1274
|
1 |
(* Title: HOLCF/Coind.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Franz Regensburger
|
|
4 |
Copyright 1993 Technische Universitaet Muenchen
|
|
5 |
|
|
6 |
Example for co-induction on streams
|
|
7 |
*)
|
|
8 |
|
|
9 |
Coind = Stream2 +
|
|
10 |
|
|
11 |
|
|
12 |
consts
|
|
13 |
|
|
14 |
nats :: "dnat stream"
|
|
15 |
from :: "dnat -> dnat stream"
|
|
16 |
|
|
17 |
defs
|
|
18 |
nats_def "nats == fix`(LAM h.scons`dzero`(smap`dsucc`h))"
|
|
19 |
|
|
20 |
from_def "from == fix`(LAM h n.scons`n`(h`(dsucc`n)))"
|
|
21 |
|
|
22 |
end
|
|
23 |
|
|
24 |
(*
|
|
25 |
smap`f`UU = UU
|
|
26 |
x~=UU --> smap`f`(scons`x`xs) = scons`(f`x)`(smap`f`xs)
|
|
27 |
|
|
28 |
nats = scons`dzero`(smap`dsucc`nats)
|
|
29 |
|
|
30 |
from`n = scons`n`(from`(dsucc`n))
|
|
31 |
*)
|
|
32 |
|
|
33 |
|