author | wenzelm |
Wed, 12 Mar 2025 11:39:00 +0100 | |
changeset 82265 | 4b875a4c83b0 |
parent 80098 | c06c95576ea9 |
permissions | -rw-r--r-- |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
1 |
(* Title: HOL/Decision_Procs/Polynomial_List.thy |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
2 |
Author: Amine Chaieb |
33153 | 3 |
*) |
4 |
||
60533 | 5 |
section \<open>Univariate Polynomials as lists\<close> |
33153 | 6 |
|
7 |
theory Polynomial_List |
|
80098 | 8 |
imports Complex_Main |
9 |
||
33153 | 10 |
begin |
11 |
||
60536 | 12 |
text \<open>Application of polynomial as a function.\<close> |
33153 | 13 |
|
54219 | 14 |
primrec (in semiring_0) poly :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a" |
52778 | 15 |
where |
60536 | 16 |
poly_Nil: "poly [] x = 0" |
17 |
| poly_Cons: "poly (h # t) x = h + x * poly t x" |
|
33153 | 18 |
|
19 |
||
60536 | 20 |
subsection \<open>Arithmetic Operations on Polynomials\<close> |
33153 | 21 |
|
60536 | 22 |
text \<open>Addition\<close> |
69597 | 23 |
primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl \<open>+++\<close> 65) |
52778 | 24 |
where |
60536 | 25 |
padd_Nil: "[] +++ l2 = l2" |
26 |
| padd_Cons: "(h # t) +++ l2 = (if l2 = [] then h # t else (h + hd l2) # (t +++ tl l2))" |
|
33153 | 27 |
|
60536 | 28 |
text \<open>Multiplication by a constant\<close> |
69597 | 29 |
primrec (in semiring_0) cmult :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl \<open>%*\<close> 70) where |
60536 | 30 |
cmult_Nil: "c %* [] = []" |
54219 | 31 |
| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" |
33153 | 32 |
|
60536 | 33 |
text \<open>Multiplication by a polynomial\<close> |
69597 | 34 |
primrec (in semiring_0) pmult :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl \<open>***\<close> 70) |
52778 | 35 |
where |
60536 | 36 |
pmult_Nil: "[] *** l2 = []" |
37 |
| pmult_Cons: "(h # t) *** l2 = (if t = [] then h %* l2 else (h %* l2) +++ (0 # (t *** l2)))" |
|
33153 | 38 |
|
60536 | 39 |
text \<open>Repeated multiplication by a polynomial\<close> |
40 |
primrec (in semiring_0) mulexp :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
41 |
where |
|
42 |
mulexp_zero: "mulexp 0 p q = q" |
|
43 |
| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" |
|
33153 | 44 |
|
60536 | 45 |
text \<open>Exponential\<close> |
69597 | 46 |
primrec (in semiring_1) pexp :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list" (infixl \<open>%^\<close> 80) |
60536 | 47 |
where |
48 |
pexp_0: "p %^ 0 = [1]" |
|
39246 | 49 |
| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" |
33153 | 50 |
|
60536 | 51 |
text \<open>Quotient related value of dividing a polynomial by x + a. |
52 |
Useful for divisor properties in inductive proofs.\<close> |
|
54219 | 53 |
primrec (in field) "pquot" :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" |
52778 | 54 |
where |
60536 | 55 |
pquot_Nil: "pquot [] a = []" |
56 |
| pquot_Cons: "pquot (h # t) a = |
|
57 |
(if t = [] then [h] else (inverse a * (h - hd( pquot t a))) # pquot t a)" |
|
33153 | 58 |
|
60536 | 59 |
text \<open>Normalization of polynomials (remove extra 0 coeff).\<close> |
60 |
primrec (in semiring_0) pnormalize :: "'a list \<Rightarrow> 'a list" |
|
61 |
where |
|
62 |
pnormalize_Nil: "pnormalize [] = []" |
|
63 |
| pnormalize_Cons: "pnormalize (h # p) = |
|
54219 | 64 |
(if pnormalize p = [] then (if h = 0 then [] else [h]) else h # pnormalize p)" |
33153 | 65 |
|
60536 | 66 |
definition (in semiring_0) "pnormal p \<longleftrightarrow> pnormalize p = p \<and> p \<noteq> []" |
67 |
definition (in semiring_0) "nonconstant p \<longleftrightarrow> pnormal p \<and> (\<forall>x. p \<noteq> [x])" |
|
68 |
||
69 |
text \<open>Other definitions.\<close> |
|
33153 | 70 |
|
69597 | 71 |
definition (in ring_1) poly_minus :: "'a list \<Rightarrow> 'a list" (\<open>-- _\<close> [80] 80) |
52778 | 72 |
where "-- p = (- 1) %* p" |
33153 | 73 |
|
69597 | 74 |
definition (in semiring_0) divides :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl \<open>divides\<close> 70) |
60536 | 75 |
where "p1 divides p2 \<longleftrightarrow> (\<exists>q. poly p2 = poly(p1 *** q))" |
54219 | 76 |
|
60536 | 77 |
lemma (in semiring_0) dividesI: "poly p2 = poly (p1 *** q) \<Longrightarrow> p1 divides p2" |
54219 | 78 |
by (auto simp add: divides_def) |
33153 | 79 |
|
54219 | 80 |
lemma (in semiring_0) dividesE: |
81 |
assumes "p1 divides p2" |
|
82 |
obtains q where "poly p2 = poly (p1 *** q)" |
|
83 |
using assms by (auto simp add: divides_def) |
|
33153 | 84 |
|
61586 | 85 |
\<comment> \<open>order of a polynomial\<close> |
60536 | 86 |
definition (in ring_1) order :: "'a \<Rightarrow> 'a list \<Rightarrow> nat" |
87 |
where "order a p = (SOME n. ([-a, 1] %^ n) divides p \<and> \<not> (([-a, 1] %^ (Suc n)) divides p))" |
|
54219 | 88 |
|
61586 | 89 |
\<comment> \<open>degree of a polynomial\<close> |
54219 | 90 |
definition (in semiring_0) degree :: "'a list \<Rightarrow> nat" |
52778 | 91 |
where "degree p = length (pnormalize p) - 1" |
33153 | 92 |
|
61586 | 93 |
\<comment> \<open>squarefree polynomials --- NB with respect to real roots only\<close> |
54219 | 94 |
definition (in ring_1) rsquarefree :: "'a list \<Rightarrow> bool" |
95 |
where "rsquarefree p \<longleftrightarrow> poly p \<noteq> poly [] \<and> (\<forall>a. order a p = 0 \<or> order a p = 1)" |
|
33153 | 96 |
|
54219 | 97 |
context semiring_0 |
98 |
begin |
|
99 |
||
100 |
lemma padd_Nil2[simp]: "p +++ [] = p" |
|
52778 | 101 |
by (induct p) auto |
33153 | 102 |
|
103 |
lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)" |
|
52778 | 104 |
by auto |
33153 | 105 |
|
54219 | 106 |
lemma pminus_Nil: "-- [] = []" |
52778 | 107 |
by (simp add: poly_minus_def) |
33153 | 108 |
|
54219 | 109 |
lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp |
110 |
||
111 |
end |
|
33153 | 112 |
|
60536 | 113 |
lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" |
114 |
by (induct t) auto |
|
33153 | 115 |
|
60536 | 116 |
lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ (0 # t) = a # t" |
52778 | 117 |
by simp |
33153 | 118 |
|
60536 | 119 |
|
120 |
