (?t/ (2 * ?c))"]) |
55768 | 2605 |
also have "\<dots> \<longleftrightarrow> 2 * ?c * (?a * (-?t / (2 * ?c)) + ?r) = 0" |
60567 | 2606 |
using cd(1) mult_cancel_left[of "2 * ?c" "(?a * (-?t / (2 * ?c)) + ?r)" 0] by simp |
55768 | 2607 |
also have "\<dots> \<longleftrightarrow> (?a * -?t)* (2 * ?c) / (2 * ?c) + 2 * ?c * ?r= 0" |
66809 | 2608 |
by (simp add: field_simps distrib_left [of "2 * ?c"]) |
60567 | 2609 |
also have "\<dots> \<longleftrightarrow> - (?a * ?t) + 2 * ?c * ?r = 0" |
2610 |
using cd(1) by simp |
|
2611 |
finally show ?thesis using cd |
|
55768 | 2612 |
by (simp add: r[of "- (?t/ (2 * ?c))"] msubsteq_def Let_def evaldjf_ex) |
60561 | 2613 |
next |
60567 | 2614 |
case cd: 4 |
2615 |
then have cd2: "?c * ?d * 2 \<noteq> 0" |
|
55768 | 2616 |
by simp |
60567 | 2617 |
from add_frac_eq[OF cd, of "- ?t" "- ?s"] |
55768 | 2618 |
have th: "(- ?t / ?c + - ?s / ?d)/2 = - (?d * ?t + ?c* ?s )/ (2 * ?c * ?d)" |
36348
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents:
35625
diff
changeset
|
2619 |
by (simp add: field_simps) |
55768 | 2620 |
have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Eq (CNP 0 a r))" |
2621 |
by (simp only: th) |
|
55754 | 2622 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r = 0" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
2623 |
by (simp add: r [of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"]) |
55768 | 2624 |
also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) = 0" |
60567 | 2625 |
using cd mult_cancel_left[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2 * ?c * ?d)) + ?r" 0] |
55768 | 2626 |
by simp |
2627 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )) + 2 * ?c * ?d * ?r = 0" |
|
64240 | 2628 |
using nonzero_mult_div_cancel_left [OF cd2] cd |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2629 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
60567 | 2630 |
finally show ?thesis |
2631 |
using cd |
|
55768 | 2632 |
by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] |
2633 |
msubsteq_def Let_def evaldjf_ex field_simps) |
|
60561 | 2634 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2635 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2636 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2637 |
|
55754 | 2638 |
definition "msubstneq c t d s a r = |
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2639 |
evaldjf (case_prod conj) |
55768 | 2640 |
[(let cd = c *\<^sub>p d |
2641 |
in (NEq (CP cd), NEq (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2642 |
(conj (Eq (CP c)) (NEq (CP d)), NEq (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2643 |
(conj (NEq (CP c)) (Eq (CP d)), NEq (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2644 |
(conj (Eq (CP c)) (Eq (CP d)), NEq r)]" |
|
2645 |
||
2646 |
lemma msubstneq_nb: |
|
2647 |
assumes lp: "islin (NEq (CNP 0 a r))" |
|
2648 |
and t: "tmbound0 t" |
|
2649 |
and s: "tmbound0 s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2650 |
shows "bound0 (msubstneq c t d s a r)" |
55768 | 2651 |
proof - |
2652 |
have th: "\<forall>x\<in> set |
|
2653 |
[(let cd = c *\<^sub>p d |
|
2654 |
in (NEq (CP cd), NEq (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2655 |
(conj (Eq (CP c)) (NEq (CP d)), NEq (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2656 |
(conj (NEq (CP c)) (Eq (CP d)), NEq (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2657 |
(conj (Eq (CP c)) (Eq (CP d)), NEq r)]. bound0 (case_prod conj x)" |
55768 | 2658 |
using lp by (simp add: Let_def t s) |
2659 |
from evaldjf_bound0[OF th] show ?thesis |
|
2660 |
by (simp add: msubstneq_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2661 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2662 |
|
55768 | 2663 |
lemma msubstneq: |
2664 |
assumes lp: "islin (Eq (CNP 0 a r))" |
|
2665 |
shows "Ifm vs (x#bs) (msubstneq c t d s a r) = |
|
2666 |
Ifm vs (((- Itm vs (x#bs) t / Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) /2)#bs) (NEq (CNP 0 a r))" |
|
2667 |
(is "?lhs = ?rhs") |
|
2668 |
proof - |
|
2669 |
let ?Nt = "\<lambda>x t. Itm vs (x#bs) t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2670 |
let ?N = "\<lambda>p. Ipoly vs p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2671 |
let ?c = "?N c" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2672 |
let ?d = "?N d" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2673 |
let ?t = "?Nt x t" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2674 |
let ?s = "?Nt x s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2675 |
let ?a = "?N a" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2676 |
let ?r = "?Nt x r" |
55768 | 2677 |
from lp have lin:"isnpoly a" "a \<noteq> 0\<^sub>p" "tmbound0 r" "allpolys isnpoly r" |
2678 |
by simp_all |
|
2679 |
note r = tmbound0_I[OF lin(3), of vs _ bs x] |
|
60561 | 2680 |
consider "?c = 0" "?d = 0" | "?c = 0" "?d \<noteq> 0" | "?c \<noteq> 0" "?d = 0" | "?c \<noteq> 0" "?d \<noteq> 0" |
2681 |
by blast |
|
2682 |
then show ?thesis |
|
2683 |
proof cases |
|
2684 |
case 1 |
|
2685 |
then show ?thesis |
|
55768 | 2686 |
by (simp add: r[of 0] msubstneq_def Let_def evaldjf_ex) |
60561 | 2687 |
next |
60567 | 2688 |
case cd: 2 |
2689 |
from cd(1) have th: "(- ?t / ?c + - ?s / ?d)/2 = -?s / (2 * ?d)" |
|
55768 | 2690 |
by simp |
2691 |
have "?rhs = Ifm vs (-?s / (2*?d) # bs) (NEq (CNP 0 a r))" |
|
2692 |
by (simp only: th) |
|
2693 |
also have "\<dots> \<longleftrightarrow> ?a * (-?s / (2*?d)) + ?r \<noteq> 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2694 |
by (simp add: r[of "- (Itm vs (x # bs) s / (2 * \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>))"]) |
55754 | 2695 |
also have "\<dots> \<longleftrightarrow> 2*?d * (?a * (-?s / (2*?d)) + ?r) \<noteq> 0" |
60567 | 2696 |
using cd(2) mult_cancel_left[of "2*?d" "(?a * (-?s / (2*?d)) + ?r)" 0] by simp |
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
2697 |
also have "\<dots> \<longleftrightarrow> (- ?a * ?s) * (2*?d / (2*?d)) + 2*?d*?r\<noteq> 0" |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
48562
diff
changeset
|
2698 |
by (simp add: field_simps distrib_left[of "2*?d"] del: distrib_left) |
55768 | 2699 |
also have "\<dots> \<longleftrightarrow> - (?a * ?s) + 2*?d*?r \<noteq> 0" |
60567 | 2700 |
using cd(2) by simp |
60561 | 2701 |
finally show ?thesis |
60567 | 2702 |
using cd |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45499
diff
changeset
|
2703 |
by (simp add: r[of "- (Itm vs (x # bs) s / (2 * \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>))"] msubstneq_def Let_def evaldjf_ex) |
60561 | 2704 |
next |
60567 | 2705 |
case cd: 3 |
2706 |
from cd(2) have th: "(- ?t / ?c + - ?s / ?d)/2 = -?t / (2*?c)" |
|
55768 | 2707 |
by simp |
2708 |
have "?rhs = Ifm vs (-?t / (2*?c) # bs) (NEq (CNP 0 a r))" |
|
2709 |
by (simp only: th) |
|
2710 |
also have "\<dots> \<longleftrightarrow> ?a * (-?t / (2*?c)) + ?r \<noteq> 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2711 |
by (simp add: r[of "- (?t/ (2 * ?c))"]) |
55754 | 2712 |
also have "\<dots> \<longleftrightarrow> 2*?c * (?a * (-?t / (2*?c)) + ?r) \<noteq> 0" |
60567 | 2713 |
using cd(1) mult_cancel_left[of "2*?c" "(?a * (-?t / (2*?c)) + ?r)" 0] by simp |
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
2714 |
also have "\<dots> \<longleftrightarrow> (?a * -?t)* (2*?c) / (2*?c) + 2*?c*?r \<noteq> 0" |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
48562
diff
changeset
|
2715 |
by (simp add: field_simps distrib_left[of "2*?c"] del: distrib_left) |
55768 | 2716 |
also have "\<dots> \<longleftrightarrow> - (?a * ?t) + 2*?c*?r \<noteq> 0" |
60567 | 2717 |
using cd(1) by simp |
60561 | 2718 |
finally show ?thesis |
60567 | 2719 |
using cd by (simp add: r[of "- (?t/ (2*?c))"] msubstneq_def Let_def evaldjf_ex) |
60561 | 2720 |
next |
60567 | 2721 |
case cd: 4 |
2722 |
then have cd2: "?c * ?d * 2 \<noteq> 0" |
|
55768 | 2723 |
by simp |
60567 | 2724 |
from add_frac_eq[OF cd, of "- ?t" "- ?s"] |
55768 | 2725 |
have th: "(- ?t / ?c + - ?s / ?d)/2 = - (?d * ?t + ?c * ?s )/ (2 * ?c * ?d)" |
36348
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents:
35625
diff
changeset
|
2726 |
by (simp add: field_simps) |
55768 | 2727 |
have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (NEq (CNP 0 a r))" |
2728 |
by (simp only: th) |
|
55754 | 2729 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r \<noteq> 0" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
2730 |
by (simp add: r [of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"]) |
55768 | 2731 |
also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) \<noteq> 0" |
60567 | 2732 |
using cd mult_cancel_left[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r" 0] |
55768 | 2733 |
by simp |
55754 | 2734 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r \<noteq> 0" |
64240 | 2735 |
using nonzero_mult_div_cancel_left[OF cd2] cd |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2736 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
60561 | 2737 |
finally show ?thesis |
60567 | 2738 |
using cd |
55768 | 2739 |
by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] |
2740 |
msubstneq_def Let_def evaldjf_ex field_simps) |
|
60561 | 2741 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2742 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2743 |
|
55754 | 2744 |
definition "msubstlt c t d s a r = |
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2745 |
evaldjf (case_prod conj) |
55768 | 2746 |
[(let cd = c *\<^sub>p d |
2747 |
in (lt (CP (~\<^sub>p cd)), Lt (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2748 |
(let cd = c *\<^sub>p d |
|
2749 |
in (lt (CP cd), Lt (Sub (Mul a (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2750 |
(conj (lt (CP (~\<^sub>p c))) (Eq (CP d)), Lt (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2751 |
(conj (lt (CP c)) (Eq (CP d)), Lt (Sub (Mul a t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2752 |
(conj (lt (CP (~\<^sub>p d))) (Eq (CP c)), Lt (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2753 |
(conj (lt (CP d)) (Eq (CP c)), Lt (Sub (Mul a s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2754 |
(conj (Eq (CP c)) (Eq (CP d)), Lt r)]" |
|
2755 |
||
2756 |
lemma msubstlt_nb: |
|
2757 |
assumes lp: "islin (Lt (CNP 0 a r))" |
|
2758 |
and t: "tmbound0 t" |
|
2759 |
and s: "tmbound0 s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2760 |
shows "bound0 (msubstlt c t d s a r)" |
55768 | 2761 |
proof - |
2762 |
have th: "\<forall>x\<in> set |
|
2763 |
[(let cd = c *\<^sub>p d |
|
2764 |
in (lt (CP (~\<^sub>p cd)), Lt (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2765 |
(let cd = c *\<^sub>p d |
|
2766 |
in (lt (CP cd), Lt (Sub (Mul a (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2767 |
(conj (lt (CP (~\<^sub>p c))) (Eq (CP d)), Lt (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2768 |
(conj (lt (CP c)) (Eq (CP d)), Lt (Sub (Mul a t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2769 |
(conj (lt (CP (~\<^sub>p d))) (Eq (CP c)), Lt (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2770 |
(conj (lt (CP d)) (Eq (CP c)), Lt (Sub (Mul a s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2771 |
(conj (Eq (CP c)) (Eq (CP d)), Lt r)]. bound0 (case_prod conj x)" |
55768 | 2772 |
using lp by (simp add: Let_def t s lt_nb) |
2773 |
from evaldjf_bound0[OF th] show ?thesis |
|
2774 |
by (simp add: msubstlt_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2775 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2776 |
|
55768 | 2777 |
lemma msubstlt: |
2778 |
assumes nc: "isnpoly c" |
|
2779 |
and nd: "isnpoly d" |
|
2780 |
and lp: "islin (Lt (CNP 0 a r))" |
|
55754 | 2781 |
