1440
|
1 |
|
|
2 |
open Order;
|
|
3 |
|
|
4 |
|
|
5 |
(** basic properties of limits **)
|
|
6 |
|
|
7 |
(* uniqueness *)
|
|
8 |
|
|
9 |
val tac =
|
|
10 |
rtac impI 1 THEN
|
|
11 |
rtac (le_antisym RS mp) 1 THEN
|
|
12 |
fast_tac HOL_cs 1;
|
|
13 |
|
|
14 |
|
|
15 |
goalw thy [is_inf_def] "is_inf x y inf & is_inf x y inf' --> inf = inf'";
|
|
16 |
by tac;
|
|
17 |
qed "is_inf_uniq";
|
|
18 |
|
|
19 |
goalw thy [is_sup_def] "is_sup x y sup & is_sup x y sup' --> sup = sup'";
|
|
20 |
by tac;
|
|
21 |
qed "is_sup_uniq";
|
|
22 |
|
|
23 |
|
|
24 |
goalw thy [is_Inf_def] "is_Inf A inf & is_Inf A inf' --> inf = inf'";
|
|
25 |
by tac;
|
|
26 |
qed "is_Inf_uniq";
|
|
27 |
|
|
28 |
goalw thy [is_Sup_def] "is_Sup A sup & is_Sup A sup' --> sup = sup'";
|
|
29 |
by tac;
|
|
30 |
qed "is_Sup_uniq";
|
|
31 |
|
|
32 |
|
|
33 |
|
|
34 |
(* commutativity *)
|
|
35 |
|
|
36 |
goalw thy [is_inf_def] "is_inf x y inf = is_inf y x inf";
|
|
37 |
by (fast_tac HOL_cs 1);
|
|
38 |
qed "is_inf_commut";
|
|
39 |
|
|
40 |
goalw thy [is_sup_def] "is_sup x y sup = is_sup y x sup";
|
|
41 |
by (fast_tac HOL_cs 1);
|
|
42 |
qed "is_sup_commut";
|
|
43 |
|
|
44 |
|
|
45 |
(* associativity *)
|
|
46 |
|
|
47 |
goalw thy [is_inf_def] "is_inf x y xy & is_inf y z yz & is_inf xy z xyz --> is_inf x yz xyz";
|
|
48 |
by (safe_tac HOL_cs);
|
|
49 |
(*level 1*)
|
|
50 |
br (le_trans RS mp) 1;
|
|
51 |
be conjI 1;
|
|
52 |
ba 1;
|
|
53 |
(*level 4*)
|
|
54 |
by (step_tac HOL_cs 1);
|
|
55 |
back();
|
|
56 |
be mp 1;
|
|
57 |
br conjI 1;
|
|
58 |
br (le_trans RS mp) 1;
|
|
59 |
be conjI 1;
|
|
60 |
ba 1;
|
|
61 |
ba 1;
|
|
62 |
(*level 11*)
|
|
63 |
by (step_tac HOL_cs 1);
|
|
64 |
back();
|
|
65 |
back();
|
|
66 |
be mp 1;
|
|
67 |
br conjI 1;
|
|
68 |
by (step_tac HOL_cs 1);
|
|
69 |
be mp 1;
|
|
70 |
be conjI 1;
|
|
71 |
br (le_trans RS mp) 1;
|
|
72 |
be conjI 1;
|
|
73 |
ba 1;
|
|
74 |
br (le_trans RS mp) 1;
|
|
75 |
be conjI 1;
|
|
76 |
back(); (* !! *)
|
|
77 |
ba 1;
|
|
78 |
qed "is_inf_assoc";
|
|
79 |
|
|
80 |
|
|
81 |
goalw thy [is_sup_def] "is_sup x y xy & is_sup y z yz & is_sup xy z xyz --> is_sup x yz xyz";
|
|
82 |
by (safe_tac HOL_cs);
|
|
83 |
(*level 1*)
|
|
84 |
br (le_trans RS mp) 1;
|
|
85 |
be conjI 1;
|
|
86 |
ba 1;
|
|
87 |
(*level 4*)
|
|
88 |
by (step_tac HOL_cs 1);
|
|
89 |
back();
|
|