text \<open>Handy general properties.\<close> |
|
33153 | 121 |
|
54219 | 122 |
lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b" |
123 |
proof (induct b arbitrary: a) |
|
124 |
case Nil |
|
60536 | 125 |
then show ?case |
126 |
by auto |
|
54219 | 127 |
next |
128 |
case (Cons b bs a) |
|
60536 | 129 |
then show ?case |
130 |
by (cases a) (simp_all add: add.commute) |
|
54219 | 131 |
qed |
132 |
||
60698 | 133 |
lemma (in comm_semiring_0) padd_assoc: "(a +++ b) +++ c = a +++ (b +++ c)" |
134 |
proof (induct a arbitrary: b c) |
|
135 |
case Nil |
|
136 |
then show ?case |
|
137 |
by simp |
|
138 |
next |
|
139 |
case Cons |
|
140 |
then show ?case |
|
141 |
by (cases b) (simp_all add: ac_simps) |
|
142 |
qed |
|
33153 | 143 |
|
60536 | 144 |
lemma (in semiring_0) poly_cmult_distr: "a %* (p +++ q) = a %* p +++ a %* q" |
60698 | 145 |
proof (induct p arbitrary: q) |
146 |
case Nil |
|
147 |
then show ?case |
|
148 |
by simp |
|
149 |
next |
|
150 |
case Cons |
|
151 |
then show ?case |
|
152 |
by (cases q) (simp_all add: distrib_left) |
|
153 |
qed |
|
33153 | 154 |
|
60536 | 155 |
lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = 0 # t" |
60698 | 156 |
proof (induct t) |
157 |
case Nil |
|
158 |
then show ?case |
|
159 |
by simp |
|
160 |
next |
|
161 |
case (Cons a t) |
|
162 |
then show ?case |
|
163 |
by (cases t) (auto simp add: padd_commut) |
|
164 |
qed |
|
60536 | 165 |
|
166 |
text \<open>Properties of evaluation of polynomials.\<close> |
|
33153 | 167 |
|
54219 | 168 |
lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" |
60536 | 169 |
proof (induct p1 arbitrary: p2) |
54219 | 170 |
case Nil |
60536 | 171 |
then show ?case |
172 |
by simp |
|
54219 | 173 |
next |
174 |
case (Cons a as p2) |
|
60536 | 175 |
then show ?case |
176 |
by (cases p2) (simp_all add: ac_simps distrib_left) |
|
54219 | 177 |
qed |
33153 | 178 |
|
54219 | 179 |
lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x" |
60698 | 180 |
proof (induct p) |
181 |
case Nil |
|
182 |
then show ?case |
|
183 |
by simp |
|
184 |
next |
|
185 |
case Cons |
|
186 |
then show ?case |
|
187 |
by (cases "x = zero") (auto simp add: distrib_left ac_simps) |
|
188 |
qed |
|
33153 | 189 |
|
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
67399
diff
changeset
|
190 |
lemma (in comm_semiring_0) poly_cmult_map: "poly (map ((*) c) p) x = c * poly p x" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
191 |
by (induct p) (auto simp add: distrib_left ac_simps) |
33153 | 192 |
|
54219 | 193 |
lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)" |
60698 | 194 |
by (simp add: poly_minus_def) (auto simp add: poly_cmult) |
33153 | 195 |
|
54219 | 196 |
lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" |
197 |
proof (induct p1 arbitrary: p2) |
|
198 |
case Nil |
|
60536 | 199 |
then show ?case |
200 |
by simp |
|
54219 | 201 |
next |
60698 | 202 |
case (Cons a as) |
60536 | 203 |
then show ?case |
204 |
by (cases as) (simp_all add: poly_cmult poly_add distrib_right distrib_left ac_simps) |
|
54219 | 205 |
qed |
206 |
||
207 |
class idom_char_0 = idom + ring_char_0 |
|
208 |
||
209 |
subclass (in field_char_0) idom_char_0 .. |
|
210 |
||
211 |
lemma (in comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n" |
|
52881 | 212 |
by (induct n) (auto simp add: poly_cmult poly_mult) |
33153 | 213 |
|
60536 | 214 |
|
215 |
text \<open>More Polynomial Evaluation lemmas.\<close> |
|
33153 | 216 |
|
54219 | 217 |
lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x" |
52778 | 218 |
by simp |
33153 | 219 |
|
54219 | 220 |
lemma (in comm_semiring_0) poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55417
diff
changeset
|
221 |
by (simp add: poly_mult mult.assoc) |
33153 | 222 |
|
54219 | 223 |
lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0" |
52881 | 224 |
by (induct p) auto |
33153 | 225 |
|
60536 | 226 |
lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly (p %^ n *** p %^ d) x" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55417
diff
changeset
|
227 |
by (induct n) (auto simp add: poly_mult mult.assoc) |
33153 | 228 |
|
60536 | 229 |
|
69597 | 230 |
subsection \<open>Key Property: if \<^term>\<open>f a = 0\<close> then \<^term>\<open>(x - a)\<close> divides \<^term>\<open>p(x)\<close>.\<close> |
33153 | 231 |
|
60698 | 232 |
lemma (in comm_ring_1) lemma_poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q" |
233 |
proof (induct t arbitrary: h) |
|
54219 | 234 |
case Nil |
60698 | 235 |
have "[h] = [h] +++ [- a, 1] *** []" by simp |
60536 | 236 |
then show ?case by blast |
54219 | 237 |
next |
238 |
case (Cons x xs) |
|
60698 | 239 |
have "\<exists>q r. h # x # xs = [r] +++ [-a, 1] *** q" |
60536 | 240 |
proof - |
60698 | 241 |
from Cons obtain q r where qr: "x # xs = [r] +++ [- a, 1] *** q" |
60536 | 242 |
by blast |
243 |
have "h # x # xs = [a * r + h] +++ [-a, 1] *** (r # q)" |
|
54219 | 244 |
using qr by (cases q) (simp_all add: algebra_simps) |
60536 | 245 |
then show ?thesis by blast |
246 |
qed |
|
247 |
then show ?case by blast |
|
54219 | 248 |
qed |
249 |
||
250 |
lemma (in comm_ring_1) poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q" |
|
251 |
using lemma_poly_linear_rem [where t = t and a = a] by auto |
|
252 |
||
60698 | 253 |
lemma (in comm_ring_1) poly_linear_divides: "poly p a = 0 \<longleftrightarrow> p = [] \<or> (\<exists>q. p = [-a, 1] *** q)" |
60536 | 254 |
proof (cases p) |
255 |
case Nil |
|
256 |
then show ?thesis by simp |
|
257 |
next |
|
258 |
case (Cons x xs) |
|
259 |
have "poly p a = 0" if "p = [-a, 1] *** q" for q |
|
260 |
using that by (simp add: poly_add poly_cmult) |
|
54219 | 261 |
moreover |
60536 | 262 |
have "\<exists>q. p = [- a, 1] *** q" if p0: "poly p a = 0" |
263 |
proof - |
|
264 |
from poly_linear_rem[of x xs a] obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" |
|
265 |
by blast |
|
266 |
have "r = 0" |
|
267 |
using p0 by (simp only: Cons qr poly_mult poly_add) simp |
|
80098 | 268 |
with Cons qr have "p = [- a, 1] *** q" |
269 |
by (simp add: local.padd_commut) |
|
270 |
then show ?thesis .. |
|
60536 | 271 |
qed |
272 |
ultimately show ?thesis using Cons by blast |