shows "Ifm vs (x#bs) (msubstlt c t d s a r) \<longleftrightarrow> |
55768 | 2782 |
Ifm vs (((- Itm vs (x#bs) t / Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) /2)#bs) (Lt (CNP 0 a r))" |
2783 |
(is "?lhs = ?rhs") |
|
2784 |
proof - |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2785 |
let ?Nt = "\<lambda>x t. Itm vs (x#bs) t" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2786 |
let ?N = "\<lambda>p. Ipoly vs p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2787 |
let ?c = "?N c" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2788 |
let ?d = "?N d" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2789 |
let ?t = "?Nt x t" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2790 |
let ?s = "?Nt x s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2791 |
let ?a = "?N a" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2792 |
let ?r = "?Nt x r" |
55768 | 2793 |
from lp have lin:"isnpoly a" "a \<noteq> 0\<^sub>p" "tmbound0 r" "allpolys isnpoly r" |
2794 |
by simp_all |
|
2795 |
note r = tmbound0_I[OF lin(3), of vs _ bs x] |
|
60561 | 2796 |
consider "?c = 0" "?d = 0" | "?c * ?d > 0" | "?c * ?d < 0" |
2797 |
| "?c > 0" "?d = 0" | "?c < 0" "?d = 0" | "?c = 0" "?d > 0" | "?c = 0" "?d < 0" |
|
2798 |
by atomize_elim auto |
|
2799 |
then show ?thesis |
|
2800 |
proof cases |
|
2801 |
case 1 |
|
2802 |
then show ?thesis |
|
55768 | 2803 |
using nc nd by (simp add: polyneg_norm lt r[of 0] msubstlt_def Let_def evaldjf_ex) |
60561 | 2804 |
next |
60567 | 2805 |
case cd: 2 |
2806 |
then have cd2: "2 * ?c * ?d > 0" |
|
55768 | 2807 |
by simp |
60567 | 2808 |
from cd have c: "?c \<noteq> 0" and d: "?d \<noteq> 0" |
55768 | 2809 |
by auto |
60567 | 2810 |
from cd2 have cd2': "\<not> 2 * ?c * ?d < 0" by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2811 |
from add_frac_eq[OF c d, of "- ?t" "- ?s"] |
55768 | 2812 |
have th: "(- ?t / ?c + - ?s / ?d)/2 = - (?d * ?t + ?c* ?s )/ (2 * ?c * ?d)" |
36348
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents:
35625
diff
changeset
|
2813 |
by (simp add: field_simps) |
55768 | 2814 |
have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Lt (CNP 0 a r))" |
2815 |
by (simp only: th) |
|
55754 | 2816 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r < 0" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
2817 |
by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"]) |
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
2818 |
also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) < 0" |
60567 | 2819 |
using cd2 cd2' |
55768 | 2820 |
mult_less_cancel_left_disj[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r" 0] |
2821 |
by simp |
|
55754 | 2822 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r < 0" |
64240 | 2823 |
using nonzero_mult_div_cancel_left[of "2*?c*?d"] c d |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2824 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
60567 | 2825 |
finally show ?thesis |
2826 |
using cd c d nc nd cd2' |
|
55768 | 2827 |
by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] |
2828 |
msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
60561 | 2829 |
next |
60567 | 2830 |
case cd: 3 |
2831 |
then have cd2: "2 * ?c * ?d < 0" |
|
55754 | 2832 |
by (simp add: mult_less_0_iff field_simps) |
60567 | 2833 |
from cd have c: "?c \<noteq> 0" and d: "?d \<noteq> 0" |
55768 | 2834 |
by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2835 |
from add_frac_eq[OF c d, of "- ?t" "- ?s"] |
60561 | 2836 |
have th: "(- ?t / ?c + - ?s / ?d)/2 = - (?d * ?t + ?c* ?s) / (2 * ?c * ?d)" |
36348
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents:
35625
diff
changeset
|
2837 |
by (simp add: field_simps) |
55768 | 2838 |
have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2 * ?c * ?d) # bs) (Lt (CNP 0 a r))" |
2839 |
by (simp only: th) |
|
2840 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2 * ?c * ?d)) + ?r < 0" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
2841 |
by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"]) |
55768 | 2842 |
also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c * ?s )/ (2 * ?c * ?d)) + ?r) > 0" |
60567 | 2843 |
using cd2 order_less_not_sym[OF cd2] |
55768 | 2844 |
mult_less_cancel_left_disj[of "2 * ?c * ?d" 0 "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r"] |
2845 |
by simp |
|
2846 |
also have "\<dots> \<longleftrightarrow> ?a * ((?d * ?t + ?c* ?s )) - 2 * ?c * ?d * ?r < 0" |
|
64240 | 2847 |
using nonzero_mult_div_cancel_left[of "2 * ?c * ?d"] c d |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2848 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
60567 | 2849 |
finally show ?thesis |
2850 |
using cd c d nc nd |
|
55768 | 2851 |
by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] |
2852 |
msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
60561 | 2853 |
next |
60567 | 2854 |
case cd: 4 |
2855 |
from cd(1) have c'': "2 * ?c > 0" |
|
55768 | 2856 |
by (simp add: zero_less_mult_iff) |
60567 | 2857 |
from cd(1) have c': "2 * ?c \<noteq> 0" |
55768 | 2858 |
by simp |
60567 | 2859 |
from cd(2) have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?t / (2 * ?c)" |
55768 | 2860 |
by (simp add: field_simps) |
2861 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?t / (2 * ?c) # bs) (Lt (CNP 0 a r))" |
|
2862 |
by (simp only: th) |
|
2863 |
also have "\<dots> \<longleftrightarrow> ?a * (- ?t / (2 * ?c))+ ?r < 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2864 |
by (simp add: r[of "- (?t / (2 * ?c))"]) |
55768 | 2865 |
also have "\<dots> \<longleftrightarrow> 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) < 0" |
60567 | 2866 |
using cd(1) mult_less_cancel_left_disj[of "2 * ?c" "?a* (- ?t / (2*?c))+ ?r" 0] c' c'' |
55768 | 2867 |
order_less_not_sym[OF c''] |
2868 |
by simp |
|
2869 |
also have "\<dots> \<longleftrightarrow> - ?a * ?t + 2 * ?c * ?r < 0" |
|
64240 | 2870 |
using nonzero_mult_div_cancel_left[OF c'] \<open>?c > 0\<close> |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2871 |
by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) |
60567 | 2872 |
finally show ?thesis |
2873 |
using cd nc nd |
|
55768 | 2874 |
by (simp add: r[of "- (?t / (2*?c))"] msubstlt_def Let_def evaldjf_ex field_simps |
2875 |
lt polyneg_norm polymul_norm) |
|
60561 | 2876 |
next |
60567 | 2877 |
case cd: 5 |
2878 |
from cd(1) have c': "2 * ?c \<noteq> 0" |
|
55768 | 2879 |
by simp |
60567 | 2880 |
from cd(1) have c'': "2 * ?c < 0" |
55768 | 2881 |
by (simp add: mult_less_0_iff) |
60567 | 2882 |
from cd(2) have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?t / (2 * ?c)" |
55768 | 2883 |
by (simp add: field_simps) |
2884 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?t / (2*?c) # bs) (Lt (CNP 0 a r))" |
|
2885 |
by (simp only: th) |
|
2886 |
also have "\<dots> \<longleftrightarrow> ?a * (- ?t / (2*?c))+ ?r < 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2887 |
by (simp add: r[of "- (?t / (2*?c))"]) |
55768 | 2888 |
also have "\<dots> \<longleftrightarrow> 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) > 0" |
60567 | 2889 |
using cd(1) order_less_not_sym[OF c''] less_imp_neq[OF c''] c'' |
55768 | 2890 |
mult_less_cancel_left_disj[of "2 * ?c" 0 "?a* (- ?t / (2*?c))+ ?r"] |
2891 |
by simp |
|
55754 | 2892 |
also have "\<dots> \<longleftrightarrow> ?a*?t - 2*?c *?r < 0" |
64240 | 2893 |
using nonzero_mult_div_cancel_left[OF c'] cd(1) order_less_not_sym[OF c''] |
55768 | 2894 |
less_imp_neq[OF c''] c'' |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2895 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
60567 | 2896 |
finally show ?thesis |
2897 |
using cd nc nd |
|
55768 | 2898 |
by (simp add: r[of "- (?t / (2*?c))"] msubstlt_def Let_def evaldjf_ex field_simps |
2899 |
lt polyneg_norm polymul_norm) |
|
60561 | 2900 |
next |
60567 | 2901 |
case cd: 6 |
2902 |
from cd(2) have d'': "2 * ?d > 0" |
|
55768 | 2903 |
by (simp add: zero_less_mult_iff) |
60567 | 2904 |
from cd(2) have d': "2 * ?d \<noteq> 0" |
55768 | 2905 |
by simp |
60567 | 2906 |
from cd(1) have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?s / (2 * ?d)" |
55768 | 2907 |
by (simp add: field_simps) |
2908 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?s / (2 * ?d) # bs) (Lt (CNP 0 a r))" |
|
2909 |
by (simp only: th) |
|
2910 |
also have "\<dots> \<longleftrightarrow> ?a * (- ?s / (2 * ?d))+ ?r < 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2911 |
by (simp add: r[of "- (?s / (2 * ?d))"]) |
55768 | 2912 |
also have "\<dots> \<longleftrightarrow> 2 * ?d * (?a * (- ?s / (2 * ?d))+ ?r) < 0" |
60567 | 2913 |
using cd(2) mult_less_cancel_left_disj[of "2 * ?d" "?a * (- ?s / (2 * ?d))+ ?r" 0] d' d'' |
55768 | 2914 |
order_less_not_sym[OF d''] |
2915 |
by simp |
|
2916 |
also have "\<dots> \<longleftrightarrow> - ?a * ?s+ 2 * ?d * ?r < 0" |
|
64240 | 2917 |
using nonzero_mult_div_cancel_left[OF d'] cd(2) |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2918 |
by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) |
60567 | 2919 |
finally show ?thesis |
2920 |
using cd nc nd |
|
55768 | 2921 |
by (simp add: r[of "- (?s / (2*?d))"] msubstlt_def Let_def evaldjf_ex field_simps |
2922 |
lt polyneg_norm polymul_norm) |
|
60561 | 2923 |
next |
60567 | 2924 |
case cd: 7 |
2925 |
from cd(2) have d': "2 * ?d \<noteq> 0" |
|
55768 | 2926 |
by simp |
60567 | 2927 |
from cd(2) have d'': "2 * ?d < 0" |
55768 | 2928 |
by (simp add: mult_less_0_iff) |
60567 | 2929 |
from cd(1) have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?s / (2*?d)" |
55768 | 2930 |
by (simp add: field_simps) |
2931 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?s / (2 * ?d) # bs) (Lt (CNP 0 a r))" |
|
2932 |
by (simp only: th) |
|
2933 |
also have "\<dots> \<longleftrightarrow> ?a * (- ?s / (2 * ?d)) + ?r < 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2934 |
by (simp add: r[of "- (?s / (2 * ?d))"]) |
55768 | 2935 |
also have "\<dots> \<longleftrightarrow> 2 * ?d * (?a * (- ?s / (2 * ?d)) + ?r) > 0" |
60567 | 2936 |
using cd(2) order_less_not_sym[OF d''] less_imp_neq[OF d''] d'' |
55768 | 2937 |
mult_less_cancel_left_disj[of "2 * ?d" 0 "?a* (- ?s / (2*?d))+ ?r"] |
2938 |
by simp |
|
2939 |
also have "\<dots> \<longleftrightarrow> ?a * ?s - 2 * ?d * ?r < 0" |
|
64240 | 2940 |
using nonzero_mult_div_cancel_left[OF d'] cd(2) order_less_not_sym[OF d''] |
55768 | 2941 |
less_imp_neq[OF d''] d'' |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
2942 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
60567 | 2943 |
finally show ?thesis |
2944 |
using cd nc nd |
|
55768 | 2945 |
by (simp add: r[of "- (?s / (2*?d))"] msubstlt_def Let_def evaldjf_ex field_simps |
2946 |
lt polyneg_norm polymul_norm) |
|
60561 | 2947 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2948 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2949 |
|
55754 | 2950 |
definition "msubstle c t d s a r = |
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2951 |
evaldjf (case_prod conj) |
55768 | 2952 |
[(let cd = c *\<^sub>p d |
2953 |
in (lt (CP (~\<^sub>p cd)), Le (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2954 |
(let cd = c *\<^sub>p d |
|
2955 |
in (lt (CP cd), Le (Sub (Mul a (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2956 |
(conj (lt (CP (~\<^sub>p c))) (Eq (CP d)), Le (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2957 |
(conj (lt (CP c)) (Eq (CP d)), Le (Sub (Mul a t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2958 |
(conj (lt (CP (~\<^sub>p d))) (Eq (CP c)), Le (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2959 |
(conj (lt (CP d)) (Eq (CP c)), Le (Sub (Mul a s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2960 |
(conj (Eq (CP c)) (Eq (CP d)), Le r)]" |
