1461
|
1 |
(* Title: SubUnion.ML
|
1048
|
2 |
ID: $Id$
|
1461
|
3 |
Author: Ole Rasmussen
|
1048
|
4 |
Copyright 1995 University of Cambridge
|
|
5 |
Logic Image: ZF
|
|
6 |
*)
|
|
7 |
|
|
8 |
open SubUnion;
|
|
9 |
|
|
10 |
fun rotate n i = EVERY(replicate n (etac revcut_rl i));
|
|
11 |
(* ------------------------------------------------------------------------- *)
|
|
12 |
(* Specialisation of comp-rules *)
|
|
13 |
(* ------------------------------------------------------------------------- *)
|
|
14 |
|
|
15 |
val compD1 =Scomp.dom_subset RS subsetD RS SigmaD1;
|
|
16 |
val compD2 =Scomp.dom_subset RS subsetD RS SigmaD2;
|
|
17 |
|
|
18 |
val regD =Sreg.dom_subset RS subsetD;
|
|
19 |
|
|
20 |
(* ------------------------------------------------------------------------- *)
|
|
21 |
(* Equality rules for union *)
|
|
22 |
(* ------------------------------------------------------------------------- *)
|
|
23 |
|
|
24 |
goalw SubUnion.thy [union_def]
|
|
25 |
"!!u.n:nat==>Var(n) un Var(n)=Var(n)";
|
|
26 |
by (asm_simp_tac redexes_ss 1);
|
|
27 |
by (simp_tac (rank_ss addsimps redexes.con_defs) 1);
|
|
28 |
val union_Var = result();
|
|
29 |
|
|
30 |
goalw SubUnion.thy [union_def]
|
|
31 |
"!!u.[|u:redexes; v:redexes|]==>Fun(u) un Fun(v)=Fun(u un v)";
|
|
32 |
by (asm_simp_tac redexes_ss 1);
|
|
33 |
by (simp_tac (rank_ss addsimps redexes.con_defs) 1);
|
|
34 |
val union_Fun = result();
|
|
35 |
|
|
36 |
goalw SubUnion.thy [union_def]
|
|
37 |
"!!u.[|b1:bool; b2:bool; u1:redexes; v1:redexes; u2:redexes; v2:redexes|]==> \
|
|
38 |
\ App(b1,u1,v1) un App(b2,u2,v2)=App(b1 or b2,u1 un u2,v1 un v2)";
|
|
39 |
by (asm_simp_tac redexes_ss 1);
|
|
40 |
by (simp_tac (rank_ss addsimps redexes.con_defs) 1);
|
|
41 |
val union_App = result();
|
|
42 |
|
|
43 |
val union_ss = redexes_ss addsimps
|
|
44 |
(Ssub.intrs@bool_simps@bool_typechecks@
|
1461
|
45 |
Sreg.intrs@Scomp.intrs@
|
|
46 |
[or_1 RSN (3,or_commute RS trans),
|
|
47 |
or_0 RSN (3,or_commute RS trans),
|
|
48 |
union_App,union_Fun,union_Var,compD2,compD1,regD]);
|
1048
|
49 |
|
|
50 |
val union_cs = (ZF_cs addIs Scomp.intrs addSEs
|
1461
|
51 |
[Sreg.mk_cases redexes.con_defs "regular(App(b,f,a))",
|
|
52 |
Sreg.mk_cases redexes.con_defs "regular(Fun(b))",
|
|
53 |
Sreg.mk_cases redexes.con_defs "regular(Var(b))",
|
|
54 |
Scomp.mk_cases redexes.con_defs "Fun(u) ~ Fun(t)",
|
|
55 |
Scomp.mk_cases redexes.con_defs "u ~ Fun(t)",
|
|
56 |
Scomp.mk_cases redexes.con_defs "u ~ Var(n)",
|
|
57 |
Scomp.mk_cases redexes.con_defs "u ~ App(b,t,a)",
|
|
58 |
Scomp.mk_cases redexes.con_defs "Fun(t) ~ v",
|
|
59 |
Scomp.mk_cases redexes.con_defs "App(b,f,a) ~ v",
|
|
60 |
Scomp.mk_cases redexes.con_defs "Var(n) ~ u"