|
54219 | 273 |
qed |
33153 | 274 |
|
60536 | 275 |
lemma (in semiring_0) lemma_poly_length_mult[simp]: |
60698 | 276 |
"length (k %* p +++ (h # (a %* p))) = Suc (length p)" |
277 |
by (induct p arbitrary: h k a) auto |
|
33153 | 278 |
|
60536 | 279 |
lemma (in semiring_0) lemma_poly_length_mult2[simp]: |
60698 | 280 |
"length (k %* p +++ (h # p)) = Suc (length p)" |
281 |
by (induct p arbitrary: h k) auto |
|
33153 | 282 |
|
54219 | 283 |
lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)" |
52778 | 284 |
by auto |
33153 | 285 |
|
60536 | 286 |
|
287 |
subsection \<open>Polynomial length\<close> |
|
33153 | 288 |
|
54219 | 289 |
lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p" |
52778 | 290 |
by (induct p) auto |
33153 | 291 |
|
54219 | 292 |
lemma (in semiring_0) poly_add_length: "length (p1 +++ p2) = max (length p1) (length p2)" |
60698 | 293 |
by (induct p1 arbitrary: p2) auto |
33153 | 294 |
|
60698 | 295 |
lemma (in semiring_0) poly_root_mult_length[simp]: "length ([a, b] *** p) = Suc (length p)" |
54219 | 296 |
by (simp add: poly_add_length) |
33153 | 297 |
|
54219 | 298 |
lemma (in idom) poly_mult_not_eq_poly_Nil[simp]: |
299 |
"poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] x" |
|
52778 | 300 |
by (auto simp add: poly_mult) |
33153 | 301 |
|
54219 | 302 |
lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \<longleftrightarrow> poly p x = 0 \<or> poly q x = 0" |
52778 | 303 |
by (auto simp add: poly_mult) |
33153 | 304 |
|
305 |
||
60536 | 306 |
text \<open>Normalisation Properties.\<close> |
307 |
||
308 |
lemma (in semiring_0) poly_normalized_nil: "pnormalize p = [] \<longrightarrow> poly p x = 0" |
|
52778 | 309 |
by (induct p) auto |
33153 | 310 |
|
60536 | 311 |
text \<open>A nontrivial polynomial of degree n has no more than n roots.\<close> |
54219 | 312 |
lemma (in idom) poly_roots_index_lemma: |
60698 | 313 |
assumes "poly p x \<noteq> poly [] x" |
314 |
and "length p = n" |
|
54219 | 315 |
shows "\<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" |
60698 | 316 |
using assms |
54219 | 317 |
proof (induct n arbitrary: p x) |
318 |
case 0 |
|
60536 | 319 |
then show ?case by simp |
54219 | 320 |
next |
60698 | 321 |
case (Suc n) |
60536 | 322 |
have False if C: "\<And>i. \<exists>x. poly p x = 0 \<and> (\<forall>m\<le>Suc n. x \<noteq> i m)" |
323 |
proof - |
|
324 |
from Suc.prems have p0: "poly p x \<noteq> 0" "p \<noteq> []" |
|
325 |
by auto |
|
54219 | 326 |
from p0(1)[unfolded poly_linear_divides[of p x]] |
60536 | 327 |
have "\<forall>q. p \<noteq> [- x, 1] *** q" |
328 |
by blast |
|
329 |
from C obtain a where a: "poly p a = 0" |
|
330 |
by blast |
|
331 |
from a[unfolded poly_linear_divides[of p a]] p0(2) obtain q where q: "p = [-a, 1] *** q" |
|
332 |
by blast |
|
333 |
have lg: "length q = n" |
|
334 |
using q Suc.prems(2) by simp |
|
54219 | 335 |
from q p0 have qx: "poly q x \<noteq> poly [] x" |
336 |
by (auto simp add: poly_mult poly_add poly_cmult) |
|
60698 | 337 |
from Suc.hyps[OF qx lg] obtain i where i: "\<And>x. poly q x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" |
60536 | 338 |
by blast |
54219 | 339 |
let ?i = "\<lambda>m. if m = Suc n then a else i m" |
340 |
from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m" |
|
341 |
by blast |
|
342 |
from y have "y = a \<or> poly q y = 0" |
|
343 |
by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps) |
|
80098 | 344 |
with i[of y] y show ?thesis |
345 |
using le_Suc_eq by auto |
|
60536 | 346 |
qed |
347 |
then show ?case by blast |
|
54219 | 348 |
qed |
33153 | 349 |
|
350 |
||
54219 | 351 |
lemma (in idom) poly_roots_index_length: |
60698 | 352 |
"poly p x \<noteq> poly [] x \<Longrightarrow> \<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>n. n \<le> length p \<and> x = i n)" |
54219 | 353 |
by (blast intro: poly_roots_index_lemma) |
33153 | 354 |
|
54219 | 355 |
lemma (in idom) poly_roots_finite_lemma1: |
60698 | 356 |
"poly p x \<noteq> poly [] x \<Longrightarrow> \<exists>N i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>n::nat. n < N \<and> x = i n)" |
80098 | 357 |
by (metis le_imp_less_Suc poly_roots_index_length) |
33153 | 358 |
|
54219 | 359 |
lemma (in idom) idom_finite_lemma: |
60536 | 360 |
assumes "\<forall>x. P x \<longrightarrow> (\<exists>n. n < length j \<and> x = j!n)" |
54219 | 361 |
shows "finite {x. P x}" |
52778 | 362 |
proof - |
60698 | 363 |
from assms have "{x. P x} \<subseteq> set j" |
364 |
by auto |
|
365 |
then show ?thesis |
|
366 |
using finite_subset by auto |
|
33153 | 367 |
qed |
368 |
||
54219 | 369 |
lemma (in idom) poly_roots_finite_lemma2: |
370 |
"poly p x \<noteq> poly [] x \<Longrightarrow> \<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> x \<in> set i" |
|
80098 | 371 |
using poly_roots_index_length atMost_iff atMost_upto imageI set_map |
372 |
by metis |
|
33153 | 373 |
|
60536 | 374 |
lemma (in ring_char_0) UNIV_ring_char_0_infinte: "\<not> finite (UNIV :: 'a set)" |
54219 | 375 |
proof |
376 |
assume F: "finite (UNIV :: 'a set)" |
|
377 |
have "finite (UNIV :: nat set)" |
|
378 |
proof (rule finite_imageD) |
|
60698 | 379 |
have "of_nat ` UNIV \<subseteq> UNIV" |
380 |
by simp |
|
60536 | 381 |
then show "finite (of_nat ` UNIV :: 'a set)" |
382 |
using F by (rule finite_subset) |
|
383 |
show "inj (of_nat :: nat \<Rightarrow> 'a)" |
|
384 |
by (simp add: inj_on_def) |
|
54219 | 385 |
qed |
386 |
with infinite_UNIV_nat show False .. |
|
33153 | 387 |
qed |
388 |
||
54219 | 389 |
lemma (in idom_char_0) poly_roots_finite: "poly p \<noteq> poly [] \<longleftrightarrow> finite {x. poly p x = 0}" |
60536 | 390 |
(is "?lhs \<longleftrightarrow> ?rhs") |
33153 | 391 |
proof |
60536 | 392 |
show ?rhs if ?lhs |
52778 | 393 |
proof - |
80098 | 394 |
have False if F: "\<not> finite {x. poly p x = 0}" |
395 |
and P: "\<forall>x. poly p x = 0 \<longrightarrow> x \<in> set i" for i |
|
396 |
by (smt (verit, del_insts) in_set_conv_nth local.idom_finite_lemma that) |
|
397 |
with that show ?thesis |
|
398 |
using local.poly_roots_finite_lemma2 by blast |
|
33153 | 399 |
qed |
60536 | 400 |
show ?lhs if ?rhs |
401 |