|
2961 |
||
2962 |
lemma msubstle_nb: |
|
2963 |
assumes lp: "islin (Le (CNP 0 a r))" |
|
2964 |
and t: "tmbound0 t" |
|
2965 |
and s: "tmbound0 s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2966 |
shows "bound0 (msubstle c t d s a r)" |
55768 | 2967 |
proof - |
2968 |
have th: "\<forall>x\<in> set |
|
2969 |
[(let cd = c *\<^sub>p d |
|
2970 |
in (lt (CP (~\<^sub>p cd)), Le (Add (Mul (~\<^sub>p a) (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2971 |
(let cd = c *\<^sub>p d |
|
2972 |
in (lt (CP cd), Le (Sub (Mul a (Add (Mul d t) (Mul c s))) (Mul ((2)\<^sub>p *\<^sub>p cd) r)))), |
|
2973 |
(conj (lt (CP (~\<^sub>p c))) (Eq (CP d)) , Le (Add (Mul (~\<^sub>p a) t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2974 |
(conj (lt (CP c)) (Eq (CP d)) , Le (Sub (Mul a t) (Mul ((2)\<^sub>p *\<^sub>p c) r))), |
|
2975 |
(conj (lt (CP (~\<^sub>p d))) (Eq (CP c)) , Le (Add (Mul (~\<^sub>p a) s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
2976 |
(conj (lt (CP d)) (Eq (CP c)) , Le (Sub (Mul a s) (Mul ((2)\<^sub>p *\<^sub>p d) r))), |
|
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60754
diff
changeset
|
2977 |
(conj (Eq (CP c)) (Eq (CP d)) , Le r)]. bound0 (case_prod conj x)" |
55768 | 2978 |
using lp by (simp add: Let_def t s lt_nb) |
2979 |
from evaldjf_bound0[OF th] show ?thesis |
|
2980 |
by (simp add: msubstle_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2981 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2982 |
|
55768 | 2983 |
lemma msubstle: |
2984 |
assumes nc: "isnpoly c" |
|
2985 |
and nd: "isnpoly d" |
|
2986 |
and lp: "islin (Le (CNP 0 a r))" |
|
55754 | 2987 |
shows "Ifm vs (x#bs) (msubstle c t d s a r) \<longleftrightarrow> |
55768 | 2988 |
Ifm vs (((- Itm vs (x#bs) t / Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) /2)#bs) (Le (CNP 0 a r))" |
2989 |
(is "?lhs = ?rhs") |
|
2990 |
proof - |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2991 |
let ?Nt = "\<lambda>x t. Itm vs (x#bs) t" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2992 |
let ?N = "\<lambda>p. Ipoly vs p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2993 |
let ?c = "?N c" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2994 |
let ?d = "?N d" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2995 |
let ?t = "?Nt x t" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2996 |
let ?s = "?Nt x s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2997 |
let ?a = "?N a" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
2998 |
let ?r = "?Nt x r" |
55768 | 2999 |
from lp have lin:"isnpoly a" "a \<noteq> 0\<^sub>p" "tmbound0 r" "allpolys isnpoly r" |
3000 |
by simp_all |
|
3001 |
note r = tmbound0_I[OF lin(3), of vs _ bs x] |
|
67123 | 3002 |
have "?c * ?d < 0 \<or> ?c * ?d > 0 \<or> (?c = 0 \<and> ?d = 0) \<or> (?c = 0 \<and> ?d < 0) \<or> (?c = 0 \<and> ?d > 0) \<or> (?c < 0 \<and> ?d = 0) \<or> (?c > 0 \<and> ?d = 0)" |
55768 | 3003 |
by auto |
67123 | 3004 |
then consider "?c = 0" "?d = 0" | "?c * ?d > 0" | "?c * ?d < 0" |
3005 |
| "?c > 0" "?d = 0" | "?c < 0" "?d = 0" | "?c = 0" "?d > 0" | "?c = 0" "?d < 0" |
|
3006 |
by blast |
|
3007 |
then show ?thesis |
|
3008 |
proof cases |
|
3009 |
case 1 |
|
3010 |
with nc nd show ?thesis |
|
55768 | 3011 |
by (simp add: polyneg_norm polymul_norm lt r[of 0] msubstle_def Let_def evaldjf_ex) |
67123 | 3012 |
next |
3013 |
case dc: 2 |
|
55768 | 3014 |
from dc have dc': "2 * ?c * ?d > 0" |
3015 |
by simp |
|
3016 |
then have c: "?c \<noteq> 0" and d: "?d \<noteq> 0" |
|
3017 |
by auto |
|
3018 |
from dc' have dc'': "\<not> 2 * ?c * ?d < 0" |
|
3019 |
by simp |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3020 |
from add_frac_eq[OF c d, of "- ?t" "- ?s"] |
55768 | 3021 |
have th: "(- ?t / ?c + - ?s / ?d)/2 = - (?d * ?t + ?c * ?s )/ (2 * ?c * ?d)" |
36348
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents:
35625
diff
changeset
|
3022 |
by (simp add: field_simps) |
55768 | 3023 |
have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Le (CNP 0 a r))" |
3024 |
by (simp only: th) |
|
3025 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r \<le> 0" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
3026 |
by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"]) |
55768 | 3027 |
also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) \<le> 0" |
3028 |
using dc' dc'' |
|
3029 |
mult_le_cancel_left[of "2 * ?c * ?d" "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r" 0] |
|
3030 |
by simp |
|
3031 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r \<le> 0" |
|
64240 | 3032 |
using nonzero_mult_div_cancel_left[of "2*?c*?d"] c d |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3033 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
67123 | 3034 |
finally show ?thesis |
3035 |
using dc c d nc nd dc' |
|
55768 | 3036 |
by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] msubstle_def |
3037 |
Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
67123 | 3038 |
next |
3039 |
case dc: 3 |
|
55768 | 3040 |
from dc have dc': "2 * ?c * ?d < 0" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3041 |
by (simp add: mult_less_0_iff field_simps add_neg_neg add_pos_pos) |
55768 | 3042 |
then have c: "?c \<noteq> 0" and d: "?d \<noteq> 0" |
3043 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3044 |
from add_frac_eq[OF c d, of "- ?t" "- ?s"] |
55768 | 3045 |
have th: "(- ?t / ?c + - ?s / ?d)/2 = - (?d * ?t + ?c* ?s )/ (2 * ?c * ?d)" |
36348
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
haftmann
parents:
35625
diff
changeset
|
3046 |
by (simp add: field_simps) |
55768 | 3047 |
have "?rhs \<longleftrightarrow> Ifm vs (- (?d * ?t + ?c* ?s )/ (2*?c*?d) # bs) (Le (CNP 0 a r))" |
3048 |
by (simp only: th) |
|
3049 |
also have "\<dots> \<longleftrightarrow> ?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r \<le> 0" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
3050 |
by (simp add: r[of "(- (?d * ?t) - (?c *?s)) / (2 * ?c * ?d)"]) |
55768 | 3051 |
also have "\<dots> \<longleftrightarrow> (2 * ?c * ?d) * (?a * (- (?d * ?t + ?c* ?s )/ (2*?c*?d)) + ?r) \<ge> 0" |
3052 |
using dc' order_less_not_sym[OF dc'] |
|
3053 |
mult_le_cancel_left[of "2 * ?c * ?d" 0 "?a * (- (?d * ?t + ?c* ?s)/ (2*?c*?d)) + ?r"] |
|
3054 |
by simp |
|
3055 |
also have "\<dots> \<longleftrightarrow> ?a * ((?d * ?t + ?c* ?s )) - 2 * ?c * ?d * ?r \<le> 0" |
|
64240 | 3056 |
using nonzero_mult_div_cancel_left[of "2 * ?c * ?d"] c d |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3057 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
67123 | 3058 |
finally show ?thesis |
3059 |
using dc c d nc nd |
|
55768 | 3060 |
by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] msubstle_def |
3061 |
Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
67123 | 3062 |
next |
3063 |
case 4 |
|
3064 |
have c: "?c > 0" and d: "?d = 0" by fact+ |
|
55768 | 3065 |
from c have c'': "2 * ?c > 0" |
3066 |
by (simp add: zero_less_mult_iff) |
|
3067 |
from c have c': "2 * ?c \<noteq> 0" |
|
3068 |
by simp |
|
3069 |
from d have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?t / (2*?c)" |
|
3070 |
by (simp add: field_simps) |
|
3071 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?t / (2 * ?c) # bs) (Le (CNP 0 a r))" |
|
3072 |
by (simp only: th) |
|
3073 |
also have "\<dots> \<longleftrightarrow> ?a * (- ?t / (2 * ?c))+ ?r \<le> 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3074 |
by (simp add: r[of "- (?t / (2 * ?c))"]) |
55768 | 3075 |
also have "\<dots> \<longleftrightarrow> 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) \<le> 0" |
3076 |
using c mult_le_cancel_left[of "2 * ?c" "?a* (- ?t / (2*?c))+ ?r" 0] c' c'' |
|
3077 |
order_less_not_sym[OF c''] |
|
3078 |
by simp |
|
3079 |
also have "\<dots> \<longleftrightarrow> - ?a*?t+ 2*?c *?r \<le> 0" |
|
64240 | 3080 |
using nonzero_mult_div_cancel_left[OF c'] c |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3081 |
by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) |
67123 | 3082 |
finally show ?thesis |
3083 |
using c d nc nd |
|
55768 | 3084 |
by (simp add: r[of "- (?t / (2*?c))"] msubstle_def Let_def |
3085 |
evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
67123 | 3086 |
next |
3087 |
case 5 |
|
3088 |
have c: "?c < 0" and d: "?d = 0" by fact+ |
|
55768 | 3089 |
then have c': "2 * ?c \<noteq> 0" |
3090 |
by simp |
|
3091 |
from c have c'': "2 * ?c < 0" |
|
3092 |
by (simp add: mult_less_0_iff) |
|
3093 |
from d have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?t / (2*?c)" |
|
3094 |
by (simp add: field_simps) |
|
3095 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?t / (2 * ?c) # bs) (Le (CNP 0 a r))" |
|
3096 |
by (simp only: th) |
|
3097 |
also have "\<dots> \<longleftrightarrow> ?a * (- ?t / (2*?c))+ ?r \<le> 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3098 |
by (simp add: r[of "- (?t / (2*?c))"]) |
55768 | 3099 |
also have "\<dots> \<longleftrightarrow> 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) \<ge> 0" |
3100 |
using c order_less_not_sym[OF c''] less_imp_neq[OF c''] c'' |
|
3101 |
mult_le_cancel_left[of "2 * ?c" 0 "?a* (- ?t / (2*?c))+ ?r"] |
|
3102 |
by simp |
|
3103 |
also have "\<dots> \<longleftrightarrow> ?a * ?t - 2 * ?c * ?r \<le> 0" |
|
64240 | 3104 |
using nonzero_mult_div_cancel_left[OF c'] c order_less_not_sym[OF c''] |
55768 | 3105 |
less_imp_neq[OF c''] c'' |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3106 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
67123 | 3107 |
finally show ?thesis using c d nc nd |
55768 | 3108 |
by (simp add: r[of "- (?t / (2*?c))"] msubstle_def Let_def |
3109 |
evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
67123 | 3110 |
next |
3111 |
case 6 |
|
3112 |
have c: "?c = 0" and d: "?d > 0" by fact+ |
|
55768 | 3113 |
from d have d'': "2 * ?d > 0" |
3114 |
by (simp add: zero_less_mult_iff) |
|
3115 |
from d have d': "2 * ?d \<noteq> 0" |
|
3116 |
by simp |
|
3117 |
from c have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?s / (2 * ?d)" |
|
3118 |
by (simp add: field_simps) |
|
3119 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?s / (2 * ?d) # bs) (Le (CNP 0 a r))" |
|
3120 |
by (simp only: th) |
|
3121 |
also have "\<dots> \<longleftrightarrow> ?a * (- ?s / (2 * ?d))+ ?r \<le> 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3122 |
by (simp add: r[of "- (?s / (2*?d))"]) |
55768 | 3123 |
also have "\<dots> \<longleftrightarrow> 2 * ?d * (?a * (- ?s / (2 * ?d)) + ?r) \<le> 0" |
3124 |
using d mult_le_cancel_left[of "2 * ?d" "?a* (- ?s / (2*?d))+ ?r" 0] d' d'' |
|
3125 |
order_less_not_sym[OF d''] |
|
3126 |
by simp |
|
3127 |
also have "\<dots> \<longleftrightarrow> - ?a * ?s + 2 * ?d * ?r \<le> 0" |
|
64240 | 3128 |
using nonzero_mult_div_cancel_left[OF d'] d |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3129 |
by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) |
67123 | 3130 |
finally show ?thesis |
3131 |
using c d nc nd |
|
55768 | 3132 |
by (simp add: r[of "- (?s / (2*?d))"] msubstle_def Let_def |
3133 |
evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
67123 | 3134 |
next |
3135 |
case 7 |
|
3136 |
have c: "?c = 0" and d: "?d < 0" by fact+ |
|
55768 | 3137 |
then have d': "2 * ?d \<noteq> 0" |
3138 |
by simp |
|
3139 |
from d have d'': "2 * ?d < 0" |
|
3140 |
by (simp add: mult_less_0_iff) |
|
3141 |
from c have th: "(- ?t / ?c + - ?s / ?d)/2 = - ?s / (2*?d)" |
|
3142 |
by (simp add: field_simps) |
|
3143 |
have "?rhs \<longleftrightarrow> Ifm vs (- ?s / (2*?d) # bs) (Le (CNP 0 a r))" |
|
3144 |
by (simp only: th) |
|
3145 |
also have "\<dots> \<longleftrightarrow> ?a* (- ?s / (2*?d))+ ?r \<le> 0" |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3146 |