|
|
61 |
]);
|
1048
|
62 |
|
|
63 |
|
|
64 |
|
|
65 |
(* ------------------------------------------------------------------------- *)
|
|
66 |
(* comp proofs *)
|
|
67 |
(* ------------------------------------------------------------------------- *)
|
|
68 |
|
|
69 |
goal SubUnion.thy "!!u.u:redexes ==> u ~ u";
|
|
70 |
by (eresolve_tac [redexes.induct] 1);
|
|
71 |
by (ALLGOALS(fast_tac union_cs));
|
|
72 |
val comp_refl = result();
|
|
73 |
|
|
74 |
goal SubUnion.thy
|
|
75 |
"!!u.u ~ v ==> v ~ u";
|
1732
|
76 |
by (etac Scomp.induct 1);
|
1048
|
77 |
by (ALLGOALS(fast_tac union_cs));
|
|
78 |
val comp_sym = result();
|
|
79 |
|
|
80 |
goal SubUnion.thy
|
|
81 |
"u ~ v <-> v ~ u";
|
|
82 |
by (fast_tac (ZF_cs addIs [comp_sym]) 1);
|
|
83 |
val comp_sym_iff = result();
|
|
84 |
|
|
85 |
|
|
86 |
goal SubUnion.thy
|
|
87 |
"!!u.u ~ v ==> ALL w.v ~ w-->u ~ w";
|
1732
|
88 |
by (etac Scomp.induct 1);
|
1048
|
89 |
by (ALLGOALS(fast_tac union_cs));
|
|
90 |
val comp_trans1 = result();
|
|
91 |
|
|
92 |
val comp_trans = comp_trans1 RS spec RS mp;
|
|
93 |
|
|
94 |
(* ------------------------------------------------------------------------- *)
|
|
95 |
(* union proofs *)
|
|
96 |
(* ------------------------------------------------------------------------- *)
|
|
97 |
|
|
98 |
goal SubUnion.thy
|
|
99 |
"!!u.u ~ v ==> u <== (u un v)";
|
1732
|
100 |
by (etac Scomp.induct 1);
|
1461
|
101 |
by (etac boolE 3);
|
1048
|
102 |
by (ALLGOALS(asm_full_simp_tac union_ss));
|
|
103 |
val union_l = result();
|
|
104 |
|
|
105 |
goal SubUnion.thy
|
|
106 |
"!!u.u ~ v ==> v <== (u un v)";
|
1732
|
107 |
by (etac Scomp.induct 1);
|
1048
|
108 |
by (eres_inst_tac [("c","b2")] boolE 3);
|
|
109 |
by (ALLGOALS(asm_full_simp_tac union_ss));
|
|
110 |
val union_r = result();
|
|
111 |
|
|
112 |
goal SubUnion.thy
|
|
113 |
"!!u.u ~ v ==> u un v = v un u";
|
1732
|
114 |
by (etac Scomp.induct 1);
|
1048
|
115 |
by (ALLGOALS(asm_simp_tac (union_ss addsimps [or_commute])));
|
|
116 |
val union_sym = result();
|
|
117 |
|
|
118 |
(* ------------------------------------------------------------------------- *)
|
|
119 |
(* regular proofs *)
|
|
120 |
(* ------------------------------------------------------------------------- *)
|
|
121 |
|
|
122 |
goal SubUnion.thy
|
|
123 |
"!!u.u ~ v ==> regular(u)-->regular(v)-->regular(u un v)";
|
1732
|
124 |
by (etac Scomp.induct 1);
|
1048
|
125 |
by (ALLGOALS(asm_full_simp_tac
|
1461
|
126 |
(union_ss setloop(SELECT_GOAL (safe_tac union_cs)))));
|
1048
|
127 |
by (dres_inst_tac [("psi", "regular(Fun(?u) un ?v)")] asm_rl 1);
|
|
128 |
by (asm_full_simp_tac union_ss 1);
|
|
129 |
val union_preserve_regular = result();
|