using UNIV_ring_char_0_infinte that by auto |
|
33153 | 402 |
qed |
403 |
||
60536 | 404 |
|
405 |
text \<open>Entirety and Cancellation for polynomials\<close> |
|
33153 | 406 |
|
54219 | 407 |
lemma (in idom_char_0) poly_entire_lemma2: |
408 |
assumes p0: "poly p \<noteq> poly []" |
|
409 |
and q0: "poly q \<noteq> poly []" |
|
410 |
shows "poly (p***q) \<noteq> poly []" |
|
411 |
proof - |
|
412 |
let ?S = "\<lambda>p. {x. poly p x = 0}" |
|
60536 | 413 |
have "?S (p *** q) = ?S p \<union> ?S q" |
414 |
by (auto simp add: poly_mult) |
|
415 |
with p0 q0 show ?thesis |
|
416 |
unfolding poly_roots_finite by auto |
|
54219 | 417 |
qed |
33153 | 418 |
|
54219 | 419 |
lemma (in idom_char_0) poly_entire: |
420 |
"poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []" |
|
421 |
using poly_entire_lemma2[of p q] |
|
422 |
by (auto simp add: fun_eq_iff poly_mult) |
|
33153 | 423 |
|
54219 | 424 |
lemma (in idom_char_0) poly_entire_neg: |
425 |
"poly (p *** q) \<noteq> poly [] \<longleftrightarrow> poly p \<noteq> poly [] \<and> poly q \<noteq> poly []" |
|
52778 | 426 |
by (simp add: poly_entire) |
33153 | 427 |
|
54219 | 428 |
lemma (in comm_ring_1) poly_add_minus_zero_iff: |
429 |
"poly (p +++ -- q) = poly [] \<longleftrightarrow> poly p = poly q" |
|
60536 | 430 |
by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq_iff poly_cmult) |
33153 | 431 |
|
54219 | 432 |
lemma (in comm_ring_1) poly_add_minus_mult_eq: |
433 |
"poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" |
|
60536 | 434 |
by (auto simp add: poly_add poly_minus_def fun_eq_iff poly_mult poly_cmult algebra_simps) |
33153 | 435 |
|
54219 | 436 |
subclass (in idom_char_0) comm_ring_1 .. |
33153 | 437 |
|
54219 | 438 |
lemma (in idom_char_0) poly_mult_left_cancel: |
439 |
"poly (p *** q) = poly (p *** r) \<longleftrightarrow> poly p = poly [] \<or> poly q = poly r" |
|
440 |
proof - |
|
441 |
have "poly (p *** q) = poly (p *** r) \<longleftrightarrow> poly (p *** q +++ -- (p *** r)) = poly []" |
|
442 |
by (simp only: poly_add_minus_zero_iff) |
|
443 |
also have "\<dots> \<longleftrightarrow> poly p = poly [] \<or> poly q = poly r" |
|
444 |
by (auto intro: simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) |
|
445 |
finally show ?thesis . |
|
446 |
qed |
|
447 |
||
60536 | 448 |
lemma (in idom) poly_exp_eq_zero[simp]: "poly (p %^ n) = poly [] \<longleftrightarrow> poly p = poly [] \<and> n \<noteq> 0" |
80098 | 449 |
by (simp add: local.poly_exp fun_eq_iff) |
33153 | 450 |
|
60536 | 451 |
lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a, 1] \<noteq> poly []" |
80098 | 452 |
proof - |
453 |
have "\<exists>x. a + x \<noteq> 0" |
|
454 |
by (metis add_cancel_left_right zero_neq_one) |
|
455 |
then show ?thesis |
|
456 |
by (simp add: fun_eq_iff) |
|
457 |
qed |
|
33153 | 458 |
|
54219 | 459 |
lemma (in idom) poly_exp_prime_eq_zero: "poly ([a, 1] %^ n) \<noteq> poly []" |
52778 | 460 |
by auto |
33153 | 461 |
|
60536 | 462 |
|
463 |
text \<open>A more constructive notion of polynomials being trivial.\<close> |
|
33153 | 464 |
|
80098 | 465 |
lemma (in idom_char_0) poly_zero_lemma': |
466 |
assumes "poly (h # t) = poly []" shows "h = 0 \<and> poly t = poly []" |
|
52778 | 467 |
proof - |
80098 | 468 |
have "poly t x = 0" if H: "\<forall>x. x = 0 \<or> poly t x = 0" and pnz: "poly t \<noteq> poly []" for x |
469 |
proof - |
|
470 |
from H have "{x. poly t x = 0} \<supseteq> UNIV - {0}" |
|
471 |
by auto |
|
472 |
then show ?thesis |
|
473 |
using finite_subset local.poly_roots_finite pnz by fastforce |
|
474 |
qed |
|
475 |
with assms show ?thesis |
|
476 |
by (simp add: fun_eq_iff) (metis add_cancel_right_left mult_eq_0_iff) |
|
52778 | 477 |
qed |
33153 | 478 |
|
60537 | 479 |
lemma (in idom_char_0) poly_zero: "poly p = poly [] \<longleftrightarrow> (\<forall>c \<in> set p. c = 0)" |
60698 | 480 |
proof (induct p) |
481 |
case Nil |
|
482 |
then show ?case by simp |
|
483 |
next |
|
484 |
case Cons |
|
80098 | 485 |
then show ?case |
486 |
by (smt (verit) list.set_intros pmult_by_x poly_entire poly_zero_lemma' set_ConsD) |
|
60698 | 487 |
qed |
33153 | 488 |
|
60537 | 489 |
lemma (in idom_char_0) poly_0: "\<forall>c \<in> set p. c = 0 \<Longrightarrow> poly p x = 0" |
54219 | 490 |
unfolding poly_zero[symmetric] by simp |
491 |
||
492 |
||
60536 | 493 |
text \<open>Basics of divisibility.\<close> |
33153 | 494 |
|
60536 | 495 |
lemma (in idom) poly_primes: "[a, 1] divides (p *** q) \<longleftrightarrow> [a, 1] divides p \<or> [a, 1] divides q" |
80098 | 496 |
proof - |
497 |
have "\<exists>q. \<forall>x. poly p x = (a + x) * poly q x" |
|
498 |
if "poly p (uminus a) * poly q (uminus a) = (a + (uminus a)) * poly qa (uminus a)" |
|
499 |
and "\<forall>qa. \<exists>x. poly q x \<noteq> (a + x) * poly qa x" |
|
500 |
for qa |
|
501 |
using that |
|
502 |
apply (simp add: poly_linear_divides poly_add) |
|
503 |
by (metis add_cancel_left_right combine_common_factor mult_eq_0_iff poly.poly_Cons poly.poly_Nil poly_add poly_cmult) |
|
504 |
moreover have "\<exists>qb. \<forall>x. (a + x) * poly qa x * poly q x = (a + x) * poly qb x" for qa |
|
505 |
by (metis local.poly_mult mult_assoc) |
|
506 |
moreover have "\<exists>q. \<forall>x. poly p x * ((a + x) * poly qa x) = (a + x) * poly q x" for qa |
|
507 |
by (metis mult.left_commute local.poly_mult) |
|
508 |
ultimately show ?thesis |
|
509 |
by (auto simp: divides_def divisors_zero fun_eq_iff poly_mult poly_add poly_cmult simp flip: distrib_right) |
|
510 |
qed |
|
33153 | 511 |
|
54219 | 512 |
lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p" |
80098 | 513 |
proof - |
514 |
have "poly p = poly (p *** [1])" |
|
515 |
by (auto simp add: poly_mult fun_eq_iff) |
|
516 |
then show ?thesis |
|
517 |
using local.dividesI by blast |
|
518 |
qed |
|
33153 | 519 |
|
54219 | 520 |
lemma (in comm_semiring_1) poly_divides_trans: "p divides q \<Longrightarrow> q divides r \<Longrightarrow> p divides r" |
80098 | 521 |
unfolding divides_def |
522 |
by (metis ext local.poly_mult local.poly_mult_assoc) |
|
33153 | 523 |
|
54219 | 524 |
lemma (in comm_semiring_1) poly_divides_exp: "m \<le> n \<Longrightarrow> (p %^ m) divides (p %^ n)" |