by (simp add: r[of "- (?s / (2*?d))"]) |
55768 | 3147 |
also have "\<dots> \<longleftrightarrow> 2*?d * (?a* (- ?s / (2*?d))+ ?r) \<ge> 0" |
3148 |
using d order_less_not_sym[OF d''] less_imp_neq[OF d''] d'' |
|
3149 |
mult_le_cancel_left[of "2 * ?d" 0 "?a* (- ?s / (2*?d))+ ?r"] |
|
3150 |
by simp |
|
3151 |
also have "\<dots> \<longleftrightarrow> ?a * ?s - 2 * ?d * ?r \<le> 0" |
|
64240 | 3152 |
using nonzero_mult_div_cancel_left[OF d'] d order_less_not_sym[OF d''] |
67123 | 3153 |
less_imp_neq[OF d''] d'' |
3154 |
by (simp add: algebra_simps diff_divide_distrib del: distrib_right) |
|
3155 |
finally show ?thesis |
|
3156 |
using c d nc nd |
|
55768 | 3157 |
by (simp add: r[of "- (?s / (2*?d))"] msubstle_def Let_def |
3158 |
evaldjf_ex field_simps lt polyneg_norm polymul_norm) |
|
67123 | 3159 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3160 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3161 |
|
55768 | 3162 |
fun msubst :: "fm \<Rightarrow> (poly \<times> tm) \<times> (poly \<times> tm) \<Rightarrow> fm" |
67123 | 3163 |
where |
3164 |
"msubst (And p q) ((c, t), (d, s)) = conj (msubst p ((c,t),(d,s))) (msubst q ((c, t), (d, s)))" |
|
3165 |
| "msubst (Or p q) ((c, t), (d, s)) = disj (msubst p ((c,t),(d,s))) (msubst q ((c, t), (d, s)))" |
|
3166 |
| "msubst (Eq (CNP 0 a r)) ((c, t), (d, s)) = msubsteq c t d s a r" |
|
3167 |
| "msubst (NEq (CNP 0 a r)) ((c, t), (d, s)) = msubstneq c t d s a r" |
|
3168 |
| "msubst (Lt (CNP 0 a r)) ((c, t), (d, s)) = msubstlt c t d s a r" |
|
3169 |
| "msubst (Le (CNP 0 a r)) ((c, t), (d, s)) = msubstle c t d s a r" |
|
3170 |
| "msubst p ((c, t), (d, s)) = p" |
|
55768 | 3171 |
|
3172 |
lemma msubst_I: |
|
3173 |
assumes lp: "islin p" |
|
3174 |
and nc: "isnpoly c" |
|
3175 |
and nd: "isnpoly d" |
|
3176 |
shows "Ifm vs (x#bs) (msubst p ((c,t),(d,s))) = |
|
3177 |
Ifm vs (((- Itm vs (x#bs) t / Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) /2)#bs) p" |
|
3178 |
using lp |
|
3179 |
by (induct p rule: islin.induct) |
|
80098 | 3180 |
(auto simp: tmbound0_I |
55768 | 3181 |
[where b = "(- (Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>) - (Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>)) / 2" |
3182 |
and b' = x and bs = bs and vs = vs] |
|
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3183 |
msubsteq msubstneq msubstlt [OF nc nd] msubstle [OF nc nd]) |
55768 | 3184 |
|
3185 |
lemma msubst_nb: |
|
67123 | 3186 |
assumes "islin p" |
3187 |
and "tmbound0 t" |
|
3188 |
and "tmbound0 s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3189 |
shows "bound0 (msubst p ((c,t),(d,s)))" |
67123 | 3190 |
using assms |
80098 | 3191 |
by (induct p rule: islin.induct) (auto simp: msubsteq_nb msubstneq_nb msubstlt_nb msubstle_nb) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3192 |
|
55754 | 3193 |
lemma fr_eq_msubst: |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3194 |
assumes lp: "islin p" |
55768 | 3195 |
shows "(\<exists>x. Ifm vs (x#bs) p) \<longleftrightarrow> |
3196 |
(Ifm vs (x#bs) (minusinf p) \<or> |
|
3197 |
Ifm vs (x#bs) (plusinf p) \<or> |
|
3198 |
(\<exists>(c, t) \<in> set (uset p). \<exists>(d, s) \<in> set (uset p). |
|
3199 |
Ifm vs (x#bs) (msubst p ((c, t), (d, s)))))" |
|
55754 | 3200 |
(is "(\<exists>x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D") |
55768 | 3201 |
proof - |
67123 | 3202 |
from uset_l[OF lp] have *: "\<forall>(c, s)\<in>set (uset p). isnpoly c \<and> tmbound0 s" |
55768 | 3203 |
by blast |
3204 |
{ |
|
3205 |
fix c t d s |
|
3206 |
assume ctU: "(c, t) \<in>set (uset p)" |
|
3207 |
and dsU: "(d,s) \<in>set (uset p)" |
|
3208 |
and pts: "Ifm vs ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p" |
|
67123 | 3209 |
from *[rule_format, OF ctU] *[rule_format, OF dsU] have norm:"isnpoly c" "isnpoly d" |
55768 | 3210 |
by simp_all |
3211 |
from msubst_I[OF lp norm, of vs x bs t s] pts |
|
3212 |
have "Ifm vs (x # bs) (msubst p ((c, t), d, s))" .. |
|
3213 |
} |
|
3214 |
moreover |
|
3215 |
{ |
|
3216 |
fix c t d s |
|
3217 |
assume ctU: "(c, t) \<in> set (uset p)" |
|
3218 |
and dsU: "(d,s) \<in>set (uset p)" |
|
3219 |
and pts: "Ifm vs (x # bs) (msubst p ((c, t), d, s))" |
|
67123 | 3220 |
from *[rule_format, OF ctU] *[rule_format, OF dsU] have norm:"isnpoly c" "isnpoly d" |
55768 | 3221 |
by simp_all |
3222 |
from msubst_I[OF lp norm, of vs x bs t s] pts |
|
3223 |
have "Ifm vs ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p" .. |
|
3224 |
} |
|
67123 | 3225 |
ultimately have **: "(\<exists>(c, t) \<in> set (uset p). \<exists>(d, s) \<in> set (uset p). |
55768 | 3226 |
Ifm vs ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p) \<longleftrightarrow> ?F" |
3227 |
by blast |
|
67123 | 3228 |
from fr_eq[OF lp, of vs bs x, simplified **] show ?thesis . |
55754 | 3229 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3230 |
|
55768 | 3231 |
lemma simpfm_lin: |
68442 | 3232 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3233 |
shows "qfree p \<Longrightarrow> islin (simpfm p)" |
80098 | 3234 |
by (induct p rule: simpfm.induct) (auto simp: conj_lin disj_lin) |
55768 | 3235 |
|
3236 |
definition "ferrack p \<equiv> |
|
3237 |
let |
|
3238 |
q = simpfm p; |
|
3239 |
mp = minusinf q; |
|
3240 |
pp = plusinf q |
|
3241 |
in |
|
3242 |
if (mp = T \<or> pp = T) then T |
|
3243 |
else |
|
3244 |
(let U = alluopairs (remdups (uset q)) |
|
3245 |
in decr0 (disj mp (disj pp (evaldjf (simpfm o (msubst q)) U ))))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3246 |
|
55754 | 3247 |
lemma ferrack: |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3248 |
assumes qf: "qfree p" |
55768 | 3249 |
shows "qfree (ferrack p) \<and> Ifm vs bs (ferrack p) = Ifm vs bs (E p)" |
3250 |
(is "_ \<and> ?rhs = ?lhs") |
|
3251 |
proof - |
|
3252 |
let ?I = "\<lambda>x p. Ifm vs (x#bs) p" |
|
3253 |
let ?N = "\<lambda>t. Ipoly vs t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3254 |
let ?Nt = "\<lambda>x t. Itm vs (x#bs) t" |
55754 | 3255 |
let ?q = "simpfm p" |
41823 | 3256 |
let ?U = "remdups(uset ?q)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3257 |
let ?Up = "alluopairs ?U" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3258 |
let ?mp = "minusinf ?q" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3259 |
let ?pp = "plusinf ?q" |
55768 | 3260 |
fix x |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3261 |
let ?I = "\<lambda>p. Ifm vs (x#bs) p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3262 |
from simpfm_lin[OF qf] simpfm_qf[OF qf] have lq: "islin ?q" and q_qf: "qfree ?q" . |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3263 |
from minusinf_nb[OF lq] plusinf_nb[OF lq] have mp_nb: "bound0 ?mp" and pp_nb: "bound0 ?pp" . |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3264 |
from bound0_qf[OF mp_nb] bound0_qf[OF pp_nb] have mp_qf: "qfree ?mp" and pp_qf: "qfree ?pp" . |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3265 |
from uset_l[OF lq] have U_l: "\<forall>(c, s)\<in>set ?U. isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3266 |
by simp |
55768 | 3267 |
{ |
3268 |
fix c t d s |
|
3269 |
assume ctU: "(c, t) \<in> set ?U" |
|
3270 |
and dsU: "(d,s) \<in> set ?U" |
|
3271 |
from U_l ctU dsU have norm: "isnpoly c" "isnpoly d" |
|
3272 |
by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3273 |
from msubst_I[OF lq norm, of vs x bs t s] msubst_I[OF lq norm(2,1), of vs x bs s t] |
55768 | 3274 |
have "?I (msubst ?q ((c,t),(d,s))) = ?I (msubst ?q ((d,s),(c,t)))" |
3275 |
by (simp add: field_simps) |
|
3276 |
} |
|
3277 |
then have th0: "\<forall>x \<in> set ?U. \<forall>y \<in> set ?U. ?I (msubst ?q (x, y)) \<longleftrightarrow> ?I (msubst ?q (y, x))" |
|
3278 |
by auto |
|
3279 |
{ |
|
3280 |
fix x |
|
3281 |
assume xUp: "x \<in> set ?Up" |
|
3282 |
then obtain c t d s |
|
3283 |
where ctU: "(c, t) \<in> set ?U" |
|
3284 |
and dsU: "(d,s) \<in> set ?U" |
|
3285 |
and x: "x = ((c, t),(d, s))" |
|
3286 |
using alluopairs_set1[of ?U] by auto |
|
55754 | 3287 |
from U_l[rule_format, OF ctU] U_l[rule_format, OF dsU] |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3288 |
have nbs: "tmbound0 t" "tmbound0 s" by simp_all |
55754 | 3289 |
from simpfm_bound0[OF msubst_nb[OF lq nbs, of c d]] |
55768 | 3290 |
have "bound0 ((simpfm o (msubst (simpfm p))) x)" |
3291 |
using x by simp |
|
3292 |
} |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3293 |
with evaldjf_bound0[of ?Up "(simpfm o (msubst (simpfm p)))"] |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3294 |
have "bound0 (evaldjf (simpfm o (msubst (simpfm p))) ?Up)" by blast |
55754 | 3295 |
with mp_nb pp_nb |
55768 | 3296 |
have th1: "bound0 (disj ?mp (disj ?pp (evaldjf (simpfm o (msubst ?q)) ?Up )))" |
3297 |
by simp |
|
3298 |
from decr0_qf[OF th1] have thqf: "qfree (ferrack p)" |
|
3299 |
by (simp add: ferrack_def Let_def) |
|
3300 |
have "?lhs \<longleftrightarrow> (\<exists>x. Ifm vs (x#bs) ?q)" |
|
3301 |
by simp |
|
3302 |
also have "\<dots> \<longleftrightarrow> ?I ?mp \<or> ?I ?pp \<or> |
|
3303 |
(\<exists>(c, t)\<in>set ?U. \<exists>(d, s)\<in>set ?U. ?I (msubst (simpfm p) ((c, t), d, s)))" |
|
3304 |
using fr_eq_msubst[OF lq, of vs bs x] by simp |
|
3305 |
also have "\<dots> \<longleftrightarrow> ?I ?mp \<or> ?I ?pp \<or> |
|
3306 |
(\<exists>(x, y) \<in> set ?Up. ?I ((simpfm \<circ> msubst ?q) (x, y)))" |
|
3307 |
using alluopairs_bex[OF th0] by simp |
|
3308 |
also have "\<dots> \<longleftrightarrow> ?I ?mp \<or> ?I ?pp \<or> ?I (evaldjf (simpfm \<circ> msubst ?q) ?Up)" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3309 |
by (simp add: evaldjf_ex) |
55768 | 3310 |
also have "\<dots> \<longleftrightarrow> ?I (disj ?mp (disj ?pp (evaldjf (simpfm \<circ> msubst ?q) ?Up)))" |
3311 |
by simp |
|
3312 |
also have "\<dots> \<longleftrightarrow> ?rhs" |
|
3313 |
using decr0[OF th1, of vs x bs] |
|
80098 | 3314 |
by (cases "?mp = T \<or> ?pp = T") (auto simp: ferrack_def Let_def) |
55768 | 3315 |
finally show ?thesis |
3316 |
using thqf by blast |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3317 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3318 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3319 |
definition "frpar p = simpfm (qelim p ferrack)" |
55768 | 3320 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3321 |
lemma frpar: "qfree (frpar p) \<and> (Ifm vs bs (frpar p) \<longleftrightarrow> Ifm vs bs p)" |
55768 | 3322 |
proof - |
3323 |
from ferrack |
|
3324 |
have th: "\<forall>bs p. qfree p \<longrightarrow> qfree (ferrack p) \<and> Ifm vs bs (ferrack p) = Ifm vs bs (E p)" |
|
3325 |
by blast |
|
3326 |
from qelim[OF th, of p bs] show ?thesis |
|
3327 |
unfolding frpar_def by auto |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3328 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3329 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3330 |
|
67123 | 3331 |
section \<open>Second implementation: case splits not local\<close> |
55768 | 3332 |
|
3333 |
lemma fr_eq2: |
|
3334 |
assumes lp: "islin p" |
|
55754 | 3335 |
shows "(\<exists>x. Ifm vs (x#bs) p) \<longleftrightarrow> |
55768 | 3336 |
(Ifm vs (x#bs) (minusinf p) \<or> |
3337 |
Ifm vs (x#bs) (plusinf p) \<or> |
|
3338 |
Ifm vs (0#bs) p \<or> |
|
3339 |
(\<exists>(n, t) \<in> set (uset p). |
|
3340 |
Ipoly vs n \<noteq> 0 \<and> Ifm vs ((- Itm vs (x#bs) t / (Ipoly vs n * 2))#bs) p) \<or> |
|
3341 |
(\<exists>(n, t) \<in> set (uset p). \<exists>(m, s) \<in> set (uset p). |
|
3342 |
Ipoly vs n \<noteq> 0 \<and> |
|
3343 |
Ipoly vs m \<noteq> 0 \<and> |
|
3344 |
Ifm vs (((- Itm vs (x#bs) t / Ipoly vs n + - Itm vs (x#bs) s / Ipoly vs m) /2)#bs) p))" |
|
55754 | 3345 |