90 |
be mp 1;
|
|
91 |
br conjI 1;
|
|
92 |
br (le_trans RS mp) 1;
|
|
93 |
be conjI 1;
|
|
94 |
ba 1;
|
|
95 |
ba 1;
|
|
96 |
(*level 11*)
|
|
97 |
by (step_tac HOL_cs 1);
|
|
98 |
back();
|
|
99 |
back();
|
|
100 |
be mp 1;
|
|
101 |
br conjI 1;
|
|
102 |
by (step_tac HOL_cs 1);
|
|
103 |
be mp 1;
|
|
104 |
be conjI 1;
|
|
105 |
br (le_trans RS mp) 1;
|
|
106 |
be conjI 1;
|
|
107 |
back(); (* !! *)
|
|
108 |
ba 1;
|
|
109 |
br (le_trans RS mp) 1;
|
|
110 |
be conjI 1;
|
|
111 |
ba 1;
|
|
112 |
qed "is_sup_assoc";
|
|
113 |
|
|
114 |
|
|
115 |
(** limits in linear orders **)
|
|
116 |
|
|
117 |
goalw thy [minimum_def, is_inf_def] "is_inf (x::'a::lin_order) y (minimum x y)";
|
|
118 |
by (stac expand_if 1);
|
|
119 |
by (REPEAT_FIRST (resolve_tac [conjI, impI]));
|
|
120 |
(*case "x [= y"*)
|
|
121 |
br le_refl 1;
|
|
122 |
ba 1;
|
|
123 |
by (fast_tac HOL_cs 1);
|
|
124 |
(*case "~ x [= y"*)
|
|
125 |
br (le_lin RS disjE) 1;
|
|
126 |
ba 1;
|
|
127 |
be notE 1;
|
|
128 |
ba 1;
|
|
129 |
br le_refl 1;
|
|
130 |
by (fast_tac HOL_cs 1);
|
|
131 |
qed "min_is_inf";
|
|
132 |
|
|
133 |
goalw thy [maximum_def, is_sup_def] "is_sup (x::'a::lin_order) y (maximum x y)";
|
|
134 |
by (stac expand_if 1);
|
|
135 |
by (REPEAT_FIRST (resolve_tac [conjI, impI]));
|
|
136 |
(*case "x [= y"*)
|
|
137 |
ba 1;
|
|
138 |
br le_refl 1;
|
|
139 |
by (fast_tac HOL_cs 1);
|
|
140 |
(*case "~ x [= y"*)
|
|
141 |
br le_refl 1;
|
|
142 |
br (le_lin RS disjE) 1;
|
|
143 |
ba 1;
|
|
144 |
be notE 1;
|
|
145 |
ba 1;
|
|
146 |
by (fast_tac HOL_cs 1);
|
|
147 |
qed "max_is_sup";
|
|
148 |
|
|
149 |
|
|
150 |
|
|
151 |
(** general vs. binary limits **)
|
|
152 |
|
|
153 |
goalw thy [is_inf_def, is_Inf_def] "is_Inf {x, y} inf = is_inf x y inf";
|
|
154 |
br iffI 1;
|
|
155 |
(*==>*)
|
|
156 |
by (fast_tac set_cs 1);
|
|
157 |
(*<==*)
|
|
158 |
by (safe_tac set_cs);
|
|
159 |
by (step_tac set_cs 1);
|
|
160 |
be mp 1;
|
|
161 |
by (fast_tac set_cs 1);
|
|
162 |
qed "bin_is_Inf_eq";
|
|
163 |
|
|
164 |
goalw thy [is_sup_def, is_Sup_def] "is_Sup {x, y} sup = is_sup x y sup";
|
|
165 |
br iffI 1;
|
|
166 |
(*==>*)
|
|
167 |
by (fast_tac set_cs 1);
|
|
168 |
(*<==*)
|
|
169 |
by (safe_tac set_cs);
|
|
170 |
by (step_tac set_cs 1);
|
|
171 |
be mp 1;
|
|
172 |
by (fast_tac set_cs 1);
|
|
173 |
qed "bin_is_Sup_eq";
|