62378
85ed00c1fe7c
generalize more theorems to support enat and ennreal
hoelzl
parents:
61945
diff
changeset
|
525 |
by (auto simp: le_iff_add divides_def poly_exp_add fun_eq_iff) |
33153 | 526 |
|
60536 | 527 |
lemma (in comm_semiring_1) poly_exp_divides: "(p %^ n) divides q \<Longrightarrow> m \<le> n \<Longrightarrow> (p %^ m) divides q" |
52778 | 528 |
by (blast intro: poly_divides_exp poly_divides_trans) |
33153 | 529 |
|
80098 | 530 |
lemma (in comm_semiring_0) poly_divides_add: |
531 |
assumes "p divides q" and "p divides r" shows "p divides (q +++ r)" |
|
532 |
proof - |
|
533 |
have "\<And>qa qb. \<lbrakk>poly q = poly (p *** qa); poly r = poly (p *** qb)\<rbrakk> |
|
534 |
\<Longrightarrow> poly (q +++ r) = poly (p *** (qa +++ qb))" |
|
535 |
by (auto simp add: poly_add fun_eq_iff poly_mult distrib_left) |
|
536 |
with assms show ?thesis |
|
537 |
by (auto simp add: divides_def) |
|
538 |
qed |
|
33153 | 539 |
|
80098 | 540 |
lemma (in comm_ring_1) poly_divides_diff: |
541 |
assumes "p divides q" and "p divides (q +++ r)" |
|
542 |
shows "p divides r" |
|
543 |
proof - |
|
544 |
have "\<And>qa qb. \<lbrakk>poly q = poly (p *** qa); poly (q +++ r) = poly (p *** qb)\<rbrakk> |
|
545 |
\<Longrightarrow> poly r = poly (p *** (qb +++ -- qa))" |
|
546 |
by (auto simp add: poly_add fun_eq_iff poly_mult poly_minus algebra_simps) |
|
547 |
with assms show ?thesis |
|
548 |
by (auto simp add: divides_def) |
|
549 |
qed |
|
33153 | 550 |
|
60536 | 551 |
lemma (in comm_ring_1) poly_divides_diff2: "p divides r \<Longrightarrow> p divides (q +++ r) \<Longrightarrow> p divides q" |
80098 | 552 |
by (metis local.padd_commut local.poly_divides_diff) |
33153 | 553 |
|
54219 | 554 |
lemma (in semiring_0) poly_divides_zero: "poly p = poly [] \<Longrightarrow> q divides p" |
80098 | 555 |
by (metis ext dividesI poly.poly_Nil poly_mult_Nil2) |
33153 | 556 |
|
54219 | 557 |
lemma (in semiring_0) poly_divides_zero2 [simp]: "q divides []" |
80098 | 558 |
using local.poly_divides_zero by force |
33153 | 559 |
|
60536 | 560 |
|
561 |
text \<open>At last, we can consider the order of a root.\<close> |
|
33153 | 562 |
|
54219 | 563 |
lemma (in idom_char_0) poly_order_exists_lemma: |
60698 | 564 |
assumes "length p = d" |
565 |
and "poly p \<noteq> poly []" |
|
54219 | 566 |
shows "\<exists>n q. p = mulexp n [-a, 1] q \<and> poly q a \<noteq> 0" |
60698 | 567 |
using assms |
54219 | 568 |
proof (induct d arbitrary: p) |
569 |
case 0 |
|
60536 | 570 |
then show ?case by simp |
54219 | 571 |
next |
572 |
case (Suc n p) |
|
573 |
show ?case |
|
574 |
proof (cases "poly p a = 0") |
|
575 |
case True |
|
60536 | 576 |
from Suc.prems have h: "length p = Suc n" "poly p \<noteq> poly []" |
577 |
by auto |
|
578 |
then have pN: "p \<noteq> []" |
|
579 |
by auto |
|
54219 | 580 |
from True[unfolded poly_linear_divides] pN obtain q where q: "p = [-a, 1] *** q" |
581 |
by blast |
|
582 |
from q h True have qh: "length q = n" "poly q \<noteq> poly []" |
|
80098 | 583 |
using h(2) local.poly_entire q by fastforce+ |
54219 | 584 |
from Suc.hyps[OF qh] obtain m r where mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" |
585 |
by blast |
|
60698 | 586 |
from mr q have "p = mulexp (Suc m) [-a,1] r \<and> poly r a \<noteq> 0" |
587 |
by simp |
|
54219 | 588 |
then show ?thesis by blast |
589 |
next |
|
590 |
case False |
|
80098 | 591 |
with Suc.prems show ?thesis |
592 |
by (smt (verit, best) local.mulexp.mulexp_zero) |
|
54219 | 593 |
qed |
594 |
qed |
|
595 |
||
596 |
||
597 |
lemma (in comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x" |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
598 |
by (induct n) (auto simp add: poly_mult ac_simps) |
54219 | 599 |
|
600 |
lemma (in comm_semiring_1) divides_left_mult: |
|
60536 | 601 |
assumes "(p *** q) divides r" |
602 |
shows "p divides r \<and> q divides r" |
|
54219 | 603 |
proof- |
60536 | 604 |
from assms obtain t where "poly r = poly (p *** q *** t)" |
54219 | 605 |
unfolding divides_def by blast |
60536 | 606 |
then have "poly r = poly (p *** (q *** t))" and "poly r = poly (q *** (p *** t))" |
607 |
by (auto simp add: fun_eq_iff poly_mult ac_simps) |
|
608 |
then show ?thesis |
|
609 |
unfolding divides_def by blast |
|
54219 | 610 |
qed |
611 |
||
33153 | 612 |
|
613 |
(* FIXME: Tidy up *) |
|
54219 | 614 |
|
615 |
lemma (in semiring_1) zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)" |
|
616 |
by (induct n) simp_all |
|
33153 | 617 |
|
54219 | 618 |
lemma (in idom_char_0) poly_order_exists: |
60536 | 619 |
assumes "length p = d" |
620 |
and "poly p \<noteq> poly []" |
|
54219 | 621 |
shows "\<exists>n. [- a, 1] %^ n divides p \<and> \<not> [- a, 1] %^ Suc n divides p" |
622 |
proof - |
|
623 |
from assms have "\<exists>n q. p = mulexp n [- a, 1] q \<and> poly q a \<noteq> 0" |
|
624 |
by (rule poly_order_exists_lemma) |
|
60536 | 625 |
then obtain n q where p: "p = mulexp n [- a, 1] q" and "poly q a \<noteq> 0" |
626 |
by blast |
|
54219 | 627 |
have "[- a, 1] %^ n divides mulexp n [- a, 1] q" |
628 |
proof (rule dividesI) |
|
629 |
show "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ n *** q)" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54219
diff
changeset
|
630 |
by (induct n) (simp_all add: poly_add poly_cmult poly_mult algebra_simps) |
54219 | 631 |
qed |
632 |
moreover have "\<not> [- a, 1] %^ Suc n divides mulexp n [- a, 1] q" |
|
633 |
proof |
|
634 |
assume "[- a, 1] %^ Suc n divides mulexp n [- a, 1] q" |
|
635 |
then obtain m where "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ Suc n *** m)" |
|
636 |
by (rule dividesE) |
|
637 |
moreover have "poly (mulexp n [- a, 1] q) \<noteq> poly ([- a, 1] %^ Suc n *** m)" |
|
638 |
proof (induct n) |
|
60536 | 639 |
case 0 |
640 |
show ?case |
|
54219 | 641 |
proof (rule ccontr) |
60698 | 642 |
assume "\<not> ?thesis" |
54219 | 643 |
then have "poly q a = 0" |
644 |
by (simp add: poly_add poly_cmult) |
|
60536 | 645 |
with \<open>poly q a \<noteq> 0\<close> show False |
646 |
by simp |
|
54219 | 647 |
qed |
648 |
next |
|
60536 | 649 |
case (Suc n) |
650 |
show ?case |
|
60698 | 651 |