(is "(\<exists>x. ?I x p) = (?M \<or> ?P \<or> ?Z \<or> ?U \<or> ?F)" is "?E = ?D") |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3346 |
proof |
55754 | 3347 |
assume px: "\<exists>x. ?I x p" |
67123 | 3348 |
consider "?M \<or> ?P" | "\<not> ?M" "\<not> ?P" by blast |
3349 |
then show ?D |
|
3350 |
proof cases |
|
3351 |
case 1 |
|
3352 |
then show ?thesis by blast |
|
3353 |
next |
|
3354 |
case 2 |
|
3355 |
have nmi: "\<not> ?M" and npi: "\<not> ?P" by fact+ |
|
55754 | 3356 |
from inf_uset[OF lp nmi npi, OF px] |
55768 | 3357 |
obtain c t d s where ct: |
3358 |
"(c, t) \<in> set (uset p)" |
|
3359 |
"(d, s) \<in> set (uset p)" |
|
3360 |
"?I ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / (1 + 1)) p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3361 |
by auto |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3362 |
let ?c = "\<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3363 |
let ?d = "\<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3364 |
let ?s = "Itm vs (x # bs) s" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3365 |
let ?t = "Itm vs (x # bs) t" |
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
3366 |
have eq2: "\<And>(x::'a). x + x = 2 * x" |
55768 | 3367 |
by (simp add: field_simps) |
67123 | 3368 |
consider "?c = 0" "?d = 0" | "?c = 0" "?d \<noteq> 0" | "?c \<noteq> 0" "?d = 0" | "?c \<noteq> 0" "?d \<noteq> 0" |
3369 |
by auto |
|
3370 |
then show ?thesis |
|
3371 |
proof cases |
|
3372 |
case 1 |
|
3373 |
with ct show ?thesis by simp |
|
3374 |
next |
|
3375 |
case 2 |
|
3376 |
with ct show ?thesis by auto |
|
3377 |
next |
|
3378 |
case 3 |
|
3379 |
with ct show ?thesis by auto |
|
3380 |
next |
|
3381 |
case z: 4 |
|
3382 |
from z have ?F |
|
3383 |
using ct |
|
80098 | 3384 |
apply (intro bexI[where x = "(c,t)"]; simp) |
3385 |
apply (intro bexI[where x = "(d,s)"]; simp) |
|
55768 | 3386 |
done |
67123 | 3387 |
then show ?thesis by blast |
3388 |
qed |
|
3389 |
qed |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3390 |
next |
67123 | 3391 |
assume ?D |
3392 |
then consider ?M | ?P | ?Z | ?U | ?F by blast |
|
3393 |
then show ?E |
|
3394 |
proof cases |
|
3395 |
case 1 |
|
3396 |
show ?thesis by (rule minusinf_ex[OF lp \<open>?M\<close>]) |
|
3397 |
next |
|
3398 |
case 2 |
|
3399 |
show ?thesis by (rule plusinf_ex[OF lp \<open>?P\<close>]) |
|
3400 |
qed blast+ |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3401 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3402 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3403 |
definition "msubsteq2 c t a b = Eq (Add (Mul a t) (Mul c b))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3404 |
definition "msubstltpos c t a b = Lt (Add (Mul a t) (Mul c b))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3405 |
definition "msubstlepos c t a b = Le (Add (Mul a t) (Mul c b))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3406 |
definition "msubstltneg c t a b = Lt (Neg (Add (Mul a t) (Mul c b)))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3407 |
definition "msubstleneg c t a b = Le (Neg (Add (Mul a t) (Mul c b)))" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3408 |
|
55754 | 3409 |
lemma msubsteq2: |
55768 | 3410 |
assumes nz: "Ipoly vs c \<noteq> 0" |
3411 |
and l: "islin (Eq (CNP 0 a b))" |
|
3412 |
shows "Ifm vs (x#bs) (msubsteq2 c t a b) = |
|
3413 |
Ifm vs (((Itm vs (x#bs) t / Ipoly vs c ))#bs) (Eq (CNP 0 a b))" |
|
3414 |
using nz l tmbound0_I[of b vs x bs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>", symmetric] |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3415 |
by (simp add: msubsteq2_def field_simps) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3416 |
|
55754 | 3417 |
lemma msubstltpos: |
55768 | 3418 |
assumes nz: "Ipoly vs c > 0" |
3419 |
and l: "islin (Lt (CNP 0 a b))" |
|
3420 |
shows "Ifm vs (x#bs) (msubstltpos c t a b) = |
|
3421 |
Ifm vs (((Itm vs (x#bs) t / Ipoly vs c ))#bs) (Lt (CNP 0 a b))" |
|
3422 |
using nz l tmbound0_I[of b vs x bs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>", symmetric] |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3423 |
by (simp add: msubstltpos_def field_simps) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3424 |
|
55754 | 3425 |
lemma msubstlepos: |
55768 | 3426 |
assumes nz: "Ipoly vs c > 0" |
3427 |
and l: "islin (Le (CNP 0 a b))" |
|
3428 |
shows "Ifm vs (x#bs) (msubstlepos c t a b) = |
|
3429 |
Ifm vs (((Itm vs (x#bs) t / Ipoly vs c ))#bs) (Le (CNP 0 a b))" |
|
3430 |
using nz l tmbound0_I[of b vs x bs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>", symmetric] |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3431 |
by (simp add: msubstlepos_def field_simps) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3432 |
|
55754 | 3433 |
lemma msubstltneg: |
55768 | 3434 |
assumes nz: "Ipoly vs c < 0" |
3435 |
and l: "islin (Lt (CNP 0 a b))" |
|
3436 |
shows "Ifm vs (x#bs) (msubstltneg c t a b) = |
|
3437 |
Ifm vs (((Itm vs (x#bs) t / Ipoly vs c ))#bs) (Lt (CNP 0 a b))" |
|
3438 |
using nz l tmbound0_I[of b vs x bs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>", symmetric] |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3439 |
by (simp add: msubstltneg_def field_simps del: minus_add_distrib) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3440 |
|
55754 | 3441 |
lemma msubstleneg: |
55768 | 3442 |
assumes nz: "Ipoly vs c < 0" |
3443 |
and l: "islin (Le (CNP 0 a b))" |
|
3444 |
shows "Ifm vs (x#bs) (msubstleneg c t a b) = |
|
3445 |
Ifm vs (((Itm vs (x#bs) t / Ipoly vs c ))#bs) (Le (CNP 0 a b))" |
|
3446 |
using nz l tmbound0_I[of b vs x bs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>", symmetric] |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3447 |
by (simp add: msubstleneg_def field_simps del: minus_add_distrib) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3448 |
|
55768 | 3449 |
fun msubstpos :: "fm \<Rightarrow> poly \<Rightarrow> tm \<Rightarrow> fm" |
67123 | 3450 |
where |
3451 |
"msubstpos (And p q) c t = And (msubstpos p c t) (msubstpos q c t)" |
|
3452 |
| "msubstpos (Or p q) c t = Or (msubstpos p c t) (msubstpos q c t)" |
|
3453 |
| "msubstpos (Eq (CNP 0 a r)) c t = msubsteq2 c t a r" |
|
74101 | 3454 |
| "msubstpos (NEq (CNP 0 a r)) c t = Not (msubsteq2 c t a r)" |
67123 | 3455 |
| "msubstpos (Lt (CNP 0 a r)) c t = msubstltpos c t a r" |
3456 |
| "msubstpos (Le (CNP 0 a r)) c t = msubstlepos c t a r" |
|
3457 |
| "msubstpos p c t = p" |
|
55754 | 3458 |
|
3459 |
lemma msubstpos_I: |
|
55768 | 3460 |
assumes lp: "islin p" |
3461 |
and pos: "Ipoly vs c > 0" |
|
3462 |
shows "Ifm vs (x#bs) (msubstpos p c t) = |
|
3463 |
Ifm vs (Itm vs (x#bs) t / Ipoly vs c #bs) p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3464 |
using lp pos |
55768 | 3465 |
by (induct p rule: islin.induct) |
80098 | 3466 |
(auto simp: msubsteq2 msubstltpos[OF pos] msubstlepos[OF pos] |
55768 | 3467 |
tmbound0_I[of _ vs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" bs x] |
3468 |
bound0_I[of _ vs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" bs x] field_simps) |
|
3469 |
||
3470 |
fun msubstneg :: "fm \<Rightarrow> poly \<Rightarrow> tm \<Rightarrow> fm" |
|
67123 | 3471 |
where |
3472 |
"msubstneg (And p q) c t = And (msubstneg p c t) (msubstneg q c t)" |
|
3473 |
| "msubstneg (Or p q) c t = Or (msubstneg p c t) (msubstneg q c t)" |
|
3474 |
| "msubstneg (Eq (CNP 0 a r)) c t = msubsteq2 c t a r" |
|
74101 | 3475 |
| "msubstneg (NEq (CNP 0 a r)) c t = Not (msubsteq2 c t a r)" |
67123 | 3476 |
| "msubstneg (Lt (CNP 0 a r)) c t = msubstltneg c t a r" |
3477 |
| "msubstneg (Le (CNP 0 a r)) c t = msubstleneg c t a r" |
|
3478 |
| "msubstneg p c t = p" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3479 |
|
55754 | 3480 |
lemma msubstneg_I: |
55768 | 3481 |
assumes lp: "islin p" |
3482 |
and pos: "Ipoly vs c < 0" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3483 |
shows "Ifm vs (x#bs) (msubstneg p c t) = Ifm vs (Itm vs (x#bs) t / Ipoly vs c #bs) p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3484 |
using lp pos |
55768 | 3485 |
by (induct p rule: islin.induct) |
80098 | 3486 |
(auto simp: msubsteq2 msubstltneg[OF pos] msubstleneg[OF pos] |
55768 | 3487 |
tmbound0_I[of _ vs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" bs x] |
3488 |
bound0_I[of _ vs "Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup>" bs x] field_simps) |
|
3489 |
||
67123 | 3490 |
definition "msubst2 p c t = |
3491 |
disj (conj (lt (CP (polyneg c))) (simpfm (msubstpos p c t))) |
|
3492 |
(conj (lt (CP c)) (simpfm (msubstneg p c t)))" |
|
55768 | 3493 |
|
3494 |
lemma msubst2: |
|
3495 |
assumes lp: "islin p" |
|
3496 |
and nc: "isnpoly c" |
|
3497 |
and nz: "Ipoly vs c \<noteq> 0" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3498 |
shows "Ifm vs (x#bs) (msubst2 p c t) = Ifm vs (Itm vs (x#bs) t / Ipoly vs c #bs) p" |
55768 | 3499 |
proof - |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3500 |
let ?c = "Ipoly vs c" |
55754 | 3501 |
from nc have anc: "allpolys isnpoly (CP c)" "allpolys isnpoly (CP (~\<^sub>p c))" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3502 |
by (simp_all add: polyneg_norm) |
67123 | 3503 |
from nz consider "?c < 0" | "?c > 0" by arith |
3504 |
then show ?thesis |
|
3505 |
proof cases |
|
3506 |
case c: 1 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3507 |
from c msubstneg_I[OF lp c, of x bs t] lt[OF anc(1), of vs "x#bs"] lt[OF anc(2), of vs "x#bs"] |
67123 | 3508 |
show ?thesis |
80098 | 3509 |
by (auto simp: msubst2_def) |
67123 | 3510 |
next |
3511 |
case c: 2 |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3512 |
from c msubstpos_I[OF lp c, of x bs t] lt[OF anc(1), of vs "x#bs"] lt[OF anc(2), of vs "x#bs"] |
67123 | 3513 |
show ?thesis |
80098 | 3514 |
by (auto simp: msubst2_def) |
67123 | 3515 |
qed |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3516 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3517 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3518 |
lemma msubsteq2_nb: "tmbound0 t \<Longrightarrow> islin (Eq (CNP 0 a r)) \<Longrightarrow> bound0 (msubsteq2 c t a r)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3519 |
by (simp add: msubsteq2_def) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3520 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3521 |
lemma msubstltpos_nb: "tmbound0 t \<Longrightarrow> islin (Lt (CNP 0 a r)) \<Longrightarrow> bound0 (msubstltpos c t a r)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3522 |
by (simp add: msubstltpos_def) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3523 |
lemma msubstltneg_nb: "tmbound0 t \<Longrightarrow> islin (Lt (CNP 0 a r)) \<Longrightarrow> bound0 (msubstltneg c t a r)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3524 |
by (simp add: msubstltneg_def) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3525 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3526 |
lemma msubstlepos_nb: "tmbound0 t \<Longrightarrow> islin (Le (CNP 0 a r)) \<Longrightarrow> bound0 (msubstlepos c t a r)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3527 |
by (simp add: msubstlepos_def) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3528 |
lemma msubstleneg_nb: "tmbound0 t \<Longrightarrow> islin (Le (CNP 0 a r)) \<Longrightarrow> bound0 (msubstleneg c t a r)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3529 |
by (simp add: msubstleneg_def) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3530 |
|
55768 | 3531 |
lemma msubstpos_nb: |
3532 |
assumes lp: "islin p" |
|
3533 |
and tnb: "tmbound0 t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3534 |
shows "bound0 (msubstpos p c t)" |
55768 | 3535 |
using lp tnb |
3536 |
by (induct p c t rule: msubstpos.induct) |
|
80098 | 3537 |
(auto simp: msubsteq2_nb msubstltpos_nb msubstlepos_nb) |
55768 | 3538 |
|
3539 |
lemma msubstneg_nb: |
|
68442 | 3540 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
55768 | 3541 |
and lp: "islin p" |
3542 |
and tnb: "tmbound0 t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3543 |
shows "bound0 (msubstneg p c t)" |
55768 | 3544 |
using lp tnb |
3545 |
by (induct p c t rule: msubstneg.induct) |
|
80098 | 3546 |
(auto simp: msubsteq2_nb msubstltneg_nb msubstleneg_nb) |
55768 | 3547 |
|
3548 |
lemma msubst2_nb: |
|
68442 | 3549 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
55768 | 3550 |
and lp: "islin p" |
3551 |
and tnb: "tmbound0 t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3552 |
shows "bound0 (msubst2 p c t)" |
55768 | 3553 |
using lp tnb |
3554 |
by (simp add: msubst2_def msubstneg_nb msubstpos_nb lt_nb simpfm_bound0) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3555 |
|
67123 | 3556 |
lemma mult_minus2_left: "-2 * x = - (2 * x)" |
3557 |
for x :: "'a::comm_ring_1" |
|
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
3558 |
by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3559 |
|
67123 | 3560 |
lemma mult_minus2_right: "x * -2 = - (x * 2)" |
3561 |
for x :: "'a::comm_ring_1" |
|
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
3562 |
by simp |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3563 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3564 |
lemma islin_qf: "islin p \<Longrightarrow> qfree p" |
80098 | 3565 |
by (induct p rule: islin.induct) (auto simp: bound0_qf) |
55768 | 3566 |
|
55754 | 3567 |
lemma fr_eq_msubst2: |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3568 |
assumes lp: "islin p" |
55768 | 3569 |
shows "(\<exists>x. Ifm vs (x#bs) p) \<longleftrightarrow> |
3570 |
((Ifm vs (x#bs) (minusinf p)) \<or> |
|
3571 |
(Ifm vs (x#bs) (plusinf p)) \<or> |
|
3572 |
Ifm vs (x#bs) (subst0 (CP 0\<^sub>p) p) \<or> |
|
3573 |
(\<exists>(n, t) \<in> set (uset p). |
|
3574 |
Ifm vs (x# bs) (msubst2 p (n *\<^sub>p (C (-2,1))) t)) \<or> |
|
3575 |
(\<exists>(c, t) \<in> set (uset p). \<exists>(d, s) \<in> set (uset p). |
|
3576 |
Ifm vs (x#bs) (msubst2 p (C (-2, 1) *\<^sub>p c*\<^sub>p d) (Add (Mul d t) (Mul c s)))))" |
|
55754 | 3577 |
(is "(\<exists>x. ?I x p) = (?M \<or> ?P \<or> ?Pz \<or> ?PU \<or> ?F)" is "?E = ?D") |
55768 | 3578 |
proof - |
67123 | 3579 |
from uset_l[OF lp] have *: "\<forall>(c, s)\<in>set (uset p). isnpoly c \<and> tmbound0 s" |
55768 | 3580 |
by blast |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3581 |
let ?I = "\<lambda>p. Ifm vs (x#bs) p" |
55768 | 3582 |
have n2: "isnpoly (C (-2,1))" |
3583 |
by (simp add: isnpoly_def) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3584 |
note eq0 = subst0[OF islin_qf[OF lp], of vs x bs "CP 0\<^sub>p", simplified] |
55754 | 3585 |
|
55768 | 3586 |
have eq1: "(\<exists>(n, t) \<in> set (uset p). ?I (msubst2 p (n *\<^sub>p (C (-2,1))) t)) \<longleftrightarrow> |
3587 |
(\<exists>(n, t) \<in> set (uset p). |
|
3588 |
\<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> |
|
3589 |
Ifm vs (- Itm vs (x # bs) t / (\<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> * 2) # bs) p)" |
|
3590 |
proof - |
|
3591 |
{ |
|
3592 |
fix n t |
|
3593 |
assume H: "(n, t) \<in> set (uset p)" "?I(msubst2 p (n *\<^sub>p C (-2, 1)) t)" |
|
67123 | 3594 |
from H(1) * have "isnpoly n" |
55768 | 3595 |
by blast |
3596 |
then have nn: "isnpoly (n *\<^sub>p (C (-2,1)))" |
|
3597 |
by (simp_all add: polymul_norm n2) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3598 |
have nn': "allpolys isnpoly (CP (~\<^sub>p (n *\<^sub>p C (-2, 1))))" |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33212
diff
changeset
|
3599 |
by (simp add: polyneg_norm nn) |
55768 | 3600 |
then have nn2: "\<lparr>n *\<^sub>p(C (-2,1)) \<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" "\<lparr>n \<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
3601 |
using H(2) nn' nn |
|
80098 | 3602 |
by (auto simp: msubst2_def lt zero_less_mult_iff mult_less_0_iff) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3603 |
from msubst2[OF lp nn nn2(1), of x bs t] |
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
3604 |
have "\<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> Ifm vs (- Itm vs (x # bs) t / (\<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> * 2) # bs) p" |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3605 |
using H(2) nn2 by (simp add: mult_minus2_right) |
55768 | 3606 |
} |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3607 |
moreover |
55768 | 3608 |
{ |
3609 |
fix n t |
|
3610 |
assume H: |
|
3611 |
"(n, t) \<in> set (uset p)" "\<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
|
3612 |
"Ifm vs (- Itm vs (x # bs) t / (\<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> * 2) # bs) p" |
|
67123 | 3613 |
from H(1) * have "isnpoly n" |
55768 | 3614 |
by blast |
3615 |
then have nn: "isnpoly (n *\<^sub>p (C (-2,1)))" "\<lparr>n *\<^sub>p(C (-2,1)) \<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33212
diff
changeset
|
3616 |
using H(2) by (simp_all add: polymul_norm n2) |
55768 | 3617 |
from msubst2[OF lp nn, of x bs t] have "?I (msubst2 p (n *\<^sub>p (C (-2,1))) t)" |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
3618 |
using H(2,3) by (simp add: mult_minus2_right) |
55768 | 3619 |
} |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3620 |
ultimately show ?thesis by blast |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3621 |
qed |
55768 | 3622 |
have eq2: "(\<exists>(c, t) \<in> set (uset p). \<exists>(d, s) \<in> set (uset p). |
3623 |
Ifm vs (x#bs) (msubst2 p (C (-2, 1) *\<^sub>p c*\<^sub>p d) (Add (Mul d t) (Mul c s)))) \<longleftrightarrow> |
|
3624 |
(\<exists>(n, t)\<in>set (uset p). \<exists>(m, s)\<in>set (uset p). |
|
3625 |
\<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> |
|
3626 |
\<lparr>m\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> |
|
3627 |
Ifm vs ((- Itm vs (x # bs) t / \<lparr>n\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>m\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p)" |
|
3628 |
proof - |
|
3629 |
{ |
|
3630 |
fix c t d s |
|
3631 |
assume H: |
|
3632 |
"(c,t) \<in> set (uset p)" "(d,s) \<in> set (uset p)" |
|
3633 |
"Ifm vs (x#bs) (msubst2 p (C (-2, 1) *\<^sub>p c*\<^sub>p d) (Add (Mul d t) (Mul c s)))" |
|
67123 | 3634 |
from H(1,2) * have "isnpoly c" "isnpoly d" |
55768 | 3635 |
by blast+ |
3636 |
then have nn: "isnpoly (C (-2, 1) *\<^sub>p c*\<^sub>p d)" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33212
diff
changeset
|
3637 |
by (simp_all add: polymul_norm n2) |
55768 | 3638 |
have stupid: |
3639 |
"allpolys isnpoly (CP (~\<^sub>p (C (-2, 1) *\<^sub>p c *\<^sub>p d)))" |
|
3640 |
"allpolys isnpoly (CP ((C (-2, 1) *\<^sub>p c *\<^sub>p d)))" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33212
diff
changeset
|
3641 |
by (simp_all add: polyneg_norm nn) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3642 |
have nn': "\<lparr>(C (-2, 1) *\<^sub>p c*\<^sub>p d)\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" "\<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" "\<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
55768 | 3643 |
using H(3) |
80098 | 3644 |
by (auto simp: msubst2_def lt[OF stupid(1)] |
55768 | 3645 |
lt[OF stupid(2)] zero_less_mult_iff mult_less_0_iff) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3646 |
from msubst2[OF lp nn nn'(1), of x bs ] H(3) nn' |
55768 | 3647 |
have "\<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0 \<and> |
3648 |
Ifm vs ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p" |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
3649 |
by (simp add: add_divide_distrib diff_divide_distrib mult_minus2_left mult.commute) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
3650 |
} |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3651 |
moreover |
55768 | 3652 |
{ |
3653 |
fix c t d s |
|
3654 |
assume H: |
|
3655 |
"(c, t) \<in> set (uset p)" |
|
3656 |
"(d, s) \<in> set (uset p)" |
|
3657 |
"\<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
|
3658 |
"\<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
|
3659 |
"Ifm vs ((- Itm vs (x # bs) t / \<lparr>c\<rparr>\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \<lparr>d\<rparr>\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p" |
|
67123 | 3660 |
from H(1,2) * have "isnpoly c" "isnpoly d" |
55768 | 3661 |
by blast+ |
3662 |
then have nn: "isnpoly (C (-2, 1) *\<^sub>p c*\<^sub>p d)" "\<lparr>(C (-2, 1) *\<^sub>p c*\<^sub>p d)\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33212
diff
changeset
|
3663 |
using H(3,4) by (simp_all add: polymul_norm n2) |
55754 | 3664 |
from msubst2[OF lp nn, of x bs ] H(3,4,5) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
3665 |
have "Ifm vs (x#bs) (msubst2 p (C (-2, 1) *\<^sub>p c*\<^sub>p d) (Add (Mul d t) (Mul c s)))" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56479
diff
changeset
|
3666 |
by (simp add: diff_divide_distrib add_divide_distrib mult_minus2_left mult.commute) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53374
diff
changeset
|
3667 |
} |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3668 |
ultimately show ?thesis by blast |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3669 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3670 |
from fr_eq2[OF lp, of vs bs x] show ?thesis |
55754 | 3671 |
unfolding eq0 eq1 eq2 by blast |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3672 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3673 |
|
67123 | 3674 |
definition "ferrack2 p \<equiv> |
3675 |
let |
|
3676 |
q = simpfm p; |
|
3677 |
mp = minusinf q; |
|
3678 |
pp = plusinf q |
|
3679 |
in |
|
3680 |
if (mp = T \<or> pp = T) then T |
|
3681 |
else |
|
3682 |
(let U = remdups (uset q) |
|
3683 |
in |
|
3684 |
decr0 |
|
3685 |
(list_disj |
|
3686 |
[mp, |
|
3687 |
pp, |
|
3688 |
simpfm (subst0 (CP 0\<^sub>p) q), |
|
3689 |
evaldjf (\<lambda>(c, t). msubst2 q (c *\<^sub>p C (-2, 1)) t) U, |
|
3690 |
evaldjf (\<lambda>((b, a),(d, c)). |
|
3691 |
msubst2 q (C (-2, 1) *\<^sub>p b*\<^sub>p d) (Add (Mul d a) (Mul b c))) (alluopairs U)]))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3692 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3693 |
definition "frpar2 p = simpfm (qelim (prep p) ferrack2)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3694 |
|
55768 | 3695 |
lemma ferrack2: |
3696 |
assumes qf: "qfree p" |
|
3697 |
shows "qfree (ferrack2 p) \<and> Ifm vs bs (ferrack2 p) = Ifm vs bs (E p)" |
|
67123 | 3698 |
(is "_ \<and> (?rhs = ?lhs)") |
55768 | 3699 |
proof - |
3700 |
let ?J = "\<lambda>x p. Ifm vs (x#bs) p" |
|
3701 |
let ?N = "\<lambda>t. Ipoly vs t" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3702 |
let ?Nt = "\<lambda>x t. Itm vs (x#bs) t" |
55754 | 3703 |
let ?q = "simpfm p" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3704 |
let ?qz = "subst0 (CP 0\<^sub>p) ?q" |
41823 | 3705 |
let ?U = "remdups(uset ?q)" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3706 |
let ?Up = "alluopairs ?U" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3707 |
let ?mp = "minusinf ?q" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3708 |
let ?pp = "plusinf ?q" |
55768 | 3709 |
fix x |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3710 |
let ?I = "\<lambda>p. Ifm vs (x#bs) p" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3711 |
from simpfm_lin[OF qf] simpfm_qf[OF qf] have lq: "islin ?q" and q_qf: "qfree ?q" . |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3712 |