by (rule pexp_Suc [THEN ssubst]) |
54219 | 652 |
(simp add: poly_mult_left_cancel poly_mult_assoc Suc del: pmult_Cons pexp_Suc) |
653 |
qed |
|
654 |
ultimately show False by simp |
|
655 |
qed |
|
60536 | 656 |
ultimately show ?thesis |
657 |
by (auto simp add: p) |
|
54219 | 658 |
qed |
33153 | 659 |
|
54219 | 660 |
lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p" |
661 |
by (auto simp add: divides_def) |
|
662 |
||
663 |
lemma (in idom_char_0) poly_order: |
|
664 |
"poly p \<noteq> poly [] \<Longrightarrow> \<exists>!n. ([-a, 1] %^ n) divides p \<and> \<not> (([-a, 1] %^ Suc n) divides p)" |
|
80098 | 665 |
by (meson Suc_le_eq linorder_neqE_nat local.poly_exp_divides poly_order_exists) |
33153 | 666 |
|
60536 | 667 |
|
668 |
text \<open>Order\<close> |
|
33153 | 669 |
|
54219 | 670 |
lemma some1_equalityD: "n = (SOME n. P n) \<Longrightarrow> \<exists>!n. P n \<Longrightarrow> P n" |
52778 | 671 |
by (blast intro: someI2) |
33153 | 672 |
|
54219 | 673 |
lemma (in idom_char_0) order: |
60536 | 674 |
"([-a, 1] %^ n) divides p \<and> \<not> (([-a, 1] %^ Suc n) divides p) \<longleftrightarrow> |
675 |
n = order a p \<and> poly p \<noteq> poly []" |
|
676 |
unfolding order_def |
|
80098 | 677 |
by (metis (no_types, lifting) local.poly_divides_zero local.poly_order someI) |
33153 | 678 |
|
54219 | 679 |
lemma (in idom_char_0) order2: |
680 |
"poly p \<noteq> poly [] \<Longrightarrow> |
|
60536 | 681 |
([-a, 1] %^ (order a p)) divides p \<and> \<not> ([-a, 1] %^ Suc (order a p)) divides p" |
52778 | 682 |
by (simp add: order del: pexp_Suc) |
33153 | 683 |
|
54219 | 684 |
lemma (in idom_char_0) order_unique: |
60536 | 685 |
"poly p \<noteq> poly [] \<Longrightarrow> ([-a, 1] %^ n) divides p \<Longrightarrow> \<not> ([-a, 1] %^ (Suc n)) divides p \<Longrightarrow> |
54219 | 686 |
n = order a p" |
52778 | 687 |
using order [of a n p] by auto |
33153 | 688 |
|
54219 | 689 |
lemma (in idom_char_0) order_unique_lemma: |
60536 | 690 |
"poly p \<noteq> poly [] \<and> ([-a, 1] %^ n) divides p \<and> \<not> ([-a, 1] %^ (Suc n)) divides p \<Longrightarrow> |
52881 | 691 |
n = order a p" |
52778 | 692 |
by (blast intro: order_unique) |
33153 | 693 |
|
54219 | 694 |
lemma (in ring_1) order_poly: "poly p = poly q \<Longrightarrow> order a p = order a q" |
60536 | 695 |
by (auto simp add: fun_eq_iff divides_def poly_mult order_def) |
33153 | 696 |
|
54219 | 697 |
lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p" |
60536 | 698 |
by (induct p) auto |
54219 | 699 |
|
700 |
lemma (in comm_ring_1) lemma_order_root: |
|
60536 | 701 |
"0 < n \<and> [- a, 1] %^ n divides p \<and> \<not> [- a, 1] %^ (Suc n) divides p \<Longrightarrow> poly p a = 0" |
54219 | 702 |
by (induct n arbitrary: a p) (auto simp add: divides_def poly_mult simp del: pmult_Cons) |
33153 | 703 |
|
60536 | 704 |
lemma (in idom_char_0) order_root: "poly p a = 0 \<longleftrightarrow> poly p = poly [] \<or> order a p \<noteq> 0" |
80098 | 705 |
proof (cases "poly p = poly []") |
706 |
case False |
|
707 |
then show ?thesis |
|
708 |
by (metis (mono_tags, lifting) dividesI lemma_order_root order2 pexp_one poly_linear_divides neq0_conv) |
|
709 |
qed auto |
|
33153 | 710 |
|
54219 | 711 |
lemma (in idom_char_0) order_divides: |
712 |
"([-a, 1] %^ n) divides p \<longleftrightarrow> poly p = poly [] \<or> n \<le> order a p" |
|
80098 | 713 |
proof (cases "poly p = poly []") |
714 |
case True |
|
715 |
then show ?thesis |
|
716 |
using local.poly_divides_zero by force |
|
717 |
next |
|
718 |
case False |
|
719 |
then show ?thesis |
|
720 |
by (meson local.order2 local.poly_exp_divides not_less_eq_eq) |
|
721 |
qed |
|
33153 | 722 |
|
54219 | 723 |
lemma (in idom_char_0) order_decomp: |
80098 | 724 |
assumes "poly p \<noteq> poly []" |
725 |
shows "\<exists>q. poly p = poly (([-a, 1] %^ order a p) *** q) \<and> \<not> [-a, 1] divides q" |
|
726 |
proof - |
|
727 |
obtain q where q: "poly p = poly ([- a, 1] %^ order a p *** q)" |
|
728 |
using assms local.order2 divides_def by blast |
|
729 |
have False if "poly q = poly ([- a, 1] *** qa)" for qa |
|
730 |
proof - |
|
731 |
have "poly p \<noteq> poly ([- a, 1] %^ Suc (order a p) *** qa)" |
|
732 |
using assms local.divides_def local.order2 by blast |
|
733 |
with q that show False |
|
734 |
by (auto simp add: poly_mult ac_simps simp del: pmult_Cons) |
|
735 |
qed |
|
736 |
with q show ?thesis |
|
737 |
unfolding divides_def by blast |
|
738 |
qed |
|
33153 | 739 |
|
60536 | 740 |
text \<open>Important composition properties of orders.\<close> |
54219 | 741 |
lemma order_mult: |
60536 | 742 |
fixes a :: "'a::idom_char_0" |
54219 | 743 |
assumes "poly (p *** q) \<noteq> poly []" |
744 |
shows "order a (p *** q) = order a p + order a q" |
|
80098 | 745 |
proof - |
746 |
have p: "poly p \<noteq> poly []" and q: "poly q \<noteq> poly []" |
|
747 |
using assms poly_entire by auto |
|
748 |
obtain p' where p': |
|
749 |
"\<And>x. poly p x = poly ([- a, 1] %^ order a p) x * poly p' x" |
|
750 |
"\<not> [- a, 1] divides p'" |
|
751 |
by (metis order_decomp p poly_mult) |
|
752 |
obtain q' where q': |
|
753 |
"\<And>x. poly q x = poly ([- a, 1] %^ order a q) x * poly q' x" |
|
754 |
"\<not> [- a, 1] divides q'" |
|
755 |
by (metis order_decomp q poly_mult) |
|
756 |
have "[- a, 1] %^ (order a p + order a q) divides (p *** q)" |
|
757 |
proof - |
|
758 |
have *: "poly p x * poly q x = |
|
759 |
poly ([- a, 1] %^ order a p) x * poly ([- a, 1] %^ order a q) x * poly (p' *** q') x" for x |
|
760 |
using p' q' by (simp add: poly_mult) |
|
761 |
then show ?thesis |
|
762 |
unfolding divides_def poly_exp_add poly_mult using * by blast |
|
763 |
qed |
|
764 |
moreover have False |
|
765 |
if pq: "order a (p *** q) \<noteq> order a p + order a q" |
|
766 |
and dv: "[- a, 1] *** [- a, 1] %^ (order a p + order a q) divides (p *** q)" |
|
767 |
proof - |
|
768 |
obtain pq' :: "'a list" |
|
769 |
where pq': "poly (p *** q) = poly ([- a, 1] *** [- a, 1] %^ (order a p + order a q) *** pq')" |
|
770 |
using dv unfolding divides_def by auto |
|
771 |
have "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (p' *** q'))) = |
|
772 |
poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** pq')))" |
|
773 |
using p' q' pq pq' |
|
774 |
by (simp add: fun_eq_iff poly_exp_add poly_mult ac_simps del: pmult_Cons) |
|
775 |
then have "poly ([-a, 1] %^ (order a p) *** (p' *** q')) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** pq'))" |
|
776 |
by (simp add: poly_mult_left_cancel) |
|
777 |
then have "[-a, 1] divides (p' *** q')" |
|
778 |
unfolding divides_def by (meson poly_exp_prime_eq_zero poly_mult_left_cancel) |
|
779 |
with p' q' show ?thesis |
|
780 |
by (simp add: poly_primes) |
|
781 |
qed |
|
782 |
ultimately show ?thesis |
|
783 |
by (metis order pexp_Suc) |
|
784 |
qed |
|
54219 | 785 |
|
786 |
lemma (in idom_char_0) order_root2: "poly p \<noteq> poly [] \<Longrightarrow> poly p a = 0 \<longleftrightarrow> order a p \<noteq> 0" |
|
80098 | 787 |
using order_root by presburger |
33153 | 788 |
|
60536 | 789 |
lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" |
790 |
by auto |
|
33153 | 791 |
|
54219 | 792 |
lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]" |
60536 | 793 |
by (simp add: fun_eq_iff) |
33153 | 794 |
|
54219 | 795 |
lemma (in idom_char_0) rsquarefree_decomp: |
80098 | 796 |
assumes "rsquarefree p" and "poly p a = 0" |
797 |
shows "\<exists>q. poly p = poly ([-a, 1] *** q) \<and> poly q a \<noteq> 0" |
|
798 |
proof - |
|
799 |
have "order a p = Suc 0" |
|
800 |
using assms local.order_root2 rsquarefree_def by force |
|
801 |
moreover |
|
802 |
obtain q where "poly p = poly ([- a, 1] %^ order a p *** q)" |
|
803 |
"\<not> [- a, 1] divides q" |
|
804 |
using assms(1) order_decomp rsquarefree_def by blast |
|
805 |
ultimately show ?thesis |
|
806 |
using dividesI poly_linear_divides by auto |
|
807 |
qed |
|
33153 | 808 |
|
60536 | 809 |
text \<open>Normalization of a polynomial.\<close> |
33153 | 810 |
|
54219 | 811 |
lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p" |
60536 | 812 |
by (induct p) (auto simp add: fun_eq_iff) |
33153 | 813 |
|
60536 | 814 |
text \<open>The degree of a polynomial.\<close> |
33153 | 815 |
|
60537 | 816 |
lemma (in semiring_0) lemma_degree_zero: "(\<forall>c \<in> set p. c = 0) \<longleftrightarrow> pnormalize p = []" |
52778 | 817 |
by (induct p) auto |
33153 | 818 |
|
54219 | 819 |
lemma (in idom_char_0) degree_zero: |
820 |
assumes "poly p = poly []" |
|
821 |
shows "degree p = 0" |
|
822 |
using assms |
|
823 |
by (cases "pnormalize p = []") (auto simp add: degree_def poly_zero lemma_degree_zero) |
|
33153 | 824 |
|
60536 | 825 |
lemma (in semiring_0) pnormalize_sing: "pnormalize [x] = [x] \<longleftrightarrow> x \<noteq> 0" |
54219 | 826 |
by simp |
827 |
||
60536 | 828 |
lemma (in semiring_0) pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> pnormalize [x, y] = [x, y]" |
52881 | 829 |
by simp |
52778 | 830 |
|
60536 | 831 |
lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c # p)" |
33153 | 832 |
unfolding pnormal_def by simp |
52778 | 833 |
|
60536 | 834 |
lemma (in semiring_0) pnormal_tail: "p \<noteq> [] \<Longrightarrow> pnormal (c # p) \<Longrightarrow> pnormal p" |
62390 | 835 |
unfolding pnormal_def by (auto split: if_split_asm) |
54219 | 836 |
|
837 |
lemma (in semiring_0) pnormal_last_nonzero: "pnormal p \<Longrightarrow> last p \<noteq> 0" |
|
62390 | 838 |
by (induct p) (simp_all add: pnormal_def split: if_split_asm) |
54219 | 839 |
|
840 |
lemma (in semiring_0) pnormal_length: "pnormal p \<Longrightarrow> 0 < length p" |
|
841 |
unfolding pnormal_def length_greater_0_conv by blast |
|
842 |
||
843 |
lemma (in semiring_0) pnormal_last_length: "0 < length p \<Longrightarrow> last p \<noteq> 0 \<Longrightarrow> pnormal p" |
|
62390 | 844 |
by (induct p) (auto simp: pnormal_def split: if_split_asm) |
54219 | 845 |
|
846 |
lemma (in semiring_0) pnormal_id: "pnormal p \<longleftrightarrow> 0 < length p \<and> last p \<noteq> 0" |
|
847 |
using pnormal_last_length pnormal_length pnormal_last_nonzero by blast |
|
848 |
||
60698 | 849 |
lemma (in idom_char_0) poly_Cons_eq: "poly (c # cs) = poly (d # ds) \<longleftrightarrow> c = d \<and> poly cs = poly ds" |
54219 | 850 |
(is "?lhs \<longleftrightarrow> ?rhs") |
851 |
proof |
|
60536 | 852 |
show ?rhs if ?lhs |
853 |
proof - |
|
854 |
from that have "poly ((c # cs) +++ -- (d # ds)) x = 0" for x |
|
855 |
by (simp only: poly_minus poly_add algebra_simps) (simp add: algebra_simps) |
|
856 |
then have "poly ((c # cs) +++ -- (d # ds)) = poly []" |
|
857 |
by (simp add: fun_eq_iff) |
|
60537 | 858 |
then have "c = d" and "\<forall>x \<in> set (cs +++ -- ds). x = 0" |
60536 | 859 |
unfolding poly_zero by (simp_all add: poly_minus_def algebra_simps) |
860 |
from this(2) have "poly (cs +++ -- ds) x = 0" for x |
|
861 |
unfolding poly_zero[symmetric] by simp |
|
862 |
with \<open>c = d\<close> show ?thesis |
|
863 |
by (simp add: poly_minus poly_add algebra_simps fun_eq_iff) |
|
864 |
qed |
|
865 |
show ?lhs if ?rhs |
|
866 |
using that by (simp add:fun_eq_iff) |
|
54219 | 867 |
qed |
868 |
||
869 |
lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q" |
|
870 |
proof (induct q arbitrary: p) |
|
871 |
case Nil |
|
60536 | 872 |
then show ?case |
873 |
by (simp only: poly_zero lemma_degree_zero) simp |
|
54219 | 874 |
next |
875 |
case (Cons c cs p) |
|
60536 | 876 |
then show ?case |
54219 | 877 |
proof (induct p) |
878 |
case Nil |
|
60536 | 879 |
then show ?case |
80098 | 880 |
by (metis local.poly_zero_lemma') |
54219 | 881 |
next |
882 |
case (Cons d ds) |
|
80098 | 883 |
then show ?case |
884 |
by (metis pnormalize.pnormalize_Cons local.poly_Cons_eq) |
|
54219 | 885 |
qed |
886 |
qed |
|
887 |
||
888 |
lemma (in idom_char_0) degree_unique: |
|
889 |
assumes pq: "poly p = poly q" |
|
890 |
shows "degree p = degree q" |
|
891 |
using pnormalize_unique[OF pq] unfolding degree_def by simp |
|
892 |
||
60536 | 893 |
lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \<le> length p" |
894 |
by (induct p) auto |
|
54219 | 895 |
|
896 |
lemma (in semiring_0) last_linear_mul_lemma: |
|
60536 | 897 |
"last ((a %* p) +++ (x # (b %* p))) = (if p = [] then x else b * last p)" |
80098 | 898 |
proof (induct p arbitrary: a x b) |