from minusinf_nb[OF lq] plusinf_nb[OF lq] have mp_nb: "bound0 ?mp" and pp_nb: "bound0 ?pp" . |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3713 |
from bound0_qf[OF mp_nb] bound0_qf[OF pp_nb] have mp_qf: "qfree ?mp" and pp_qf: "qfree ?pp" . |
55768 | 3714 |
from uset_l[OF lq] |
3715 |
have U_l: "\<forall>(c, s)\<in>set ?U. isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3716 |
by simp |
55754 | 3717 |
have bnd0: "\<forall>x \<in> set ?U. bound0 ((\<lambda>(c,t). msubst2 ?q (c *\<^sub>p C (-2, 1)) t) x)" |
55768 | 3718 |
proof - |
67123 | 3719 |
have "bound0 ((\<lambda>(c,t). msubst2 ?q (c *\<^sub>p C (-2, 1)) t) (c,t))" |
3720 |
if "(c, t) \<in> set ?U" for c t |
|
3721 |
proof - |
|
3722 |
from U_l that have "tmbound0 t" by blast |
|
3723 |
from msubst2_nb[OF lq this] show ?thesis by simp |
|
3724 |
qed |
|
55768 | 3725 |
then show ?thesis by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3726 |
qed |
55768 | 3727 |
have bnd1: "\<forall>x \<in> set ?Up. bound0 ((\<lambda>((b, a), (d, c)). |
3728 |
msubst2 ?q (C (-2, 1) *\<^sub>p b*\<^sub>p d) (Add (Mul d a) (Mul b c))) x)" |
|
3729 |
proof - |
|
67123 | 3730 |
have "bound0 ((\<lambda>((b, a),(d, c)). |
3731 |
msubst2 ?q (C (-2, 1) *\<^sub>p b*\<^sub>p d) (Add (Mul d a) (Mul b c))) ((b,a),(d,c)))" |
|
3732 |
if "((b,a),(d,c)) \<in> set ?Up" for b a d c |
|
3733 |
proof - |
|
3734 |
from U_l alluopairs_set1[of ?U] that have this: "tmbound0 (Add (Mul d a) (Mul b c))" |
|
55768 | 3735 |
by auto |
67123 | 3736 |
from msubst2_nb[OF lq this] show ?thesis |
55768 | 3737 |
by simp |
67123 | 3738 |
qed |
55768 | 3739 |
then show ?thesis by auto |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3740 |
qed |
67123 | 3741 |
have stupid: "bound0 F" by simp |
55768 | 3742 |
let ?R = |
3743 |
"list_disj |
|
3744 |
[?mp, |
|
3745 |
?pp, |
|
3746 |
simpfm (subst0 (CP 0\<^sub>p) ?q), |
|
3747 |
evaldjf (\<lambda>(c,t). msubst2 ?q (c *\<^sub>p C (-2, 1)) t) ?U, |
|
3748 |
evaldjf (\<lambda>((b,a),(d,c)). |
|
3749 |
msubst2 ?q (C (-2, 1) *\<^sub>p b*\<^sub>p d) (Add (Mul d a) (Mul b c))) (alluopairs ?U)]" |
|
3750 |
from subst0_nb[of "CP 0\<^sub>p" ?q] q_qf |
|
3751 |
evaldjf_bound0[OF bnd1] evaldjf_bound0[OF bnd0] mp_nb pp_nb stupid |
|
3752 |
have nb: "bound0 ?R" |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3753 |
by (simp add: list_disj_def simpfm_bound0) |
55768 | 3754 |
let ?s = "\<lambda>((b, a),(d, c)). msubst2 ?q (C (-2, 1) *\<^sub>p b*\<^sub>p d) (Add (Mul d a) (Mul b c))" |
3755 |
||
3756 |
{ |
|
3757 |
fix b a d c |
|
3758 |
assume baU: "(b,a) \<in> set ?U" and dcU: "(d,c) \<in> set ?U" |
|
55754 | 3759 |
from U_l baU dcU have norm: "isnpoly b" "isnpoly d" "isnpoly (C (-2, 1))" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3760 |
by auto (simp add: isnpoly_def) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3761 |
have norm2: "isnpoly (C (-2, 1) *\<^sub>p b*\<^sub>p d)" "isnpoly (C (-2, 1) *\<^sub>p d*\<^sub>p b)" |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3762 |
using norm by (simp_all add: polymul_norm) |
55768 | 3763 |
have stupid: |
3764 |
"allpolys isnpoly (CP (C (-2, 1) *\<^sub>p b *\<^sub>p d))" |
|
3765 |
"allpolys isnpoly (CP (C (-2, 1) *\<^sub>p d *\<^sub>p b))" |
|
3766 |
"allpolys isnpoly (CP (~\<^sub>p(C (-2, 1) *\<^sub>p b *\<^sub>p d)))" |
|
3767 |
"allpolys isnpoly (CP (~\<^sub>p(C (-2, 1) *\<^sub>p d*\<^sub>p b)))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3768 |
by (simp_all add: polyneg_norm norm2) |
55768 | 3769 |
have "?I (msubst2 ?q (C (-2, 1) *\<^sub>p b*\<^sub>p d) (Add (Mul d a) (Mul b c))) = |
3770 |
?I (msubst2 ?q (C (-2, 1) *\<^sub>p d*\<^sub>p b) (Add (Mul b c) (Mul d a)))" |
|
3771 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3772 |
proof |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3773 |
assume H: ?lhs |
55768 | 3774 |
then have z: "\<lparr>C (-2, 1) *\<^sub>p b *\<^sub>p d\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" "\<lparr>C (-2, 1) *\<^sub>p d *\<^sub>p b\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
80098 | 3775 |
by (auto simp: msubst2_def lt[OF stupid(3)] lt[OF stupid(1)] |
55768 | 3776 |
mult_less_0_iff zero_less_mult_iff) |
3777 |
from msubst2[OF lq norm2(1) z(1), of x bs] msubst2[OF lq norm2(2) z(2), of x bs] H |
|
3778 |
show ?rhs |
|
3779 |
by (simp add: field_simps) |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3780 |
next |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3781 |
assume H: ?rhs |
55768 | 3782 |
then have z: "\<lparr>C (-2, 1) *\<^sub>p b *\<^sub>p d\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" "\<lparr>C (-2, 1) *\<^sub>p d *\<^sub>p b\<rparr>\<^sub>p\<^bsup>vs\<^esup> \<noteq> 0" |
80098 | 3783 |
by (auto simp: msubst2_def lt[OF stupid(4)] lt[OF stupid(2)] |
55768 | 3784 |
mult_less_0_iff zero_less_mult_iff) |
3785 |
from msubst2[OF lq norm2(1) z(1), of x bs] msubst2[OF lq norm2(2) z(2), of x bs] H |
|
3786 |
show ?lhs |
|
3787 |
by (simp add: field_simps) |
|
3788 |
qed |
|
3789 |
} |
|
3790 |
then have th0: "\<forall>x \<in> set ?U. \<forall>y \<in> set ?U. ?I (?s (x, y)) \<longleftrightarrow> ?I (?s (y, x))" |
|
3791 |
by auto |
|
3792 |
||
3793 |
have "?lhs \<longleftrightarrow> (\<exists>x. Ifm vs (x#bs) ?q)" |
|
3794 |
by simp |
|
3795 |
also have "\<dots> \<longleftrightarrow> ?I ?mp \<or> ?I ?pp \<or> ?I (subst0 (CP 0\<^sub>p) ?q) \<or> |
|
3796 |
(\<exists>(n, t) \<in> set ?U. ?I (msubst2 ?q (n *\<^sub>p C (-2, 1)) t)) \<or> |
|
3797 |
(\<exists>(b, a) \<in> set ?U. \<exists>(d, c) \<in> set ?U. |
|
3798 |
?I (msubst2 ?q (C (-2, 1) *\<^sub>p b*\<^sub>p d) (Add (Mul d a) (Mul b c))))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3799 |
using fr_eq_msubst2[OF lq, of vs bs x] by simp |
55768 | 3800 |
also have "\<dots> \<longleftrightarrow> ?I ?mp \<or> ?I ?pp \<or> ?I (subst0 (CP 0\<^sub>p) ?q) \<or> |
3801 |
(\<exists>(n, t) \<in> set ?U. ?I (msubst2 ?q (n *\<^sub>p C (-2, 1)) t)) \<or> |
|
3802 |
(\<exists>x \<in> set ?U. \<exists>y \<in>set ?U. ?I (?s (x, y)))" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3803 |
by (simp add: split_def) |
55768 | 3804 |
also have "\<dots> \<longleftrightarrow> ?I ?mp \<or> ?I ?pp \<or> ?I (subst0 (CP 0\<^sub>p) ?q) \<or> |
3805 |
(\<exists>(n, t) \<in> set ?U. ?I (msubst2 ?q (n *\<^sub>p C (-2, 1)) t)) \<or> |
|
3806 |
(\<exists>(x, y) \<in> set ?Up. ?I (?s (x, y)))" |
|
55754 | 3807 |
using alluopairs_bex[OF th0] by simp |
3808 |
also have "\<dots> \<longleftrightarrow> ?I ?R" |
|
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3809 |
by (simp add: list_disj_def evaldjf_ex split_def) |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3810 |
also have "\<dots> \<longleftrightarrow> ?rhs" |
80098 | 3811 |
proof (cases "?mp = T \<or> ?pp = T") |
3812 |
case True |
|
3813 |
then show ?thesis |
|
3814 |
unfolding ferrack2_def |
|
3815 |
by (force simp add: ferrack2_def list_disj_def) |
|
3816 |
next |
|
3817 |
case False |
|
3818 |
then show ?thesis |
|
3819 |
by (simp add: ferrack2_def Let_def decr0[OF nb]) |
|
3820 |
qed |
|
55754 | 3821 |
finally show ?thesis using decr0_qf[OF nb] |
55768 | 3822 |
by (simp add: ferrack2_def Let_def) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3823 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3824 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3825 |
lemma frpar2: "qfree (frpar2 p) \<and> (Ifm vs bs (frpar2 p) \<longleftrightarrow> Ifm vs bs p)" |
55754 | 3826 |
proof - |
3827 |
from ferrack2 |
|
67123 | 3828 |
have this: "\<forall>bs p. qfree p \<longrightarrow> qfree (ferrack2 p) \<and> Ifm vs bs (ferrack2 p) = Ifm vs bs (E p)" |
55754 | 3829 |
by blast |
67123 | 3830 |
from qelim[OF this, of "prep p" bs] show ?thesis |
80098 | 3831 |
unfolding frpar2_def by (auto simp: prep) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3832 |
qed |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3833 |
|
67123 | 3834 |
oracle frpar_oracle = |
3835 |
\<open> |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3836 |
let |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3837 |
|
59058
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
wenzelm
parents:
58889
diff
changeset
|
3838 |
val mk_C = @{code C} o apply2 @{code int_of_integer}; |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3839 |
val mk_poly_Bound = @{code poly.Bound} o @{code nat_of_integer}; |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3840 |
val mk_Bound = @{code Bound} o @{code nat_of_integer}; |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3841 |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3842 |
val dest_num = snd o HOLogic.dest_number; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3843 |
|
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3844 |
fun try_dest_num t = SOME ((snd o HOLogic.dest_number) t) |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3845 |
handle TERM _ => NONE; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3846 |
|
74397 | 3847 |
fun dest_nat (t as \<^Const_>\<open>Suc\<close>) = HOLogic.dest_nat t (* FIXME !? *) |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3848 |
| dest_nat t = dest_num t; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3849 |
|
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3850 |
fun the_index ts t = |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3851 |
let |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3852 |
val k = find_index (fn t' => t aconv t') ts; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3853 |
in if k < 0 then raise General.Subscript else k end; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3854 |
|
74397 | 3855 |
fun num_of_term ps \<^Const_>\<open>uminus _ for t\<close> = @{code poly.Neg} (num_of_term ps t) |
3856 |
| num_of_term ps \<^Const_>\<open>plus _ for a b\<close> = @{code poly.Add} (num_of_term ps a, num_of_term ps b) |
|
3857 |
| num_of_term ps \<^Const_>\<open>minus _ for a b\<close> = @{code poly.Sub} (num_of_term ps a, num_of_term ps b) |
|
3858 |
| num_of_term ps \<^Const_>\<open>times _ for a b\<close> = @{code poly.Mul} (num_of_term ps a, num_of_term ps b) |
|
3859 |
| num_of_term ps \<^Const_>\<open>power _ for a n\<close> = |
|
55768 | 3860 |
@{code poly.Pw} (num_of_term ps a, @{code nat_of_integer} (dest_nat n)) |
74397 | 3861 |
| num_of_term ps \<^Const_>\<open>divide _ for a b\<close> = mk_C (dest_num a, dest_num b) |
55768 | 3862 |
| num_of_term ps t = |
3863 |
(case try_dest_num t of |
|
3864 |
SOME k => mk_C (k, 1) |
|
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3865 |
| NONE => mk_poly_Bound (the_index ps t)); |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3866 |
|
74397 | 3867 |
fun tm_of_term fs ps \<^Const_>\<open>uminus _ for t\<close> = @{code Neg} (tm_of_term fs ps t) |
3868 |
| tm_of_term fs ps \<^Const_>\<open>plus _ for a b\<close> = @{code Add} (tm_of_term fs ps a, tm_of_term fs ps b) |
|
3869 |
| tm_of_term fs ps \<^Const_>\<open>minus _ for a b\<close> = @{code Sub} (tm_of_term fs ps a, tm_of_term fs ps b) |
|
3870 |
| tm_of_term fs ps \<^Const_>\<open>times _ for a b\<close> = @{code Mul} (num_of_term ps a, tm_of_term fs ps b) |
|
55754 | 3871 |
| tm_of_term fs ps t = (@{code CP} (num_of_term ps t) |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3872 |
handle TERM _ => mk_Bound (the_index fs t) |
55768 | 3873 |
| General.Subscript => mk_Bound (the_index fs t)); |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3874 |
|
74397 | 3875 |
fun fm_of_term fs ps \<^Const_>\<open>True\<close> = @{code T} |
3876 |
| fm_of_term fs ps \<^Const_>\<open>False\<close> = @{code F} |
|
3877 |
| fm_of_term fs ps \<^Const_>\<open>HOL.Not for p\<close> = @{code Not} (fm_of_term fs ps p) |
|
3878 |