899 |
case Nil |
|
900 |
then show ?case by auto |
|
901 |
next |
|
902 |
case (Cons a p c x b) |
|
903 |
then have "padd (cmult c p) (times b a # cmult b p) \<noteq> []" |
|
904 |
by (metis local.padd.padd_Nil local.padd_Cons_Cons neq_Nil_conv) |
|
905 |
then show ?case |
|
906 |
by (simp add: local.Cons) |
|
907 |
qed |
|
52778 | 908 |
|
54219 | 909 |
lemma (in semiring_1) last_linear_mul: |
910 |
assumes p: "p \<noteq> []" |
|
60536 | 911 |
shows "last ([a, 1] *** p) = last p" |
54219 | 912 |
proof - |
60536 | 913 |
from p obtain c cs where cs: "p = c # cs" |
914 |
by (cases p) auto |
|
915 |
from cs have eq: "[a, 1] *** p = (a %* (c # cs)) +++ (0 # (1 %* (c # cs)))" |
|
54219 | 916 |
by (simp add: poly_cmult_distr) |
60536 | 917 |
show ?thesis |
918 |
using cs unfolding eq last_linear_mul_lemma by simp |
|
54219 | 919 |
qed |
920 |
||
921 |
lemma (in semiring_0) pnormalize_eq: "last p \<noteq> 0 \<Longrightarrow> pnormalize p = p" |
|
62390 | 922 |
by (induct p) (auto split: if_split_asm) |
54219 | 923 |
|
924 |
lemma (in semiring_0) last_pnormalize: "pnormalize p \<noteq> [] \<Longrightarrow> last (pnormalize p) \<noteq> 0" |
|
925 |
by (induct p) auto |
|
926 |
||
927 |
lemma (in semiring_0) pnormal_degree: "last p \<noteq> 0 \<Longrightarrow> degree p = length p - 1" |
|
928 |
using pnormalize_eq[of p] unfolding degree_def by simp |
|
52778 | 929 |
|
54219 | 930 |
lemma (in semiring_0) poly_Nil_ext: "poly [] = (\<lambda>x. 0)" |
60536 | 931 |
by auto |
54219 | 932 |
|
933 |
lemma (in idom_char_0) linear_mul_degree: |
|
934 |
assumes p: "poly p \<noteq> poly []" |
|
60536 | 935 |
shows "degree ([a, 1] *** p) = degree p + 1" |
54219 | 936 |
proof - |
937 |
from p have pnz: "pnormalize p \<noteq> []" |
|
938 |
unfolding poly_zero lemma_degree_zero . |
|
939 |
||
940 |
from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz] |
|
941 |
have l0: "last ([a, 1] *** pnormalize p) \<noteq> 0" by simp |
|
60536 | 942 |
|
54219 | 943 |
from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a] |
944 |
pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz |
|
945 |
have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1" |
|
946 |
by simp |
|
947 |
||
948 |
have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)" |
|
949 |
by (rule ext) (simp add: poly_mult poly_add poly_cmult) |
|
60536 | 950 |
from degree_unique[OF eqs] th show ?thesis |
951 |
by (simp add: degree_unique[OF poly_normalize]) |
|
54219 | 952 |
qed |
52778 | 953 |
|
54219 | 954 |
lemma (in idom_char_0) linear_pow_mul_degree: |
955 |
"degree([a,1] %^n *** p) = (if poly p = poly [] then 0 else degree p + n)" |
|
956 |
proof (induct n arbitrary: a p) |
|
957 |
case (0 a p) |
|
958 |
show ?case |
|
959 |
proof (cases "poly p = poly []") |
|
960 |
case True |
|
961 |
then show ?thesis |
|
962 |
using degree_unique[OF True] by (simp add: degree_def) |
|
80098 | 963 |
qed (auto simp add: poly_Nil_ext) |
54219 | 964 |
next |
965 |
case (Suc n a p) |
|
60536 | 966 |
have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1] %^ n *** ([a, 1] *** p))" |
80098 | 967 |
by (force simp add: poly_mult poly_add poly_cmult ac_simps distrib_left) |
54219 | 968 |
note deq = degree_unique[OF eq] |
969 |
show ?case |
|
970 |
proof (cases "poly p = poly []") |
|
971 |
case True |
|
60536 | 972 |
with eq have eq': "poly ([a, 1] %^(Suc n) *** p) = poly []" |
973 |
by (auto simp add: poly_mult poly_cmult poly_add) |
|
54219 | 974 |
from degree_unique[OF eq'] True show ?thesis |
975 |
by (simp add: degree_def) |
|
976 |
next |
|
977 |
case False |
|
978 |
then have ap: "poly ([a,1] *** p) \<noteq> poly []" |
|
979 |
using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto |
|
60536 | 980 |
have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1]%^n *** ([a, 1] *** p))" |
981 |
by (auto simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps) |
|
982 |
from ap have ap': "poly ([a, 1] *** p) = poly [] \<longleftrightarrow> False" |
|
54219 | 983 |
by blast |
60536 | 984 |
have th0: "degree ([a, 1]%^n *** ([a, 1] *** p)) = degree ([a, 1] *** p) + n" |
80098 | 985 |
unfolding Suc.hyps[of a "pmult [a,one] p"] ap' by simp |
54219 | 986 |
from degree_unique[OF eq] ap False th0 linear_mul_degree[OF False, of a] |
60536 | 987 |
show ?thesis |
988 |
by (auto simp del: poly.simps) |
|
54219 | 989 |
qed |
990 |
qed |
|
52778 | 991 |
|
54219 | 992 |
lemma (in idom_char_0) order_degree: |
993 |
assumes p0: "poly p \<noteq> poly []" |
|
994 |
shows "order a p \<le> degree p" |
|
995 |
proof - |
|
996 |
from order2[OF p0, unfolded divides_def] |
|
60536 | 997 |
obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" |
998 |
by blast |
|
999 |
with q p0 have "poly q \<noteq> poly []" |
|
1000 |
by (simp add: poly_mult poly_entire) |
|
54219 | 1001 |
with degree_unique[OF q, unfolded linear_pow_mul_degree] show ?thesis |
1002 |
by auto |
|
1003 |
qed |
|
33153 | 1004 |
|
1005 |
||
60536 | 1006 |
text \<open>Tidier versions of finiteness of roots.\<close> |
54219 | 1007 |
lemma (in idom_char_0) poly_roots_finite_set: |
1008 |
"poly p \<noteq> poly [] \<Longrightarrow> finite {x. poly p x = 0}" |
|
52778 | 1009 |
unfolding poly_roots_finite . |
33153 | 1010 |
|
1011 |
||
60536 | 1012 |
text \<open>Bound for polynomial.\<close> |
1013 |
lemma poly_mono: |
|
1014 |
fixes x :: "'a::linordered_idom" |
|
61945 | 1015 |
shows "\<bar>x\<bar> \<le> k \<Longrightarrow> \<bar>poly p x\<bar> \<le> poly (map abs p) k" |
60698 | 1016 |
proof (induct p) |
1017 |
case Nil |
|
1018 |
then show ?case by simp |
|
1019 |
next |
|
1020 |
case (Cons a p) |
|
80098 | 1021 |
have "\<bar>a + x * poly p x\<bar> \<le> \<bar>a\<bar> + \<bar>x * poly p x\<bar>" |
1022 |
using abs_triangle_ineq by blast |
|
1023 |
also have "\<dots> \<le> \<bar>a\<bar> + k * poly (map abs p) k" |
|
1024 |
by (simp add: Cons.hyps Cons.prems abs_mult mult_mono') |
|
1025 |
finally show ?case |
|
1026 |
using Cons by auto |
|
60698 | 1027 |
qed |
33153 | 1028 |
|
60536 | 1029 |
lemma (in semiring_0) poly_Sing: "poly [c] x = c" |
1030 |
by simp |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
1031 |
|
33153 | 1032 |
end |