| fm_of_term fs ps \<^Const_>\<open>HOL.conj for p q\<close> = @{code And} (fm_of_term fs ps p, fm_of_term fs ps q) |
|
3879 |
| fm_of_term fs ps \<^Const_>\<open>HOL.disj for p q\<close> = @{code Or} (fm_of_term fs ps p, fm_of_term fs ps q) |
|
3880 |
| fm_of_term fs ps \<^Const_>\<open>HOL.implies for p q\<close> = |
|
55768 | 3881 |
@{code Imp} (fm_of_term fs ps p, fm_of_term fs ps q) |
74397 | 3882 |
| fm_of_term fs ps \<^Const_>\<open>HOL.eq \<^Type>\<open>bool\<close> for p q\<close> = |
55768 | 3883 |
@{code Iff} (fm_of_term fs ps p, fm_of_term fs ps q) |
74397 | 3884 |
| fm_of_term fs ps \<^Const_>\<open>HOL.eq _ for p q\<close> = |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3885 |
@{code Eq} (@{code Sub} (tm_of_term fs ps p, tm_of_term fs ps q)) |
74397 | 3886 |
| fm_of_term fs ps \<^Const_>\<open>less _ for p q\<close> = |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3887 |
@{code Lt} (@{code Sub} (tm_of_term fs ps p, tm_of_term fs ps q)) |
74397 | 3888 |
| fm_of_term fs ps \<^Const_>\<open>less_eq _ for p q\<close> = |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3889 |
@{code Le} (@{code Sub} (tm_of_term fs ps p, tm_of_term fs ps q)) |
74525
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
3890 |
| fm_of_term fs ps \<^Const_>\<open>Ex _ for \<open>p as Abs _\<close>\<close> = |
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
3891 |
let val (x', p') = Term.dest_abs_global p |
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
3892 |
in @{code E} (fm_of_term (Free x' :: fs) ps p') end |
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
3893 |
| fm_of_term fs ps \<^Const_>\<open>All _ for \<open>p as Abs _\<close>\<close> = |
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
3894 |
let val (x', p') = Term.dest_abs_global p |
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
3895 |
in @{code A} (fm_of_term (Free x' :: fs) ps p') end |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3896 |
| fm_of_term fs ps _ = error "fm_of_term"; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3897 |
|
55754 | 3898 |
fun term_of_num T ps (@{code poly.C} (a, b)) = |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3899 |
let |
59058
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
wenzelm
parents:
58889
diff
changeset
|
3900 |
val (c, d) = apply2 (@{code integer_of_int}) (a, b) |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3901 |
in |
74397 | 3902 |
if d = 1 then HOLogic.mk_number T c |
3903 |
else if d = 0 then \<^Const>\<open>zero_class.zero T\<close> |
|
3904 |
else \<^Const>\<open>divide T for \<open>HOLogic.mk_number T c\<close> \<open>HOLogic.mk_number T d\<close>\<close> |
|
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3905 |
end |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3906 |
| term_of_num T ps (@{code poly.Bound} i) = nth ps (@{code integer_of_nat} i) |
55768 | 3907 |
| term_of_num T ps (@{code poly.Add} (a, b)) = |
74397 | 3908 |
\<^Const>\<open>plus T for \<open>term_of_num T ps a\<close> \<open>term_of_num T ps b\<close>\<close> |
55768 | 3909 |
| term_of_num T ps (@{code poly.Mul} (a, b)) = |
74397 | 3910 |
\<^Const>\<open>times T for \<open>term_of_num T ps a\<close> \<open>term_of_num T ps b\<close>\<close> |
55768 | 3911 |
| term_of_num T ps (@{code poly.Sub} (a, b)) = |
74397 | 3912 |
\<^Const>\<open>minus T for \<open>term_of_num T ps a\<close> \<open>term_of_num T ps b\<close>\<close> |
55768 | 3913 |
| term_of_num T ps (@{code poly.Neg} a) = |
74397 | 3914 |
\<^Const>\<open>uminus T for \<open>term_of_num T ps a\<close>\<close> |
55768 | 3915 |
| term_of_num T ps (@{code poly.Pw} (a, n)) = |
74397 | 3916 |
\<^Const>\<open>power T for \<open>term_of_num T ps a\<close> \<open>HOLogic.mk_number \<^Type>\<open>nat\<close> (@{code integer_of_nat} n)\<close>\<close> |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3917 |
| term_of_num T ps (@{code poly.CN} (c, n, p)) = |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3918 |
term_of_num T ps (@{code poly.Add} (c, @{code poly.Mul} (@{code poly.Bound} n, p))); |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3919 |
|
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3920 |
fun term_of_tm T fs ps (@{code CP} p) = term_of_num T ps p |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50282
diff
changeset
|
3921 |
| term_of_tm T fs ps (@{code Bound} i) = nth fs (@{code integer_of_nat} i) |
55768 | 3922 |
| term_of_tm T fs ps (@{code Add} (a, b)) = |
74397 | 3923 |
\<^Const>\<open>plus T for \<open>term_of_tm T fs ps a\<close> \<open>term_of_tm T fs ps b\<close>\<close> |
55768 | 3924 |
| term_of_tm T fs ps (@{code Mul} (a, b)) = |
74397 | 3925 |
\<^Const>\<open>times T for \<open>term_of_num T ps a\<close> \<open>term_of_tm T fs ps b\<close>\<close> |
55768 | 3926 |
| term_of_tm T fs ps (@{code Sub} (a, b)) = |
74397 | 3927 |
\<^Const>\<open>minus T for \<open>term_of_tm T fs ps a\<close> \<open>term_of_tm T fs ps b\<close>\<close> |
55768 | 3928 |
| term_of_tm T fs ps (@{code Neg} a) = |
74397 | 3929 |
\<^Const>\<open>uminus T for \<open>term_of_tm T fs ps a\<close>\<close> |
55768 | 3930 |
| term_of_tm T fs ps (@{code CNP} (n, c, p)) = |
3931 |
term_of_tm T fs ps (@{code Add} (@{code Mul} (c, @{code Bound} n), p)); |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3932 |
|
74397 | 3933 |
fun term_of_fm T fs ps @{code T} = \<^Const>\<open>True\<close> |
3934 |
| term_of_fm T fs ps @{code F} = \<^Const>\<open>False\<close> |
|
3935 |
| term_of_fm T fs ps (@{code Not} p) = \<^Const>\<open>HOL.Not for \<open>term_of_fm T fs ps p\<close>\<close> |
|
55768 | 3936 |
| term_of_fm T fs ps (@{code And} (p, q)) = |
74397 | 3937 |
\<^Const>\<open>HOL.conj for \<open>term_of_fm T fs ps p\<close> \<open>term_of_fm T fs ps q\<close>\<close> |
55768 | 3938 |
| term_of_fm T fs ps (@{code Or} (p, q)) = |
74397 | 3939 |
\<^Const>\<open>HOL.disj for \<open>term_of_fm T fs ps p\<close> \<open>term_of_fm T fs ps q\<close>\<close> |
55768 | 3940 |
| term_of_fm T fs ps (@{code Imp} (p, q)) = |
74397 | 3941 |
\<^Const>\<open>HOL.implies for \<open>term_of_fm T fs ps p\<close> \<open>term_of_fm T fs ps q\<close>\<close> |
55768 | 3942 |
| term_of_fm T fs ps (@{code Iff} (p, q)) = |
74397 | 3943 |
\<^Const>\<open>HOL.eq \<^Type>\<open>bool\<close> for \<open>term_of_fm T fs ps p\<close> \<open>term_of_fm T fs ps q\<close>\<close> |
55768 | 3944 |
| term_of_fm T fs ps (@{code Lt} p) = |
74397 | 3945 |
\<^Const>\<open>less T for \<open>term_of_tm T fs ps p\<close> \<^Const>\<open>zero_class.zero T\<close>\<close> |
55768 | 3946 |
| term_of_fm T fs ps (@{code Le} p) = |
74397 | 3947 |
\<^Const>\<open>less_eq T for \<open>term_of_tm T fs ps p\<close> \<^Const>\<open>zero_class.zero T\<close>\<close> |
55768 | 3948 |
| term_of_fm T fs ps (@{code Eq} p) = |
74397 | 3949 |
\<^Const>\<open>HOL.eq T for \<open>term_of_tm T fs ps p\<close> \<^Const>\<open>zero_class.zero T\<close>\<close> |
55768 | 3950 |
| term_of_fm T fs ps (@{code NEq} p) = |
74397 | 3951 |
\<^Const>\<open>Not for (* FIXME HOL.Not!? *) |
3952 |
\<^Const>\<open>HOL.eq T for \<open>term_of_tm T fs ps p\<close> \<^Const>\<open>zero_class.zero T\<close>\<close>\<close> |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3953 |
| term_of_fm T fs ps _ = error "term_of_fm: quantifiers"; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3954 |
|
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3955 |
fun frpar_procedure alternative T ps fm = |
55754 | 3956 |
let |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3957 |
val frpar = if alternative then @{code frpar2} else @{code frpar}; |
69214 | 3958 |
val fs = subtract (op aconv) (map Free (Term.add_frees fm [])) ps; |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3959 |
val eval = term_of_fm T fs ps o frpar o fm_of_term fs ps; |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3960 |
val t = HOLogic.dest_Trueprop fm; |
55768 | 3961 |
in HOLogic.mk_Trueprop (HOLogic.mk_eq (t, eval t)) end; |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3962 |
|
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3963 |
in |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3964 |
|
55754 | 3965 |
fn (ctxt, alternative, ty, ps, ct) => |
59621
291934bac95e
Thm.cterm_of and Thm.ctyp_of operate on local context;
wenzelm
parents:
59582
diff
changeset
|
3966 |
Thm.cterm_of ctxt |
59582 | 3967 |
(frpar_procedure alternative ty ps (Thm.term_of ct)) |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3968 |
|
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3969 |
end |
60533 | 3970 |
\<close> |
3971 |
||
3972 |
ML \<open> |
|
55754 | 3973 |
structure Parametric_Ferrante_Rackoff = |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3974 |
struct |
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3975 |
|
55754 | 3976 |
fun tactic ctxt alternative T ps = |
54742
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
wenzelm
parents:
54230
diff
changeset
|
3977 |
Object_Logic.full_atomize_tac ctxt |
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3978 |
THEN' CSUBGOAL (fn (g, i) => |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3979 |
let |
55768 | 3980 |
val th = frpar_oracle (ctxt, alternative, T, ps, g); |
60754 | 3981 |
in resolve_tac ctxt [th RS iffD2] i end); |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3982 |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3983 |
fun method alternative = |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3984 |
let |
55768 | 3985 |
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K (); |
3986 |
val parsN = "pars"; |
|
3987 |
val typN = "type"; |
|
3988 |
val any_keyword = keyword parsN || keyword typN; |
|
3989 |
val terms = Scan.repeat (Scan.unless any_keyword Args.term); |
|
3990 |
val typ = Scan.unless any_keyword Args.typ; |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3991 |
in |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3992 |
(keyword typN |-- typ) -- (keyword parsN |-- terms) >> |
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
3993 |
(fn (T, ps) => fn ctxt => SIMPLE_METHOD' (tactic ctxt alternative T ps)) |
55768 | 3994 |
end; |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3995 |
|
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
3996 |
end; |
60533 | 3997 |
\<close> |
3998 |
||
3999 |
method_setup frpar = \<open> |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
4000 |
Parametric_Ferrante_Rackoff.method false |
60533 | 4001 |
\<close> "parametric QE for linear Arithmetic over fields" |
4002 |
||
4003 |
method_setup frpar2 = \<open> |
|
50045
2214bc566f88
modernized, simplified and compacted oracle and proof method glue code;
haftmann
parents:
49962
diff
changeset
|
4004 |
Parametric_Ferrante_Rackoff.method true |
60533 | 4005 |
\<close> "parametric QE for linear Arithmetic over fields, Version 2" |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
4006 |
|
60560 | 4007 |
lemma "\<exists>(x::'a::linordered_field). y \<noteq> -1 \<longrightarrow> (y + 1) * x < 0" |
80098 | 4008 |
by (metis mult.commute neg_less_0_iff_less nonzero_divide_eq_eq sum_eq zero_less_two) |
33152
241cfaed158f
Add a quantifier elimination for parametric linear arithmetic over ordered fields (parameters are multivariate polynomials)
chaieb
parents:
diff
changeset
|
4009 |
|
60560 | 4010 |
lemma "\<exists>(x::'a::linordered_field). y \<noteq> -1 \<longrightarrow> (y + 1)*x < 0" |
80098 | 4011 |
by (metis mult.right_neutral mult_minus1_right neg_0_le_iff_le nle_le not_less sum_eq) |
4012 |
||
45499
849d697adf1e
Parametric_Ferrante_Rackoff.thy: restrict to class number_ring, replace '1+1' with '2' everywhere
huffman
parents:
44064
diff
changeset
|
4013 |
end |